1
|
Childers K, Freed IM, Hupert ML, Shaw B, Larsen N, Herring P, Norton JH, Shiri F, Vun J, August KJ, Witek MA, Soper SA. Novel thermoplastic microvalves based on an elastomeric cyclic olefin copolymer. LAB ON A CHIP 2024; 24:4422-4439. [PMID: 39171671 PMCID: PMC11339931 DOI: 10.1039/d4lc00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Microfluidic systems combine multiple processing steps and components to perform complex assays in an autonomous fashion. To enable the integration of several bio-analytical processing steps into a single system, valving is used as a component that directs fluids and controls introduction of sample and reagents. While elastomer polydimethylsiloxane has been the material of choice for valving, it does not scale well to accommodate disposable integrated systems where inexpensive and fast production is needed. As an alternative to polydimethylsiloxane, we introduce a membrane made of thermoplastic elastomeric cyclic olefin copolymer (eCOC), that displays unique attributes for the fabrication of reliable valving. The eCOC membrane can be extruded or injection molded to allow for high scale production of inexpensive valves. Normally hydrophobic, eCOC can be activated with UV/ozone to produce a stable hydrophilic monolayer. Valves are assembled following in situ UV/ozone activation of eCOC membrane and thermoplastic valve seat and bonded by lamination at room temperature. eCOC formed strong bonding with polycarbonate (PC) and polyethylene terephthalate glycol (PETG) able to hold high fluidic pressures of 75 kPa and 350 kPa, respectively. We characterized the eCOC valves with mechanical and pneumatic actuation and found the valves could be reproducibly actuated >50 times without failure. Finally, an integrated system with eCOC valves was employed to detect minimal residual disease (MRD) from a blood sample of a pediatric acute lymphoblastic leukemia (ALL) patient. The two module integrated system evaluated MRD by affinity-selecting CD19(+) cells and enumerating leukemia cells via immunophenotyping with ALL-specific markers.
Collapse
Affiliation(s)
- Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Ian M Freed
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | - Benjamin Shaw
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Noah Larsen
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Engineering Physics, The University of Kansas, Lawrence, KS 66045, USA
| | - Paul Herring
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Jeanne H Norton
- Department of Plastics Engineering Technology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farhad Shiri
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Judy Vun
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Keith J August
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Li Y, Wang J, Chen W, Lu H, Zhang Y. Comprehensive review of MS-based studies on N-glycoproteome and N-glycome of extracellular vesicles. Proteomics 2024; 24:e2300065. [PMID: 37474487 DOI: 10.1002/pmic.202300065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that can be released by all type of cells. Whereas, as one of the most common post-translational modifications, glycosylation plays a vital role in various biological functions of EVs, such as EV biogenesis, sorting, and cellular recognition. Nevertheless, compared with studies on RNAs or proteins, those investigating the glycoconjugates of EVs are limited. An in-depth investigation of N-glycosylation of EVs can improve the understanding of the biological functions of EVs and help to exploit EVs from different perspectives. The general focus of studies on glycosylation of EVs primarily includes isolation and characterization of EVs, preparation of glycoproteome/glycome samples and MS analysis. However, the low content of EVs and non-standard separation methods for downstream analysis are the main limitations of these studies. In this review, we highlight the importance of glycopeptide/glycan enrichment and derivatization owing to the low abundance of glycoproteins and the low ionization efficiency of glycans. Diverse fragmentation patterns and professional analytical software are indispensable for analysing glycosylation via MS. Altogether, this review summarises recent studies on glycosylation of EVs, revealing the role of EVs in disease progression and their remarkable potential as biomarkers.
