1
|
Li G, Srinivasan V, Tooker NB, Wang D, Onnis-Hayden A, Bott C, Dombrowski P, Pinto A, Gu AZ. Metagenomic analysis revealed community-level metabolic differences between full-scale EBPR and S2EBPR systems. WATER RESEARCH 2025; 280:123509. [PMID: 40138860 DOI: 10.1016/j.watres.2025.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Side-Stream Enhanced Biological Phosphorus Removal (S2EBPR) has emerged as a promising technology addressing certain challenges of conventional Enhanced Biological Phosphorus Removal (EBPR), notably stability in phosphorus removal, yet the underlying mechanisms are not fully understood. Metagenomic analysis presents a powerful approach to elucidate community-level metabolic differences between EBPR and S2EBPR configurations. In this study, we compared three EBPR and three S2EBPR activated sludge communities using metagenomic analysis at taxonomy, key functional pathways/genes, and polyphosphate-metabolism marker genes. Our analysis revealed larger genus-level diversity variance in S2EBPR communities, indicating distinct microbial community compositions influenced by different operational configurations. A higher diversity index in the S2EBPR than the EBPR was observed, and a higher Ca. Accumulibacter abundance was detected in EBPRs, whereas the fermentative candidate PAOs genera, including Ca. Phosphoribacter and Ca. Promineifilum, were more abundant in S2EBPR systems. EBPR and S2EBPR groups displayed similar gene and pathway abundance patterns related to core metabolisms essential for carbon and nitrogen metabolism. PolyP-metabolism marker gene phylogeny analysis suggested that exopolyphosphatase gene (ppx) showed better distinctions between EBPR and S2EBPR communities than polyphosphate kinase gene (ppk). This also highlighted the needs in fine-cale microdiversity analysis and finding novel Ca. Accumulibacter clades and species as resolved using the ppk gene. These findings provide valuable insights into AS community dynamics and metabolic functionalities, paving the way for further research into optimizing phosphorus removal processes in wastewater treatment systems.
Collapse
Affiliation(s)
- Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Brown and Caldwell, One Tech Drive, Andover, MA 01810, United States
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, United States
| | | | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
2
|
Enav H, Paz I, Ley RE. Strain tracking in complex microbiomes using synteny analysis reveals per-species modes of evolution. Nat Biotechnol 2025; 43:773-783. [PMID: 38898177 DOI: 10.1038/s41587-024-02276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Microbial species diversify into strains through single-nucleotide mutations and structural changes, such as recombination, insertions and deletions. Most strain-comparison methods quantify differences in single-nucleotide polymorphisms (SNPs) and are insensitive to structural changes. However, recombination is an important driver of phenotypic diversification in many species, including human pathogens. We introduce SynTracker, a tool that compares microbial strains using genome synteny-the order of sequence blocks in homologous genomic regions-in pairs of metagenomic assemblies or genomes. Genome synteny is a rich source of genomic information untapped by current strain-comparison tools. SynTracker has low sensitivity to SNPs, has no database requirement and is robust to sequencing errors. It outperforms existing tools when tracking strains in metagenomic data and is particularly suited for phages, plasmids and other low-data contexts. Applied to single-species datasets and human gut metagenomes, SynTracker, combined with an SNP-based tool, detects strains enriched in either point mutations or structural changes, providing insights into microbial evolution in situ.
Collapse
Affiliation(s)
- Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Inbal Paz
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany.
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infections (CMFI), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Haro-Moreno JM, López-Pérez M, Molina-Pardines C, Rodriguez-Valera F. Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales. mBio 2025; 16:e0345524. [PMID: 39969192 PMCID: PMC11898729 DOI: 10.1128/mbio.03455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Genomic diversity in prokaryotic species is largely due to the existence of extensive pangenomes, allowing different gene complements to be drawn depending on the strain. Here, we have studied the diversity of the O-chain polysaccharide biosynthesis cluster (OBC) in marine bacteria of the Pelagibacterales order as a proxy to measure such genetic diversity in a single population. The study of single-amplified genomes (SAGs) from the whole order found a pattern similar to that of other well-studied microbes, such as the Enterobacteriales or Alteromonas, where distinct OBCs represent strains containing different gene pools. We found that most of the OBC sharing happened among individuals of the same clonal frame (>99% average nucleotide identity). Moreover, given the parsimonious way this cluster changes, the diversity of the OBCs can be extrapolated to the size of the population's pangenome. This assumes that different OBCs correspond to lineages containing unique flexible gene pools, as seen in the aforementioned microbes. Through long-read metagenomics, we could detect 380 different OBCs at a single Mediterranean sampling site. Within a single population (single species and sample) of the endemic Ia.3/VII (gMED) genomospecies, we identified 158 OBCs, of which 130 were unique. These findings suggest that the gene pool within a single population might be substantial (several thousands). While this figure is large, it aligns with the complexity of the dissolved organic matter that these organisms can potentially degrade.IMPORTANCEDifferent strains of the same bacterial species contain very different gene pools. This has been long known by epidemiologists. However, it is unknown what gene pool is present in a single set of environmental conditions, i.e., the same time and place in free-living bacteria. Here, we have leveraged information from SAGs to analyze the diversity of the gene cluster coding for the O-chain polysaccharide, a typical component of the flexible gene pool classically used as a tool to differentiate strains in clinical microbiology. It evolves at a similar rate to the rest of the genome and does not seem to be affected by an arms race with phages. One single species of Pelagibacteriales (gMED) revealed an astounding diversity in one sample studied by long-read metagenomics. Our results point to a large gene pool (local pangenome) present in a single population, which is critical to interpreting the biological meaning of the pangenome, i.e., it provides intrapopulation diversity rather than characterizing strains with different distribution in time and/or space.
Collapse
Affiliation(s)
- Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Carmen Molina-Pardines
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | | |
Collapse
|
4
|
Piper KR, Souza SSR, Ikhimiukor OO, Workman AA, Martin IW, Andam CP. Lineage-specific variation in frequency and hotspots of recombination in invasive Escherichia coli. BMC Genomics 2025; 26:190. [PMID: 39994515 PMCID: PMC11853335 DOI: 10.1186/s12864-025-11367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The opportunistic bacterium Escherichia coli can invade normally sterile sites in the human body, potentially leading to life-threatening organ dysfunction and even death. However, our understanding of the evolutionary processes that shape its genetic diversity in this sterile environment remains limited. Here, we aim to quantify the frequency and characteristics of homologous recombination in E. coli from bloodstream infections. RESULTS Analysis of 557 short-read genome sequences revealed that the propensity to exchange DNA by homologous recombination varies within a distinct population (bloodstream) at narrow geographic (Dartmouth Hitchcock Medical Center, New Hampshire, USA) and temporal (years 2016 - 2022) scope. We identified the four largest monophyletic sequence clusters in the core genome phylogeny that are represented by prominent sequence types (ST): BAPS1 (mainly ST95), BAPS4 (mainly ST73), BAPS10 (mainly ST131), BAPS14 (mainly ST58). We show that the four dominant clusters vary in different characteristics of recombination: number of single nucleotide polymorphisms due to recombination, number of recombination blocks, cumulative bases in recombination blocks, ratio of probabilities that a given site was altered through recombination and mutation (r/m), and ratio of rates at which recombination and mutation occurred (ρ/θ). Each sequence cluster contains a unique set of antimicrobial resistance (AMR) and virulence genes that have experienced recombination. Common among the four sequence clusters were the recombined virulence genes with functions associated with the Curli secretion channel (csgG) and ferric enterobactin transport (entEF, fepEG). We did not identify any one recombined AMR gene that was present in all four sequence clusters. However, AMR genes mdtABC, baeSR, emrKY and tolC had experienced recombination in sequence clusters BAPS4, BAPS10, and BAPS14. These differences lie in part on the contributions of vertically inherited ancestral recombination and contemporary branch-specific recombination, with some genomes having relatively higher proportions of recombined DNA. CONCLUSIONS Our results highlight the variation in the propensity to exchange DNA via homologous recombination within a distinct population at narrow geographic and temporal ranges. Understanding the sources of the genetic variation in invasive E. coli will help inform the implementation of effective strategies to reduce the burden of disease and AMR.
Collapse
Affiliation(s)
- Kathryn R Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Adrienne A Workman
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
5
|
Li N, Geiser DM, Steenwyk JL, Tsuchida C, Koike S, Slinski S, Martin FN. A Systematic Approach for Identifying Unique Genomic Sequences for Fusarium oxysporum f. sp. lactucae Race 1 and Development of Molecular Diagnostic Tools. PHYTOPATHOLOGY 2025; 115:204-217. [PMID: 39446906 DOI: 10.1094/phyto-04-24-0142-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fusarium oxysporum f. sp. lactucae (FOLac) is a soil- and seedborne fungal pathogen that causes Fusarium wilt of lettuce, an important disease threatening global lettuce production. Based on pathogenicity on differential lettuce cultivars, four races (1 to 4) have been identified, with race 1 being the only race detected in the United States and the closely related, emerging race 4 known only in Europe. The development of race-specific diagnostic tools is hindered by insufficient genomic data to distinguish between the two races and FOLac from other F. oxysporum formae speciales and nonpathogenic isolates. Here, we describe a systematic approach for developing diagnostic markers for FOLac race 1 that utilized a comprehensive sequence database of F. oxysporum to identify 15 unique genomic sequences. Marker specificity was validated through an exhaustive screening process against genomic data from 797 F. oxysporum isolates representing 64 formae speciales and various plants and non-plant substrates. One of the unique sequences was used to develop a TaqMan quantitative PCR assay and a recombinase polymerase amplification assay, both exhibiting 100% sensitivity and specificity when tested against purified DNA from 171 F. oxysporum isolates and 69 lettuce samples. The relationship between quantitative PCR cycle threshold values and CFU/g values was also determined. This study not only introduces a new marker for FOLac race 1 diagnostics and soil quantitation but also underscores the value of an extensive genomic database and screening software pipeline for developing molecular diagnostics for F. oxysporum formae speciales and other fungal taxa.
