1
|
Hong L, Ye T, Wang TZ, Srijay D, Liu H, Zhao L, Watson R, Vincoff S, Chen T, Kholina K, Goel S, DeLisa MP, Chatterjee P. Programmable protein stabilization with language model-derived peptide guides. Nat Commun 2025; 16:3555. [PMID: 40229275 PMCID: PMC11997201 DOI: 10.1038/s41467-025-58872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Dysregulated protein degradation via the ubiquitin-proteasomal pathway can induce numerous disease phenotypes, including cancer, neurodegeneration, and diabetes. While small molecule-based targeted protein degradation (TPD) and targeted protein stabilization (TPS) platforms can address this dysregulation, they rely on structured and stable binding pockets, which do not exist to classically "undruggable" targets. Here, we expand the TPS target space by engineering "deubiquibodies" (duAbs) via fusion of computationally-designed peptide binders to the catalytic domain of the potent OTUB1 deubiquitinase. In human cells, duAbs effectively stabilize exogenous and endogenous proteins in a DUB-dependent manner. Using protein language models to generate target-binding peptides, we engineer duAbs to conformationally diverse target proteins, including key tumor suppressor proteins p53 and WEE1, and heavily-disordered fusion oncoproteins, such as PAX3::FOXO1. We further encapsulate p53-targeting duAbs as mRNA in lipid nanoparticles and demonstrate effective intracellular delivery, p53 stabilization, and apoptosis activation, motivating further in vivo translation.
Collapse
Affiliation(s)
- Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Tian Z Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Howard Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rio Watson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kseniia Kholina
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Hage A, Janes M, Best SM. A No-Brainer! The Therapeutic Potential of TRIM Proteins in Viral and Central Nervous System Diseases. Viruses 2025; 17:562. [PMID: 40285004 PMCID: PMC12031127 DOI: 10.3390/v17040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Tripartite motif (TRIM) proteins comprise an important class of E3 ubiquitin ligases that regulate numerous biological processes including protein expression, cellular signaling pathways, and innate immunity. This ubiquitous participation in fundamental aspects of biology has made TRIM proteins a focus of study in many fields and has illuminated the negative impact they exert when functioning improperly. Disruption of TRIM function has been linked to the success of various pathogens and separately to the occurrence and development of several neurodegenerative diseases, making TRIM proteins an appealing candidate to study for novel therapeutic approaches. Here, we review the current findings on TRIM proteins that demonstrate their analogous properties in the distinct fields of viral infection and central nervous system (CNS) disorders. We also examine recent advancements in drug development and targeted protein degradation as potential strategies for TRIM-mediated therapeutic treatments and discuss the implications these technologies have on future research directions.
Collapse
Affiliation(s)
- Adam Hage
- Innate Immunity and Pathogenesis Section, Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (M.J.); (S.M.B.)
| | | | | |
Collapse
|
3
|
Klingenberg AS, Ghersi D. VIPER: Virus Inhibition Via Peptide Engineering and Receptor Mimicry. J Comput Biol 2025; 32:362-373. [PMID: 39950935 DOI: 10.1089/cmb.2024.0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
A key step in most viral infections is the binding of a viral protein to a host receptor, leading to the virus entering the host cell. Disrupting this protein-protein interaction is an effective strategy for preventing infection and subsequent disease. Building on recent advances in computational tools for structural biology, we introduce Virus Inhibition via Peptide Engineering and Receptor Mimicry (VIPER), a novel approach for the automatic derivation and optimization of biomimetic decoy peptides that mimic binding sites of human proteins. VIPER leverages structural data from human-pathogen protein complexes, yielding peptides that can competitively inhibit viral entry by mimicking the natural receptor. We computationally validated VIPER using molecular dynamics simulations and showcased its applicability on three clinically relevant viruses, highlighting its potential to accelerate therapeutic development. With a focus on reproducibility and extensibility, VIPER can facilitate the rapid development of antiviral inhibitors by automating the design and optimization of biomimetic compounds.
Collapse
Affiliation(s)
- Anna Sophie Klingenberg
- Department of Information Systems and Quantitative Analysis, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, Nebraska USA
| |
Collapse
|
4
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
5
|
Zhu K, Tang S, Pan D, Wang X, Xu Y, Yan J, Wang L, Chen C, Yang M. Development and biological evaluation of a novel CEACAM6-targeted PET tracer for distinguishing malignant nodules in early-stage lung adenocarcinoma. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07107-3. [PMID: 39888423 DOI: 10.1007/s00259-025-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis. METHODS This study utilized mRNA, protein, and survival datasets of LUAD patients, along with an animal model of malignant pulmonary nodules, to investigate CEACAM6 expression specificity and its correlation with LUAD. Targeting ligands for CEACAM6 were designed using the Rosetta platform, labeled with [68Ga]Ga, and screened through high-throughput PET imaging to identify the optimal tracer. RESULTS CEACAM6 was found to be specifically overexpressed in LUAD and was significantly associated with poor prognosis and disease progression. In vivo, [68Ga]Ga-NODA-P3 demonstrated high specificity for delineating CEACAM6-positive A549 xenografts, a LUAD model, via PET imaging, achieving a highest target-to-background ratio of 7.68 ± 0.44. Region of interest (ROI) analysis showed significantly higher tracer uptake in A549 xenografts compared to CEACAM6-negative Huh7 xenografts (a hepatocellular carcinoma model) at 30 min post-injection (1.81 ± 0.10%ID/g vs. 0.54 ± 0.06%ID/g). Pre-treatment with an excess of unlabeled NODA-P3 significantly reduced tumor uptake to 0.52 ± 0.07%ID/g. CONCLUSION These preclinical findings indicate that [68Ga]Ga-NODA-P3 is a candidate radiotracer for the non-invasive visualization of CEACAM6-positive LUAD, demonstrating favorable imaging contrast. Although the current tumor uptake limits its immediate clinical application, ongoing optimization efforts are expected to improve its efficacy, enabling earlier and more accurate diagnosis of malignant pulmonary nodules in LUAD.
Collapse
Affiliation(s)
- Keying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shimin Tang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| |
Collapse
|
6
|
Bhat S, Palepu K, Hong L, Mao J, Ye T, Iyer R, Zhao L, Chen T, Vincoff S, Watson R, Wang TZ, Srijay D, Kavirayuni VS, Kholina K, Goel S, Vure P, Deshpande AJ, Soderling SH, DeLisa MP, Chatterjee P. De novo design of peptide binders to conformationally diverse targets with contrastive language modeling. SCIENCE ADVANCES 2025; 11:eadr8638. [PMID: 39841846 PMCID: PMC11753435 DOI: 10.1126/sciadv.adr8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Designing binders to target undruggable proteins presents a formidable challenge in drug discovery. In this work, we provide an algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein. To do this, we propose a process to generate naturalistic peptide candidates through Gaussian perturbation of the peptidic latent space of the ESM-2 protein language model and subsequently screen these novel sequences for target-selective interaction activity via a contrastive language-image pretraining (CLIP)-based contrastive learning architecture. By integrating these generative and discriminative steps, we create a Peptide Prioritization via CLIP (PepPrCLIP) pipeline and validate highly ranked, target-specific peptides experimentally, both as inhibitory peptides and as fusions to E3 ubiquitin ligase domains. PepPrCLIP-derived constructs demonstrate functionally potent binding and degradation of conformationally diverse, disease-driving targets in vitro. In total, PepPrCLIP empowers the modulation of previously inaccessible proteins without reliance on stable and ordered tertiary structures.
