1
|
Chen Y, Hu S, Hu B, Li Y, Chen Z. Functional insights into microbial community dynamics and resilience in mycorrhizal associated constructed wetlands under pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138315. [PMID: 40250281 DOI: 10.1016/j.jhazmat.2025.138315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are critical mutualistic symbionts in most terrestrial ecosystems, where they facilitate nutrient acquisition, enhance plant resilience to environmental stressors, and shape the surrounding microbiome. However, its contributions (especially for microorganisms) to constructed wetlands (CWs) under pesticide stress remain poorly understood. This study investigated the effects of AMF on microbial community composition, diversity, metabolic pathways, and functional genes by metagenomics in CWs exposed to pesticides stress. Using comparative analyses of AMF-colonized and non-colonized CWs, we found that AMF enhanced overall microbial diversity, as evidenced by increases of 2.22 % (Chao1) and 2.83 % (observed species). Under fungicide stress, nitrogen-cycling microorganisms (e.g., Nitrososphaerota and Mucoromycota) increased in relative abundance, while carbon cycle-related microorganisms (e.g., Pseudomonadota and Bacteroidota) generally declined. AMF colonization improved microbial resilience, demonstrated by a 312 % rise in Rhizophagus abundance and significant increases in phosphorus-cycling microorganisms (e.g., Bradyrhizobium and Mesorhizobium). Functional gene analysis further revealed that AMF helped mitigate fungicide-induced reductions in genes related to nitrogen and carbon cycling, lowering the average decline rates to 4.02 % and 1.44 %, respectively, compared to higher rates in non-AMF treatments. In summary, these findings highlight the crucial role of AMF in enhancing pesticide stress resilience, maintaining microbial community stability, and improving the bioremediation capacity of CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha - Suchdol 16500, Czech Republic
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yungui Li
- Sichuan Provincial Sci-Tech Cooperation Base of Low-cost Wastewater Treatment Technology, Department of Environmental Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha - Suchdol 16500, Czech Republic.
| |
Collapse
|
2
|
Vaishnav A, Rozmoš M, Kotianová M, Hršelová H, Bukovská P, Jansa J. Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. THE NEW PHYTOLOGIST 2025; 246:2753-2764. [PMID: 40259857 PMCID: PMC12095988 DOI: 10.1111/nph.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
While largely depending on other microorganisms for nitrogen (N) mineralization, arbuscular mycorrhizal fungi (AMF) can transfer N from organic sources to their host plants. Here, we compared N acquisition by the AMF hyphae from chitin and protein sources and assessed the effects of microbial interactions in the hyphosphere. We employed in vitro compartmented microcosms, each containing three distinct hyphosphere compartments amended with different N sources (protein, chitin, or ammonium chloride), one of which was enriched with 15N isotope. All hyphosphere compartments were supplied with Paenibacillus bacteria, with or without the protist Polysphondylium pallidum. We measured the effect of these model microbiomes on the efficiency of 15N transfer to roots via the AMF hyphae. We found that the hyphae efficiently took up N from ammonium chloride, competing strongly with bacteria and protists. Mobilization of 15N from chitin and protein was facilitated by bacteria and protists, respectively. Notably, AMF priming significantly affected the abundance of bacteria and protists in hyphosphere compartments and promoted mineralization of protein N by protists. Subsequently, this N was transferred into roots. Our results provide the first unequivocal evidence that roots can acquire N from proteins present in the AMF hyphosphere and that protists may play a crucial role in protein N mineralization.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Petra Bukovská
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of MicrobiologyCzech Academy of SciencesVídeňská 108314200Prague 4Czech Republic
| |
Collapse
|
3
|
Duan S, Jin Z, Zhang L, Declerck S. Mechanisms of cooperation in the plants-arbuscular mycorrhizal fungi-bacteria continuum. THE ISME JOURNAL 2025; 19:wraf023. [PMID: 39921668 PMCID: PMC11879240 DOI: 10.1093/ismejo/wraf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In nature, cooperation is an essential way for species, whether they belong to the same kingdom or to different kingdoms, to overcome the scarcity of resources and improve their fitness. Arbuscular mycorrhizal fungi are symbiotic microorganisms whose origin date back 400 million years. They form symbiotic associations with the vast majority of terrestrial plants, helping them to obtain nutrients from the soil in exchange for carbon. At the more complex level, soil bacteria participate in the symbiosis between arbuscular mycorrhizal fungi and plants: they obtain carbon from the exudation of hyphae connected to the roots and compensate for the limited saprophytic capacity of arbuscular mycorrhizal fungi by mineralizing organic compounds. Therefore, plants, arbuscular mycorrhizal fungi and soil bacteria constitute a continuum that may be accompanied by multiple forms of cooperation. In this review, we first analyzed the functional complementarities and differences between plants and arbuscular mycorrhizal fungi in arbuscular mycorrhizal symbiosis. Secondly, we discussed the resource exchange relationship between plants and arbuscular mycorrhizal fungi from the perspective of biological market theory and "surplus carbon" hypothesis. Finally, on the basis of mechanisms for maintaining cooperation, direct and indirect reciprocity in the hyphosphere, induced by the availability of external resource and species fitness, were examined. Exploring these reciprocal cooperations will provide a better understanding of the intricate ecological relationships between plants, arbuscular mycorrhizal fungi and soil bacteria as well as their evolutionary implications.
Collapse
Affiliation(s)
- Shilong Duan
- Université catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, Louvain-la-Neuve B-1348, Belgium
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Zexing Jin
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management; College of Resources and Environmental Sciences; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied microbiology, Mycology, Croix du sud 2, bte L7.05.06, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
4
|
Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. Cross-kingdom nutrient exchange in the plant-arbuscular mycorrhizal fungus-bacterium continuum. Nat Rev Microbiol 2024; 22:773-790. [PMID: 39014094 DOI: 10.1038/s41579-024-01073-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
The association between plants and arbuscular mycorrhizal fungi (AMF) affects plant performance and ecosystem functioning. Recent studies have identified AMF-associated bacteria as cooperative partners that participate in AMF-plant symbiosis: specific endobacteria live inside AMF, and hyphospheric bacteria colonize the soil that surrounds the extraradical hyphae. In this Review, we describe the concept of a plant-AMF-bacterium continuum, summarize current advances and provide perspectives on soil microbiology. First, we review the top-down carbon flow and the bottom-up mineral flow (especially phosphorus and nitrogen) in this continuum, as well as how AMF-bacteria interactions influence the biogeochemical cycling of nutrients (for example, carbon, phosphorus and nitrogen). Second, we discuss how AMF interact with hyphospheric bacteria or endobacteria to regulate nutrient exchange between plants and AMF, and the possible molecular mechanisms that underpin this continuum. Finally, we explore future prospects for studies on the hyphosphere to facilitate the utilization of AMF and hyphospheric bacteria in sustainable agriculture.
Collapse
Affiliation(s)
- Shilong Duan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Zhang Y, Resch MC, Schütz M, Liao Z, Frey B, Risch AC. Strengthened plant-microorganism interaction after topsoil removal cause more deterministic microbial assembly processes and increased soil nitrogen mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175031. [PMID: 39069191 DOI: 10.1016/j.scitotenv.2024.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Topsoil removal, among other restoration measures, has been recognized as one of the most successful methods to restore biodiversity and ecosystem functioning in European grasslands. However, knowledge about how removal as well as other restoration methods influence interactions between plant and microbial communities is very limited. The aims of the current study were to understand the impact of topsoil removal on plant-microorganism interactions and on soil nitrogen (N) mineralization, as one example of ecosystem functioning. We examined how three different grassland restoration methods, namely 'Harvest only', 'Topsoil removal' and 'Topsoil removal + Propagules (plant seed addition)', affected i) the interactions between plants and soil microorganisms, ii) soil microbial community assembly processes, and iii) soil N mineralization. We compared the outcome of these three restoration methods to initial degraded and target semi-natural grasslands in the Canton of Zurich, Switzerland. We were able to show that 'Topsoil removal' and 'Topsoil removal + Propagules', but not 'Harvest only', reduced the soil total N pool and available N concentration, but increased soil N mineralization and strengthened the plant-microorganism interactions. Microbial community assembly processes shifted towards more deterministic after both topsoil removal treatments. These shifts could be attributed to an increase in dispersal limitation and selection due to stronger interactions between plants and soil microorganisms. The negative relationship between soil N mineralization and microbial community stochasticity indicated that microbial assembly processes, to some extent, can be incorporated into model predictions of soil functions. Overall, the results suggest that topsoil removal may change the microbial assembly processes and thus the functioning of grassland ecosystems by enhancing the interaction between plants and soil microorganisms.