Collapse
Affiliation(s)
- Yang Li
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
| | - Jun Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Weiyu Chen
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haojie Lu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Ying Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, P. R. China
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
3
|
Rathnayaka C, Chandrosoma IA, Choi J, Childers K, Chibuike M, Akabirov K, Shiri F, Hall AR, Lee M, McKinney C, Verber M, Park S, Soper SA. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic via replication. LAB ON A CHIP 2024; 24:2721-2735. [PMID: 38656267 PMCID: PMC11091956 DOI: 10.1039/d3lc01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 μm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Indu A Chandrosoma
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
- Atrium Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| | - Maxwell Lee
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Qiu H, Liang J, Yang G, Xie Z, Wang Z, Wang L, Zhang J, Nanda HS, Zhou H, Huang Y, Peng X, Lu C, Chen H, Zhou Y. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol 2024; 12:1372847. [PMID: 38633106 PMCID: PMC11021734 DOI: 10.3389/fcell.2024.1372847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haiyan Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junting Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guang Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenyu Xie
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhenpeng Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingying Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Lab, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Hui Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Huizhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Pulliam L, Sun B, McCafferty E, Soper SA, Witek MA, Hu M, Ford JM, Song S, Kapogiannis D, Glesby MJ, Merenstein D, Tien PC, Freasier H, French A, McKay H, Diaz MM, Ofotokun I, Lake JE, Margolick JB, Kim EY, Levine SR, Fischl MA, Li W, Martinson J, Tang N. Microfluidic Isolation of Neuronal-Enriched Extracellular Vesicles Shows Distinct and Common Neurological Proteins in Long COVID, HIV Infection and Alzheimer's Disease. Int J Mol Sci 2024; 25:3830. [PMID: 38612641 PMCID: PMC11011771 DOI: 10.3390/ijms25073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.
Collapse
Affiliation(s)
- Lynn Pulliam
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Bing Sun
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Erin McCafferty
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.A.S.); (M.A.W.)
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; (S.A.S.); (M.A.W.)
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Mengjia Hu
- Cancer Biology, The University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Judith M. Ford
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (S.S.)
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Song
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (S.S.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA;
| | - Marshall J. Glesby
- Department of Medicine, Weill Cornell Medical College, New York City, NY 10021, USA;
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Phyllis C. Tien
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (P.C.T.); (H.F.)
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Heather Freasier
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (P.C.T.); (H.F.)
| | - Audrey French
- Department of Medicine, Cook County Health, Chicago, IL 60612, USA;
| | - Heather McKay
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Igho Ofotokun
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Jordan E. Lake
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Eun-Young Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Steven R. Levine
- Department of Neurology, State University of New York College of Medicine and Downstate Medical Sciences University, Brooklyn, NY 11203, USA;
| | | | - Wei Li
- Department of Clinical and Diagnostic Sciences, University of Alabama, Birmingham, AL 35294, USA;
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (E.M.); (N.T.)
| |
Collapse
|
6
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
7
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
8
|
Vaidyanathan S, Wijerathne H, Gamage SST, Shiri F, Zhao Z, Choi J, Park S, Witek MA, McKinney C, Verber M, Hall AR, Childers K, McNickle T, Mog S, Yeh E, Godwin AK, Soper SA. High Sensitivity Extended Nano-Coulter Counter for Detection of Viral Particles and Extracellular Vesicles. Anal Chem 2023; 95:9892-9900. [PMID: 37336762 PMCID: PMC11015478 DOI: 10.1021/acs.analchem.3c00855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We present a chip-based extended nano-Coulter counter (XnCC) that can detect nanoparticles affinity-selected from biological samples with low concentration limit-of-detection that surpasses existing resistive pulse sensors by 2-3 orders of magnitude. The XnCC was engineered to contain 5 in-plane pores each with an effective diameter of 350 nm placed in parallel and can provide high detection efficiency for single particles translocating both hydrodynamically and electrokinetically through these pores. The XnCC was fabricated in cyclic olefin polymer (COP) via nanoinjection molding to allow for high-scale production. The concentration limit-of-detection of the XnCC was 5.5 × 103 particles/mL, which was a 1,100-fold improvement compared to a single in-plane pore device. The application examples of the XnCC included counting affinity selected SARS-CoV-2 viral particles from saliva samples using an aptamer and pillared microchip; the selection/XnCC assay could distinguish the COVID-19(+) saliva samples from those that were COVID-19(-). In the second example, ovarian cancer extracellular vesicles (EVs) were affinity selected using a pillared chip modified with a MUC16 monoclonal antibody. The affinity selection chip coupled with the XnCC was successful in discriminating between patients with high grade serous ovarian cancer and healthy donors using blood plasma as the input sample.
Collapse
Affiliation(s)
- Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Sachindra S T Gamage
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Zheng Zhao
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Małgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina 27101, United States
| | - Katie Childers
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Taryn McNickle
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Shalee Mog
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Elaine Yeh
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Andrew K Godwin
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Comprehensive Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
9
|
Hu M, Brown V, Jackson JM, Wijerathne H, Pathak H, Koestler DC, Nissen E, Hupert ML, Muller R, Godwin AK, Witek MA, Soper SA. Assessing Breast Cancer Molecular Subtypes Using Extracellular Vesicles' mRNA. Anal Chem 2023; 95:7665-7675. [PMID: 37071799 PMCID: PMC10243595 DOI: 10.1021/acs.analchem.3c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time-droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue.