Collapse
Affiliation(s)
- Suhaas Bhat
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kalyan Palepu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joey Mao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Rema Iyer
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Institute, San Diego, CA, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rio Watson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tian Z. Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Kseniia Kholina
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Pranay Vure
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aniruddha J. Deshpande
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Institute, San Diego, CA, USA
| | | | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Ye T, Alamgir A, Robertus CM, Colina D, Monticello C, Donahue TC, Hong L, Vincoff S, Goel S, Fekkes P, Camargo LM, Lam K, Heyes J, Putnam D, Alabi CA, Chatterjee P, DeLisa MP. Programmable protein degraders enable selective knockdown of pathogenic β-catenin subpopulations in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622803. [PMID: 39605463 PMCID: PMC11601283 DOI: 10.1101/2024.11.10.622803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Aberrant activation of Wnt signaling results in unregulated accumulation of cytosolic β-catenin, which subsequently enters the nucleus and promotes transcription of genes that contribute to cellular proliferation and malignancy. Here, we sought to eliminate pathogenic β-catenin from the cytosol using designer ubiquibodies (uAbs), chimeric proteins composed of an E3 ubiquitin ligase and a target-binding domain that redirect intracellular proteins to the proteasome for degradation. To accelerate uAb development, we leveraged a protein language model (pLM)-driven algorithm called SaLT&PepPr to computationally design "guide" peptides with affinity for β-catenin, which were subsequently fused to the catalytic domain of a human E3 called C-terminus of Hsp70-interacting protein (CHIP). Expression of the resulting peptide-guided uAbs in colorectal cancer cells led to the identification of several designs that significantly reduced the abnormally stable pool of free β-catenin in the cytosol and nucleus while preserving the normal membrane-associated subpopulation. This selective knockdown of pathogenic β-catenin suppressed Wnt/β-catenin signaling and impaired tumor cell survival and proliferation. Furthermore, one of the best degraders selectively decreased cytosolic but not membrane-associated β-catenin levels in livers of BALB/c mice following delivery as a lipid nanoparticle (LNP)-encapsulated mRNA. Collectively, these findings reveal the unique ability of uAbs to selectively eradicate abnormal proteins in vitro and in vivo and open the door to peptide-programmable biologic modulators of other disease-causing proteins.
Collapse
Affiliation(s)
- Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Azmain Alamgir
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Cara M. Robertus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Darianna Colina
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 USA
| | - Connor Monticello
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Thomas Connor Donahue
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Peter Fekkes
- UbiquiTx, 750 Main Street, Cambridge, MA 02139 USA
| | | | - Kieu Lam
- Genevant Sciences Corporation, 887 Great Northern Way, Vancouver, BC, V5T 4T5 Canada
| | - James Heyes
- Genevant Sciences Corporation, 887 Great Northern Way, Vancouver, BC, V5T 4T5 Canada
| | - David Putnam
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Christopher A. Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Computer Science, Duke University, Durham, NC 27708 USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853 USA
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
8
|
Iuliano M, Mongiovì RM, Parente A, Grimaldi L, Kertusha B, Carraro A, Marocco R, Mancarella G, Del Borgo C, Dorrucci M, Lichtner M, Mangino G, Romeo G. Memory T Cells Subpopulations in a Cohort of COVID-19 Vaccinated or Recovered Subjects. Viral Immunol 2024; 37:440-445. [PMID: 39474707 DOI: 10.1089/vim.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Following viral infection, antigen-restricted T lymphocytes are activated and recognize infected cells to eliminate them. A subset of T cells differentiates into memory lymphocytes able to counteract viral rechallenge in a faster and enhanced way. SARS-CoV-2 can escape immune responses leading to a poor clinical outcome. Immune escape can be associated with the failure of the development of T cell memory compartments. The aim of this study is to characterize the T memory subsets and to test the immune response against class I- and II-restricted immunodominant epitopes shared by ancestral and SARS-CoV-2 variants strains. T memory subsets and recognition of SARS-CoV-2S Spike-specific epitopes were analyzed by flow cytometry on 14 fully vaccinated healthy donors (HDV) and 18 COVID-19 recovered patients (CD). The results obtained showed that CD8+ T naïve subset numbers decreased in association with a significant increase of the effector memory T cell subset whereas there was a small increase in the percentage of SARS-CoV-2 antigen-restricted T clones in both CD4+ and CD8+ subset in the CD compared to HDV sample. Collectively, these features may reflect a broader cytotoxic T cell repertoire stimulated by the virus during the natural infection compared to the spike-restricted response activated during vaccination.
Collapse
Affiliation(s)
- Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alberico Parente
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Lorenzo Grimaldi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Blerta Kertusha
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Raffaella Marocco
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Giulia Mancarella
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Cosmo Del Borgo
- Department of Public Health and Infectious Disease, S. Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Maria Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Miriam Lichtner
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, Latina, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
9
|
Li Z, Liu H, He Z, Chakravarty A, Golden RP, Jiang Z, You I, Yue H, Donovan KA, Du G, Che J, Tse J, Che I, Lu W, Fischer ES, Zhang T, Gray NS, Yang PL. Discovery of Potent Degraders of the Dengue Virus Envelope Protein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405829. [PMID: 39145423 PMCID: PMC11516100 DOI: 10.1002/advs.202405829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Indexed: 08/16/2024]
Abstract
Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here, it is reported that the development of small molecule degraders of the envelope (E) protein of dengue virus. Two classes of bivalent E-degraders are developed by linking two previously reported E-binding small molecules, GNF-2, and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E-degrader with ABL inhibitory activity while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof of concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class of direct-acting antiviral drugs.
Collapse
Affiliation(s)
- Zhengnian Li
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Han‐Yuan Liu
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| | - Zhixiang He
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Antara Chakravarty
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| | - Ryan P. Golden
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Zixuan Jiang
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Inchul You
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | | | - Katherine A. Donovan
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Guangyan Du
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Jianwei Che
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
| | - Jason Tse
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Isaac Che
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Wenchao Lu
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Eric S. Fischer
- Department of Cancer BiologyDana‐Farber Cancer Institute450 Brookline AvenueBoston02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBoston02115USA
| | - Tinghu Zhang
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Nathanael S. Gray
- Department of Chemical and Systems BiologyChem‐H and Stanford Cancer InstituteStanford MedicineStanford University290 Jane Stanford WayStanfordCA94305USA
| | - Priscilla L. Yang
- Department of Microbiology and ImmunologyStanford University School of Medicine279 Campus DrivePalo AltoCA94305USA
| |
Collapse
|
10
|
Lopez UM, Hasan MM, Havranek B, Islam SM. SARS-CoV-2 Resistance to Small Molecule Inhibitors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:127-139. [PMID: 39559548 PMCID: PMC11573241 DOI: 10.1007/s40588-024-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 11/20/2024]
Abstract
Purpose of the Review SARS-CoV-2 undergoes genetic mutations like many other viruses. Some mutations lead to the emergence of new Variants of Concern (VOCs), affecting transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous monitoring and research are crucial to comprehend variant behavior and develop effective response strategies, including identifying mutations that may affect current drug therapies. Recent Findings Antiviral therapies such as Nirmatrelvir and Ensitrelvir focus on inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 could impact the efficiency of these small molecule drug therapeutics. Summary This manuscript summarizes mutations in 3CLpro and nsp12, which could potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential for developing resistance against emerging variants.