Collapse
Affiliation(s)
- Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Monika Carol Resch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ziyan Liao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Anita Christina Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
6
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Xu Y, Yan Y, Zhou T, Lu Y, Yang X, Tang K, Liu F. Synergy between Arbuscular Mycorrhizal Fungi and Rhizosphere Bacterial Communities Increases the Utilization of Insoluble Phosphorus and Potassium in the Soil by Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23631-23642. [PMID: 39389770 DOI: 10.1021/acs.jafc.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi can enhance plant uptake of phosphorus (P) and potassium (K), but it is not yet clear whether rhizosphere bacteria can enhance the ability of AM fungi to acquire insoluble P and K from the soil. Here, pot experiments confirmed that AM fungus-promoted insoluble P and K uptake by plants requires rhizosphere bacteria. The changes of rhizosphere bacterial communities associated with AM fungi were explored by 16S rRNA amplicon sequencing and metagenomic sequencing. Five core bacteria genera identified were involved in P and K cycles. Synthetic community (SynCom) inoculation revealed that SynCom increased soil available P and K and its coinoculation with AM fungi increased P and K concentration in the plants. This study revealed that AM fungi interact with rhizosphere bacteria and promote insoluble P and K acquisition, which provided a foundation for the application of AM fungal-bacterial biofertilizers and was beneficial for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yunjian Xu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Yixiu Yan
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Tianyi Zhou
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Yufan Lu
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Xinyu Yang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming 650504, China
| |
Collapse
|
8
|
Yang M, Song Y, Ma H, Li Z, Ding J, Yin T, Niu K, Sun S, Qi J, Lu G, Fazal A, Yang Y, Wen Z. Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:78. [PMID: 39439005 PMCID: PMC11494790 DOI: 10.1186/s40793-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil. RESULTS The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere. CONCLUSIONS Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.
Collapse
Affiliation(s)
- Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Song
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hanke Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kechang Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Stonoha-Arther C, Panke-Buisse K, Duff AJ, Molodchenko A, Casler MD. Rhizosphere microbial community structure in high-producing, low-input switchgrass families. PLoS One 2024; 19:e0308753. [PMID: 39361607 PMCID: PMC11449334 DOI: 10.1371/journal.pone.0308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Switchgrass (Panicum virgatum L.) is a native, low-input North American perennial crop primarily grown for bioenergy, livestock forage, and industrial fiber. To achieve no-input switchgrass production that meets biomass needs, several switchgrass genotypes have been identified that have a low or negative response to nitrogen fertilizer, i.e., the biomass accumulation with added nitrogen is less than or equal to that when grown without nitrogen. In order to improve the viability of low-input switchgrass production, a more detailed understanding of the biogeochemical mechanisms active in these select genotypes is needed. 16S and ITS amplicon sequencing and qPCR of key functional genes were applied to switchgrass rhizospheres to elucidate microbial community structure in high-producing, no-input switchgrass families. Rhizosphere microbial community structure differed strongly between sites, and nitrogen responsiveness.
Collapse
Affiliation(s)
| | - Kevin Panke-Buisse
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Alison J Duff
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Andrew Molodchenko
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Michael D Casler
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| |
Collapse
|
10
|
Al-Thani RF, Yasseen BT. Methods Using Marine Aquatic Photoautotrophs along the Qatari Coastline to Remediate Oil and Gas Industrial Water. TOXICS 2024; 12:625. [PMID: 39330553 PMCID: PMC11435476 DOI: 10.3390/toxics12090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.
Collapse
|
11
|
Charakas C, Khokhani D. Expanded trade: tripartite interactions in the mycorrhizosphere. mSystems 2024; 9:e0135223. [PMID: 38837330 PMCID: PMC11265408 DOI: 10.1128/msystems.01352-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Interactions between arbuscular mycorrhizal fungi (AMF), plants, and the soil microbial community have the potential to increase the availability and uptake of phosphorus (P) and nitrogen (N) in agricultural systems. Nutrient exchange between plant roots, AMF, and the adjacent soil microbes occurs at the interface between roots colonized by mycorrhizal fungi and soil, referred to as the mycorrhizosphere. Research on the P exchange focuses on plant-AMF or AMF-microbe interactions, lacking a holistic view of P exchange between the plants, AMF, and other microbes. Recently, N exchange at both interfaces revealed the synergistic role of AMF and bacterial community in N uptake by the host plant. Here, we highlight work carried out on each interface and build upon it by emphasizing research involving all members of the tripartite network. Both nutrient systems are challenging to study due to the complex chemical and biological nature of the mycorrhizosphere. We discuss some of the effective methods to identify important nutrient processes and the tripartite members involved in these processes. The extrapolation of in vitro studies into the field is often fraught with contradiction and noise. Therefore, we also suggest some approaches that can potentially bridge the gap between laboratory-generated data and their extrapolation to the field, improving the applicability and contextual relevance of data within the field of mycorrhizosphere interactions. Overall, we argue that the research community needs to adopt a holistic tripartite approach and that we have the means to increase the applicability and accuracy of in vitro data in the field.
Collapse
Affiliation(s)
- Christos Charakas
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota, USA
| | - Devanshi Khokhani
- Department of Plant Pathology, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
12
|
Fajana HO, Lamb EG, Siciliano SD. A shift from individual species to ecosystem services effect: Introducing the Eco-indicator Sensitivity Distribution (EcoSD) as an ecosystem services approach to redefining the species sensitivity distribution (SSD) for soil ecological risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1166-1179. [PMID: 37984821 DOI: 10.1002/ieam.4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Incorporating the ecosystem services (ES) approach into soil ecological risk assessment (ERA) has been advocated over the years, but implementing the approach in ERA faces some challenges. However, several researchers have made significant improvements to the soil ERA, such as applying the species sensitivity distribution (SSD) to discern chemical effects on the soil ecosystem. Despite the considerable contributions of SSD to ERA, SSD fails to relate chemical impact on individual species to ES and account for functional redundancy as well as soil ecosystem complexity. Here, we introduce the Eco-indicator Sensitivity Distribution (EcoSD). An EcoSD fits ecological functional groups and soil processes, termed "eco-indicators," instead of individual species responses to a statistical distribution. These eco-indicators are related directly to critical ecosystem functions that drive ES. We derived an EcoSD for cadmium as a model chemical and estimated a soil ecosystem protection value (EcoPVSoil) based on the eco-indicator dataset for cadmium from the literature. The EcoSD identified nitrogen cycling as the critical process disrupted by cadmium. A key advantage of EcoSD is that it identifies key ecological and chemical indicators of an ES effect. In doing so, it links chemical monitoring results to sensitive ecological functions. The estimated EcoPVSoil for cadmium was slightly more protective of the soil ecosystem than most regional soil values derived from this study's dataset and soil guideline values from the literature. Thus, EcoSD has proven to be a practical and valuable ES concept with the potential to serve as an initial step of the tiered ERA approach. Integr Environ Assess Manag 2024;20:1166-1179. © 2023 SETAC.
Collapse
Affiliation(s)
- Hamzat O Fajana
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eric G Lamb
- Department of Plant Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Luo X, Jiang J, Zhou J, Chen J, Cheng B, Li X. MyC Factor Analogue CO5 Promotes the Growth of Lotus japonicus and Enhances Stress Resistance by Activating the Expression of Relevant Genes. J Fungi (Basel) 2024; 10:458. [PMID: 39057343 PMCID: PMC11278419 DOI: 10.3390/jof10070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The symbiotic relationship between arbuscular mycorrhizal fungi (AMF) and plants is well known for its benefits in enhancing plant growth and stress resistance. Research on whether key components of the AMF colonization process, such as MyC factors, can be directly utilized to activate plant symbiotic pathways and key functional gene expression is still lacking. In this paper, we found that, using a hydroponics system with Lotus japonicus, MyC factor analogue chitin oligomer 5 (CO5) had a more pronounced growth-promoting effect compared to symbiosis with AMF at the optimal concentration. Additionally, CO5 significantly enhanced the resistance of Lotus japonicus to various environmental stresses. The addition of CO5 activated symbiosis, nutrient absorption, and stress-related signaling pathways, like AMF symbiosis, and CO5 also activated a higher and more extensive gene expression profile compared to AMF colonization. Overall, the study demonstrated that the addition of MyC factor analogue CO5, by activating relevant pathways, had a superior effect on promoting plant growth and enhancing stress resistance compared to colonization by AMF. These findings suggest that utilizing MyC factor analogues like CO5 could be a promising alternative to traditional AMF colonization methods in enhancing plant growth and stress tolerance in agriculture.
