1
|
Van Acker N, Frenois FX, Gravelle P, Tosolini M, Syrykh C, Laurent C, Brousset P. Spatial mapping of innate lymphoid cells in human lymphoid tissues and lymphoma at single-cell resolution. Nat Commun 2025; 16:4545. [PMID: 40374674 PMCID: PMC12081901 DOI: 10.1038/s41467-025-59811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Innate lymphoid cells (ILC) distribution and compartmentalization in human lymphoid tissues are incompletely described. Through combined multiplex immunofluorescence, multispectral imaging, and advanced computer vision methods, we provide a map of ILCs at the whole-slide single-cell resolution level, and study their proximity to T helper (Th) cells. The results show that ILC2 predominates in thymic medulla; by contrast, immature Th cells prevail in the cortex. Unexpectedly, we find that Th2-like and Th17-like phenotypes appear before complete T cell receptor gene rearrangements in these immature thymocytes. In the periphery, ILC2 are more abundant in lymph nodes and tonsils, penetrating lymphoid follicles. NK cells are uncommon in lymphoid tissues but abundant in the spleen, whereas ILC1 and ILC3 predominate in the ileum and appendix. Under pathogenic conditions, a deep perturbation of both ILC and Th populations is seen in follicular lymphoma compared with non-neoplastic conditions. Lastly, all ILCs are preferentially in close proximity to their Th counterparts. In summary, our histopathology tool help present a spatial mapping of human ILCs and Th cells, in normal and neoplastic lymphoid tissues.
Collapse
Affiliation(s)
- Nathalie Van Acker
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - François-Xavier Frenois
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pauline Gravelle
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Charlotte Syrykh
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Camille Laurent
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, CHU of Toulouse, Imag'IN Platform, IUCT-Oncopole, Toulouse, France.
- Cancer Research Center of Toulouse (INSERM), Team 9 NoLymIT and Labex TOUCAN, Toulouse, France.
| |
Collapse
|
2
|
Mitchell JL, Buranapraditkun S, Gantner P, Takata H, Dietze K, N'guessan KF, Pollara J, Nohara J, Muir R, Kroon E, Pinyakorn S, Tulmethakaan N, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Puttamaswin S, Nuntapinit B, Fox L, Haddad EK, Paquin-Proulx D, Phanuphak P, Sacdalan CP, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Ferrari G, Chomont N, Trautmann L, on behalf of RV254 and RV304 Study Groups. Activation of CXCR3 + Tfh cells and B cells in lymph nodes during acute HIV-1 infection correlates with HIV-specific antibody development. J Virol 2025; 99:e0153224. [PMID: 39932316 PMCID: PMC11915809 DOI: 10.1128/jvi.01532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
Lymph node T follicular helper (Tfh) cells and germinal center (GC) B cells are critical to generate potent antibodies but are rarely possible to study in humans. To understand how Tfh/GC B-cell interactions during acute HIV-1 infection (AHI) impact the generation of HIV-specific antibodies, we performed a unique cross-sectional analysis of inguinal lymph node biopsies taken prior to antiretroviral therapy (ART) initiation in AHI. Although total Tfh and GC B cell frequencies did not change during AHI, increased frequencies of proliferating Th1-like CXCR3+ Tfh, CXCR3+ non-GC B cells, and total CXCR3+ GC B cells correlated with gp120-specific IgG antibody levels in AHI. Frequencies of proliferating CXCR3+ Tfh in AHI also correlated with gp120-specific IgG antibody levels after 48 weeks of ART, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and increased antibody binding to infected cells after ART. Importantly, while beneficial for antibody development, CXCR3+ Tfh cells were also infected by HIV-1 at higher frequencies than their CXCR3- counterparts and may contribute to the initial dissemination of HIV-1 in follicles. Together, these data suggest that activation of CXCR3+ Tfh cells is associated with induction of the germinal center response and subsequent antibody development, making these cells an important target for future therapeutic interventions. IMPORTANCE Early initiation of antiretroviral therapy (ART) is important to limit the seeding of the long-lasting HIV-1 reservoir; however, it also precludes the development of HIV-specific antibodies that can help control the virus if ART is stopped. Antibody development occurs within germinal centers in the lymph node and requires activation of both antigen-specific B cells and T follicular helper cells (Tfh), a specialized CD4+ cell that provides B cell help. To understand how early ART initiation may prohibit antibody development, we analyzed the frequencies and activation status of Tfh and B cells in lymph node biopsies collected in the different stages of acute HIV-1 infection. Our data suggest that decreased antibody development after early ART initiation may be due to limited germinal center development at the time of treatment and that new interventions that target activation of CXCR3+ Tfh may be beneficial to increase long-term HIV-specific antibody levels.