Collapse
Affiliation(s)
- Uxua Modrego Lopez
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Md Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Brandon Havranek
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shahidul M Islam
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
11
|
Chen T, Dumas M, Watson R, Vincoff S, Peng C, Zhao L, Hong L, Pertsemlidis S, Shaepers-Cheu M, Wang TZ, Srijay D, Monticello C, Vure P, Pulugurta R, Kholina K, Goel S, DeLisa MP, Truant R, Aguilar HC, Chatterjee P. PepMLM: Target Sequence-Conditioned Generation of Therapeutic Peptide Binders via Span Masked Language Modeling. ARXIV 2024:arXiv:2310.03842v3. [PMID: 37873004 PMCID: PMC10593082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Target proteins that lack accessible binding pockets and conformational stability have posed increasing challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have thus gained attention as pharmacological alternatives, but still require small molecule docking at binding pockets for targeted protein degradation. The computational design of protein-based binders presents unique opportunities to access "undruggable" targets, but have often relied on stable 3D structures or structure-influenced latent spaces for effective binder generation. In this work, we introduce PepMLM, a target sequence-conditioned generator of de novo linear peptide binders. By employing a novel span masking strategy that uniquely positions cognate peptide sequences at the C-terminus of target protein sequences, PepMLM fine-tunes the state-of-the-art ESM-2 pLM to fully reconstruct the binder region, achieving low perplexities matching or improving upon validated peptide-protein sequence pairs. After successful in silico benchmarking with AlphaFold-Multimer, outperforming RFDiffusion on structured targets, we experimentally verify PepMLM's efficacy via fusion of model-derived peptides to E3 ubiquitin ligase domains, demonstrating endogenous degradation of emergent viral phosphoproteins and Huntington's disease-driving proteins. In total, PepMLM enables the generative design of candidate binders to any target protein, without the requirement of target structure, empowering downstream therapeutic applications.
Collapse
Affiliation(s)
- Tianlai Chen
- Department of Biomedical Engineering, Duke University
| | - Madeleine Dumas
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University
| | - Rio Watson
- Department of Biomedical Engineering, Duke University
| | | | - Christina Peng
- Department of Biochemistry and Biomedical Sciences, McMaster University
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University
| | | | - Mayumi Shaepers-Cheu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| | - Tian Zi Wang
- Department of Biomedical Engineering, Duke University
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University
| | - Connor Monticello
- Department of Biochemistry and Biomedical Sciences, McMaster University
| | - Pranay Vure
- Department of Biomedical Engineering, Duke University
| | | | | | - Shrey Goel
- Department of Biomedical Engineering, Duke University
| | - Matthew P. DeLisa
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University
- Department of Computer Science, Duke University
- Department of Biostatistics and Bioinformatics, Duke University
| |
Collapse
|
12
|
Hong L, Ye T, Wang TZ, Srijay D, Zhao L, Watson R, Vincoff S, Chen T, Kholina K, Goel S, DeLisa MP, Chatterjee P. Programmable Protein Stabilization with Language Model-Derived Peptide Guides. RESEARCH SQUARE 2024:rs.3.rs-4670386. [PMID: 39108486 PMCID: PMC11302690 DOI: 10.21203/rs.3.rs-4670386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Dysregulated protein degradation via the ubiquitin-proteasomal pathway can induce numerous disease phenotypes, including cancer, neurodegeneration, and diabetes. Stabilizing improperly ubiquitinated proteins via target-specific deubiquitination is thus a critical therapeutic goal. Building off the major advances in targeted protein degradation (TPD) using bifunctional small-molecule degraders, targeted protein stabilization (TPS) modalities have been described recently. However, these rely on a limited set of chemical linkers and warheads, which are difficult to generate de novo for new targets and do not exist for classically "undruggable" targets. To address the limited reach of small molecule-based degraders, we previously engineered ubiquibodies (uAbs) by fusing computationally-designed "guide" peptides to E3 ubiquitin ligase domains for modular, CRISPR-analogous TPD. Here, we expand the TPS target space by engineering "deubiquibodies" (duAbs) via fusion of computationally-designed guides to the catalytic domain of the potent OTUB1 deubiquitinase. In human cells, duAbs effectively stabilize exogenous and endogenous proteins in a DUB-dependent manner. To demonstrate duAb modularity, we swap in new target-binding peptides designed via our generative language models to stabilize diverse target proteins, including key tumor suppressor proteins such as p53 and WEE1, as well as heavily-disordered fusion oncoproteins, such as PAX3::FOXO1. In total, our duAb system represents a simple, programmable, CRISPR-analogous strategy for TPS.
Collapse
Affiliation(s)
- Lauren Hong
- Department of Biomedical Engineering, Duke University
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Tian Zi Wang
- Department of Biomedical Engineering, Duke University
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University
| | - Rio Watson
- Department of Biomedical Engineering, Duke University
| | | | - Tianlai Chen
- Department of Biomedical Engineering, Duke University
| | | | - Shrey Goel
- Department of Biomedical Engineering, Duke University
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University
- Department of Computer Science, Duke University
- Department of Biostatistics and Bioinformatics, Duke University
| |
Collapse
|
13
|
Yang H, Chen W. Protease-Responsive Toolkit for Conditional Targeted Protein Degradation. ACS Synth Biol 2024; 13:2073-2080. [PMID: 38889440 DOI: 10.1021/acssynbio.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BioPROTACs are heterobifunctional proteins designed for targeted protein degradation. While they offer a potential therapeutic avenue for modulating disease-related proteins, the current strategies are static in nature and lack the ability to modulate protein degradation dynamically. Here, we introduce a synthetic framework for dynamic fine-tuning of target protein levels using protease control switches. The idea is to utilize proteases as an interfacing layer between exogenous inputs and protein degradation by modulating the recruitment of target proteins to E3 ligase by separating the two binding domains on bioPROTACs. By decoupling the external inputs from the primary protease layer, new conditional degradation phenotypes can be readily adapted with minimal modifications to the design. We demonstrate the adaptability of this approach using two highly efficient "bioPROTAC" systems: AdPROM and IpaH9.8-based Ubiquibodies. Using the TEV protease as the transducer, we can interface small-molecule and optogenetic inputs for conditional targeted protein degradation. Our findings highlight the potential of bioPROTACs with protease-responsive linkers as a versatile tool for conditional targeted protein degradation.
Collapse
Affiliation(s)
- Hopen Yang
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Li Z, Liu HY, He Z, Chakravarty A, Golden RP, Jiang Z, You I, Yue H, Donovan KA, Du G, Che J, Tse J, Che I, Lu W, Fischer ES, Zhang T, Gray NS, Yang PL. Discovery of Potent Degraders of the Dengue Virus Envelope Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596987. [PMID: 38854003 PMCID: PMC11160776 DOI: 10.1101/2024.06.01.596987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.