Collapse
Affiliation(s)
- Xinhao Luo
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jiaqing Jiang
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jin Chen
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Berrios L, Bogar GD, Bogar LM, Venturini AM, Willing CE, Del Rio A, Ansell TB, Zemaitis K, Velickovic M, Velickovic D, Pellitier PT, Yeam J, Hutchinson C, Bloodsworth K, Lipton MS, Peay KG. Ectomycorrhizal fungi alter soil food webs and the functional potential of bacterial communities. mSystems 2024; 9:e0036924. [PMID: 38717159 PMCID: PMC11237468 DOI: 10.1128/msystems.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Most of Earth's trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth's land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew Pinus muricata plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)-one of the most dominant soil microbial groups on Earth-shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, California, USA
| | - Glade D. Bogar
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Laura M. Bogar
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | | | - Claire E. Willing
- Department of Biology, Stanford University, Stanford, California, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Anastacia Del Rio
- Department of Biology, Stanford University, Stanford, California, USA
| | - T. Bertie Ansell
- Department of Biology, Stanford University, Stanford, California, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Kevin Zemaitis
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marija Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dusan Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Jay Yeam
- Department of Biology, Stanford University, Stanford, California, USA
| | - Chelsea Hutchinson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kent Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S. Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Liao YCZ, Pu HX, Jiao ZW, Palviainen M, Zhou X, Heinonsalo J, Berninger F, Pumpanen J, Köster K, Sun H. Enhancing boreal forest resilience: A four-year impact of biochar on soil quality and fungal communities. Microbiol Res 2024; 283:127696. [PMID: 38518453 DOI: 10.1016/j.micres.2024.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme β-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.
Collapse
Affiliation(s)
- Yang-Chun-Zi Liao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Xiu Pu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Wen Jiao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland.
| |
Collapse
|
16
|
Jin Z, Jiang F, Wang L, Declerck S, Feng G, Zhang L. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. MICROBIOME 2024; 12:83. [PMID: 38725008 PMCID: PMC11080229 DOI: 10.1186/s40168-024-01811-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.
Collapse
Affiliation(s)
- Zexing Jin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Feiyan Jiang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Letian Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, Bte L7.05.06, Louvain-La-Neuve, B-1348, Belgium
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Wang M, Xiang L, Tang W, Chen X, Li C, Yin C, Mao Z. Apple-arbuscular mycorrhizal symbiosis confers resistance to Fusarium solani by inducing defense response and elevating nitrogen absorption. PHYSIOLOGIA PLANTARUM 2024; 176:e14355. [PMID: 38783519 DOI: 10.1111/ppl.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Fusarium solani exerts detrimental effects on plant growth, which is one of the reasons for the incidence of apple replant disease. Arbuscular mycorrhizal fungi (AMF) enhance plant resistance to Fusarium wilt; however, the mechanism remains poorly understood. Therefore, the present study investigated the symbiosis between apple and AMF and explored the physiology, especially nitrate metabolism, antioxidant defense, and photosynthetic performance, when infected by F. solani. The experiment was carried out with four treatments, namely -AMF - F. solani, -AMF + F. solani, -AMF + F. solani, and + AMF + F. solani. In this study, the -AMF + F. solani treatment increased the activity of enzymes associated with nitrogen metabolism, such as the nitrate and nitrite reductases, in the apple root system. The +AMF + F. solani treatment showed higher antioxidant enzyme activities than the -AMF + F. solani by F. solani infection. The apple seedlings of the +AMF + F. solani treatment decreased reactive oxygen accumulation and reduced the oxidative damages triggered by F. solani infection. The improvement in antioxidant capacity due to the +AMF + F. solani treatment was closely associated with the upregulation of genes related to the antioxidant system. The F. solani infection greatly damaged the photosynthetic process, while the +AMF + F. solani treatment significantly improved it compared to the -AMF + F. solani treatment. In conclusion, the study demonstrated that the apple-AMF symbiosis plays an active role in regulating the resistance against F. solani infection by enhancing defense response and nitrogen metabolism.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
- Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
| | - Li Xiang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Weixiao Tang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuesen Chen
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chuanrong Li
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, China
- Research Center for Forest Carbon Neutrality Engineering of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
- Key Laboratory of Ecological Protection and Security Control of the Lower Yellow River of Shandong Higher Education Institutions, Tai'an, Shandong, PR China
| | - Chengmiao Yin
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhiquan Mao
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
18
|
Bender SF, Schulz S, Martínez-Cuesta R, Laughlin RJ, Kublik S, Pfeiffer-Zakharova K, Vestergaard G, Hartman K, Parladé E, Römbke J, Watson CJ, Schloter M, van der Heijden MGA. Simplification of soil biota communities impairs nutrient recycling and enhances above- and belowground nitrogen losses. THE NEW PHYTOLOGIST 2023; 240:2020-2034. [PMID: 37700504 DOI: 10.1111/nph.19252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.
Collapse
Affiliation(s)
- S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | - Stefanie Schulz
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Rubén Martínez-Cuesta
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ronald J Laughlin
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Kristina Pfeiffer-Zakharova
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kyle Hartman
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Jörg Römbke
- ECT Ökotoxikologie GmbH, Böttgerstr. 2-14, D-65439, Flörsheim, Germany
| | - Catherine J Watson
- Agri-Environment Branch, Agri-Food & Biosciences Institute, Belfast, BT9 5PX, UK
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
- Technical University of Munich, Chair for Environmental Microbiology, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Marcel G A van der Heijden
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| |
Collapse
|
19
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|
20
|
Akbar M, Chohan SA, Yasin NA, Ahmad A, Akram W, Nazir A. Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties. PeerJ 2023; 11:e15686. [PMID: 37719109 PMCID: PMC10504892 DOI: 10.7717/peerj.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
To meet food security, commercial fertilizers are available to boost wheat yield, but there are serious ill effects associated with these fertilizers. Amongst various organic alternatives, inoculating crop fields with mycorrhizal species is the most promising option. Although, mycorrhizae are known to enhance wheat yield, but how the mycorrhizae influence different yield and quality parameters of wheat, is not clear. Therefore, this study was undertaken to investigate the influence of indigenous mycorrhizal species on the growth of wheat, its nutritional status and soil properties, in repeated set of field experiments. In total 11 species of mycorrhizae were isolated from the experimental sites with Claroideoglomus, being the most dominant one. Five different treatments were employed during the present study, keeping plot size for each replicate as 6 × 2 m. Introduction of consortia of mycorrhizae displayed a significant increase in number of tillers/plant (49.5%), dry biomass (17.4%), grain yield (21.2%) and hay weight (16.7%). However, there was non-significant effect of mycorrhizal inoculation on 1,000 grains weight. Moreover, protein contents were increased to 24.2%. Zinc, iron, phosphorus and potassium concentrations were also increased to 24%, 21%, 30.9% and 14.8%, respectively, in wheat grains. Enhancement effects were also noted on soil fertility such as soil organic carbon % age, available phosphorus and potassium were increased up to 64.7%, 35.8% and 23.9%, respectively. Herein, we concluded that mycorrhizal introduction in wheat fields significantly increased tillering in wheat and this increased tillering resulted in overall increase in wheat biomass/yield. Mycorrhizae also enhanced nutritional attributes of wheat grains as well as soil fertility. The use of mycorrhizae will help to reduce our dependance on synthetic fertilizers in sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Safeer A Chohan
- Department of Botany, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Nasim A Yasin
- SSG, RO-II Department, University of the Punjab, Lahore, Punjab, Pakistan
| | - Aqeel Ahmad
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Waheed Akram
- Department of Plant Pathology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Abdul Nazir
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
21
|
Hiiesalu I, Schweichhart J, Angel R, Davison J, Doležal J, Kopecký M, Macek M, Řehakova K. Plant-symbiotic fungal diversity tracks variation in vegetation and the abiotic environment along an extended elevational gradient in the Himalayas. FEMS Microbiol Ecol 2023; 99:fiad092. [PMID: 37562924 DOI: 10.1093/femsec/fiad092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi can benefit plants under environmental stress, and influence plant adaptation to warmer climates. However, very little is known about the ecology of these fungi in alpine environments. We sampled plant roots along a large fraction (1941-6150 m asl (above sea level)) of the longest terrestrial elevational gradient on Earth and used DNA metabarcoding to identify AM fungi. We hypothesized that AM fungal alpha and beta diversity decreases with increasing elevation, and that different vegetation types comprise dissimilar communities, with cultured (putatively ruderal) taxa increasingly represented at high elevations. We found that the alpha diversity of AM fungal communities declined linearly with elevation, whereas within-site taxon turnover (beta diversity) was unimodally related to elevation. The composition of AM fungal communities differed between vegetation types and was influenced by elevation, mean annual temperature, and precipitation. In general, Glomeraceae taxa dominated at all elevations and vegetation types; however, higher elevations were associated with increased presence of Acaulosporaceae, Ambisporaceae, and Claroideoglomeraceae. Contrary to our expectation, the proportion of cultured AM fungal taxa in communities decreased with elevation. These results suggest that, in this system, climate-induced shifts in habitat conditions may facilitate more diverse AM fungal communities at higher elevations but could also favour ruderal taxa.