Collapse
Affiliation(s)
- Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
- Crop Improvement and Protection Research Unit, U.S. Deparment of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, U.S.A
| | | | - Steve Koike
- TriCal Diagnostics, Hollister, CA 95023, U.S.A
| | - Stephanie Slinski
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ 85365, U.S.A
| | - Frank N Martin
- Crop Improvement and Protection Research Unit, U.S. Deparment of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| |
Collapse
|
6
|
Chauhan SM, Ardalani O, Hyun JC, Monk JM, Phaneuf PV, Palsson BO. Decomposition of the pangenome matrix reveals a structure in gene distribution in the Escherichia coli species. mSphere 2025; 10:e0053224. [PMID: 39745367 PMCID: PMC11774025 DOI: 10.1128/msphere.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/08/2024] [Indexed: 01/29/2025] Open
Abstract
Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of Escherichia coli for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively. We developed a machine learning approach to define the accessory genes characterizing the major phylogroups of E. coli plus Shigella: A, B1, B2, C, D, E, F, G, and Shigella. The analysis resulted in a detailed structure of the genetic basis of the phylogroups' differential traits. This pangenome structure was largely consistent with a housekeeping-gene-based MLST distribution, sequence-based Mash distance, and the Clermont quadruplex classification. The rare genome (consisting of genes found in <6.8% of all strains) consisted of 163,619 genes, about 79% of which represented variations of 315 underlying transposon elements. This analysis generated a mathematical definition of the genetic basis for a species. IMPORTANCE The comprehensive analysis of the pangenome of Escherichia coli presented in this study marks a significant advancement in understanding bacterial genetic diversity. By employing machine learning techniques to analyze 2,377 complete E. coli genomes, the study provides a detailed mapping of core, accessory, and rare genes. This approach reveals the genetic basis for differential traits across phylogroups, offering insights into pathogenicity, antibiotic resistance, and evolutionary adaptations. The findings enhance the potential for genome-based diagnostics and pave the way for future studies aimed at achieving a global genetic definition of bacterial phylogeny.
Collapse
Affiliation(s)
- Siddharth M. Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Jason C. Hyun
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patrick V. Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Wright M, Kaur M, Thompson LK, Cox G. A historical perspective on the multifunctional outer membrane channel protein TolC in Escherichia coli. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:6. [PMID: 39863731 PMCID: PMC11762307 DOI: 10.1038/s44259-025-00078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Since its discovery nearly 60 years ago, TolC has been associated with various cellular functions in Escherichia coli, including the efflux of environmental stressors and virulence factors. It also acts as a receptor for specific bacteriophages and the colicin E1 toxin. This review highlights key discoveries over the past six decades and emphasizes the remaining gaps in understanding how TolC contributes to physiological functions in E. coli.
Collapse
Affiliation(s)
- Mallory Wright
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Mandeep Kaur
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, Canada.
| |
Collapse
|
8
|
Mohite OS, Jørgensen TS, Booth TJ, Charusanti P, Phaneuf PV, Weber T, Palsson BO. Pangenome mining of the Streptomyces genus redefines species' biosynthetic potential. Genome Biol 2025; 26:9. [PMID: 39810189 PMCID: PMC11734326 DOI: 10.1186/s13059-024-03471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Streptomyces is a highly diverse genus known for the production of secondary or specialized metabolites with a wide range of applications in the medical and agricultural industries. Several thousand complete or nearly complete Streptomyces genome sequences are now available, affording the opportunity to deeply investigate the biosynthetic potential within these organisms and to advance natural product discovery initiatives. RESULTS We perform pangenome analysis on 2371 Streptomyces genomes, including approximately 1200 complete assemblies. Employing a data-driven approach based on genome similarities, the Streptomyces genus was classified into 7 primary and 42 secondary Mash-clusters, forming the basis for comprehensive pangenome mining. A refined workflow for grouping biosynthetic gene clusters (BGCs) redefines their diversity across different Mash-clusters. This workflow also reassigns 2729 known BGC families to only 440 families, a reduction caused by inaccuracies in BGC boundary detections. When the genomic location of BGCs is included in the analysis, a conserved genomic structure, or synteny, among BGCs becomes apparent within species and Mash-clusters. This synteny suggests that vertical inheritance is a major factor in the diversification of BGCs. CONCLUSIONS Our analysis of a genomic dataset at a scale of thousands of genomes refines predictions of BGC diversity using Mash-clusters as a basis for pangenome analysis. The observed conservation in the order of BGCs' genomic locations shows that the BGCs are vertically inherited. The presented workflow and the in-depth analysis pave the way for large-scale pangenome investigations and enhance our understanding of the biosynthetic potential of the Streptomyces genus.
Collapse
Affiliation(s)
- Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas J Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:561-576. [PMID: 38950433 DOI: 10.1146/annurev-marine-040623-090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely behave as a single evolutionary unit.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain;
| | | |
Collapse
|
10
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
11
|
Haidar-Ahmad N, Tomaro K, Lavallée-Adam M, Campbell-Valois FX. The promiscuous biotin ligase TurboID reveals the proxisome of the T3SS chaperone IpgC in Shigella flexneri. mSphere 2024; 9:e0055324. [PMID: 39480076 PMCID: PMC11580435 DOI: 10.1128/msphere.00553-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Promiscuous biotin ligases derived from the bacterial enzyme BirA are used to identify proteins vicinal to a bait protein, thereby defining its proxisome. Despite the popularity of this approach, surprisingly little is known about its use in prokaryotes. Here, we compared the activity of four widely used promiscuous biotin ligases in the cytoplasm of Shigella flexneri, a pathogenic subgroup of Escherichia coli. Our data indicate that the kinetics of TurboID's biotinylating activity is the highest of those tested. In addition, TurboID showed reduced interaction with the natural BirA binding partners, BccP and the biotin operator, when compared to its ancestor BioID. We therefore evaluated the ability of TurboID to probe the proxisome of the type III secretion system (T3SS) chaperone IpgC and the transcriptional activator MxiE. When the T3SS is inactive (off-state), these proteins are inhibited by forming complexes with the T3SS substrates OspD1 and IpaBC, respectively. In contrast, when the T3SS is active (on-state), OspD1 and IpaBC are secreted allowing MxiE and IpgC to interact together and activate their target genes. The results obtained with the IpgC and TurboID fusions capture a good fraction of these known interactions. It also suggests that the availability of IpgC increases in the on-state, resulting in a greater number of proteins detected in its vicinity. Among these is the T3SS ATPase SpaL (also known as Spa47 or SctN), further supporting the notion that chaperones escort their substrate to the T3SS. Interestingly, a specific subset of proteins conserved in E. coli completes the IpgC proxisome in the on-state.IMPORTANCEPromiscuous biotin ligases are widely used to study protein function in eukaryotes. Strikingly, their use in prokaryotes has been rare. Indeed, the small volume and the cytoplasmic location of the biotin ligase's natural binding partners in these organisms pose unique challenges that can interfere with the study of the proxisome of proteins of interest. Here, we evaluated four of the most common promiscuous biotin ligases and found TurboID was best suited for use in the cytoplasm of Shigella flexneri. Using this method, we extended the proxisome of IpgC beyond its known direct binding partners involved in the regulation of the type III secretion system (T3SS) signaling cascade. Of particular interest for further study are transcription factors and housekeeping proteins that are enriched around IpgC when the T3SS is active. We propose a model in which the increased availability of IpgC in the on-state may allow cross-talk of the T3SS with other cellular processes.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Host-Microbe Interactions Laboratory, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Young MG, Straub TJ, Worby CJ, Metsky HC, Gnirke A, Bronson RA, van Dijk LR, Desjardins CA, Matranga C, Qu J, Villicana JB, Azimzadeh P, Kau A, Dodson KW, Schreiber HL, Manson AL, Hultgren SJ, Earl AM. Distinct Escherichia coli transcriptional profiles in the guts of recurrent UTI sufferers revealed by pangenome hybrid selection. Nat Commun 2024; 15:9466. [PMID: 39487120 PMCID: PMC11530686 DOI: 10.1038/s41467-024-53829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Low-abundance members of microbial communities are difficult to study in their native habitats, including Escherichia coli, a minor but common inhabitant of the gastrointestinal tract, and key opportunistic pathogen of the urinary tract. While multi-omic analyses have detailed interactions between uropathogenic Escherichia coli (UPEC) and the bladder mediating urinary tract infection (UTI), little is known about UPEC in its pre-infection reservoir, the gastrointestinal tract, partly due to its low relative abundance (<1%). To sensitively explore the genomes and transcriptomes of diverse gut E. coli, we develop E. coli PanSelect, which uses probes designed to specifically capture E. coli's broad pangenome. We demonstrate its ability to enrich diverse E. coli by orders of magnitude, in a mock community and in human stool from a study investigating recurrent UTI (rUTI). Comparisons of transcriptomes between gut E. coli of women with and without history of rUTI suggest rUTI gut E. coli are responding to increased oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of in vivo E. coli biology in other low-abundance environments, and the framework described here has broad applicability to other diverse, low-abundance organisms.