Collapse
Affiliation(s)
- Mengjia Hu
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, Kansas 66160, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Virginia Brown
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Joshua M Jackson
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harshani Wijerathne
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Devin C Koestler
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Department of Biostatistics & Data Science, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Emily Nissen
- Department of Biostatistics & Data Science, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | - Rolf Muller
- BioFluidica, Inc., San Diego, California 92121, United States
| | - Andrew K Godwin
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Malgorzata A Witek
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Steven A Soper
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, Kansas 66160, United States
- Center of BioModular Multi-Scale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
- BioFluidica, Inc., San Diego, California 92121, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Sharafeldin M, Yan S, Jiang C, Tofaris GK, Davis JJ. Alternating Magnetic Field-Promoted Nanoparticle Mixing: The On-Chip Immunocapture of Serum Neuronal Exosomes for Parkinson's Disease Diagnostics. Anal Chem 2023; 95:7906-7913. [PMID: 37167073 DOI: 10.1021/acs.analchem.3c00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The analysis of cargo proteins in exosome subpopulations has considerable value in diagnostics but a translatable impact has been limited by lengthy or complex exosome extraction protocols. We describe herein a scalable, fast, and low-cost exosome extraction using an alternating (AC) magnetic field to support the dynamic mixing of antibody-coated magnetic beads (MBs) with serum samples within 3D-printed microfluidic chips. Zwitterionic polymer-coated MBs are, specifically, magnetically agitated and support ultraclean exosome capture efficiencies >70% from <50 μL of neat serum in 30 min. Applied herein to the immunocapture of neuronal exosomes using anti-L1CAM antibodies, prior to the array-based assaying of α-synuclein (α-syn) content by a standard duplex electrochemical sandwich ELISA, sub pg/mL detection was possible with an excellent coefficient of variation and a sample-to-answer time of ∼75 min. The high performance and semiautomation of this approach hold promise in underpinning low-cost Parkinson's disease diagnostics and is of value in exosomal biomarker analyses more generally.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Shijun Yan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
11
|
Small Extracellular Vesicles Derived from Induced Pluripotent Stem Cells in the Treatment of Myocardial Injury. Int J Mol Sci 2023; 24:ijms24054577. [PMID: 36902008 PMCID: PMC10003569 DOI: 10.3390/ijms24054577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) therapy brings great hope to the treatment of myocardial injuries, while extracellular vesicles may be one of the main mechanisms of its action. iPSC-derived small extracellular vesicles (iPSCs-sEVs) can carry genetic and proteinaceous substances and mediate the interaction between iPSCs and target cells. In recent years, more and more studies have focused on the therapeutic effect of iPSCs-sEVs in myocardial injury. IPSCs-sEVs may be a new cell-free-based treatment for myocardial injury, including myocardial infarction, myocardial ischemia-reperfusion injury, coronary heart disease, and heart failure. In the current research on myocardial injury, the extraction of sEVs from mesenchymal stem cells induced by iPSCs was widely used. Isolation methods of iPSCs-sEVs for the treatment of myocardial injury include ultracentrifugation, isodensity gradient centrifugation, and size exclusion chromatography. Tail vein injection and intraductal administration are the most widely used routes of iPSCs-sEV administration. The characteristics of sEVs derived from iPSCs which were induced from different species and organs, including fibroblasts and bone marrow, were further compared. In addition, the beneficial genes of iPSC can be regulated through CRISPR/Cas9 to change the composition of sEVs and improve the abundance and expression diversity of them. This review focused on the strategies and mechanisms of iPSCs-sEVs in the treatment of myocardial injury, which provides a reference for future research and the application of iPSCs-sEVs.
Collapse
|
12
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
13
|
Zhao Z, Vaidyanathan S, Bhanja P, Gamage S, Saha S, McKinney C, Choi J, Park S, Pahattuge T, Wijerathne H, Jackson JM, Huppert ML, Witek MA, Soper SA. In-plane Extended Nano-coulter Counter (XnCC) for the Label-free Electrical Detection of Biological Particles. ELECTROANAL 2022; 34:1961-1975. [PMID: 37539083 PMCID: PMC10399599 DOI: 10.1002/elan.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.