Collapse
Affiliation(s)
- Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50 409 Tartu, Estonia
| | - Johannes Schweichhart
- Biology Centre of the CAS, Institute of Soil Biology and Biochemistry, Na Sádkách 702/7 , 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roey Angel
- Biology Centre of the CAS, Institute of Soil Biology and Biochemistry, Na Sádkách 702/7 , 370 05 České Budějovice, Czech Republic
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, 50 409 Tartu, Estonia
| | - Jiři Doležal
- Institute of Botany of the CAS, Dukelská 135, 379 01 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Martin Kopecký
- Institute of Botany of the CAS, Zámek 1, 252 43 Průhonice, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic
| | - Martin Macek
- Institute of Botany of the CAS, Zámek 1, 252 43 Průhonice, Czech Republic
| | - Klára Řehakova
- Biology Centre of the CAS, Institute of Hydrobiology, Na Sádkách 702/7, 370 05 České Budějovice, Czech Republic
- Institute of Botany of the CAS, Dukelská 135, 379 01 Třeboň, Czech Republic
| |
Collapse
|
22
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
23
|
Lu Y, Yan Y, Qin J, Ou L, Yang X, Liu F, Xu Y. Arbuscular mycorrhizal fungi enhance phosphate uptake and alter bacterial communities in maize rhizosphere soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1206870. [PMID: 37426987 PMCID: PMC10325641 DOI: 10.3389/fpls.2023.1206870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can symbiose with many plants and improve nutrient uptake for their host plant. Rhizosphere microorganisms have been pointed to play important roles in helping AMF to mobilize soil insoluble nutrients, especially phosphorus. Whether the change in phosphate transport under AMF colonization will affect rhizosphere microorganisms is still unknown. Here, we evaluated the links of interactions among AMF and the rhizosphere bacterial community of maize (Zea mays L.) by using a maize mycorrhizal defective mutant. Loss of mycorrhizal symbiosis function reduced the phosphorus concentration, biomass, and shoot length of maize colonized by AMF. Using 16S rRNA gene amplicon high-throughput sequencing, we found that the mutant material shifted the bacterial community in the rhizosphere under AMF colonization. Further functional prediction based on amplicon sequencing indicated that rhizosphere bacteria involved in sulfur reduction were recruited by the AMF colonized mutant but reduced in the AMF- colonized wild type. These bacteria harbored much abundance of sulfur metabolism-related genes and negatively correlated with biomass and phosphorus concentrations of maize. Collectively, this study shows that AMF symbiosis recruited rhizosphere bacterial communities to improve soil phosphate mobilization, which may also play a potential role in regulating sulfur uptake. This study provides a theoretical basis for improving crop adaptation to nutrient deficiency through soil microbial management practices.
Collapse
Affiliation(s)
- Yufan Lu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yixiu Yan
- School of Agriculture, Yunnan University, Kunming, China
| | - Jie Qin
- School of Agriculture, Yunnan University, Kunming, China
| | - Luyan Ou
- School of Agriculture, Yunnan University, Kunming, China
| | - Xinyu Yang
- School of Agriculture, Yunnan University, Kunming, China
| | - Fang Liu
- School of Agriculture, Yunnan University, Kunming, China
| | - Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Ahammed GJ, Shamsy R, Liu A, Chen S. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121597. [PMID: 37031849 DOI: 10.1016/j.envpol.2023.121597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops. Therefore, remediation of polluted soil is imperative not only for agricultural sustainability but also for food safety. Arbuscular mycorrhizal fungi (AMF) are widespread soil-borne endophytic fungi that form mutualistic relationships with the vast majority of land plants. In mycorrhizal symbiosis, AMF are largely dependent on the host plant-supplied carbohydrates and lipids, in return, AMF aid the host plants in acquiring water and mineral nutrients, especially phosphorus, nitrogen and sulfur from distant soils, and this distinguishing feature of the two-way exchange of resources is a functional requirement for such mutualism and ecosystem services. In addition to supplying nutrients and water to plants, the AMF symbiosis enhances plant resilience to biotic and abiotic stresses including Cr stress. Studies have revealed vital physiological and molecular mechanisms by which AMF alleviate Cr phytotoxicity and aid plants in nutrient acquisition under Cr stress. Notably, plant Cr tolerance is enhanced by both the direct effects of AMF on Cr stabilization and transformation, and the indirect effects of AMF symbiosis on plant nutrient uptake and physiological regulation. In this article, we summarized the research progress on AMF and associated mechanisms of Cr tolerance in plants. In addition, we reviewed the present understanding of AMF-assisted Cr remediation. Since AMF symbiosis can enhance plant resilience to Cr pollution, AMF may have promising prospects in agricultural production, bioremediation, and ecological restoration in Cr-polluted soils.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| | - Rubya Shamsy
- Microbiology Program, Department of Mathematics & Natural Sciences, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| |
Collapse
|
25
|
Wang G, Jin Z, George TS, Feng G, Zhang L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. THE NEW PHYTOLOGIST 2023; 238:2578-2593. [PMID: 36694293 DOI: 10.1111/nph.18772] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/17/2023] [Indexed: 05/19/2023]
Abstract
The extraradical hyphae of arbuscular mycorrhizal (AM) fungi are colonized by different bacteria in natural and agricultural systems, but the mechanisms by which AM fungi interact with the hyphosphere soil microbiome and influence soil organic phosphorus (P) mobilization remain unclear. We grew Medicago in two-compartment microcosms, inoculated with Rhizophagus irregularis, or not, in the root compartment and set up P treatments (without P, with P addition as KH2 PO4 or nonsoluble phytate) in the hyphal compartment. We studied the processes of soil P turnover and characterized the microbiome functional profiles for P turnover in the hyphosphere soil by metagenomic sequencing. Compared with the bulk soil, the hyphosphere soil of R. irregularis was inhabited by a specific bacterial community and their functional profiles for P turnover was stimulated. At the species level, the shift in hyphosphere soil microbiome was characterized by the recruitment of the genome bin2.39 harbouring both gcd and phoD genes and genome bin2.97 harbouring the phoD gene, which synergistically drove nonsoluble phytate mobilization in the hyphosphere soil. Our results suggest that AM fungi recruits a specific hyphosphere soil microbiome and stimulated their functional profiles for P turnover to enhance utilization of phytate.