Collapse
Affiliation(s)
- Mark G Young
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Colin J Worby
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Hayden C Metsky
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Andreas Gnirke
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Ryan A Bronson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Lucas R van Dijk
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands
| | | | - Christian Matranga
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - James Qu
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Jesús Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe Azimzadeh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Kau
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
13
|
Butters A, Jovel J, Gow S, Liljebjelke K, Waldner C, Checkley SL. PmrB Y358N, E123D amino acid substitutions are not associated with colistin resistance but with phylogeny in Escherichia coli. Microbiol Spectr 2024; 12:e0053224. [PMID: 39162501 PMCID: PMC11451601 DOI: 10.1128/spectrum.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Colistin resistance in Escherichia coli is of public health significance for its use to treat multidrug-resistant Gram-negative infections. Amino acid variations in PmrB have been implicated in colistin resistance in E. coli. In this cross-sectional study, 288 generic E. coli isolates from surveillance of broiler chicken and feedlot cattle feces, retail meat, wastewater, and well water were whole-genome sequenced. Phylogroup designation and screening for two amino acid substitutions in PmrB putatively linked to colistin resistance (Y358N, E123D) were performed in silico. Three additional data sets of publicly available E. coli assemblies were similarly scrutinized: (i) E. coli isolates from studies identifying the Y358N or E123D substitutions, (ii) colistin-susceptible E. coli isolates reported in the literature, and (iii) a random sampling of 14,700 E. coli assemblies available in the National Center for Biotechnology Information public database. Within all data sets, ≥95% of phylogroup B1 and C isolates have the PmrB Y358N variation. The PmrB E123D amino acid substitution was only identified in phylogroup B2 isolates, of which 94%-100% demonstrate the substitution. Both PmrB amino acid variations were infrequent in other phylogroups. Among published colistin susceptible isolates, colistin minimum inhibitory concentrations (MICs) were not higher in isolates bearing the E123D and Y358N amino acid variations than in isolates without these PmrB substitutions. The E123D and Y358N PmrB amino acid substitutions in E. coli appear strongly associated with phylogroup. The previously observed associations between Y358N and E123D amino acid substitutions in PmrB and colistin resistance in E. coli may be spurious. IMPORTANCE Colistin is a critical last-resort treatment for extensively drug-resistant Gram-negative infections in humans. Therefore, accurate identification of the genetic mechanisms of resistance to this antimicrobial is crucial to effectively monitor and mitigate the spread of resistance. Examining over 16,000 whole-genome sequenced Escherichia coli isolates, this study identifies that PmrB E123D and Y358N amino acid substitutions previously associated with colistin resistance in E. coli are strongly associated with phylogroup and are alone not sufficient to confer a colistin-resistant phenotype. This is a critical clarification, as both substitutions are identified as putative mechanisms of colistin resistance in many publications and a common bioinformatic tool. Given the potential spurious nature of initial associations of these substitutions with colistin resistance, this study's findings emphasize the importance of appropriate experimental design and consideration of relevant biological factors such as phylogroup when ascribing causal mechanisms of resistance to chromosomal variations.
Collapse
Affiliation(s)
- Alyssa Butters
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Juan Jovel
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
| | - Sheryl Gow
- Canadian Integrated
Program for Antimicrobial Resistance Surveillance/FoodNet, Public Health
Agency of Canada, Ottawa,
Ontario, Canada
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Karen Liljebjelke
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| | - Cheryl Waldner
- Department of Large
Animal Clinical Sciences, Western College of Veterinary Medicine,
University of Saskatchewan,
Saskatoon, Saskatchewan,
Canada
| | - Sylvia L. Checkley
- Faculty of Veterinary
Medicine, University of Calgary,
Calgary, Alberta,
Canada
- AMR—One Health
Consortium, Calgary,
Alberta, Canada
| |
Collapse
|
14
|
Lowry E, Wang Y, Dagan T, Mitchell A. Colibactin leads to a bacteria-specific mutation pattern and self-inflicted DNA damage. Genome Res 2024; 34:1154-1164. [PMID: 39152036 PMCID: PMC11444178 DOI: 10.1101/gr.279517.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Colibactin produced primarily by Escherichia coli strains of the B2 phylogroup cross-links DNA and can promote colon cancer in human hosts. Here, we investigate the toxin's impact on colibactin producers and on bacteria cocultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments, we uncover the cellular pathways that mitigate colibactin damage and reveal the specific mutations it induces. We discover that although colibactin targets A/T-rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predict that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We test this prediction by analyzing thousands of E. coli genomes and find that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work reveals a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
15
|
Cai P, Korem T. Microsynteny is a powerful front for microbial strain tracking. CELL REPORTS METHODS 2024; 4:100862. [PMID: 39288738 PMCID: PMC11440041 DOI: 10.1016/j.crmeth.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Genomic diversity within species can be driven by both point mutations and larger structural variations, but so far, strain-tracking approaches have focused mostly on the former. In a recent issue of Nature Biotechnology, Ley and colleagues1 introduce SynTracker, a tool designed for scalable strain tracking with microsynteny in low-coverage metagenomic settings.
Collapse
Affiliation(s)
- Peiwen Cai
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Schadron T, van den Beld M, Mughini-Gras L, Franz E. Use of whole genome sequencing for surveillance and control of foodborne diseases: status quo and quo vadis. Front Microbiol 2024; 15:1460335. [PMID: 39345263 PMCID: PMC11427404 DOI: 10.3389/fmicb.2024.1460335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Improvements in sequencing quality, availability, speed and costs results in an increased presence of genomics in infectious disease applications. Nevertheless, there are still hurdles in regard to the optimal use of WGS for public health purposes. Here, we discuss the current state ("status quo") and future directions ("quo vadis") based on literature regarding the use of genomics in surveillance, hazard characterization and source attribution of foodborne pathogens. The future directions include the application of new techniques, such as machine learning and network approaches that may overcome the current shortcomings. These include the use of fixed genomic distances in cluster delineation, disentangling similarity or lack thereof in source attribution, and difficulties ascertaining function in hazard characterization. Although, the aforementioned methods can relatively easily be applied technically, an overarching challenge is the inference and biological/epidemiological interpretation of these large amounts of high-resolution data. Understanding the context in terms of bacterial isolate and host diversity allows to assess the level of representativeness in regard to sources and isolates in the dataset, which in turn defines the level of certainty associated with defining clusters, sources and risks. This also marks the importance of metadata (clinical, epidemiological, and biological) when using genomics for public health purposes.
Collapse
Affiliation(s)
- Tristan Schadron
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
17
|
House LC, Hasan A, Asnayanti A, Alrubaye AAK, Pummill J, Rhoads D. Phylogenomic Analyses of Three Distinct Lineages Uniting Staphylococcus cohnii and Staphylococcus urealyticus from Diverse Hosts. Microorganisms 2024; 12:1549. [PMID: 39203392 PMCID: PMC11356006 DOI: 10.3390/microorganisms12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
We sequenced and assembled genomes for 17 isolates of Staphylococcus cohnii isolated from osteomyelitis lesions in young broilers from two separate experiments where we induced lameness using a hybrid wire-litter flooring system. Whole genome comparisons using three different methods support a close relationship of genomes from both S. cohnii and Staphylococcus urealyticus. The data support three different lineages, which we designated as Lineage 1, Lineage 2, and Lineage 3, uniting these two species within an evolving complex. We present evidence for horizontal transfer between lineages of genomic regions from 50-440 kbp. The transfer of a 186 kbp region from Lineage 1 to Lineage 2 appears to have generated Lineage 3. Human-associated isolates appear to be limited to Lineages 2 and 3 but Lineage 2 appears to contain a higher number of human pathogenic isolates. The chicken isolates from our lameness trials included genomically diverse isolates from both Lineage 1 and 2, and isolates from both lineages were obtained from osteomyelitis lesions of individual birds. Our results expand the diversity of Staphylococci associated with osteomyelitis in poultry and suggest a high diversity in the microbiome of day-old chicks. Our data also support a reevaluation and unification of the taxonomic classifications of S. cohnii and S. urealyticus.
Collapse
Affiliation(s)
- L. Caroline House
- John Brown University, Siloam Springs, AR 72761, USA;
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Amer Hasan
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - Jeff Pummill
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72703, USA
| | - Douglas Rhoads
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| |
Collapse
|
18
|
Nuhamunada M, Mohite OS, Phaneuf P, Palsson B, Weber T. BGCFlow: systematic pangenome workflow for the analysis of biosynthetic gene clusters across large genomic datasets. Nucleic Acids Res 2024; 52:5478-5495. [PMID: 38686794 PMCID: PMC11162802 DOI: 10.1093/nar/gkae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Genome mining is revolutionizing natural products discovery efforts. The rapid increase in available genomes demands comprehensive computational platforms to effectively extract biosynthetic knowledge encoded across bacterial pangenomes. Here, we present BGCFlow, a novel systematic workflow integrating analytics for large-scale genome mining of bacterial pangenomes. BGCFlow incorporates several genome analytics and mining tools grouped into five common stages of analysis such as: (i) data selection, (ii) functional annotation, (iii) phylogenetic analysis, (iv) genome mining, and (v) comparative analysis. Furthermore, BGCFlow provides easy configuration of different projects, parallel distribution, scheduled job monitoring, an interactive database to visualize tables, exploratory Jupyter Notebooks, and customized reports. Here, we demonstrate the application of BGCFlow by investigating the phylogenetic distribution of various biosynthetic gene clusters detected across 42 genomes of the Saccharopolyspora genus, known to produce industrially important secondary/specialized metabolites. The BGCFlow-guided analysis predicted more accurate dereplication of BGCs and guided the targeted comparative analysis of selected RiPPs. The scalable, interoperable, adaptable, re-entrant, and reproducible nature of the BGCFlow will provide an effective novel way to extract the biosynthetic knowledge from the ever-growing genomic datasets of biotechnologically relevant bacterial species.
Collapse
Affiliation(s)
- Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
19
|
Roder T, Pimentel G, Fuchsmann P, Stern MT, von Ah U, Vergères G, Peischl S, Brynildsrud O, Bruggmann R, Bär C. Scoary2: rapid association of phenotypic multi-omics data with microbial pan-genomes. Genome Biol 2024; 25:93. [PMID: 38605417 PMCID: PMC11007987 DOI: 10.1186/s13059-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Unraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software. With its data exploration app and improved performance, Scoary2 is the first tool to enable the study of large phenotypic datasets using mGWAS. As proof of concept, we explore the metabolome of yogurts, each produced with a different Propionibacterium reichii strain and discover two genes affecting carnitine metabolism.
Collapse
Affiliation(s)
- Thomas Roder
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Grégory Pimentel
- Methods development and analytics, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| | - Pascal Fuchsmann
- Food microbial systems, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| | - Mireille Tena Stern
- Food microbial systems, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| | - Ueli von Ah
- Food microbial systems, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| | - Guy Vergères
- Food microbial systems, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland
| | - Ola Brynildsrud
- Norwegian Institute of Public Health, Oslo and Norwegian University of Life Science, Ås, Norway
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, CH-3012, Switzerland.
| | - Cornelia Bär
- Methods development and analytics, Agroscope, Schwarzenburgstrasse 161, Bern, CH-3003, Switzerland
| |
Collapse
|
20
|
Saenkham-Huntsinger P, Ritter M, Donati GL, Mitchell AM, Subashchandrabose S. The inner membrane protein YhiM links copper and CpxAR envelope stress responses in uropathogenic E. coli. mBio 2024; 15:e0352223. [PMID: 38470052 PMCID: PMC11005409 DOI: 10.1128/mbio.03522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.