Collapse
Affiliation(s)
- Julie L. Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supranee Buranapraditkun
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pierre Gantner
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kenneth Dietze
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kombo F. N'guessan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Roshell Muir
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elias K. Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Carlo P. Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Denise Hsu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - on behalf of RV254 and RV304 Study Groups
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- SEARCH Research Foundation, Bangkok, Thailand
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Institute of HIV Research and Innovation (IHRI), Bangkok, Thailand
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Lee HJ, Kim DK. Retinoic Acid Treatment Mitigates PM2.5-Induced Type 2 Inflammation: Insights into Modulation of Innate Immune Responses. Int J Mol Sci 2024; 25:3856. [PMID: 38612663 PMCID: PMC11011870 DOI: 10.3390/ijms25073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Some studies have demonstrated the effects of particulate matter (PM) on chronic rhinosinusitis with nasal polyps (CRSwNP) development, as well as the therapeutic role of retinoic acid (RA) in nasal polypogenesis. However, the immunologic effect of PM in innate lymphoid cells (ILCs) and the exact mechanism of the therapeutic effect of RA remain unclear. Therefore, the present study investigated the effects of fine-dust-induced inflammation in CRSwNP and the mechanisms of the therapeutic effect of RA. PM2.5 exposure exacerbated pathological damage in the nasal mucosa of mice with nasal polyps (NP) via upregulation of type 2 inflammation. Additionally, PM2.5 exposure increased the expression of type 2 cytokines and epithelial-cell-derived cytokines (IL-33 and IL-25) significantly, as well as the ILC populations in human-NP-derived epithelial cells (HNECs). Moreover, RA supplementation significantly increased the expression of ILCreg in Lin-CD45+CD127+ cells, which in turn increased the levels of the anti-inflammatory cytokine IL-10. The findings suggest that PM2.5 exposures could aggravate the CRSwNP type 2 inflammation, and RA treatment may ameliorate fine-dust-induced inflammation by modulating the innate immune response.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
4
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Zeng X, Alimu X, Bahabayi A, Zhang Z, Zheng M, Yuan Z, Liu T, Liu C. Helios characterized circulating follicular helper T cells with enhanced functional phenotypes and was increased in patients with systemic lupus erythematosus. Clin Exp Med 2024; 24:5. [PMID: 38240853 PMCID: PMC10799143 DOI: 10.1007/s10238-023-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 01/22/2024]
Abstract
Helios was related to the immunosuppressive capacity and stability of regulatory T cells. However, the significance of Helios in follicular help T (TFH) and follicular regulatory T (TFR) cells is unclear. This research aimed to clarify the significance of Helios (IKZF2) in TFH and TFR cells and its clinical value in systemic lupus erythematosus (SLE). IKZF2 mRNA in different cell subsets was analyzed. Helios+ percentages in TFH and TFR cells were identified in the peripheral blood of 75 SLE patients and 62 HCs (healthy controls). PD-1 and ICOS expression were compared between Helios+ and Helios- cells. The capacity of TFH cells to secrete IL-21 and TFR cells to secrete IL-10 was measured. Correlation analysis and receiver operating characteristic (ROC) curve analysis were conducted to assess the clinical significance of Helios-related TFH and TFR cell subsets in SLE. There was Helios expression in TFH and TFR cells. PD-1 and ICOS were lower in Helios+ TFR than in Helios- TFR. ICOS was increased in Helios+ TFH cells compared with Helios- TFH cells, and ICOS in Helios+ TFH cells was downregulated in SLE. Helios+ TFH cells secreted more IL-21 than Helios- TFH cells, and Helios+ TFH cells from SLE patients had a stronger IL-21 secretion than HCs. Helios+ TFH percentages were negatively correlated with C3 and C4 and positively related to CRP and SLEDAI, and the AUC of Helios+ TFH to distinguish SLE from HC was 0.7959. Helios characterizes circulating TFH cells with enhanced function. Increased Helios+ TFH cells could reflect the autoimmune status of SLE.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
6
|
Connors J, Cusimano G, Mege N, Woloszczuk K, Konopka E, Bell M, Joyner D, Marcy J, Tardif V, Kutzler MA, Muir R, Haddad EK. Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity. Hum Vaccin Immunother 2023; 19:2267295. [PMID: 37885158 PMCID: PMC10760375 DOI: 10.1080/21645515.2023.2267295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
In the field of immunology, a systems biology approach is crucial to understanding the immune response to infection and vaccination considering the complex interplay between genetic, epigenetic, and environmental factors. Significant progress has been made in understanding the innate immune response, including cell players and critical signaling pathways, but many questions remain unanswered, including how the innate immune response dictates host/pathogen responses and responses to vaccines. To complicate things further, it is becoming increasingly clear that the innate immune response is not a linear pathway but is formed from complex networks and interactions. To further our understanding of the crosstalk and complexities, systems-level analyses and expanded experimental technologies are now needed. In this review, we discuss the most recent immunoprofiling techniques and discuss systems approaches to studying the global innate immune landscape which will inform on the development of personalized medicine and innovative vaccine strategies.