Collapse
Affiliation(s)
- Guiwei Wang
- College of Resources and Environmental Sciences, MOE Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Zexing Jin
- College of Resources and Environmental Sciences, MOE Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | | | - Gu Feng
- College of Resources and Environmental Sciences, MOE Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, MOE Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Lu Q, Bunn R, Whitney E, Feng Y, DeVetter LW, Tao H. Arbuscular mycorrhizae influence raspberry growth and soil fertility under conventional and organic fertilization. Front Microbiol 2023; 14:1083319. [PMID: 37260690 PMCID: PMC10227501 DOI: 10.3389/fmicb.2023.1083319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Introducing beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) to agricultural systems may improve plant performance and soil fertility. However, whether bioinocula species composition affects plant growth and soil fertility, and whether fertilizer source influences AMF colonization have not been well characterized. The objectives of this research were to: (1) assess if AMF bioinocula of different species compositions improve raspberry (Rubus idaeus L.) performance and characteristics of soil fertility and (2) evaluate the impact of fertilizer source on AMF colonization. Methods Five bioinocula with different AMF species compositions and three fertilizer sources were applied to tissue culture raspberry transplants in a randomized complete block design with eight replicates. Plants were grown in a greenhouse for 14 weeks and plant growth, tissue nutrient concentrations, soil fertility, and AMF root colonization were measured. Results Shoot K and Zn concentrations as well as soil pH and K concentration increased in the Commercial Mix 1 treatment (Glomus, Gigaspora, and Paraglomus AMF species) compared to the non-inoculated control. RFI (raspberry field bioinoculum; uncharacterized AMF and other microbiota) increased soil organic matter (SOM), estimated nitrogen release (ENR), and soil copper (Cu) concentration compared to the non-inoculated control. Furthermore, plants receiving the Mix 1 or RFI treatments, which include more AMF species, had greater AMF root colonization than the remaining treatments. Plants receiving organic fertilizer had significantly greater AMF colonization than conventionally fertilized plants. Conclusion Taken together, our data indicate that coupling organic fertilizers and bioinocula that include diverse AMF species may enhance raspberry growth and soil fertility.
Collapse
Affiliation(s)
- Qianwen Lu
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| | - Rebecca Bunn
- Department of Environmental Sciences, Western Washington University, Bellingham, WA, United States
| | - Erika Whitney
- Department of Environmental Sciences, Western Washington University, Bellingham, WA, United States
| | - Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lisa Wasko DeVetter
- Northwestern Washington Research and Extension Center, Washington State University, Mount Vernon, WA, United States
| | - Haiying Tao
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
27
|
Jáuregui I, Vega-Mas I, Delaplace P, Vanderschuren H, Thonar C. An optimized hydroponic pipeline for large-scale identification of wheat genotypes with resilient biological nitrification inhibition activity. THE NEW PHYTOLOGIST 2023; 238:1711-1721. [PMID: 36764923 DOI: 10.1111/nph.18807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Several plant species have been reported to inhibit nitrification via their root exudates, the so-called biological nitrification inhibition (BNI). Given the potential of BNI-producing plants to sustainably mitigate N losses in agrosystems, identification of BNI activity in existing germplasms is of paramount importance. A hydroponic system was combined with an optimized Nitrosomonas europaea-based bioassay to determine the BNI activity of root exudates. The pipeline allows collecting and processing hundreds of root exudates simultaneously. An additional assay was established to assess the potential bactericide effect of the root exudates. The pipeline was used to unravel the impact of developmental stage, temperature and osmotic stress on the BNI trait in selected wheat genotypes. Biological nitrification inhibition activity appeared consistently higher in wheat at the pretillering stage as compared to the tillering stage. While low-temperatures did not alter BNI activities in root exudates, osmotic stress appeared to change the BNI activity in a genotype-dependent manner. Further analysis of Nitrosomonas culture after pre-exposure to root exudates suggested that BNI activity has no or limited bactericide effects. The present pipeline will be instrumental to further investigating the dynamics of BNI activity and to uncover the diversity of the BNI trait in plant species.
Collapse
Affiliation(s)
- Iván Jáuregui
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
| | - Izargi Vega-Mas
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Pierre Delaplace
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Tropical Crop Improvement Laboratory, Biosystems Department, KU Leuven, B-3001, Leuven, Belgium
| | - Cécile Thonar
- Plant Genetics and Rhizosphere Processes laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, B-5030, Gembloux, Belgium
- Agroecology Lab, Université Libre de Bruxelles (ULB), B-1050, Brussels, Belgium
| |
Collapse
|
28
|
Wang W, Zhu Q, Dai S, Meng L, He M, Chen S, Zhao C, Dan X, Cai Z, Zhang J, Müller C. Effects of Solidago canadensis L. on mineralization-immobilization turnover enhance its nitrogen competitiveness and invasiveness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163641. [PMID: 37080304 DOI: 10.1016/j.scitotenv.2023.163641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of 15N-labeled pot experiments were carried out with Solidago canadensis L. (S. canadensis), an invasive plant, and the Ntrace tool was used to clarify the preferred inorganic N form and its effects on soil N transformation. According to the results, nitrate-N (NO3--N) uptake rates by S. canadensis were 2.38 and 2.28 mg N kg-1 d-1 in acidic and alkaline soil, respectively, which were significantly higher than the ammonium-N (NH4+-N) uptake rates (1.76 and 1.56 mg N kg-1 d-1, respectively), indicating that S. canadensis was a NO3--N-preferring plant, irrespective of pH condition. Gross N mineralization rate was 0.41 mg N kg-1 d-1 in alkaline soil in the presence of S. canadensis L., which was significantly lower than that in the control (no plant, CK, 2.44 mg N kg-1 d-1). Gross autotrophic nitrification rate also decreased from 5.95 mg N kg-1 d-1 in the CK to 0.04 mg N kg-1 d-1 in the presence of S. canadensis in alkaline soil. However, microbial N immobilization rate increased significantly from 1.09 to 2.16 mg N kg-1 d-1, and from 0.02 to 2.73 mg N kg-1 d-1 after S. canadensis planting, in acidic and alkaline soil, respectively. Heterotrophic nitrification rate was stimulated in the presence of S. canadensis to provide NO3--N to support the N requirements of plants and microbes. The results suggested that S. canadensis can influence the mineralization-immobilization turnover (MIT) to optimize its N requirements while limiting N supply for other plants in the system. The results of the present study enhance our understanding of the competitiveness and mechanisms of invasion of alien plants.
Collapse
Affiliation(s)
- Wenjie Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Qinying Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shenyan Dai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mengqiu He
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Shending Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Chang Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqian Dan
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; College of Tropical Crops, Hainan University, Haikou 570228, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany.
| | - Christoph Müller
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany; Institute of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
29
|
Bilias F, Karagianni AG, Ipsilantis I, Samartza I, Krigas N, Tsoktouridis G, Matsi T. Adaptability of Wild-Growing Tulips of Greece: Uncovering Relationships between Soil Properties, Rhizosphere Fungal Morphotypes and Nutrient Content Profiles. BIOLOGY 2023; 12:biology12040605. [PMID: 37106805 PMCID: PMC10136029 DOI: 10.3390/biology12040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Wild-growing Greek tulips are protected plants but almost nothing is known about their natural nutrient status and rhizosphere fungal morphotypes in the wild, thus no insight is currently available into their growth and adaptation to their natural environment or artificial settings. To this end, several botanical expeditions were conducted with a special collection permit, and 34 tulip and soil samples were collected, representing 13 species from two phytogeographical regions of Greece (North Aegean Islands, Crete Island) and seven regions of mainland Greece. The tulips' content in essential macro- and micro-nutrients, respective physicochemical soil properties, and rhizosphere fungal morphotypes were assessed across samples, and all parameters were subjected to appropriate statistical analysis to determine their interrelationships. The results showed that soil variables played a significant role in shaping tulips' nutrient content, explaining up to 67% of the detected variability as in the case of phosphorus (P) in the above-ground plant tissue. In addition, significant correlations were observed (with an r value of up to 0.65, p < 0.001) between essential nutrients in the tulips, such as calcium (Ca) and boron (B). The principal component analysis (PCA) revealed that between the three spatial units examined, the total variability of tulips' nutrient content produced a clear distinction among sampled species, while the first two PCA axes managed to explain 44.3% of it. This was further confirmed by the analysis of variance (ANOVA) results which showed corresponding significant differences (at p < 0.05) in both the tulips' nutrient content and the studied soil properties as well (mean values of N, P, and K in the North Aegean Islands tulips' nutrient content, up to 53%, 119%, and 54% higher compared to those of the Crete Island, respectively). Our study sheds light on Greek tulips' adaptability and resilience in their original habitats, facilitating at the same time the undertaken efforts regarding their conservation and potential domestication in artificial settings.