Collapse
Affiliation(s)
- Panatda Saenkham-Huntsinger
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Matthew Ritter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L. Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Angela M. Mitchell
- Department of Biology, College of Science, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
21
|
Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, King CM, Ou Y, Todeschini TC, Clokie MRJ, Millard AD, Gençay YE, Koonin EV, Nobrega FL. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 2024; 32:557-572.e6. [PMID: 38402614 PMCID: PMC11009048 DOI: 10.1016/j.chom.2024.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.
Collapse
Affiliation(s)
- Yi Wu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anne van den Hurk
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Simran Krishnakant Kushwaha
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Claire M King
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas C Todeschini
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
22
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
23
|
Moinet M, Rogers L, Biggs P, Marshall J, Muirhead R, Devane M, Stott R, Cookson A. High-resolution genomic analysis to investigate the impact of the invasive brushtail possum (Trichosurus vulpecula) and other wildlife on microbial water quality assessments. PLoS One 2024; 19:e0295529. [PMID: 38236841 PMCID: PMC10796070 DOI: 10.1371/journal.pone.0295529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Escherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Mākirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.
Collapse
Affiliation(s)
- Marie Moinet
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Lynn Rogers
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Patrick Biggs
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | | | - Megan Devane
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Adrian Cookson
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
24
|
Schulz T, Parmigiani L, Rempel A, Stoye J. Methods for Pangenomic Core Detection. Methods Mol Biol 2024; 2802:73-106. [PMID: 38819557 DOI: 10.1007/978-1-0716-3838-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Computational pangenomics deals with the joint analysis of all genomic sequences of a species. It has already been successfully applied to various tasks in many research areas. Further advances in DNA sequencing technologies constantly let more and more genomic sequences become available for many species, leading to an increasing attractiveness of pangenomic studies. At the same time, larger datasets also pose new challenges for data structures and algorithms that are needed to handle the data. Efficient methods oftentimes make use of the concept of k-mers.Core detection is a common way of analyzing a pangenome. The pangenome's core is defined as the subset of genomic information shared among all individual members. Classically, it is not only determined on the abstract level of genes but can also be described on the sequence level.In this chapter, we provide an overview of k-mer-based methods in the context of pangenomics studies. We first revisit existing software solutions for k-mer counting and k-mer set representation. Afterward, we describe the usage of two k-mer-based approaches, Pangrowth and Corer, for pangenomic core detection.
Collapse
Affiliation(s)
- Tizian Schulz
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Luca Parmigiani
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Rempel
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
25
|
Cuénod A, Agnetti J, Seth-Smith HMB, Roloff T, Wälchli D, Shcherbakov D, Akbergenov R, Tschudin-Sutter S, Bassetti S, Siegemund M, Nickel CH, Moran-Gilad J, Keys TG, Pflüger V, Thomson NR, Egli A. Bacterial genome-wide association study substantiates papGII of Escherichia coli as a major risk factor for urosepsis. Genome Med 2023; 15:89. [PMID: 37904175 PMCID: PMC10614358 DOI: 10.1186/s13073-023-01243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, often caused by uropathogenic Escherichia coli. Multiple bacterial virulence factors or patient characteristics have been linked separately to progressive, more invasive infections. In this study, we aim to identify pathogen- and patient-specific factors that drive the progression to urosepsis by jointly analysing bacterial and host characteristics. METHODS We analysed 1076 E. coli strains isolated from 825 clinical cases with UTI and/or bacteraemia by whole-genome sequencing (Illumina). Sequence types (STs) were determined via srst2 and capsule loci via fastKaptive. We compared the isolates from urine and blood to confirm clonality. Furthermore, we performed a bacterial genome-wide association study (bGWAS) (pyseer) using bacteraemia as the primary clinical outcome. Clinical data were collected by an electronic patient chart review. We concurrently analysed the association of the most significant bGWAS hit and important patient characteristics with the clinical endpoint bacteraemia using a generalised linear model (GLM). Finally, we designed qPCR primers and probes to detect papGII-positive E. coli strains and prospectively screened E. coli from urine samples (n = 1657) at two healthcare centres. RESULTS Our patient cohort had a median age of 75.3 years (range: 18.00-103.1) and was predominantly female (574/825, 69.6%). The bacterial phylogroups B2 (60.6%; 500/825) and D (16.6%; 137/825), which are associated with extraintestinal infections, represent the majority of the strains in our collection, many of which encode a polysaccharide capsule (63.4%; 525/825). The most frequently observed STs were ST131 (12.7%; 105/825), ST69 (11.0%; 91/825), and ST73 (10.2%; 84/825). Of interest, in 12.3% (13/106) of cases, the E. coli pairs in urine and blood were only distantly related. In line with previous bGWAS studies, we identified the gene papGII (p-value < 0.001), which encodes the adhesin subunit of the E. coli P-pilus, to be associated with 'bacteraemia' in our bGWAS. In our GLM, correcting for patient characteristics, papGII remained highly significant (odds ratio = 5.27, 95% confidence interval = [3.48, 7.97], p-value < 0.001). An independent cohort of cases which we screened for papGII-carrying E. coli at two healthcare centres further confirmed the increased relative frequency of papGII-positive strains causing invasive infection, compared to papGII-negative strains (p-value = 0.033, chi-squared test). CONCLUSIONS This study builds on previous work linking papGII with invasive infection by showing that it is a major risk factor for progression from UTI to bacteraemia that has diagnostic potential.
Collapse
Affiliation(s)
- Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Immunology, McGill University, Montréal, Canada.
| | - Jessica Agnetti
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Helena M B Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Denise Wälchli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Dimitri Shcherbakov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Christian H Nickel
- Emergency Department, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Timothy G Keys
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Rajput A, Chauhan SM, Mohite OS, Hyun JC, Ardalani O, Jahn LJ, Sommer MO, Palsson BO. Pangenome analysis reveals the genetic basis for taxonomic classification of the Lactobacillaceae family. Food Microbiol 2023; 115:104334. [PMID: 37567624 DOI: 10.1016/j.fm.2023.104334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/13/2023]
Abstract
Lactobacillaceae represent a large family of important microbes that are foundational to the food industry. Many genome sequences of Lactobacillaceae strains are now available, enabling us to conduct a comprehensive pangenome analysis of this family. We collected 3591 high-quality genomes from public sources and found that: 1) they contained enough genomes for 26 species to perform a pangenomic analysis, 2) the normalized Heap's coefficient λ (a measure of pangenome openness) was found to have an average value of 0.27 (ranging from 0.07 to 0.37), 3) the pangenome openness was correlated with the abundance and genomic location of transposons and mobilomes, 4) the pangenome for each species was divided into core, accessory, and rare genomes, that highlight the species-specific properties (such as motility and restriction-modification systems), 5) the pangenome of Lactiplantibacillus plantarum (which contained the highest number of genomes found amongst the 26 species studied) contained nine distinct phylogroups, and 6) genome mining revealed a richness of detected biosynthetic gene clusters, with functions ranging from antimicrobial and probiotic to food preservation, but ∼93% were of unknown function. This study provides the first in-depth comparative pangenomics analysis of the Lactobacillaceae family.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Siddharth M Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Omkar S Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Jason C Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Omid Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Leonie J Jahn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Morten Oa Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.
| |
Collapse
|
27
|
Hernández-Salmerón JE, Irani T, Moreno-Hagelsieb G. Fast genome-based delimitation of Enterobacterales species. PLoS One 2023; 18:e0291492. [PMID: 37708115 PMCID: PMC10501659 DOI: 10.1371/journal.pone.0291492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Average Nucleotide Identity (ANI) is becoming a standard measure for bacterial species delimitation. However, its calculation can take orders of magnitude longer than similarity estimates based on sampling of short nucleotides, compiled into so-called sketches. These estimates are widely used. However, their variable correlation with ANI has suggested that they might not be as accurate. For a where-the-rubber-meets-the-road assessment, we compared two sketching programs, mash and dashing, against ANI, in delimiting species among Esterobacterales genomes. Receiver Operating Characteristic (ROC) analysis found Area Under the Curve (AUC) values of 0.99, almost perfect species discrimination for all three measures. Subsampling to avoid over-represented species reduced these AUC values to 0.92, still highly accurate. Focused tests with ten genera, each represented by more than three species, also showed almost identical results for all methods. Shigella showed the lowest AUC values (0.68), followed by Citrobacter (0.80). All other genera, Dickeya, Enterobacter, Escherichia, Klebsiella, Pectobacterium, Proteus, Providencia and Yersinia, produced AUC values above 0.90. The species delimitation thresholds varied, with species distance ranges in a few genera overlapping the genus ranges of other genera. Mash was able to separate the E. coli + Shigella complex into 25 apparent phylogroups, four of them corresponding, roughly, to the four Shigella species represented in the data. Our results suggest that fast estimates of genome similarity are as good as ANI for species delimitation. Therefore, these estimates might suffice for covering the role of genomic similarity in bacterial taxonomy, and should increase confidence in their use for efficient bacterial identification and clustering, from epidemiological to genome-based detection of potential contaminants in farming and industry settings.
Collapse
Affiliation(s)
| | - Tanya Irani
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | | |
Collapse
|
28
|
Johnson MM, Hockenberry AJ, McGuffie MJ, Vieira LC, Wilke CO. Growth-dependent Gene Expression Variation Influences the Strength of Codon Usage Biases. Mol Biol Evol 2023; 40:msad189. [PMID: 37619989 PMCID: PMC10482319 DOI: 10.1093/molbev/msad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The most highly expressed genes in microbial genomes tend to use a limited set of synonymous codons, often referred to as "preferred codons." The existence of preferred codons is commonly attributed to selection pressures on various aspects of protein translation including accuracy and/or speed. However, gene expression is condition-dependent and even within single-celled organisms transcript and protein abundances can vary depending on a variety of environmental and other factors. Here, we show that growth rate-dependent expression variation is an important constraint that significantly influences the evolution of gene sequences. Using large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccharomyces cerevisiae, we confirm that codon usage biases are strongly associated with gene expression but highlight that this relationship is most pronounced when gene expression measurements are taken during rapid growth conditions. Specifically, genes whose relative expression increases during periods of rapid growth have stronger codon usage biases than comparably expressed genes whose expression decreases during rapid growth conditions. These findings highlight that gene expression measured in any particular condition tells only part of the story regarding the forces shaping the evolution of microbial gene sequences. More generally, our results imply that microbial physiology during rapid growth is critical for explaining long-term translational constraints.