Collapse
Affiliation(s)
- Zheng Zhao
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
| | - Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sachindra Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
| | - Collin McKinney
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- CRITCL, The University of North Carolina, Chapel Hill, NC
| | - Thilanga Pahattuge
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Harshani Wijerathne
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Joshua M Jackson
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Mateusz L Huppert
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803
| | - Małgorzata A Witek
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045
- BioFluidica, Inc., San Diego, CA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045
| |
Collapse
|
14
|
Zhang J, Chen C, Becker R, Rufo J, Yang S, Mai J, Zhang P, Gu Y, Wang Z, Ma Z, Xia J, Hao N, Tian Z, Wong DT, Sadovsky Y, Lee LP, Huang TJ. A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER). SCIENCE ADVANCES 2022; 8:eade0640. [PMID: 36417505 PMCID: PMC9683722 DOI: 10.1126/sciadv.ade0640] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (<10 min), high-purity (>96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.
Collapse
Affiliation(s)
- Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - David T. W. Wong
- School of Dentistry and the Departments of Otolaryngology/Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
15
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
16
|
Liu W, Wu Q, Wang W, Xu X, Yang C, Song Y. Enhanced molecular recognition on Microfluidic affinity interfaces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Gamage SST, Pahattuge TN, Wijerathne H, Childers K, Vaidyanathan S, Athapattu US, Zhang L, Zhao Z, Hupert ML, Muller RM, Muller-Cohn J, Dickerson J, Dufek D, Geisbrecht BV, Pathak H, Pessetto Z, Gan GN, Choi J, Park S, Godwin AK, Witek MA, Soper SA. Microfluidic affinity selection of active SARS-CoV-2 virus particles. SCIENCE ADVANCES 2022; 8:eabn9665. [PMID: 36170362 PMCID: PMC9519043 DOI: 10.1126/sciadv.abn9665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/10/2022] [Indexed: 06/07/2023]
Abstract
We report a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. Affinity selection of SARS-CoV-2 particles was carried out using injection molded microfluidic chips, which allow for high-scale production to accommodate large-scale screening. The microfluidic contained a surface-bound aptamer directed against the virus's S protein RBD to affinity select SARS-CoV-2 VPs. Following selection (~94% recovery), the VPs were released from the chip's surface using a blue light light-emitting diode (89% efficiency). Selected SARS-CoV-2 VP enumeration was carried out using reverse transcription quantitative polymerase chain reaction. The VP selection assay successfully identified healthy donors (clinical specificity = 100%) and 19 of 20 patients with coronavirus disease 2019 (COVID-19) (95% sensitivity). In 15 patients with COVID-19, the presence of active SARS-CoV-2 VPs was found. The chip can be reprogrammed for any VP or exosomes by simply changing the affinity agent.
Collapse
Affiliation(s)
- Sachindra S. T. Gamage
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Thilanga N. Pahattuge
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Uditha S. Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Lulu Zhang
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Zheng Zhao
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | - Brian V. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Gregory N. Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew K. Godwin
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
18
|
Emerging digital PCR technology in precision medicine. Biosens Bioelectron 2022; 211:114344. [DOI: 10.1016/j.bios.2022.114344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/23/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
|
19
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Theel EK, Schwaminger SP. Microfluidic Approaches for Affinity-Based Exosome Separation. Int J Mol Sci 2022; 23:ijms23169004. [PMID: 36012270 PMCID: PMC9409173 DOI: 10.3390/ijms23169004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
As a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid. Impurities with similar properties, heterogeneity of exosome characteristics, and time-related biofouling complicate the separation. This practical review presents the state-of-the-art methods available for the separation of exosomes. Furthermore, it is shown how new separation methods can be developed. A particular focus lies on the fabrication and design of microfluidic devices using highly selective affinity separation. Due to their compactness, quick analysis time and portable form factor, these microfluidic devices are particularly suitable to deliver fast and reliable results for POC applications. For these devices, new manufacturing methods (e.g., laminating, replica molding and 3D printing) that use low-cost materials and do not require clean rooms are presented. Additionally, special flow routes and patterns that increase contact surfaces, as well as residence time, and thus improve affinity purification are displayed. Finally, various analyses are shown that can be used to evaluate the separation results of a newly developed device. Overall, this review paper provides a toolbox for developing new microfluidic affinity devices for exosome separation.