Collapse
Affiliation(s)
- Fotis Bilias
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Ioannis Ipsilantis
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioulietta Samartza
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, P.O. Box 60458, 57001 Thessaloniki, Greece
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, P.O. Box 60458, 57001 Thessaloniki, Greece
| | - Georgios Tsoktouridis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, P.O. Box 60458, 57001 Thessaloniki, Greece
- Theofrastos Fertilizers, Irinis & Filias, Examilia Korithias, 20100 Korinthos, Greece
| | - Theodora Matsi
- Soil Science Laboratory, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
30
|
A Mineral-Doped Micromodel Platform Demonstrates Fungal Bridging of Carbon Hot Spots and Hyphal Transport of Mineral-Derived Nutrients. mSystems 2022; 7:e0091322. [PMID: 36394319 PMCID: PMC9765027 DOI: 10.1128/msystems.00913-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering. Here, we addressed this knowledge gap by demonstrating a mineral-doped soil micromodel platform where mineral weathering mechanisms can be studied. We directly visualize acquisition and transport of inorganic nutrients from minerals through fungal hyphae in the micromodel using a multimodal imaging approach. We found that Fusarium sp. strain DS 682, a representative of common saprotrophic soil fungus, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 μm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral-derived nutrient transport and unique K chemical moieties following fungus-induced mineral weathering. Specific membrane transport proteins were expressed in the fungus in the presence of minerals, including those involved in oxidative phosphorylation pathways and the transmembrane transport of small-molecular-weight organic acids. This study establishes the significance of a spatial visualization platform for investigating microbial induced mineral weathering at microbially relevant scales. Moreover, we demonstrate the importance of fungal biology and nutrient translocation in maintaining fungal growth under water and carbon limitations in a reduced-complexity soil-like microenvironment. IMPORTANCE Fungal species are foundational members of soil microbiomes, where their contributions in accessing and transporting vital nutrients is key for community resilience. To date, the molecular mechanisms underlying fungal mineral weathering and nutrient translocation in low-nutrient environments remain poorly resolved due to the lack of a platform for spatial analysis of biotic weathering processes. Here, we addressed this knowledge gap by developing a mineral-doped soil micromodel platform. We demonstrate the function of this platform by directly probing fungal growth using spatially resolved optical and chemical imaging methodologies. We found the presence of minerals was required for fungal thigmotropism around obstacles and through soil-like pore spaces, and this was related to fungal transport of potassium (K) and corresponding K speciation from K-rich minerals. These findings provide new evidence and visualization into hyphal transport of mineral-derived nutrients under nutrient and water stresses.
Collapse
|
31
|
Villar-Moreno R, Tienda S, Gutiérrez-Barranquero JA, Carrión VJ, de Vicente A, Cazorla FM, Arrebola E. Interplay between rhizospheric Pseudomonas chlororaphis strains lays the basis for beneficial bacterial consortia. FRONTIERS IN PLANT SCIENCE 2022; 13:1063182. [PMID: 36589057 PMCID: PMC9797978 DOI: 10.3389/fpls.2022.1063182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas chlororaphis (Pc) representatives are found as part of the rhizosphere-associated microbiome, and different rhizospheric Pc strains frequently perform beneficial activities for the plant. In this study we described the interactions between the rhizospheric Pc strains PCL1601, PCL1606 and PCL1607 with a focus on their effects on root performance. Differences among the three rhizospheric Pc strains selected were first observed in phylogenetic studies and confirmed by genome analysis, which showed variation in the presence of genes related to antifungal compounds or siderophore production, among others. Observation of the interactions among these strains under lab conditions revealed that PCL1606 has a better adaptation to environments rich in nutrients, and forms biofilms. Interaction experiments on plant roots confirmed the role of the different phenotypes in their lifestyle. The PCL1606 strain was the best adapted to the habitat of avocado roots, and PCL1607 was the least, and disappeared from the plant root scenario after a few days of interaction. These results confirm that 2 out 3 rhizospheric Pc strains were fully compatible (PCL1601 and PCL1606), efficiently colonizing avocado roots and showing biocontrol activity against the fungal pathogen Rosellinia necatrix. The third strain (PCL1607) has colonizing abilities when it is alone on the root but displayed difficulties under the competition scenario, and did not cause deleterious effects on the other Pc competitors when they were present. These results suggest that strains PCL1601 and PCL1606 are very well adapted to the avocado root environment and could constitute a basis for constructing a more complex beneficial microbial synthetic community associated with avocado plant roots.
Collapse
Affiliation(s)
- Rafael Villar-Moreno
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Sandra Tienda
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Jose A. Gutiérrez-Barranquero
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Víctor J. Carrión
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Antonio de Vicente
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Francisco M. Cazorla
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| | - Eva Arrebola
- Mango and Avocado Microbiology Group, Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
- Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, IHSM-UMA-CSIC, Málaga, Spain
| |
Collapse
|
32
|
Potential Roles of Soil Microorganisms in Regulating the Effect of Soil Nutrient Heterogeneity on Plant Performance. Microorganisms 2022; 10:microorganisms10122399. [PMID: 36557652 PMCID: PMC9786772 DOI: 10.3390/microorganisms10122399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The spatially heterogeneous distribution of soil nutrients is ubiquitous in terrestrial ecosystems and has been shown to promote the performance of plant communities, influence species coexistence, and alter ecosystem nutrient dynamics. Plants interact with diverse soil microbial communities that lead to an interdependent relationship (e.g., symbioses), driving plant community productivity, belowground biodiversity, and soil functioning. However, the potential role of the soil microbial communities in regulating the effect of soil nutrient heterogeneity on plant growth has been little studied. Here, we highlight the ecological importance of soil nutrient heterogeneity and microorganisms and discuss plant nutrient acquisition mechanisms in heterogeneous soil. We also examine the evolutionary advantages of nutrient acquisition via the soil microorganisms in a heterogeneous environment. Lastly, we highlight a three-way interaction among the plants, soil nutrient heterogeneity, and soil microorganisms and propose areas for future research priorities. By clarifying the role of soil microorganisms in shaping the effect of soil nutrient heterogeneity on plant performance, the present study enhances the current understanding of ecosystem nutrient dynamics in the context of patchily distributed soil nutrients.
Collapse
|
33
|
Hestrin R, Kan M, Lafler M, Wollard J, Kimbrel JA, Ray P, Blazewicz SJ, Stuart R, Craven K, Firestone M, Nuccio EE, Pett-Ridge J. Plant-associated fungi support bacterial resilience following water limitation. THE ISME JOURNAL 2022; 16:2752-2762. [PMID: 36085516 PMCID: PMC9666503 DOI: 10.1038/s41396-022-01308-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H218O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages (Rhizophagus irregularis and Serendipita bescii) grown with the bioenergy model grass Panicum hallii. In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii-inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H218O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal-bacterial synergies may support bacterial resilience to moisture limitation.
Collapse
Affiliation(s)
- Rachel Hestrin
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Megan Kan
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Marissa Lafler
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jessica Wollard
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jeffrey A Kimbrel
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Prasun Ray
- Department of Natural Resources, University of Maryland Eastern Shore, Princess Anne, MD, USA
- Plant Biology Division, Noble Research Institute, Ardmore, OK, USA
| | - Steven J Blazewicz
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Rhona Stuart
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kelly Craven
- Plant Biology Division, Noble Research Institute, Ardmore, OK, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mary Firestone
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Erin E Nuccio
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA.