Collapse
Affiliation(s)
- Zhengnian Li
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Han-Yuan Liu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Antara Chakravarty
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Ryan P. Golden
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Isaac Che
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Priscilla L. Yang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Holmes J, Islam SM, Milligan KA. Exploring Cannabinoids as Potential Inhibitors of SARS-CoV-2 Papain-like Protease: Insights from Computational Analysis and Molecular Dynamics Simulations. Viruses 2024; 16:878. [PMID: 38932170 PMCID: PMC11209085 DOI: 10.3390/v16060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches. The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus's papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns. The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro's active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time. These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.
Collapse
Affiliation(s)
| | - Shahidul M. Islam
- Department of Chemistry, Delaware State University, 1200 N. DuPont Hwy, Dover, DE 19901, USA; (J.H.); (K.A.M.)
| | | |
Collapse
|
16
|
Grifagni D, Lenci E, De Santis A, Orsetti A, Barracchia CG, Tedesco F, Bellini Puglielli R, Lucarelli F, Lauriola A, Assfalg M, Cantini F, Calderone V, Guardavaccaro D, Trabocchi A, D’Onofrio M, Ciofi-Baffoni S. Development of a GC-376 Based Peptidomimetic PROTAC as a Degrader of 3-Chymotrypsin-like Protease of SARS-CoV-2. ACS Med Chem Lett 2024; 15:250-257. [PMID: 38352832 PMCID: PMC10860180 DOI: 10.1021/acsmedchemlett.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessia De Santis
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Orsetti
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Filomena Tedesco
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Raffaele Bellini Puglielli
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Lucarelli
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Angela Lauriola
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Michael Assfalg
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesca Cantini
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Vito Calderone
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniele Guardavaccaro
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Andrea Trabocchi
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Mariapina D’Onofrio
- Department
of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Yang N, Kong B, Zhu Z, Huang F, Zhang L, Lu T, Chen Y, Zhang Y, Jiang Y. Recent advances in targeted protein degraders as potential therapeutic agents. Mol Divers 2024; 28:309-333. [PMID: 36790583 PMCID: PMC9930057 DOI: 10.1007/s11030-023-10606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Targeted protein degradation (TPD) technology has gradually become widespread in the past 20 years, which greatly boosts the development of disease treatment. Contrary to small inhibitors that act on protein kinases, transcription factors, ion channels, and other targets they can bind to, targeted protein degraders could target "undruggable targets" and overcome drug resistance through ubiquitin-proteasome pathway (UPP) and lysosome pathway. Nowadays, some bivalent degraders such as proteolysis-targeting chimeras (PROTACs) have aroused great interest in drug discovery, and some of them have successfully advanced into clinical trials. In this review, to better understand the mechanism of degraders, we elucidate the targeted protein degraders according to their action process, relying on the ubiquitin-proteasome system or lysosome pathway. Then, we briefly summarize the study of PROTACs employing different E3 ligases. Subsequently, the effect of protein of interest (POI) ligands, linker, and E3 ligands on PROTAC degradation activity is also discussed in detail. Other novel technologies based on UPP and lysosome pathway have been discussed in this paper such as in-cell click-formed proteolysis-targeting chimeras (CLIPTACs), molecular glues, Antibody-PROTACs (Ab-PROTACs), autophagy-targeting chimeras, and lysosome-targeting chimeras. Based on the introduction of these degradation technologies, we can clearly understand the action process and degradation mechanism of these approaches. From this perspective, it will be convenient to obtain the development status of these drugs, choose appropriate degradation methods to achieve better disease treatment and provide basis for future research and simultaneously distinguish the direction of future research efforts.
Collapse
Affiliation(s)
- Na Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Bo Kong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Zhaohong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Fei Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yanmin Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
18
|
Brixi G, Ye T, Hong L, Wang T, Monticello C, Lopez-Barbosa N, Vincoff S, Yudistyra V, Zhao L, Haarer E, Chen T, Pertsemlidis S, Palepu K, Bhat S, Christopher J, Li X, Liu T, Zhang S, Petersen L, DeLisa MP, Chatterjee P. SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders. Commun Biol 2023; 6:1081. [PMID: 37875551 PMCID: PMC10598214 DOI: 10.1038/s42003-023-05464-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM) with a per-position prediction task to identify PPI sites using data from the PDB, and prioritizes motifs which are most likely to be involved within inter-chain binding. By only using amino acid sequence as input, our model is competitive with structural homology-based methods, but exhibits reduced performance compared with deep learning models that input both structural and sequence features. Inspired by our previous results using co-crystals to engineer target-binding "guide" peptides, we curate PPI databases to identify partners for subsequent peptide derivation. Fusing guide peptides to an E3 ubiquitin ligase domain, we demonstrate degradation of endogenous β-catenin, 4E-BP2, and TRIM8, and highlight the nanomolar binding affinity, low off-targeting propensity, and function-altering capability of our best-performing degraders in cancer cells. In total, our study suggests that prioritizing binders from natural interactions via pLMs can enable programmable protein targeting and modulation.
Collapse
Affiliation(s)
- Garyk Brixi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tian Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Connor Monticello
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Vivian Yudistyra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elena Haarer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Kalyan Palepu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Suhaas Bhat
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Xinning Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tong Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lillian Petersen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Xue W, Li T, Gu Y, Li S, Xia N. Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Rev Vaccines 2023. [PMID: 37339445 DOI: 10.1080/14760584.2023.2227699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. AREAS COVERED This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. EXPERT OPINION The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Collapse
Affiliation(s)
- Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, China
- Xiang an Biomedicine Laboratory, Xiamen, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, China
| |
Collapse
|
20
|
Renzi F, Seamann A, Ganguly K, Pandey K, Byrareddy SN, Batra S, Kumar S, Ghersi D. Engineering an ACE2-Derived Fragment as a Decoy for Novel SARS-CoV-2 Virus. ACS Pharmacol Transl Sci 2023; 6:857-867. [PMID: 37325447 PMCID: PMC10262318 DOI: 10.1021/acsptsci.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Entry inhibitors are an important resource in the response against emerging pathogens like the novel SARS-CoV-2, which enters human cells via interaction between the surface spike glycoprotein and the cellular membrane receptor angiotensin-converting enzyme 2 (ACE2). Using a combination of comparative structural analyses of the binding surface of the spike to ACE2, docking experiments, and molecular dynamics simulations, we identified a stable fragment of ACE2 that binds to the spike, is soluble, and is not predicted to bind to its physiological ligand angiotensin II. From this fragment we computationally designed and experimentally validated a smaller, stable peptide that disrupts ACE2-spike interaction at nanomolar concentrations, suggesting its potential use as a decoy that could interfere with viral binding by competition.