Collapse
Affiliation(s)
- Eike K. Theel
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
| | - Sebastian P. Schwaminger
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
21
|
Du X, Zhang Q, Jiang Y, Li H, Zhu X, Zhang Y, Liu C, Niu Y, Ji J, Jiang C, Cai J, Chen R, Kan H. Dynamic molecular choreography induced by traffic exposure: A randomized, crossover trial using multi-omics profiling. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127359. [PMID: 34601410 DOI: 10.1016/j.jhazmat.2021.127359] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The biological mechanism of adverse health outcomes related to exposure to traffic-related air pollution (TRAP) needs elucidation. We conducted a randomized, crossover trial among healthy young students in Shanghai, China. Participants wore earplugs and were randomly assigned to a 4-hour walking treatment either along a traffic-polluted road or through a traffic-free park. We conducted untargeted analyses of plasma exosome transcriptomics, serum mass spectrometry-based proteomics, and serum metabolomics to evaluate changes in genome-wide transcription, protein, and metabolite profiles in 35 randomly selected participants. Mean personal exposure levels of ultrafine particles, black carbon, nitrogen dioxide, and carbon monoxide in the road were 2-3 times higher than that in the park. We observed 3449 exosome mRNAs, 58 serum proteins, and 128 serum metabolites that were significantly associated with TRAP. The multi-omics analysis showed dozens of regulatory pathways altered in response to TRAP, such as inflammation, oxidative stress, coagulation, endothelin-1 signaling, and renin-angiotensin signaling. We found that several novel pathways activated in response to TRAP exposure: growth hormone signaling, adrenomedullin signaling, and arachidonic acid metabolism. Our study served as a demonstration and proof of concept on the evidence that associated TRAP exposure with global molecular changes based on the multi-omics level.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - John Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
22
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
23
|
Hilton SH, White IM. Advances in the analysis of single extracellular vesicles: A critical review. SENSORS AND ACTUATORS REPORTS 2021; 3:100052. [PMID: 35098157 PMCID: PMC8792802 DOI: 10.1016/j.snr.2021.100052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is an ever-growing need for new cancer diagnostic approaches that provide earlier diagnosis as well as richer diagnostic, prognostic, and resistance information. Extracellular vesicles (EVs) recovered from a liquid biopsy have paradigm-shifting potential to offer earlier and more complete diagnostic information in the form of a minimally invasive liquid biopsy. However, much remains unknown about EVs, and current analytical approaches are unable to provide precise information about the contents and source of EVs. New approaches have emerged to analyze EVs at the single particle level, providing the opportunity to study biogenesis, correlate markers for higher specificity, and connect EV cargo with the source or destination. In this critical review we describe and analyze methods for single EV analysis that have emerged over the last five years. In addition, we note that current methods are limited in their adoption due to cost and complexity and we offer opportunities for the research community to address this challenge.
Collapse
|
24
|
Gualerzi A, Picciolini S, Rodà F, Bedoni M. Extracellular Vesicles in Regeneration and Rehabilitation Recovery after Stroke. BIOLOGY 2021; 10:843. [PMID: 34571720 PMCID: PMC8465790 DOI: 10.3390/biology10090843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Patients that survive after a stroke event may present disabilities that can persist for a long time or permanently after it. If stroke prevention fails, the prompt and combinatorial intervention with pharmacological and rehabilitation therapy is pivotal for the optimal recovery of patients and the reduction of disabilities. In the present review, we summarize some key features of the complex events that occur in the brain during and after the stroke event, with a special focus on extracellular vesicles (EVs) and their role as both carriers of biomarkers and potential therapeutics. EVs have already demonstrated their ability to be used for diagnostic purposes for multiple brain disorders and could represent valuable tools to track the regenerative and inflammatory processes occurring in the injured brain after stroke. Last, but not least, the use of artificial or stem cell-derived EVs were proved to be effective in stimulating brain remodeling and ameliorating recovery after stroke. Still, effective biomarkers of recovery are needed to design robust trials for the validation of innovative therapeutic strategies, such as regenerative rehabilitation approaches.
Collapse
Affiliation(s)
- Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, 20148 Milan, Italy; (S.P.); (F.R.); (M.B.)
| | | | | | | |
Collapse
|
25
|
Campos CDM, Childers K, Gamage SST, Wijerathne H, Zhao Z, Soper SA. Analytical Technologies for Liquid Biopsy of Subcellular Materials. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:207-229. [PMID: 33974805 PMCID: PMC8601690 DOI: 10.1146/annurev-anchem-091520-093931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid biopsy markers, which can be secured from a simple blood draw or other biological samples, are used to manage a variety of diseases and even monitor for bacterial or viral infections. Although there are several different types of liquid biopsy markers, the subcellular ones, including cell-free DNA, microRNA, extracellular vesicles, and viral particles, are evolving in terms of their utility. A challenge with liquid biopsy markers is that they must be enriched from the biological sample prior to analysis because they are a vast minority in a mixed population, and potential interferences may be present in the sample matrix that can inhibit profiling the molecular cargo from the subcellular marker. In this article, we discuss existing and developing analytical enrichment platforms used to isolate subcellular liquid biopsy markers, and discuss their figures of merit such as recovery, throughput, and purity.