Collapse
Affiliation(s)
- Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gina Cusimano
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Nathan Mege
- Tower Health, Reading Hospital, West Reading, PA, USA
| | - Kyra Woloszczuk
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Emily Konopka
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Matthew Bell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - David Joyner
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Molecular and Cellular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jennifer Marcy
- Department of Molecular and Cellular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Virginie Tardif
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michele A. Kutzler
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Roshell Muir
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Family, Community, and Preventative Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Jiang S, Zheng Y, Lv B, He S, Yang W, Wang B, Zhou J, Liu S, Li D, Lin J. Single-cell landscape dissecting the transcription and heterogeneity of innate lymphoid cells in ischemic heart. Front Immunol 2023; 14:1129007. [PMID: 37228603 PMCID: PMC10203554 DOI: 10.3389/fimmu.2023.1129007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Until now, few articles have revealed the potential roles of innate lymphoid cells (ILCs) in cardiovascular diseases. However, the infiltration of ILC subsets in ischemic myocardium, the roles of ILC subsets in myocardial infarction (MI) and myocardial ischemia-reperfusion injury (MIRI) and the related cellular and molecular mechanisms have not been described with a sufficient level of detail. Method In the current study, 8-week-old male C57BL/6J mice were divided into three groups: MI, MIRI and sham group. Single-cell sequencing technology was used to perform dimensionality reduction clustering of ILC to analyze the ILC subset landscape at a single-cell resolution, and finally flow cytometry was used to confirm the existence of the new ILC subsets in different disease groups. Results Five ILC subsets were found, including ILC1, ILC2a, ILC2b, ILCdc and ILCt. It is worth noting that ILCdc, ILC2b and ILCt were identified as new ILC subclusters in the heart. The cellular landscapes of ILCs were revealed and signal pathways were predicted. Furthermore, pseudotime trajectory analysis exhibited different ILC statuses and traced related gene expression in normal and ischemic conditions. In addition, we established a ligand-receptor-transcription factor-target gene regulatory network to disclose cell communications among ILC clusters. Moreover, we further revealed the transcriptional features of the ILCdc and ILC2a subsets. Finally, the existence of ILCdc was confirmed by flow cytometry. Conclusion Collectively, by characterizing the spectrums of ILC subclusters, our results provide a new blueprint for understanding ILC subclusters' roles in myocardial ischemia diseases and further potential treatment targets.
Collapse
Affiliation(s)
- Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang, China
| | - Yuqi Zheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenling Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyuan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwei Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Korchagina AA, Koroleva E, Tumanov AV. Innate Lymphoid Cell Plasticity in Mucosal Infections. Microorganisms 2023; 11:461. [PMID: 36838426 PMCID: PMC9967737 DOI: 10.3390/microorganisms11020461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Mucosal tissue homeostasis is a dynamic process that involves multiple mechanisms including regulation of innate lymphoid cells (ILCs). ILCs are mostly tissue-resident cells which are critical for tissue homeostasis and immune response against pathogens. ILCs can sense environmental changes and rapidly respond by producing effector cytokines to limit pathogen spread and initiate tissue recovery. However, dysregulation of ILCs can also lead to immunopathology. Accumulating evidence suggests that ILCs are dynamic population that can change their phenotype and functions under rapidly changing tissue microenvironment. However, the significance of ILC plasticity in response to pathogens remains poorly understood. Therefore, in this review, we discuss recent advances in understanding the mechanisms regulating ILC plasticity in response to intestinal, respiratory and genital tract pathogens. Key transcription factors and lineage-guiding cytokines regulate this plasticity. Additionally, we discuss the emerging data on the role of tissue microenvironment, gut microbiota, and hypoxia in ILC plasticity in response to mucosal pathogens. The identification of new pathways and molecular mechanisms that control functions and plasticity of ILCs could uncover more specific and effective therapeutic targets for infectious and autoimmune diseases where ILCs become dysregulated.