Collapse
Affiliation(s)
- Fabiana Renzi
- Department
of Physics, Università di Roma ”La
Sapienza”, 00185 Rome, Italy
| | - Austin Seamann
- School
of Interdisciplinary Informatics, University
of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| | - Koelina Ganguly
- Department
of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
| | - Kabita Pandey
- Department
of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
| | - Siddappa N. Byrareddy
- Department
of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
- Department
of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
| | - Surinder Batra
- Department
of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
| | - Sushil Kumar
- Department
of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68182, USA
| | - Dario Ghersi
- School
of Interdisciplinary Informatics, University
of Nebraska at Omaha, Omaha, Nebraska 68182, USA
| |
Collapse
|
21
|
Zhao M, Zhang M, Yang Z, Zhou Z, Huang J, Zhao B. Role of E3 ubiquitin ligases and deubiquitinating enzymes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1217383. [PMID: 37360529 PMCID: PMC10288995 DOI: 10.3389/fcimb.2023.1217383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Ever since its emergence in 2019, COVID-19 has rapidly disseminated worldwide, engendering a pervasive pandemic that has profoundly impacted healthcare systems and the socio-economic milieu. A plethora of studies has been conducted targeting its pathogenic virus, SARS-CoV-2, to find ways to combat COVID-19. The ubiquitin-proteasome system (UPS) is widely recognized as a crucial mechanism that regulates human biological activities by maintaining protein homeostasis. Within the UPS, the ubiquitination and deubiquitination, two reversible modifications, of substrate proteins have been extensively studied and implicated in the pathogenesis of SARS-CoV-2. The regulation of E3 ubiquitin ligases and DUBs(Deubiquitinating enzymes), which are key enzymes involved in the two modification processes, determines the fate of substrate proteins. Proteins associated with the pathogenesis of SARS-CoV-2 may be retained, degraded, or even activated, thus affecting the ultimate outcome of the confrontation between SARS-CoV-2 and the host. In other words, the clash between SARS-CoV-2 and the host can be viewed as a battle for dominance over E3 ubiquitin ligases and DUBs, from the standpoint of ubiquitin modification regulation. This review primarily aims to clarify the mechanisms by which the virus utilizes host E3 ubiquitin ligases and DUBs, along with its own viral proteins that have similar enzyme activities, to facilitate invasion, replication, escape, and inflammation. We believe that gaining a better understanding of the role of E3 ubiquitin ligases and DUBs in COVID-19 can offer novel and valuable insights for developing antiviral therapies.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| |
Collapse
|
22
|
Havranek B, Lindsey GW, Higuchi Y, Itoh Y, Suzuki T, Okamoto T, Hoshino A, Procko E, Islam SM. A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo. Commun Biol 2023; 6:513. [PMID: 37173421 PMCID: PMC10177734 DOI: 10.1038/s42003-023-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- ComputePharma, LLC., Chicago, IL, USA
| | | | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- ComputePharma, LLC., Chicago, IL, USA.
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
23
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
24
|
Espinoza-Chávez R, Salerno A, Liuzzi A, Ilari A, Milelli A, Uliassi E, Bolognesi ML. Targeted Protein Degradation for Infectious Diseases: from Basic Biology to Drug Discovery. ACS BIO & MED CHEM AU 2023; 3:32-45. [PMID: 37101607 PMCID: PMC10125329 DOI: 10.1021/acsbiomedchemau.2c00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 04/28/2023]
Abstract
Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.
Collapse
Affiliation(s)
- Rocío
Marisol Espinoza-Chávez
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Anastasia Liuzzi
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Ilari
- Institute
of Molecular Biology and Pathology of the Italian National Research
Council (IBPM-CNR) - Department of Biochemical Sciences, Sapienza University, P.le A. Moro 5, 00185 Roma, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
25
|
Koroleva OA, Dutikova YV, Trubnikov AV, Zenov FA, Manasova EV, Shtil AA, Kurkin AV. PROTAC: targeted drug strategy. Principles and limitations. Russ Chem Bull 2022; 71:2310-2334. [PMID: 36569659 PMCID: PMC9762658 DOI: 10.1007/s11172-022-3659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 12/23/2022]
Abstract
The PROTAC (PROteolysis TArgeting Chimera) technology is a method of targeting intracellular proteins previously considered undruggable. This technology utilizes the ubiquitin-proteasome system in cells to specifically degrade target proteins, thereby offering significant advantages over conventional small-molecule inhibitors of the enzymatic function. Preclinical and preliminary clinical trials of PROTAC-based compounds (degraders) are presented. The review considers the general principles of the design of degraders. Advances and challenges of the PROTAC technology are discussed.
Collapse
Affiliation(s)
- O. A. Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - Yu. V. Dutikova
- Patent & Law Firm “A. Zalesov and Partners”, Build. 9, 2 ul. Marshala Rybalko, 123060 Moscow, Russian Federation
| | - A. V. Trubnikov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - F. A. Zenov
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - E. V. Manasova
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| | - A. A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Build. 15, 24 Kashirskoe shosse, 115478 Moscow, Russian Federation
| | - A. V. Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Build. 3, 1 Leninskie Gory, 119991 Moscow, Russian Federation
| |
Collapse
|
26
|
Odolczyk N, Klim J, Podsiadła-Białoskórska M, Winiewska-Szajewska M, Szolajska E, Zielenkiewicz U, Poznański J, Zielenkiewicz P. Improvement of native structure-based peptides as efficient inhibitors of protein-protein interactions of SARS-CoV-2 spike protein and human ACE2. Front Mol Biosci 2022; 9:983014. [PMID: 36250011 PMCID: PMC9555309 DOI: 10.3389/fmolb.2022.983014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
New pathogens responsible for novel human disease outbreaks in the last two decades are mainly the respiratory system viruses. Not different was the last pandemic episode, caused by infection of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the extensively explored targets, in the recent scientific literature, as a possible way for rapid development of COVID-19 specific drug(s) is the interaction between the receptor-binding domain of the virus’ spike (S) glycoprotein and human receptor angiotensin-converting enzyme 2 (hACE2). This protein-protein recognition process is involved in the early stages of the SARS-CoV-2 life cycle leading to the host cell membrane penetration. Thus, disrupting this interaction may block or significantly reduce the infection caused by the novel pathogen. Previously we have designed (by in silico structure-based analysis) three very short peptides having sequences inspirited by hACE2 native fragments, which effectively bind to the SARS-CoV-2 S protein and block its interaction with the human receptor. In continuation of the above mentioned studies, here we presented an application of molecular modeling approach resulting in improved binding affinity of the previously proposed ligand and its enhanced ability to inhibit meaningful host-virus protein-protein interaction. The new optimized hexapeptide binds to the virus protein with affinity one magnitude higher than the initial ligand and, as a very short peptide, has also great potential for further drug development. The peptide-based strategy is rapid and cost-effective for developing and optimizing efficient protein-protein interactions disruptors and may be successfully applied to discover antiviral candidates against other future emerging human viral infections.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Jarosław Poznański, ; Piotr Zielenkiewicz,
| |
Collapse
|
27
|
Krefl D, Bergmann S. Cross-GWAS coherence test at the gene and pathway level. PLoS Comput Biol 2022; 18:e1010517. [PMID: 36156592 PMCID: PMC9536597 DOI: 10.1371/journal.pcbi.1010517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Proximal genetic variants are frequently correlated, implying that the corresponding effect sizes detected by genome-wide association studies (GWAS) are also not independent. Methods already exist to account for this when aggregating effects from a single GWAS across genes or pathways. Here we present a rigorous yet fast method for detecting genes with coherent association signals for two traits, facilitating cross-GWAS analyses. To this end, we devised a new significance test for the covariance of datapoints not drawn independently but with a known inter-sample covariance structure. We show that the distribution of its test statistic is a linear combination of χ2 distributions with positive and negative coefficients. The corresponding cumulative distribution function can be efficiently calculated with Davies’ algorithm at high precision. We apply this general framework to test for dependence between SNP-wise effect sizes of two GWAS at the gene level. We extend this test to detect also gene-wise causal links. We demonstrate the utility of our method by uncovering potential shared genetic links between the severity of COVID-19 and (1) being prescribed class M05B medication (drugs affecting bone structure and mineralization), (2) rheumatoid arthritis, (3) vitamin D (25OHD), and (4) serum calcium concentrations. Our method detects a potential role played by chemokine receptor genes linked to TH1 versus TH2 immune response, a gene related to integrin beta-1 cell surface expression, and other genes potentially impacting the severity of COVID-19. Our approach will be useful for similar analyses involving datapoints with known auto-correlation structures.