Collapse
Affiliation(s)
- Camila D M Campos
- Life Science Department, Imec, 3001 Leuven, Belgium
- Department of Electrical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katie Childers
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Sachindra S T Gamage
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
| | - Steven A Soper
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, USA;
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
26
|
Pahattuge TN, Freed IM, Hupert ML, Vaidyanathan S, Childers K, Witek MA, Weerakoon-Ratnayake K, Park D, Kasi A, Al-Kasspooles MF, Murphy MC, Soper SA. System Modularity Chip for Analysis of Rare Targets (SMART-Chip): Liquid Biopsy Samples. ACS Sens 2021; 6:1831-1839. [PMID: 33938745 DOI: 10.1021/acssensors.0c02728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liquid biopsies are becoming popular for managing a variety of diseases due to the minimally invasive nature of their acquisition, thus potentially providing better outcomes for patients. Circulating tumor cells (CTCs) are among the many different biomarkers secured from a liquid biopsy, and a number of efficient platforms for their isolation and enrichment from blood have been reported. However, many of these platforms require manual sample handling, which can generate difficulties when translating CTC assays into the clinic due to potential sample loss, contamination, and the need for highly specialized operators. We report a system modularity chip for the analysis of rare targets (SMART-Chip) composed of three task-specific modules that can fully automate processing of CTCs. The modules were used for affinity selection of the CTCs from peripheral blood with subsequent photorelease, simultaneous counting, and viability determinations of the CTCs and staining/imaging of the CTCs for immunophenotyping. The modules were interconnected to a fluidic motherboard populated with valves, interconnects, pneumatic control channels, and a fluidic network. The SMART-Chip components were made from thermoplastics via microreplication, which lowers the cost of production making it amenable to clinical implementation. The utility of the SMART-Chip was demonstrated by processing blood samples secured from colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC) patients. We were able to affinity-select EpCAM expressing CTCs with high purity (0-3 white blood cells/mL of blood), enumerate the selected cells, determine their viability, and immunophenotype the cells. The assay could be completed in <4 h, while manual processing required >8 h.
Collapse
Affiliation(s)
- Thilanga N. Pahattuge
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Ian M. Freed
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mateusz L. Hupert
- BioFluidica, Inc., 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Katie Childers
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Malgorzata A. Witek
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kumuditha Weerakoon-Ratnayake
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
| | - Daniel Park
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical & Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Anup Kasi
- Department of Medical Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mazin F Al-Kasspooles
- Department of Medical Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Michael C. Murphy
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical & Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Center of BioModular Multi-scale Systems for Precision Medicine, University of Kansas, Lawrence, Kansas 66045, United States
- BioFluidica, Inc., 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Department of BioEngineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
27
|
Zhao Z, Wijerathne H, Godwin AK, Soper SA. Isolation and analysis methods of extracellular vesicles (EVs). EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2020; 2:80-103. [PMID: 34414401 PMCID: PMC8372011 DOI: 10.20517/evcna.2021.07] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been recognized as an evolving biomarker within the liquid biopsy family. While carrying both host cell proteins and different types of RNAs, EVs are also present in sufficient quantities in biological samples to be tested using many molecular analysis platforms to interrogate their content. However, because EVs in biological samples are comprised of both disease and non-disease related EVs, enrichment is often required to remove potential interferences from the downstream molecular assay. Most benchtop isolation/enrichment methods require > milliliter levels of sample and can cause varying degrees of damage to the EVs. In addition, some of the common EV benchtop isolation methods do not sort the diseased from the non-diseased related EVs. Simultaneously, the detection of the overall concentration and size distribution of the EVs is highly dependent on techniques such as electron microscopy and Nanoparticle Tracking Analysis, which can include unexpected variations and biases as well as complexity in the analysis. This review discusses the importance of EVs as a biomarker secured from a liquid biopsy and covers some of the traditional and non-traditional, including microfluidics and resistive pulse sensing, technologies for EV isolation and detection, respectively.
Collapse
Affiliation(s)
- Zheng Zhao
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
| | - Harshani Wijerathne
- Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Andrew K. Godwin
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven A. Soper
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Ulsan National Institute of Science & Technology, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|