| |
Collapse
|
34
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
35
|
Branco S, Schauster A, Liao HL, Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi. THE NEW PHYTOLOGIST 2022; 235:2158-2175. [PMID: 35713988 DOI: 10.1111/nph.18308] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Collapse
Affiliation(s)
- Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Annie Schauster
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
36
|
Ganugi P, Fiorini A, Rocchetti G, Bonini P, Tabaglio V, Lucini L. A response surface methodology approach to improve nitrogen use efficiency in maize by an optimal mycorrhiza-to- Bacillus co-inoculation rate. FRONTIERS IN PLANT SCIENCE 2022; 13:956391. [PMID: 36035726 PMCID: PMC9404334 DOI: 10.3389/fpls.2022.956391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
37
|
Biomimetic Design for Building Energy Efficiency 2021. Biomimetics (Basel) 2022; 7:biomimetics7030106. [PMID: 35997426 PMCID: PMC9397081 DOI: 10.3390/biomimetics7030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
|
38
|
Micci A, Zhang Q, Chang X, Kingsley K, Park L, Chiaranunt P, Strickland R, Velazquez F, Lindert S, Elmore M, Vines PL, Crane S, Irizarry I, Kowalski KP, Johnston-Monje D, White JF. Histochemical Evidence for Nitrogen-Transfer Endosymbiosis in Non-Photosynthetic Cells of Leaves and Inflorescence Bracts of Angiosperms. BIOLOGY 2022; 11:biology11060876. [PMID: 35741397 PMCID: PMC9220352 DOI: 10.3390/biology11060876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. We detected chemical exchanges between intracellular bacteria and plant cells. We found that endophytic bacteria that show evidence of the transfer of nitrogen to plants are present in non-photosynthetic cells of leaves and bracts of diverse plant species. Nitrogen transfer from bacteria was observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. The most efficient of the nitrogen-transfer endosymbioses were seen to involve glandular trichomes, as seen in hops (Humulus lupulus) and hemp (Cannabis sativa). Trichome chemistry is hypothesized to function to scavenge oxygen around bacteria to facilitate nitrogen fixation. Abstract We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. Through histochemical analysis, we detected hormones (including ethylene and nitric oxide), superoxide, and nitrogenous chemicals (including nitric oxide and nitrate) around bacteria within plant cells. Bacteria were observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. Most notably, bacteria showing nitrate formation based on histochemical staining were present in glandular trichomes of some dicots (e.g., Humulus lupulus and Cannabis sativa). Glandular trichome chemistry is hypothesized to function to scavenge oxygen around bacteria and reduce oxidative damage to intracellular bacterial cells. Experiments to assess the differential absorption of isotopic nitrogen into plants suggest the assimilation of nitrogen into actively growing tissues of plants, where bacteria are most active and carbohydrates are more available. The leaf and bract cell endosymbiosis types outlined in this paper have not been previously reported and may be important in facilitating plant growth, development, oxidative stress resistance, and nutrient absorption into plants. It is unknown whether leaf and bract cell endosymbioses are significant in increasing the nitrogen content of plants. From the experiments that we conducted, it is impossible to know whether plant trichomes evolved specifically as organs for nitrogen fixation or if, instead, trichomes are structures in which bacteria easily colonize and where some casual nitrogen transfer may occur between bacteria and plant cells. It is likely that the endosymbioses seen in leaves and bracts are less efficient than those of root nodules of legumes in similar plants. However, the presence of endosymbioses that yield nitrate in plants could confer a reduced need for soil nitrogen and constitute increased nitrogen-use efficiency, even if the actual amount of nitrogen transferred to plant cells is small. More research is needed to evaluate the importance of nitrogen transfer within leaf and bract cells of plants.
Collapse
Affiliation(s)
- April Micci
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Xiaoqian Chang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Kathryn Kingsley
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Linsey Park
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Peerapol Chiaranunt
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Raquele Strickland
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Fernando Velazquez
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sean Lindert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Matthew Elmore
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Philip L. Vines
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sharron Crane
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Ivelisse Irizarry
- School of Health and Sciences, Universidad del Sagrado Corazón, San Juan 00914, Puerto Rico;
| | - Kurt P. Kowalski
- US Geological Survey Great Lakes Science Center, Ann Arbor, MI 48105, USA;
| | - David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 760043, Colombia;
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| |
Collapse
|
39
|
Symbiotic interplay of Piriformospora indica and Azotobacter chroococcum augments crop productivity and biofortification of Zinc and Iron. Microbiol Res 2022; 262:127075. [DOI: 10.1016/j.micres.2022.127075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
|
40
|
Adomako MO, Xue W, Du DL, Yu FH. Soil Microbe-Mediated N:P Stoichiometric Effects on Solidago canadensis Performance Depend on Nutrient Levels. MICROBIAL ECOLOGY 2022; 83:960-970. [PMID: 34279696 DOI: 10.1007/s00248-021-01814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Both soil microbes and soil N:P ratios can affect plant growth, but it is unclear whether they can interact to alter plant growth and whether such an interactive effect depends on nutrient levels. Here, we tested the hypothesis that soil microbes can ameliorate the negative effects of nutrient imbalance caused by low or high N:P ratios on plant growth and that such an ameliorative effect of soil microbes depends on nutrient supply levels. We grew individuals of six populations of the clonal plant Solidago canadensis at three N:P ratios (low (1.7), intermediate (15), and high (135)), under two nutrient levels (low versus high) and in the presence versus absence of soil microbes. The presence of soil microbes significantly increased biomass of S. canadensis at all three N:P ratios and under both nutrient levels. Under the low-nutrient level, biomass, height, and leaf number of S. canadensis did not differ significantly among the three N:P ratio treatments in the absence of soil microbes, but they were higher at the high than at the low and the intermediate N:P ratio in the presence of soil microbes. Under the high-nutrient level, by contrast, biomass, height, and leaf number of S. canadensis were significantly higher at the low than at the high and the intermediate N:P ratio in the absence of soil microbes, but increased with increasing the N:P ratio in the presence of soil microbes. In the presence of soil microbes, number of ramets (asexual individuals) and the accumulation of N and P in plants were significantly higher at the high than at the low and the intermediate N:P ratio under both nutrient levels, whereas in the absence of soil microbes, they did not differ significantly among the three N:P ratio regardless of the nutrient levels. Our results provide empirical evidence that soil microbes can alter effects of N:P ratios on plant performance and that such an effect depends on nutrient availability. Soil microbes may, therefore, play a role in modulating ecosystem functions such as productivity and carbon and nutrient cycling via modulating nutrient imbalance caused by low and high N:P ratios.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Xue
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
41
|
Zhang L, Zhou J, George TS, Limpens E, Feng G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. TRENDS IN PLANT SCIENCE 2022; 27:402-411. [PMID: 34782247 DOI: 10.1016/j.tplants.2021.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 05/22/2023]
Abstract
More than two-thirds of terrestrial plants acquire nutrients by forming a symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungal hyphae recruit distinct microbes into their hyphosphere, the narrow region of soil influenced by hyphal exudates. They thereby shape this so-called second genome of AM fungi, which significantly contributes to nutrient mobilization and turnover. We summarize current insights into characteristics of the hyphosphere microbiome and the role of hyphal exudates on orchestrating its composition. The hyphal exudates not only contain carbon-rich compounds but also promote bacterial growth and activity and influence the microbial community structure. These effects lead to shifts in function and cause changes in organic nutrient cycling, making the hyphosphere a unique and largely overlooked functional zone in ecosystems.
Collapse
Affiliation(s)
- Lin Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Jiachao Zhou
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | | | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708, PB, The Netherlands
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Muramoto J, Parr DM, Perez J, Wong DG. Integrated Soil Health Management for Plant Health and One Health: Lessons From Histories of Soil-borne Disease Management in California Strawberries and Arthropod Pest Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.839648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many soil health assessment methods are being developed. However, they often lack assessment of soil-borne diseases. To better address management strategies for soil-borne disease and overall soil and plant health, the concept of Integrated Soil Health Management (ISHM) is explored. Applying the concept of Integrated Pest Management and an agroecological transdisciplinary approach, ISHM offers a framework under which a structure for developing and implementing biointensive soil health management strategies for a particular agroecosystem is defined. As a case study, a history of soil-borne disease management in California strawberries is reviewed and contrasted with a history of arthropod pest management to illustrate challenges associated with soil-borne disease management and the future directions of soil health research and soil-borne disease management. ISHM system consists of comprehensive soil health diagnostics, farmers' location-specific knowledge and adaptability, a suite of soil health management practices, and decision support tools. As we better understand plant-soil-microorganism interactions, including the mechanisms of soil suppressiveness, a range of diagnostic methodologies and indicators and their action thresholds may be developed. These knowledge-intensive and location-specific management systems require transdisciplinary approaches and social learning to be co-developed with stakeholders. The ISHM framework supports research into the broader implications of soil health such as the “One health” concept, which connects soil health to the health of plants, animals, humans, and ecosystems and research on microbiome and nutrient cycling that may better explain these interdependencies.