Collapse
Affiliation(s)
- Daniel Krefl
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DK); (SB)
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Dept. of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (DK); (SB)
| |
Collapse
|
28
|
Zhang T, Liu C, Li W, Kuang J, Qiu XY, Min L, Zhu L. Targeted protein degradation in mammalian cells: A Promising Avenue toward Future. Comput Struct Biotechnol J 2022; 20:5477-5489. [PMID: 36249565 PMCID: PMC9535385 DOI: 10.1016/j.csbj.2022.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
In the eukaryotic cellular milieu, proteins are continuously synthesized and degraded effectively via endogenous protein degradation machineries such as the ubiquitin–proteasome and lysosome pathways. By reengineering and repurposing these natural protein regulatory mechanisms, the targeted protein degradation (TPD) strategies are presenting biologists with powerful tools to manipulate the abundance of proteins of interest directly, precisely, and reversibly at the post-translational level. In recent years, TPD is gaining massive attention and is recognized as a paradigm shift both in basic research, application-oriented synthetic biology, and pioneering clinical work. In this review, we summarize the updated information, especially the engineering efforts and developmental route, of current state-of-the-art TPD technology such as Trim-Away, LYTACs, and AUTACs. Besides, the general design principle, benefits, problems, and opportunities to be addressed were further analyzed, with the aim of providing guidelines for exploration, discovery, and further application of novel TPD tools in the future.
Collapse
|
29
|
Tripathy SP, Ponnapati M, Bhat S, Jacobson J, Chatterjee P. Femtomolar detection of SARS-CoV-2 via peptide beacons integrated on a miniaturized TIRF microscope. SCIENCE ADVANCES 2022; 8:eabn2378. [PMID: 36001655 PMCID: PMC9401610 DOI: 10.1126/sciadv.abn2378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/13/2022] [Indexed: 05/29/2023]
Abstract
The novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) continues to pose a substantial global health threat. Along with vaccines and targeted therapeutics, there is a critical need for rapid diagnostic solutions. In this work, we use computational protein modeling tools to suggest molecular beacon architectures that function as conformational switches for high-sensitivity detection of the SARS-CoV-2 spike protein receptor binding domain (S-RBD). Integrating these beacons on a miniaturized total internal reflection fluorescence (mini-TIRF) microscope, we detect the S-RBD and pseudotyped SARS-CoV-2 with limits of detection in the femtomolar range. We envision that our designed mini-TIRF platform will serve as a robust platform for point-of-care diagnostics for SARS-CoV-2 and future emergent viral threats.
Collapse
Affiliation(s)
- Soumya P. Tripathy
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manvitha Ponnapati
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Suhaas Bhat
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Joseph Jacobson
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pranam Chatterjee
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
30
|
Okura T, Shirato K, Kakizaki M, Sugimoto S, Matsuyama S, Tanaka T, Kume Y, Chishiki M, Ono T, Moriishi K, Sonoyama M, Hosoya M, Hashimoto K, Maenaka K, Takeda M. Hydrophobic Alpha-Helical Short Peptides in Overlapping Reading Frames of the Coronavirus Genome. Pathogens 2022; 11:877. [PMID: 36014999 PMCID: PMC9415614 DOI: 10.3390/pathogens11080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we show that the coronavirus (CoV) genome may encode many functional hydrophobic alpha-helical peptides (HAHPs) in overlapping reading frames of major coronaviral proteins throughout the entire viral genome. These HAHPs can theoretically be expressed from non-canonical sub-genomic (sg)RNAs that are synthesized in substantial amounts in infected cells. We selected and analyzed five and six HAHPs encoded in the S gene regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively. Two and three HAHPs derived from SARS-CoV-2 and MERS-CoV, respectively, specifically interacted with both the SARS-CoV-2 and MERS-CoV S proteins and inhibited their membrane fusion activity. Furthermore, one of the SARS-CoV-2 HAHPs specifically inhibited viral RNA synthesis by accumulating at the site of viral RNA synthesis. Our data show that a group of HAHPs in the coronaviral genome potentially has a regulatory role in viral propagation.
Collapse
Affiliation(s)
- Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Masatoshi Kakizaki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Satoko Sugimoto
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan
| | - Shutoku Matsuyama
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan;
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
- Center for Life Science Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0808, Hokkaido, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, Kiryu 376-8515, Gunma, Japan
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan;
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| |
Collapse
|
31
|
|
32
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of one ligand that binds to a protein of interest (POI) and another that can recruit an E3 ubiquitin ligase. The chemically-induced proximity between the POI and E3 ligase results in ubiquitination and subsequent degradation of the POI by the ubiquitin-proteasome system (UPS). The event-driven mechanism of action (MOA) of PROTACs offers several advantages compared to traditional occupancy-driven small molecule inhibitors, such as a catalytic nature, reduced dosing and dosing frequency, a more potent and longer-lasting effect, an added layer of selectivity to reduce potential toxicity, efficacy in the face of drug-resistance mechanisms, targeting nonenzymatic functions, and expanded target space. Here, we highlight important milestones and briefly discuss lessons learned about targeted protein degradation (TPD) in recent years and conjecture on the efforts still needed to expand the toolbox for PROTAC discovery to ultimately provide promising therapeutics.