Collapse
Affiliation(s)
- Mackenzie M Johnson
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Adam J Hockenberry
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew J McGuffie
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Luiz Carlos Vieira
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
30
|
Udaondo Z, Abram K, Kothari A, Jun SR. Top-Down Genomic Surveillance Approach To Investigate the Genomic Epidemiology and Antibiotic Resistance Patterns of Enterococcus faecium Detected in Cancer Patients in Arkansas. Microbiol Spectr 2023; 11:e0490122. [PMID: 36995227 PMCID: PMC10269635 DOI: 10.1128/spectrum.04901-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Control of hospital-associated Enterococcus faecium infection is a strenuous task due to the difficulty of identifying transmission routes and the persistence of this nosocomial pathogen despite the implementation of infection control measures that have been successful with other important nosocomial pathogens. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from 66 cancer patients at the University of Arkansas for Medical Sciences (UAMS) between June 2018 and May 2019. In the top-down approach used in this study, we employed, in addition to the 106 E. faecium UAMS isolates, a filtered set of 2,167 E. faecium strains from the GenBank database to assess the current population structure of E. faecium species and, consequently, to identify the lineages associated with our clinical isolates. We then evaluated the antibiotic resistance and virulence profiles of hospital-associated strains from the species pool, focusing on antibiotics of last resort, to establish an updated classification of high-risk and multidrug-resistant nosocomial clones. Further investigation of the clinical isolates collected from UAMS patients using whole-genome sequencing analytical methodologies (core genome multilocus sequence typing [cgMLST], core single nucleotide polymorphism [coreSNP] analysis, and phylogenomics), with the addition of patient epidemiological data, revealed a polyclonal outbreak of three sequence types occurring simultaneously in different patient wards. The integration of genomic and epidemiological data collected from the patients increased our understanding of the relationships and transmission dynamics of the E. faecium isolates. Our study provides new insights into genomic surveillance of E. faecium to assist in monitoring and further limiting the spread of multidrug-resistant E. faecium. IMPORTANCE Enterococcus faecium is a member of the gastrointestinal microbiota. Although its virulence is low in healthy, immunocompetent individuals, E. faecium has become the third leading cause of health care-associated infections in the United States. This study provides a comprehensive analysis of over 100 E. faecium isolates collected from cancer patients at the University of Arkansas for Medical Sciences (UAMS). We employed a top-down analytical approach (from population genomics to molecular biology) to classify our clinical isolates into their genetic lineages and thoroughly evaluate their antibiotic resistance and virulence profiles. The addition of patient epidemiological data to the whole-genome sequencing analytical methodologies performed in the study allowed us to increase our understanding of the relationships and transmission dynamics of the E. faecium isolates. This study provides new insights into genomic surveillance of E. faecium to help monitor and further limit the spread of multidrug-resistant E. faecium.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
31
|
Tantoso E, Eisenhaber B, Sinha S, Jensen LJ, Eisenhaber F. About the dark corners in the gene function space of Escherichia coli remaining without illumination by scientific literature. Biol Direct 2023; 18:7. [PMID: 36855185 PMCID: PMC9976479 DOI: 10.1186/s13062-023-00362-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli (E. coli) is the most studied prokaryote organism in the history of life sciences, many molecular mechanisms and gene functions encoded in its genome remain to be discovered. This work aims at quantifying the illumination of the E. coli gene function space by the scientific literature and how close we are towards the goal of a complete list of E. coli gene functions. RESULTS The scientific literature about E. coli protein-coding genes has been mapped onto the genome via the mentioning of names for genomic regions in scientific articles both for the case of the strain K-12 MG1655 as well as for the 95%-threshold softcore genome of 1324 E. coli strains with known complete genome. The article match was quantified with the ratio of a given gene name's occurrence to the mentioning of any gene names in the paper. The various genome regions have an extremely uneven literature coverage. A group of elite genes with ≥ 100 full publication equivalents (FPEs, FPE = 1 is an idealized publication devoted to just a single gene) attracts the lion share of the papers. For K-12, ~ 65% of the literature covers just 342 elite genes; for the softcore genome, ~ 68% of the FPEs is about only 342 elite gene families (GFs). We also find that most genes/GFs have at least one mentioning in a dedicated scientific article (with the exception of at least 137 protein-coding transcripts for K-12 and 26 GFs from the softcore genome). Whereas the literature growth rates were highest for uncharacterized or understudied genes until 2005-2010 compared with other groups of genes, they became negative thereafter. At the same time, literature for anyhow well-studied genes started to grow explosively with threshold T10 (≥ 10 FPEs). Typically, a body of ~ 20 actual articles generated over ~ 15 years of research effort was necessary to reach T10. Lineage-specific co-occurrence analysis of genes belonging to the accessory genome of E. coli together with genomic co-localization and sequence-analytic exploration hints previously completely uncharacterized genes yahV and yddL being associated with osmotic stress response/motility mechanisms. CONCLUSION If the numbers of scientific articles about uncharacterized and understudied genes remain at least at present levels, full gene function lists for the strain K-12 MG1655 and the E. coli softcore genome are in reach within the next 25-30 years. Once the literature body for a gene crosses 10 FPEs, most of the critical fundamental research risk appears overcome and steady incremental research becomes possible.
Collapse
Affiliation(s)
- Erwin Tantoso
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Swati Sinha
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frank Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
32
|
Cobo-Simón M, Hart R, Ochman H. Escherichia Coli: What Is and Which Are? Mol Biol Evol 2023; 40:msac273. [PMID: 36585846 PMCID: PMC9830988 DOI: 10.1093/molbev/msac273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli have served as important model organisms for over a century-used to elucidate key aspects of genetics, evolution, molecular biology, and pathogenesis. However, defining which strains actually belong to this species is erratic and unstable due to shifts in the characters and criteria used to distinguish bacterial species. Additionally, many isolates designated as E. coli are genetically more closely related to strains of Shigella than to other E. coli, creating a situation in which the entire genus of Shigella and its four species are encompassed within the single species E. coli. We evaluated all complete genomes assigned to E. coli and its closest relatives according to the biological species concept (BSC), using evidence of reproductive isolation and gene flow (i.e., homologous recombination in the case of asexual bacteria) to ascertain species boundaries. The BSC establishes a uniform, consistent, and objective principle that allows species-level classification across all domains of life and does not rely on either phenotypic or genotypic similarity to a defined type-specimen for species membership. Analyzing a total of 1,887 sequenced genomes and comparing our results to other genome-based classification methods, we found few barriers to gene flow among the strains, clades, phylogroups, or species within E. coli and Shigella. Due to the utility in recognizing which strains constitute a true biological species, we designate genomes that form a genetic cohesive group as members of E. coliBIO.
Collapse
Affiliation(s)
- Marta Cobo-Simón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| |
Collapse
|
33
|
Abstract
Microcins are a class of antimicrobial peptides produced by certain Gram-negative bacterial species to kill or inhibit the growth of competing bacteria. Only 10 unique, experimentally validated class II microcins have been identified, and the majority of these come from Escherichia coli. Although the current representation of microcins is sparse, they exhibit a diverse array of molecular functionalities, uptake mechanisms, and target specificities. This broad diversity from such a small representation suggests that microcins may have untapped potential for bioprospecting peptide antibiotics from genomic data sets. We used a systematic bioinformatics approach to search for verified and novel class II microcins in E. coli and other species within its family, Enterobacteriaceae. Nearly one-quarter of the E. coli genome assemblies contained one or more microcins, where the prevalence of hits to specific microcins varied by isolate phylogroup. E. coli isolates from human extraintestinal and poultry meat sources were enriched for microcins, while those from freshwater were depleted. Putative microcins were found in various abundances across all five distinct phylogenetic lineages of Enterobacteriaceae, with a particularly high prevalence in the "Klebsiella" clade. Representative genome assemblies from species across the Enterobacterales order, as well as a few outgroup species, also contained putative microcin sequences. This study suggests that microcins have a complicated evolutionary history, spanning far beyond our limited knowledge of the currently validated microcins. Efforts to functionally characterize these newly identified microcins have great potential to open a new field of peptide antibiotics and microbiome modulators and elucidate the ways in which bacteria compete with each other. IMPORTANCE Class II microcins are small bacteriocins produced by strains of Gram-negative bacteria in the Enterobacteriaceae. They are generally understood to play a role in interbacterial competition, although direct evidence of this is limited, and they could prove informative in developing new peptide antibiotics. However, few examples of verified class II microcins exist, and novel microcins are difficult to identify due to their sequence diversity, making it complicated to study them as a group. Here, we overcome this limitation by developing a bioinformatics pipeline to detect microcins in silico. Using this pipeline, we demonstrate that both verified and novel class II microcins are widespread within and outside the Enterobacteriaceae, which has not been systematically shown previously. The observed prevalence of class II microcins suggests that they are ecologically important, and the elucidation of novel microcins provides a resource that can be used to expand our knowledge of the structure and function of microcins as antibacterials.