Collapse
|
43
|
Temporally Selective Modification of the Tomato Rhizosphere and Root Microbiome by Volcanic Ash Fertilizer Containing Micronutrients. Appl Environ Microbiol 2022; 88:e0004922. [PMID: 35311513 PMCID: PMC9004379 DOI: 10.1128/aem.00049-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Food crops are grown with fertilizers containing nitrogen, phosphorus, and potassium (macronutrients) along with magnesium, calcium, boron, and zinc (micronutrients) at different ratios during their cultivation. Soil and plant-associated microbes have been implicated to promote plant growth, stress tolerance, and productivity. However, the high degree of variability across agricultural environments makes it difficult to assess the possible influences of nutrient fertilizers on these microbial communities. Uncovering the underlying mechanisms could lead us to achieve consistently improved food quality and productivity with minimal environmental impacts. For this purpose, we tested a commercially available fertilizer (surface-mined volcanic ash deposit Azomite) applied as a supplement to the normal fertilizer program of greenhouse-grown tomato plants. Because this treatment showed a significant increase in fruit production at measured intervals, we examined its impact on the composition of below-ground microbial communities, focusing on members identified as “core taxa” that were enriched in the rhizosphere and root endosphere compared to bulk soil and appeared above their predicted neutral distribution levels in control and treated samples. This analysis revealed that Azomite had little effect on microbial composition overall, but it had a significant, temporally selective influence on the core taxa. Changes in the composition of the core taxa were correlated with computationally inferred changes in functional pathway enrichment associated with carbohydrate metabolism, suggesting a shift in available microbial nutrients within the roots. This finding exemplifies how the nutrient environment can specifically alter the functional capacity of root-associated bacterial taxa, with the potential to improve crop productivity. IMPORTANCE Various types of soil fertilizers are used routinely to increase crop yields globally. The effects of these treatments are assessed mainly by the benefits they provide in increased crop productivity. There exists a gap in our understanding of how soil fertilizers act on the plant-associated microbial communities. The underlying mechanisms of nutrient uptake are widely complex and, thus, difficult to evaluate fully but have critical influences on both soil and plant health. Here, we presented a systematic approach to analyzing the effects of fertilizer on core microbial communities in soil and plants, leading to predictable outcomes that can be empirically tested and used to develop simple and affordable field tests. The methods described here can be used for any fertilizer and crop system. Continued effort in advancing our understanding of how fertilizers affect plant and microbe relations is needed to advance scientific understanding and help growers make better-informed decisions.
Collapse
|
44
|
Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol 2022; 20:415-430. [DOI: 10.1038/s41579-022-00695-z] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/18/2022]
|
45
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
46
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
47
|
Cong W, Yu J, Feng K, Deng Y, Zhang Y. The Coexistence Relationship Between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis. Front Microbiol 2021; 12:745582. [PMID: 34950114 PMCID: PMC8689066 DOI: 10.3389/fmicb.2021.745582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and their associated soil microbial communities plays a crucial role in maintaining ecosystem processes and function. However, identifying these complex relationships is challenging. In this study, we constructed an interdomain ecology network (IDEN) of plant–bacteria based on SparCC pairwise associations using synchronous aboveground plant surveys and belowground microbial 16S rRNA sequencing among four different natural forest types along the climate zones in China. The results found that a total of 48 plants were associated with soil bacteria among these four sites, and soil microbial group associations with specific plant species existed within the observed plant–bacteria coexistence network. Only 0.54% of operational taxonomy units (OTUs) was shared by the four sites, and the proportion of unique OTUs for each site ranged from 43.08 to 76.28%, which occupied a large proportion of soil bacterial community composition. The plant–bacteria network had a distinct modular structure (p < 0.001). The tree Acer tetramerum was identified as the network hubs in the warm temperate coniferous and broad-leaved mixed forests coexistence network and indicates that it may play a key role in stabilizing of the community structure of these forest ecosystems. Therefore, IDEN of plant–bacteria provides a novel perspective for exploring the relationships of interdomain species, and this study provides valuable insights into understanding coexistence between above-ground plants and below-ground microorganisms.
Collapse
Affiliation(s)
- Wei Cong
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jingjing Yu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuguang Zhang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
48
|
Zhao R, Li X, Bei S, Li D, Li H, Christie P, Bender SF, Zhang J. Enrichment of nosZ-type denitrifiers by arbuscular mycorrhizal fungi mitigates N 2 O emissions from soybean stubbles. Environ Microbiol 2021; 23:6587-6602. [PMID: 34672071 DOI: 10.1111/1462-2920.15815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
Hotspots of N2 O emissions are generated from legume residues during decomposition. Arbuscular mycorrhizal fungi (AMF) from co-cultivated intercropped plants may proliferate into the microsites and interact with soil microbes to reduce N2 O emissions. Yet, the mechanisms by which or how mycorrhizal hyphae affect nitrifiers and denitrifiers in the legume residues remain ambiguous. Here, a split-microcosm experiment was conducted to assess hyphae of Rhizophagus aggregatus from neighbouring maize on overall N2 O emissions from stubbles of nodulated or non-nodulated soybean. Soil microbes from fields intercropped with maize/soybean amended with fertilizer nitrogen (SS-N1) or unamended (SS-N0) were added to the soybean chamber only. AMF hyphae consistently reduced N2 O emissions by 20.8%-61.5%. Generally, AMF hyphae promoted the abundance of N2 O-consuming (nosZ-type) denitrifiers and altered their community composition. The effects were partly associated with increasing MBC and DOC. By contrast, AMF reduced the abundance of nirK-type denitrifiers in the nodulated SS-N0 treatment only and that of AOB in the non-nodulated SS-N1 treatment. Taken together, our results show that AMF reduced N2 O emissions from soybean stubbles, mainly through the promotion of N2 O-consuming denitrifiers. This holds promise for mitigating N2 O emissions by manipulating the efficacious AMF and their associated microbes in cereal/legume intercropping systems.
Collapse
Affiliation(s)
- Ruotong Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xia Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
- School of Life Science, Shanxi Datong University, Datong, 037009, China
| | - Shuikuan Bei
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Dandan Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Haigang Li
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Grassland Resource (IMAU), Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Peter Christie
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - S Franz Bender
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zurich, CH-8046, Switzerland
| | - Junling Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
49
|
Ceola G, Goss-Souza D, Alves J, Alves da Silva A, Stürmer SL, Baretta D, Sousa JP, Klauberg-Filho O. Biogeographic Patterns of Arbuscular Mycorrhizal Fungal Communities Along a Land-Use Intensification Gradient in the Subtropical Atlantic Forest Biome. MICROBIAL ECOLOGY 2021; 82:942-960. [PMID: 33656687 DOI: 10.1007/s00248-021-01721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.
Collapse
Affiliation(s)
- Gessiane Ceola
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Dennis Goss-Souza
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil
| | - Joana Alves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - António Alves da Silva
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Sidney Luiz Stürmer
- Departament of Natural Sciences, Regional University of Blumenau, Blumenau, SC, 89030-903, Brazil
| | - Dilmar Baretta
- Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil
| | - José Paulo Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, 3000-456, Portugal
| | - Osmar Klauberg-Filho
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88520-000, Brazil.
- Agroveterinary Centre, Santa Catarina State University, Av. Luis de Camões, 2090, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
50
|
Rillig MC, Lehmann A, Orr JA, Waldman WR. Mechanisms underpinning nonadditivity of global change factor effects in the plant-soil system. THE NEW PHYTOLOGIST 2021; 232:1535-1539. [PMID: 34482557 DOI: 10.1111/nph.17714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Plant-soil systems are key for understanding the effects of factors of global change. Recent work has highlighted the general importance of considering the simultaneous incidence of some factors or stressors. To help mechanistically dissect the possible interactions of such factors, we here propose three broad groups of mechanisms that may generally lead to nonadditivity of responses within a plant-soil system: direct factor interactions (that is one factor directly changing another), within-plant information processing and crosstalk, and effects of factors on groups of soil biota interacting with plants. Interactions are also possible within and across these groups. Factor interactions are very likely to be present in experiments, especially when dealing with an increasing number of factors. Identifying the nature of such interactions will be essential for understanding and predicting global change impacts on plants and soil.
Collapse
Affiliation(s)
- Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - James A Orr
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Walter R Waldman
- Department of Physics, Chemistry and Mathematics, Federal University of São Carlos, Sorocaba, São Paulo, 18052-780, Brazil
| |
Collapse
|