Collapse
Affiliation(s)
- Ke Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
33
|
Macedo-da-Silva J, Coutinho JVP, Rosa-Fernandes L, Marie SKN, Palmisano G. Exploring COVID-19 pathogenesis on command-line: A bioinformatics pipeline for handling and integrating omics data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:311-339. [PMID: 35871895 PMCID: PMC9095070 DOI: 10.1016/bs.apcsb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in late 2019 in Wuhan, China, and has proven to be highly pathogenic, making it a global public health threat. The immediate need to understand the mechanisms and impact of the virus made omics techniques stand out, as they can offer a holistic and comprehensive view of thousands of molecules in a single experiment. Mastering bioinformatics tools to process, analyze, integrate, and interpret omics data is a powerful knowledge to enrich results. We present a robust and open access computational pipeline for extracting information from quantitative proteomics and transcriptomics public data. We present the entire pipeline from raw data to differentially expressed genes. We explore processes and pathways related to mapped transcripts and proteins. A pipeline is presented to integrate and compare proteomics and transcriptomics data using also packages available in the Bioconductor and providing the codes used. Cholesterol metabolism, immune system activity, ECM, and proteasomal degradation pathways increased in infected patients. Leukocyte activation profile was overrepresented in both proteomics and transcriptomics data. Finally, we found a panel of proteins and transcripts regulated in the same direction in the lung transcriptome and plasma proteome that distinguish healthy and infected individuals. This panel of markers was confirmed in another cohort of patients, thus validating the robustness and functionality of the tools presented.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Mondal T, Shivange G, Habieb A, Tushir-Singh J. A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiol Spectr 2022; 10:e0236421. [PMID: 35138160 PMCID: PMC8826744 DOI: 10.1128/spectrum.02364-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 causing coronavirus (SARS-CoV-2) remains a public health threat worldwide. SARS-CoV-2 enters human lung cells via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2). Notably, the cleavage of the spike by the host cell protease furin in virus-producing cells is critical for subsequent spike-driven entry into lung cells. Thus, effective targeted therapies blocking the spike cleavage and activation in viral producing cells may provide an alternate strategy to break the viral transmission cycle and to overcome disease pathology. Here we engineered and described an antibody-based targeted strategy, which directly competes with the furin mediated proteolytic activation of the spike in virus-producing cells. The described approach involves engineering competitive furin substrate residues in the IgG1 Fc-extended flexible linker domain of SARS-CoV-2 spike targeting antibodies. Considering the site of spike furin cleavage and SARS-CoV-2 egress remains uncertain, the experimental strategy pursued here revealed novel mechanistic insights into proteolytic processing of the spike protein, which suggest that processing does not occur in the constitutive secretory pathway. Furthermore, our results show blockade of furin-mediated cleavage of the spike protein for membrane fusion activation and virus host-cell entry function. These findings provide an alternate insight of targeting applicability to SARS-CoV-2 and the future coronaviridae family members, exploiting the host protease system to gain cellular entry and subsequent chain of infections. IMPORTANCE Since its emergence in December 2019, COVID-19 has remained a global economic and health threat. Although RNA and DNA vector-based vaccines induced antibody response and immunological memory have proven highly effective against hospitalization and mortality, their long-term efficacy remains unknown against continuously evolving SARS-CoV-2 variants. As host cell-enriched furin-mediated cleavage of SARS-CoV-2 spike protein is critical for viral entry and chain of the infection cycle, the solution described here of an antibody Fc-conjugated furin competing peptide is significant. In a scenario where spike mutational drifts do not interfere with the Fc-conjugated antibody's epitope, the proposed furin competing strategy confers a broad-spectrum targeting design to impede the production of efficiently transmissible SARS-CoV-2 viral particles. In addition, the proposed approach is plug-and-play against other potentially deadly viruses that exploit secretory pathway independent host protease machinery to gain cellular entry and subsequent transmissions to host cells.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Gururaj Shivange
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Alaa Habieb
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Jogender Tushir-Singh
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| |
Collapse
|
35
|
|
36
|
Zhang YN, Zhang Y, Su S, Zhu HY, Xu W, Wang L, Wu M, Chen K, Yu FQ, Xi TK, Zhou Q, Xie YH, Qin X, Ge H, Lu L, Qing J, Fang GM. Neutralizing SARS-CoV-2 by dimeric side chain-to-side chain cross-linked ACE2 peptide mimetics. Chem Commun (Camb) 2022; 58:1804-1807. [PMID: 35040445 DOI: 10.1039/d1cc06301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the finding of a dimeric ACE2 peptide mimetic designed through side chain cross-linking and covalent dimerization. It has a binding affinity of 16 nM for the SARS-CoV-2 spike RBD, and effectively inhibits the SARS-CoV-2 pseudovirus in Huh7-hACE2 cells with an IC50 of 190 nM and neutralizes the authentic SARS-CoV-2 in Caco2 cells with an IC50 of 2.4 μM. Our study should provide a new insight for the optimization of peptide-based anti-SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Yuwei Zhang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China.
| | - Han-Ying Zhu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China.
| | - Lu Wang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Meng Wu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Kai Chen
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Fei-Qiang Yu
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Tong-Kuai Xi
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Qin Zhou
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - You-Hua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China.
| | - Ximing Qin
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Honghua Ge
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China.
| | - Jie Qing
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Ge-Min Fang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
37
|
Grohmann C, Marapana DS, Ebert G. Targeted protein degradation at the host-pathogen interface. Mol Microbiol 2021; 117:670-681. [PMID: 34816514 DOI: 10.1111/mmi.14849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Infectious diseases remain a major burden to global health. Despite the implementation of successful vaccination campaigns and efficient drugs, the increasing emergence of pathogenic vaccine or treatment resistance demands novel therapeutic strategies. The development of traditional therapies using small-molecule drugs is based on modulating protein function and activity through the occupation of active sites such as enzyme inhibition or ligand-receptor binding. These prerequisites result in the majority of host and pathogenic disease-relevant, nonenzymatic and structural proteins being labeled "undruggable." Targeted protein degradation (TPD) emerged as a powerful strategy to eliminate proteins of interest including those of the undruggable variety. Proteolysis-targeting chimeras (PROTACs) are rationally designed heterobifunctional small molecules that exploit the cellular ubiquitin-proteasome system to specifically mediate the highly selective and effective degradation of target proteins. PROTACs have shown remarkable results in the degradation of various cancer-associated proteins, and several candidates are already in clinical development. Significantly, PROTAC-mediated TPD holds great potential for targeting and modulating pathogenic proteins, especially in the face of increasing drug resistance to the best-in-class treatments. In this review, we discuss advances in the development of TPD in the context of targeting the host-pathogen interface and speculate on their potential use to combat viral, bacterial, and parasitic infection.