Collapse
|
34
|
Aguirre-Sánchez JR, Valdez-Torres JB, Del Campo NC, Martínez-Urtaza J, Del Campo NC, Lee BG, Quiñones B, Chaidez-Quiroz C. Phylogenetic group and virulence profile classification in Escherichia coli from distinct isolation sources in Mexico. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105380. [PMID: 36283634 DOI: 10.1016/j.meegid.2022.105380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Escherichia coli is a leading cause of human enteric diseases worldwide. The rapid and accurate causal agent identification to a particular source represents a crucial step in the establishment of safety and health measures in the affected human populations and would thus provide insights into the relationship of traits that may contribute for pathogen persistence in a particular reservoir. The objective of the present study was to characterize over two hundred E. coli strains from different isolation sources in Mexico by conducting a correspondence analysis to explore associations with the detected phylogenetic groups. The results indicated that E. coli strains, recovered from distinct sources in Mexico, were classified into phylogroups B1 (35.8%), A (27.8%), and D (12.3%) and were clustered to particular clades according to the predicted phylogroups. The results from correspondence analysis showed that E. coli populations from distinct sources in Mexico, belonging to different phylogroups, were not dispersed randomly and were associated with a particular isolation source. Phylogroup A was strongly associated with human sources, and the phylogroup B1 showed a significant relationship with food sources. Additionally, phylogroup D was also related to human sources. Phylogroup B2 was associated with herbivorous and omnivorous mammals. Moreover, common virulence genes in the examined E. coli strains, assigned to all phylogroups, were identified as essential markers for survival and invasion in the host. Although virulence profiles varied among the detected phylogroups, E. coli strains belonging to phylogroup D, associated with humans, were found to contain the largest virulence gene repertoire conferring for persistence and survival in the host. In summary, these findings provide fundamental information for a better characterization of pathogenic E. coli, recovered from distinct isolation sources in Mexico and would assist in the development of better tools for identifying potential transmission routes of contamination.
Collapse
Affiliation(s)
- José R Aguirre-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, 80110 Culiacán, Sinaloa, Mexico
| | - José B Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, 80110 Culiacán, Sinaloa, Mexico
| | - Nohemí Castro Del Campo
- Facultad de Medicina Veterinaria y Zootecnia de la Universidad Autónoma de Sinaloa, 80260 Culiacán, Sinaloa, Mexico
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nohelia Castro Del Campo
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, 80110 Culiacán, Sinaloa, Mexico
| | - Bertram G Lee
- U.S. Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, United States
| | - Beatriz Quiñones
- U.S. Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, United States
| | - Cristóbal Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, 80110 Culiacán, Sinaloa, Mexico.
| |
Collapse
|
35
|
Cummins EA, Hall RJ, Connor C, McInerney JO, McNally A. Distinct evolutionary trajectories in the Escherichia coli pangenome occur within sequence types. Microb Genom 2022; 8:mgen000903. [PMID: 36748558 PMCID: PMC9836092 DOI: 10.1099/mgen.0.000903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Escherichia coli species contains a diverse set of sequence types and there remain important questions regarding differences in genetic content within this population that need to be addressed. Pangenomes are useful vehicles for studying gene content within sequence types. Here, we analyse 21 E. coli sequence type pangenomes using comparative pangenomics to identify variance in both pangenome structure and content. We present functional breakdowns of sequence type core genomes and identify sequence types that are enriched in metabolism, transcription and cell membrane biogenesis genes. We also uncover metabolism genes that have variable core classification, depending on which allele is present. Our comparative pangenomics approach allows for detailed exploration of sequence type pangenomes within the context of the species. We show that ongoing gene gain and loss in the E. coli pangenome is sequence type-specific, which may be a consequence of distinct sequence type-specific evolutionary drivers.
Collapse
Affiliation(s)
- Elizabeth A. Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chris Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - James O. McInerney
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|
37
|
Udaondo Z, Abram KZ, Gulley T, Garner K, Shray J, Whisnant M, Harris-Spotts A, Crawford M, Kothari A, Wongsurawat T, Moon SH, Huang E, Jun SR. Complete Genome Sequence of a Non-Carbapenemase-Producing Carbapenem-Resistant Providencia rettgeri Strain Isolated from a Clinical Urine Sample in Arkansas. Microbiol Resour Announc 2022; 11:e0047422. [PMID: 35894621 PMCID: PMC9387286 DOI: 10.1128/mra.00474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023] Open
Abstract
Here, we report the complete genome sequence of Providencia rettgeri isolate PROV_UAMS_01, which was recovered in 2021 from a urine sample from a hospitalized patient in Arkansas, USA. The genome sequence of P. rettgeri isolate PROV_UAMS_01 comprises a single chromosomal replicon with a G+C content of 40.51% and a total of 3,887 genes.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z. Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Trent Gulley
- Healthcare-Associated Infection Program, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Kelley Garner
- Healthcare-Associated Infection Program, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Jennifer Shray
- Arkansas Public Health Laboratory, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Mary Whisnant
- Arkansas Public Health Laboratory, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Ashley Harris-Spotts
- Arkansas Public Health Laboratory, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Maui Crawford
- Arkansas Public Health Laboratory, Arkansas Department of Health, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sun-Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - En Huang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
38
|
Udaondo Z, Abram KZ, Kothari A, Jun SR. Insertion sequences and other mobile elements associated with antibiotic resistance genes in Enterococcus isolates from an inpatient with prolonged bacteraemia. Microb Genom 2022; 8. [PMID: 35921144 PMCID: PMC9484755 DOI: 10.1099/mgen.0.000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insertion sequences (ISs) and other transposable elements are associated with the mobilization of antibiotic resistance determinants and the modulation of pathogenic characteristics. In this work, we aimed to investigate the association between ISs and antibiotic resistance genes, and their role in the dissemination and modification of the antibiotic-resistant phenotype. To that end, we leveraged fully resolved Enterococcus faecium and Enterococcus faecalis genomes of isolates collected over 5 days from an inpatient with prolonged bacteraemia. Isolates from both species harboured similar IS family content but showed significant species-dependent differences in copy number and arrangements of ISs throughout their replicons. Here, we describe two inter-specific IS-mediated recombination events and IS-mediated excision events in plasmids of E. faecium isolates. We also characterize a novel arrangement of the ISs in a Tn1546-like transposon in E. faecalis isolates likely implicated in a vancomycin genotype–phenotype discrepancy. Furthermore, an extended analysis revealed a novel association between daptomycin resistance mutations in liaSR genes and a putative composite transposon in E. faecium, offering a new paradigm for the study of daptomycin resistance and novel insights into its dissemination. In conclusion, our study highlights the role ISs and other transposable elements play in the rapid adaptation and response to clinically relevant stresses such as aggressive antibiotic treatment in enterococci.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kaleb Z Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Atul Kothari
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Arkansas Dept of Health, Healthcare Associated Infections and Outbreak Response Sections, Little Rock, AR 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
39
|
Highly Virulent and Multidrug-Resistant Escherichia coli Sequence Type 58 from a Sausage in Germany. Antibiotics (Basel) 2022; 11:antibiotics11081006. [PMID: 35892394 PMCID: PMC9331442 DOI: 10.3390/antibiotics11081006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have previously described the occurrence of multidrug-resistant (MDR) Escherichia coli in human and veterinary medical settings, livestock, and, to a lesser extent, in the environment and food. While they mostly analyzed foodborne E. coli regarding phenotypic and sometimes genotypic antibiotic resistance and basic phylogenetic classification, we have limited understanding of the in vitro and in vivo virulence characteristics and global phylogenetic contexts of these bacteria. Here, we investigated in-depth an E. coli strain (PBIO3502) isolated from a pork sausage in Germany in 2021. Whole-genome sequence analysis revealed sequence type (ST)58, which has an internationally emerging high-risk clonal lineage. In addition to its MDR phenotype that mostly matched the genotype, PBIO3502 demonstrated pronounced virulence features, including in vitro biofilm formation, siderophore secretion, serum resilience, and in vivo mortality in Galleria mellonella larvae. Along with the genomic analysis indicating close phylogenetic relatedness of our strain with publicly available, clinically relevant representatives of the same ST, these results suggest the zoonotic and pathogenic character of PBIO3502 with the potential to cause infection in humans and animals. Additionally, our study highlights the necessity of the One Health approach while integrating human, animal, and environmental health, as well as the role of meat products and food chains in the putative transmission of MDR pathogens.
Collapse
|
40
|
Hernández-Salmerón JE, Moreno-Hagelsieb G. FastANI, Mash and Dashing equally differentiate between Klebsiella species. PeerJ 2022; 10:e13784. [PMID: 35891643 PMCID: PMC9308963 DOI: 10.7717/peerj.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
Bacteria of the genus Klebsiella are among the most important multi-drug resistant human pathogens, though they have been isolated from a variety of environments. The importance and ubiquity of these organisms call for quick and accurate methods for their classification. Average Nucleotide Identity (ANI) is becoming a standard for species delimitation based on whole genome sequence comparison. However, much faster genome comparison tools have been appearing in the literature. In this study we tested the quality of different approaches for genome-based species delineation against ANI. To this end, we compared 1,189 Klebsiella genomes using measures calculated with Mash, Dashing, and DNA compositional signatures, all of which run in a fraction of the time required to obtain ANI. Receiver Operating Characteristic (ROC) curve analyses showed equal quality in species discrimination for ANI, Mash and Dashing, with Area Under the Curve (AUC) values above 0.99, followed by DNA signatures (AUC: 0.96). Accordingly, groups obtained at optimized cutoffs largely agree with species designation, with ANI, Mash and Dashing producing 15 species-level groups. DNA signatures broke the dataset into more than 30 groups. Testing Mash to map species after adding draft genomes to the dataset also showed excellent results (AUC above 0.99), producing a total of 26 Klebsiella species-level groups. The ecological niches of Klebsiella strains were found to neither be related to species delimitation, nor to protein functional content, suggesting that a single Klebsiella species can have a wide repertoire of ecological functions.
Collapse
|
41
|
Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z, Eisenhaber F. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol 2022; 20:146. [PMID: 35710371 PMCID: PMC9205054 DOI: 10.1186/s12915-022-01347-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sciences. Initially thought just to be commensal bacteria, E. coli has shown wide phenotypic diversity including pathogenic isolates with great relevance to public health. Though pangenome analysis has been attempted several times, there is no systematic functional characterization of the E. coli subgroups according to the gene profile. RESULTS Systematically scanning for optimal parametrization, we have built the E. coli pangenome from 1324 complete genomes. The pangenome size is estimated to be ~25,000 gene families (GFs). Whereas the core genome diminishes as more genomes are added, the softcore genome (≥95% of strains) is stable with ~3000 GFs regardless of the total number of genomes. Apparently, the softcore genome (with a 92% or 95% generation threshold) can define the genome of a bacterial species listing the critically relevant, evolutionarily most conserved or important classes of GFs. Unsupervised clustering of common E. coli sequence types using the presence/absence GF matrix reveals distinct characteristics of E. coli phylogroups B1, B2, and E. We highlight the bi-lineage nature of B1, the variation of the secretion and of the iron acquisition systems in ST11 (E), and the incorporation of a highly conserved prophage into the genome of ST131 (B2). The tail structure of the prophage is evolutionarily related to R2-pyocin (a tailocin) from Pseudomonas aeruginosa PAO1. We hypothesize that this molecular machinery is highly likely to play an important role in protecting its own colonies; thus, contributing towards the rapid rise of pandemic E. coli ST131. CONCLUSIONS This study has explored the optimized pangenome development in E. coli. We provide complete GF lists and the pangenome matrix as supplementary data for further studies. We identified biological characteristics of different E. coli subtypes, specifically for phylogroups B1, B2, and E. We found an operon-like genome region coding for a tailocin specific for ST131 strains. The latter is a potential killer weapon providing pandemic E. coli ST131 with an advantage in inter-bacterial competition and, suggestively, explains their dominance as human pathogen among E. coli strains.
Collapse
Affiliation(s)
- Erwin Tantoso
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Miles Kirsch
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: Northeastern University, Boston, USA
| | - Vladimir Shitov
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Zhiya Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: The University of Cambridge, Cambridge, UK
| | - Frank Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, 637551, Singapore, Republic of Singapore.
| |
Collapse
|
42
|
icaR
and
icaT
Are Ancient Chromosome Genes Encoding Substrates of the Type III Secretion Apparatus in Shigella flexneri. mSphere 2022; 7:e0011522. [PMID: 35582904 PMCID: PMC9241512 DOI: 10.1128/msphere.00115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is an Escherichia coli pathovar that colonizes the cytosol of mucosal cells in the human large intestine. To do this, Shigella uses a Type III Secretion Apparatus (T3SA) to translocate several proteins into host cells. The T3SA and its substrates are encoded by genes of the virulence plasmid pINV or by chromosomal genes derived thereof. We recently discovered two chromosomal genes, which seem unrelated to pINV, although they are activated by MxiE and IpgC similarly to some of the canonical substrates of the T3SA. Here, we showed that the production of the corresponding proteins depended on the conservation of a MxiE box in their cognate promoters. Furthermore, both proteins were secreted by the T3SA in a chaperone-independent manner through the recognition of their respective amino-terminal secretion signal. Based on these observations, we named these new genes icaR and icaT, which stand for invasion chromosome antigen with homology for a transcriptional regulator and a transposase, respectively. icaR and icaT have orthologs in commensal and pathogenic E. coli strains belonging mainly to phylogroups A, B1, D and E. Finally, we demonstrated that icaR and icaT orthologs could be activated by the coproduction of IpgC and MxiE in strains MG1655 K-12 (phylogroup A) and O157:H7 ATCC 43888 (phylogroup E). In contrast, the coproduction of EivF and YgeG, which are homologs of MxiE and IpgC in the E. coli T3SS 2 (ETT2), failed to activate icaR and icaT. IMPORTANCEicaR and icaT are the latest members of the MxiE regulon discovered in the chromosome. The proteins IcaR and IcaT, albeit produced in small amounts, are nonetheless secreted by the T3SA comparably to canonical substrates. The high occurrence of icaR and icaT in phylogroups A, B1, D, and E coupled with their widespread absence in their B2 counterparts agree with the consensus E. coli phylogeny. The widespread conservation of the MxiE box among icaR and icaT orthologs supports the notion that both genes had already undergone coevolution with transcriptional activators ipgC and mxiE- harbored in pINV or a relative- in the last common ancestor of Shigella and of E. coli from phylogroups A, B1, D, and E. The possibility that icaR and icaT may contribute to Shigella pathogenesis cannot be excluded, although some of their characteristics suggest they are fossil genes.
Collapse
|
43
|
Thomson NM, Gilroy R, Getino M, Foster-Nyarko E, van Vliet AH, La Ragione RM, Pallen MJ. Remarkable genomic diversity among Escherichia isolates recovered from healthy chickens. PeerJ 2022; 10:e12935. [PMID: 35251780 PMCID: PMC8896058 DOI: 10.7717/peerj.12935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023] Open
Abstract
The genus Escherichia has been extensively studied and it is known to encompass a range of commensal and pathogenic bacteria that primarily inhabit the gastrointestinal tracts of warm-blooded vertebrates. However, the presence of E. coli as a model organism and potential pathogen has diverted attention away from commensal strains and other species in the genus. To investigate the diversity of Escherichia in healthy chickens, we collected fecal samples from antibiotic-free Lohmann Brown layer hens and determined the genome sequences of 100 isolates, 81 of which were indistinguishable at the HC0 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing scheme. Despite initial selection on CHROMagar Orientation medium, which is considered selective for E. coli, in silico phylotyping and core genome single nucleotide polymorphism analysis revealed the presence of at least one representative of all major clades of Escherichia, except for E. albertii, Shigella, and E. coli phylogroup B2 and cryptic clade I. The most frequent phylogenomic groups were E. coli phylogroups A and B1 and E. ruysiae (clades III and IV). We compiled a collection of reference strains isolated from avian sources (predominantly chicken), representing every Escherichia phylogroup and species, and used it to confirm the phylogeny and diversity of our isolates. Overall, the isolates carried low numbers of the virulence and antibiotic resistance genes typically seen in avian pathogenic E. coli. Notably, the clades not recovered are ones that have been most strongly associated with virulence by other studies.
Collapse
Affiliation(s)
| | - Rachel Gilroy
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom
| | - Maria Getino
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom,Department of Infection Biology, London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom,Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, Norfolk, United Kingdom,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom,School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| |
Collapse
|
44
|
Moon SH, Udaondo Z, Abram KZ, Li X, Yang X, DiCaprio EL, Jun SR, Huang E. Isolation of AmpC- and extended spectrum β-lactamase-producing Enterobacterales from fresh vegetables in the United States. Food Control 2022; 132:108559. [PMID: 34629764 PMCID: PMC8494183 DOI: 10.1016/j.foodcont.2021.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vegetables may serve as a reservoir for antibiotic resistant bacteria and resistance genes. AmpC β-lactamases and extended spectrum beta-lactamases (ESBL) inactivate commonly used β-lactam antibiotics, including penicillins and cephalosporins. In this study, we determined the prevalence of AmpC and ESBL-producing Enterobacterales in retail vegetables in the United States. A total of 88 vegetable samples were collected for the screening of AmpC and ESBL-producing Enterobacterales using CHROMagar ESBL agar. These vegetables included washed ready-to-eat salad (23), microgreens/sprouts (13), lettuce (11), herbs (11), spinach (5), mushrooms (5), brussels sprouts (4), kale (3), and other vegetable samples (13). AmpC and ESBL activity in these isolates were determined using double disk combination tests. Two vegetable samples (2.27%), organic basil and brussels sprouts, were positive for AmpC-producing Enterobacterales and eight samples (9.09%), including bean sprouts, organic parsley, organic baby spinach, and several mixed salads, were positive for ESBL-producing Enterobacterales. Whole genome sequencing was used to identify the bacterial species and resistance genes in these isolates. Genes encoding AmpC β-lactamases were found in Enterobacter hormaechei strains S43-1 and 74-2, which were consistent with AmpC production phenotypes. Multidrug-resistant E. hormaechei strains S11-1, S17-1, and S45-4 possess an ESBL gene, blaSHV66 , whereas five Serratia fonticola isolates contain genes encoding a minor ESBL, FONA-5. In addition, we used shotgun metagenomic sequencing approach to examine the microbiome and resistome profiles of three spinach samples. We found that Pseudomonas was the most prevalent bacteria genus in the spinach samples. Within the Enterobacteriaceae family, Enterobacter was the most abundant genus in the spinach samples. Moreover, antibiotic resistance genes encoding 12 major classes of antibiotics, including β-lactam antibiotics, aminoglycoside, macrolide, fluoroquinolone, and others, were found in these spinach samples. Therefore, vegetables can serve as an important vehicle for transmitting antibiotic resistance. The study highlights the need for antibiotic resistance surveillance in vegetable products.
Collapse
Affiliation(s)
- Sun Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Kaleb Z. Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University, Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Erin L. DiCaprio
- Department of Food Science and Technology, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - En Huang
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
45
|
Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, Garcia SL. A Genomic Perspective Across Earth's Microbiomes Reveals That Genome Size in Archaea and Bacteria Is Linked to Ecosystem Type and Trophic Strategy. Front Microbiol 2022; 12:761869. [PMID: 35069467 PMCID: PMC8767057 DOI: 10.3389/fmicb.2021.761869] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Our view of genome size in Archaea and Bacteria has remained skewed as the data has been dominated by genomes of microorganisms that have been cultivated under laboratory settings. However, the continuous effort to catalog Earth's microbiomes, specifically propelled by recent extensive work on uncultivated microorganisms, provides an opportunity to revise our perspective on genome size distribution. We present a meta-analysis that includes 26,101 representative genomes from 3 published genomic databases; metagenomic assembled genomes (MAGs) from GEMs and stratfreshDB, and isolates from GTDB. Aquatic and host-associated microbial genomes present on average the smallest estimated genome sizes (3.1 and 3.0 Mbp, respectively). These are followed by terrestrial microbial genomes (average 3.7 Mbp), and genomes from isolated microorganisms (average 4.3 Mbp). On the one hand, aquatic and host-associated ecosystems present smaller genomes sizes in genera of phyla with genome sizes above 3 Mbp. On the other hand, estimated genome size in phyla with genomes under 3 Mbp showed no difference between ecosystems. Moreover, we observed that when using 95% average nucleotide identity (ANI) as an estimator for genetic units, only 3% of MAGs cluster together with genomes from isolated microorganisms. Although there are potential methodological limitations when assembling and binning MAGs, we found that in genome clusters containing both environmental MAGs and isolate genomes, MAGs were estimated only an average 3.7% smaller than isolate genomes. Even when assembly and binning methods introduce biases, estimated genome size of MAGs and isolates are very similar. Finally, to better understand the ecological drivers of genome size, we discuss on the known and the overlooked factors that influence genome size in different ecosystems, phylogenetic groups, and trophic strategies.