Collapse
Affiliation(s)
- Christoph Grohmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Danushka S Marapana
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
38
|
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front Cell Infect Microbiol 2021; 11:753721. [PMID: 34746028 PMCID: PMC8569405 DOI: 10.3389/fcimb.2021.753721] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual’s susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, China
| | - Yankun Zhang
- Department of Physiology, Jining Medical University, Jining, China
| | - Xiaoyun Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Wen Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Xuan Liu
- Department of Physiology, Jining Medical University, Jining, China
| | - Xinyu Xue
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
39
|
Havranek B, Chan KK, Wu A, Procko E, Islam SM. Computationally Designed ACE2 Decoy Receptor Binds SARS-CoV-2 Spike (S) Protein with Tight Nanomolar Affinity. J Chem Inf Model 2021; 61:4656-4669. [PMID: 34427448 PMCID: PMC8409145 DOI: 10.1021/acs.jcim.1c00783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/25/2022]
Abstract
Even with the availability of vaccines, therapeutic options for COVID-19 still remain highly desirable, especially in hospitalized patients with moderate or severe disease. Soluble ACE2 (sACE2) is a promising therapeutic candidate that neutralizes SARS CoV-2 infection by acting as a decoy. Using computational mutagenesis, we designed a number of sACE2 derivatives carrying three to four mutations. The top-predicted sACE2 decoy based on the in silico mutagenesis scan was subjected to molecular dynamics and free-energy calculations for further validation. After illuminating the mechanism of increased binding for our designed sACE2 derivative, the design was verified experimentally by flow cytometry and BLI-binding experiments. The computationally designed sACE2 decoy (ACE2-FFWF) bound the receptor-binding domain of SARS-CoV-2 tightly with low nanomolar affinity and ninefold affinity enhancement over the wild type. Furthermore, cell surface expression was slightly greater than wild-type ACE2, suggesting that the design is well-folded and stable. Having an arsenal of high-affinity sACE2 derivatives will help to buffer against the emergence of SARS CoV-2 variants. Here, we show that computational methods have become sufficiently accurate for the design of therapeutics for current and future viral pandemics.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of
Illinois at Chicago, Chicago, Illinois 60607, United
States
| | - Kui K. Chan
- Orthogonal Biologics Inc.,
Urbana, Illinois 61801, United States
| | - Austin Wu
- Department of Computer Science,
Northwestern University, Evanston, Illinois 60208,
United States
| | - Erik Procko
- Department of Biochemistry and Cancer Center at
Illinois, University of Illinois, Urbana, Illinois 61801,
United States
| | - Shahidul M. Islam
- Department of Chemistry, University of
Illinois at Chicago, Chicago, Illinois 60607, United
States
| |
Collapse
|
40
|
Stephens EA, Ludwicki MB, Meksiriporn B, Li M, Ye T, Monticello C, Forsythe KJ, Kummer L, Zhou P, Plückthun A, DeLisa MP. Engineering Single Pan-Specific Ubiquibodies for Targeted Degradation of All Forms of Endogenous ERK Protein Kinase. ACS Synth Biol 2021; 10:2396-2408. [PMID: 34399052 DOI: 10.1021/acssynbio.1c00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ubiquibodies (uAbs) are a customizable proteome editing technology that utilizes E3 ubiquitin ligases genetically fused to synthetic binding proteins to steer otherwise stable proteins of interest (POIs) to the 26S proteasome for degradation. The ability of engineered uAbs to accelerate the turnover of exogenous or endogenous POIs in a post-translational manner offers a simple yet robust tool for dissecting diverse functional properties of cellular proteins as well as for expanding the druggable proteome to include tumorigenic protein families that have yet-to-be successfully drugged by conventional inhibitors. Here, we describe the engineering of uAbs composed of human carboxyl-terminus of Hsc70-interacting protein (CHIP), a highly modular human E3 ubiquitin ligase, tethered to differently designed ankyrin repeat proteins (DARPins) that bind to nonphosphorylated (inactive) and/or doubly phosphorylated (active) forms of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Two of the resulting uAbs were found to be global ERK degraders, pan-specifically capturing all endogenous ERK1/2 protein forms and redirecting them to the proteasome for degradation in different cell lines, including MCF7 breast cancer cells. Taken together, these results demonstrate how the substrate specificity of an E3 ubiquitin ligase can be reprogrammed to generate designer uAbs against difficult-to-drug targets, enabling a modular platform for remodeling the mammalian proteome.
Collapse
Affiliation(s)
- Erin A Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Morgan B Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Bunyarit Meksiriporn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mingji Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Connor Monticello
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Katherine J Forsythe
- College of Arts and Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Lutz Kummer
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Morgan DC, Morris C, Mahindra A, Blair CM, Tejeda G, Herbert I, Turnbull ML, Lieber G, Willett BJ, Logan N, Smith B, Tobin AB, Bhella D, Baillie G, Jamieson AG. Stapled ACE2 peptidomimetics designed to target the SARS-CoV-2 spike protein do not prevent virus internalization. Pept Sci (Hoboken) 2021; 113:e24217. [PMID: 33615115 PMCID: PMC7883042 DOI: 10.1002/pep2.24217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
COVID-19 is caused by a novel coronavirus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Virus cell entry is mediated through a protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2). A series of stapled peptide ACE2 peptidomimetics based on the ACE2 interaction motif were designed to bind the coronavirus S-protein RBD and inhibit binding to the human ACE2 receptor. The peptidomimetics were assessed for antiviral activity in an array of assays including a neutralization pseudovirus assay, immunofluorescence (IF) assay and in-vitro fluorescence polarization (FP) assay. However, none of the peptidomimetics showed activity in these assays, suggesting that an enhanced binding interface is required to outcompete ACE2 for S-protein RBD binding and prevent virus internalization.
Collapse
Affiliation(s)
| | | | | | | | - Gonzalo Tejeda
- Centre for Translational PharmacologyInstitute of Molecular Cell and Systems Biology, Davidson Building, University of GlasgowGlasgowUK
| | - Imogen Herbert
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | - Gauthier Lieber
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | | | - Nicola Logan
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Brian Smith
- Centre for Translational PharmacologyInstitute of Molecular Cell and Systems Biology, Davidson Building, University of GlasgowGlasgowUK
| | - Andrew B. Tobin
- Centre for Translational PharmacologyInstitute of Molecular Cell and Systems Biology, Davidson Building, University of GlasgowGlasgowUK
| | | | | | | |
Collapse
|
42
|
Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. NANOSCALE 2021; 13:8333-8342. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Odolczyk N, Marzec E, Winiewska-Szajewska M, Poznański J, Zielenkiewicz P. Native Structure-Based Peptides as Potential Protein-Protein Interaction Inhibitors of SARS-CoV-2 Spike Protein and Human ACE2 Receptor. Molecules 2021; 26:2157. [PMID: 33918595 PMCID: PMC8070189 DOI: 10.3390/molecules26082157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein-protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (E.M.); (M.W.-S.); (J.P.)
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (E.M.); (M.W.-S.); (J.P.)
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (E.M.); (M.W.-S.); (J.P.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (E.M.); (M.W.-S.); (J.P.)
| | - Piotr Zielenkiewicz
- Laboratory of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (E.M.); (M.W.-S.); (J.P.)
| |
Collapse
|
44
|
Pomplun S, Jbara M, Quartararo AJ, Zhang G, Brown JS, Lee YC, Ye X, Hanna S, Pentelute BL. De Novo Discovery of High-Affinity Peptide Binders for the SARS-CoV-2 Spike Protein. ACS CENTRAL SCIENCE 2021; 7:156-163. [PMID: 33527085 PMCID: PMC7755081 DOI: 10.1021/acscentsci.0c01309] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 05/03/2023]
Abstract
The β-coronavirus SARS-CoV-2 has caused a global pandemic. Affinity reagents targeting the SARS-CoV-2 spike protein are of interest for the development of therapeutics and diagnostics. We used affinity selection-mass spectrometry for the rapid discovery of synthetic high-affinity peptide binders for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. From library screening with 800 million synthetic peptides, we identified three sequences with nanomolar affinities (dissociation constants K d = 80-970 nM) for RBD and selectivity over human serum proteins. Nanomolar RBD concentrations in a biological matrix could be detected using the biotinylated lead peptide in ELISA format. These peptides do not compete for ACE2 binding, and their site of interaction on the SARS-CoV-2-spike-RBD might be unrelated to the ACE2 binding site, making them potential orthogonal reagents for sandwich immunoassays. These findings serve as a starting point for the development of SARS-CoV-2 diagnostics or conjugates for virus-directed delivery of therapeutics.
Collapse
Affiliation(s)
- Sebastian Pomplun
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Muhammad Jbara
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony J. Quartararo
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Genwei Zhang
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joseph S. Brown
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yen-Chun Lee
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiyun Ye
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephanie Hanna
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L. Pentelute
- Department
of Chemistry, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad
Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|