Collapse
Affiliation(s)
- Alejandro Rodríguez-Gijón
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Julia K. Nuy
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Sarahi L. Garcia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
46
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Tudu R, Banerjee J, Habib M, Bandyopadhyay S, Biswas S, Kesh SS, Maity A, Batabyal S, Polley S. Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from dogs suffering from diarrhea in and around Kolkata. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:237-246. [PMID: 36425605 PMCID: PMC9681975 DOI: 10.22099/ijvr.2022.42543.6176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 03/17/2023]
Abstract
BACKGROUND Dogs are the favorite companion animals among humans. The close interaction between dogs and people increases the risk of antibiotic resistance spreading. Surveillance for antimicrobial resistance and the identification of ESBL-producing Escherichia coli as an indicator bacterium is an important tool for managing antimicrobial drug therapy. AIMS The present study targeted to identify and characterize ESBL-producing E. coli among dogs suffering from diarrhea in and around Kolkata. METHODS Isolation and identification of E. coli from dogs suffering from diarrhea (n=70) along with screening for the production of both ESBL and AmpC. The isolates were further characterized through antimicrobial resistance profiling, resistance genes (bla CTX-M, bla TEM, and bla SHV) screening, and phylogenetic group study. RESULTS Among the 70 isolates, 21 (30%) were confirmed ESBL producers. An antibiogram typing of ESBL-producing E. coli revealed that the majority of them were resistant to norfloxacin (85.7%) followed by tetracycline (61.90%), doxycycline (57.14%), piperacillin/tazobactam (52.38%), cotrimoxazole (47.62%), gentamicin (42.62%), amikacin (23.81%), and chloramphenicol (19.05%). Major resistance genes included bla CTX-M (100%), bla TEM (28.57%), and bla SHV (9.50%). The predominant phylogenetic groups were phylogroup A (76%) followed by phylogroup D (24%). CONCLUSION The current investigation reported a high prevalence of both ESBL and AmpC β-lactamase (AmpC) producing E. coli, co-resistance to a distinct group of antibiotics, and co-existence of different ESBL genes in dogs. Our findings highlight the importance of diagnostic antimicrobial susceptibility testing for proper antimicrobial therapy and to prevent antimicrobial resistance from spreading to humans from dogs in Kolkata and the surrounding area.
Collapse
Affiliation(s)
- R Tudu
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - J Banerjee
- Ph.D. Student in Veterinary Biochemistry, Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - Md Habib
- Ph.D. Student in Veterinary Biochemistry, Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - S Bandyopadhyay
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkata-700 037, West Bengal, India
| | - S Biswas
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - S S Kesh
- Department of Veterinary Clinical Complex, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - A Maity
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - S Batabyal
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| | - S Polley
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, 37, K. B. Sarani, Belgachia, Kolkata-700 037, West Bengal, India
| |
Collapse
|
48
|
Wan Y, Mills E, Leung RC, Vieira A, Zhi X, Croucher NJ, Woodford N, Jauneikaite E, Ellington MJ, Sriskandan S. Alterations in chromosomal genes nfsA, nfsB, and ribE are associated with nitrofurantoin resistance in Escherichia coli from the United Kingdom. Microb Genom 2021; 7:000702. [PMID: 34860151 PMCID: PMC8767348 DOI: 10.1099/mgen.0.000702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance in enteric or urinary Escherichia coli is a risk factor for invasive E. coli infections. Due to widespread trimethoprim resistance amongst urinary E. coli and increased bacteraemia incidence, a national recommendation to prescribe nitrofurantoin for uncomplicated urinary tract infection was made in 2014. Nitrofurantoin resistance is reported in <6% urinary E. coli isolates in the UK, however, mechanisms underpinning nitrofurantoin resistance in these isolates remain unknown. This study aimed to identify the genetic basis of nitrofurantoin resistance in urinary E. coli isolates collected from north west London and then elucidate resistance-associated genetic alterations in available UK E. coli genomes. As a result, an algorithm was developed to predict nitrofurantoin susceptibility. Deleterious mutations and gene-inactivating insertion sequences in chromosomal nitroreductase genes nfsA and/or nfsB were identified in genomes of nine confirmed nitrofurantoin-resistant urinary E. coli isolates and additional 11 E. coli isolates that were highlighted by the prediction algorithm and subsequently validated to be nitrofurantoin-resistant. Eight categories of allelic changes in nfsA , nfsB , and the associated gene ribE were detected in 12412 E. coli genomes from the UK. Evolutionary analysis of these three genes revealed homoplasic mutations and explained the previously reported order of stepwise mutations. The mobile gene complex oqxAB , which is associated with reduced nitrofurantoin susceptibility, was identified in only one of the 12412 genomes. In conclusion, mutations and insertion sequences in nfsA and nfsB were leading causes of nitrofurantoin resistance in UK E. coli . As nitrofurantoin exposure increases in human populations, the prevalence of nitrofurantoin resistance in carriage E. coli isolates and those from urinary and bloodstream infections should be monitored.
Collapse
Affiliation(s)
- Yu Wan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ewurabena Mills
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhoda C.Y. Leung
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Present address: Department of Microbiology, Queen Mary Hospital, Hong Kong S.A.R., PR China
| | - Ana Vieira
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Xiangyun Zhi
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthew J. Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, Colindale, London, United Kingdom
| | - Shiranee Sriskandan
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
49
|
Frolova M, Yudin S, Makarov V, Glazunova O, Alikina O, Markelova N, Kolzhetsov N, Dzhelyadin T, Shcherbakova V, Trubitsyn V, Panyukov V, Zaitsev A, Kiselev S, Shavkunov K, Ozoline O. Lacticaseibacillus paracasei: Occurrence in the Human Gut Microbiota and K-Mer-Based Assessment of Intraspecies Diversity. Life (Basel) 2021; 11:1246. [PMID: 34833122 PMCID: PMC8620312 DOI: 10.3390/life11111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for precise systematics. Using this approach for phylotyping of L. paracasei VKM B-1144 at the genus level, we identified four L. paracasei phylogroups and found that L. casei 12A belongs to one of them, rather than to the L. casei clade. Therefore, we propose to change the specification of this strain. At the genus level we found only one relative of L. paracasei VKM B-1144 among 221 genomes, complete or available in contigs, and showed that the coding potential of the genome of this "rare" strain allows its consideration as a potential probiotic component. Four sets of published metagenomes were used to assess the dependence of L. paracasei presence in the human gut microbiome on chronic diseases, dietary changes and antibiotic treatment. Only antibiotics significantly affected their presence, and strain-specific barcoding allowed the identification of the main scenarios of the adaptive response. Thus, suggesting bacteria of this species for compensatory therapy, we also propose strain-specific barcoding for selecting optimal strains for target microbiomes.
Collapse
Affiliation(s)
- Maria Frolova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Sergey Yudin
- Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia; (S.Y.); (V.M.)
| | - Valentin Makarov
- Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia; (S.Y.); (V.M.)
| | - Olga Glazunova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Olga Alikina
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Natalia Markelova
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Nikolay Kolzhetsov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Timur Dzhelyadin
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Viktoria Shcherbakova
- Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia; (V.S.); (V.T.)
| | - Vladimir Trubitsyn
- Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia; (V.S.); (V.T.)
| | - Valery Panyukov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexandr Zaitsev
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Kiselev
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Konstantin Shavkunov
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| | - Olga Ozoline
- Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (M.F.); (O.G.); (O.A.); (N.M.); (N.K.); (T.D.); (V.P.); (S.K.)
| |
Collapse
|
50
|
RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput Biol 2021; 17:e1009581. [PMID: 34748542 PMCID: PMC8601625 DOI: 10.1371/journal.pcbi.1009581] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/18/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotide sequence and taxonomy reference databases are critical resources for widespread applications including marker-gene and metagenome sequencing for microbiome analysis, diet metabarcoding, and environmental DNA (eDNA) surveys. Reproducibly generating, managing, using, and evaluating nucleotide sequence and taxonomy reference databases creates a significant bottleneck for researchers aiming to generate custom sequence databases. Furthermore, database composition drastically influences results, and lack of standardization limits cross-study comparisons. To address these challenges, we developed RESCRIPt, a Python 3 software package and QIIME 2 plugin for reproducible generation and management of reference sequence taxonomy databases, including dedicated functions that streamline creating databases from popular sources, and functions for evaluating, comparing, and interactively exploring qualitative and quantitative characteristics across reference databases. To highlight the breadth and capabilities of RESCRIPt, we provide several examples for working with popular databases for microbiome profiling (SILVA, Greengenes, NCBI-RefSeq, GTDB), eDNA and diet metabarcoding surveys (BOLD, GenBank), as well as for genome comparison. We show that bigger is not always better, and reference databases with standardized taxonomies and those that focus on type strains have quantitative advantages, though may not be appropriate for all use cases. Most databases appear to benefit from some curation (quality filtering), though sequence clustering appears detrimental to database quality. Finally, we demonstrate the breadth and extensibility of RESCRIPt for reproducible workflows with a comparison of global hepatitis genomes. RESCRIPt provides tools to democratize the process of reference database acquisition and management, enabling researchers to reproducibly and transparently create reference materials for diverse research applications. RESCRIPt is released under a permissive BSD-3 license at https://github.com/bokulich-lab/RESCRIPt. Generating and managing sequence and taxonomy reference data presents a bottleneck to many researchers, whether they are generating custom databases or attempting to format existing, curated reference databases for use with standard sequence analysis tools. Evaluating database quality and choosing the “best” database can be an equally formidable challenge. We developed RESCRIPt to alleviate this bottleneck, supporting reproducible, streamlined generation, curation, and evaluation of reference sequence databases. RESCRIPt uses QIIME 2 artifact file formats, which store all processing steps as data provenance within each file, allowing researchers to retrace the computational steps used to generate any given file. We used RESCRIPt to benchmark several commonly used marker-gene sequence databases for 16S rRNA genes, ITS, and COI sequences, demonstrating both the utility of RESCRIPt to streamline use of these databases, but also to evaluate several qualitative and quantitative characteristics of each database. We show that larger databases are not always best, and curation steps to reduce redundancy and filter out noisy sequences may be beneficial for some applications. We anticipate that RESCRIPt will streamline the use, management, and evaluation/selection of reference database materials for microbiomics, diet metabarcoding, eDNA, and other diverse applications.
Collapse
|