Collapse
Affiliation(s)
| | | | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Li Y, Ge J, Zhao X, Xu M, Gou M, Xie B, Huang J, Sun Q, Sun L, Bai X, Tan S, Wang X, Dong C. Cell autonomous expression of BCL6 is required to maintain lineage identity of mouse CCR6+ ILC3s. J Exp Med 2023; 220:213808. [PMID: 36651876 PMCID: PMC9856750 DOI: 10.1084/jem.20220440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Innate lymphoid cells (ILC) are similar to T helper (Th) cells in expression of cytokines and transcription factors. For example, RORγt is the lineage-specific transcription factor for both ILC3 and Th17 cells. However, the ILC counterpart for BCL6-expressing T follicular helper (Tfh) cells has not been defined. Here, we report that in the ILC compartment, BCL6 is selectively co-expressed with not only CXCR5 but also RORγt and CCR6 in ILC3 from multiple tissues. BCL6-deficient ILC3 produces enhanced levels of IL-17A and IL-22. More importantly, phenotypic and single-cell ATAC-seq analysis show that absence of BCL6 in mature ILC3 increases the numbers of ILC1 and transitional cells co-expressing ILC3 and ILC1 marker genes. A lineage-tracing experiment further reveals BCL6+ ILC3 to ILC1 trans-differentiation under steady state. Finally, microbiota promote BCL6 expression in colonic CCR6+ ILC3 and thus reinforce their stability. Collectively, our data have demonstrated that CCR6+ ILC3 have both Th17 and Tfh programs and that BCL6 expression in these cells functions to maintain their lineage identity.
Collapse
Affiliation(s)
- Yuling Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Miao Xu
- Broad institute of MIT and Harvard, Cambridge, MA, USA
| | - Mengting Gou
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Bowen Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jinling Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Lin Sun
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Sangnee Tan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China,Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing, China,Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China,Correspondence to Chen Dong:
| |
Collapse
|
10
|
This S, Paidassi H. New perspectives on the regulation of germinal center reaction via αvβ8- mediated activation of TGFβ. Front Immunol 2022; 13:942468. [PMID: 36072589 PMCID: PMC9441935 DOI: 10.3389/fimmu.2022.942468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a long-known modulator of immune responses but has seemingly contradictory effects on B cells. Among cytokines, TGFβ has the particularity of being produced and secreted in a latent form and must be activated before it can bind to its receptor and induce signaling. While the concept of controlled delivery of TGFβ signaling via αvβ8 integrin-mediated activation has gained some interest in the field of mucosal immunity, the role of this molecular mechanism in regulating T-dependent B cell responses is just emerging. We review here the role of TGFβ and its activation, in particular by αvβ8 integrin, in the regulation of mucosal IgA responses and its demonstrated and putative involvement in regulating germinal center (GC) B cell responses. We examine both the direct effect of TGFβ on GC B cells and its ability to modulate the functions of helper cells, namely follicular T cells (Tfh and Tfr) and follicular dendritic cells. Synthetizing recently published works, we reconcile apparently conflicting data and propose an innovative and unified view on the regulation of the GC reaction by TGFβ, highlighting the role of its activation by αvβ8 integrin.
Collapse
Affiliation(s)
- Sébastien This
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, immunologie et infectiologie, Université de Montréal, Montréal, QC, Canada
| | - Helena Paidassi
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| |
Collapse
|
11
|
Favaro RR, Phillips K, Delaunay-Danguy R, Ujčič K, Markert UR. Emerging Concepts in Innate Lymphoid Cells, Memory, and Reproduction. Front Immunol 2022; 13:824263. [PMID: 35774779 PMCID: PMC9237338 DOI: 10.3389/fimmu.2022.824263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Members of the innate immune system, innate lymphoid cells (ILCs), encompass five major populations (Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells) whose functions include defense against pathogens, surveillance of tumorigenesis, and regulation of tissue homeostasis and remodeling. ILCs are present in the uterine environment of humans and mice and are dynamically regulated during the reproductive cycle and pregnancy. These cells have been repurposed to support pregnancy promoting maternal immune tolerance and placental development. To accomplish their tasks, immune cells employ several cellular and molecular mechanisms. They have the capacity to remember a previously encountered antigen and mount a more effective response to succeeding events. Memory responses are not an exclusive feature of the adaptive immune system, but also occur in innate immune cells. Innate immune memory has already been demonstrated in monocytes/macrophages, neutrophils, dendritic cells, and ILCs. A population of decidual NK cells characterized by elevated expression of NKG2C and LILRB1 as well as a distinctive transcriptional and epigenetic profile was found to expand during subsequent pregnancies in humans. These cells secrete high amounts of interferon-γ and vascular endothelial growth factor likely favoring placentation. Similarly, uterine ILC1s in mice upregulate CXCR6 and expand in second pregnancies. These data provide evidence on the development of immunological memory of pregnancy. In this article, the characteristics, functions, and localization of ILCs are reviewed, emphasizing available data on the uterine environment. Following, the concept of innate immune memory and its mechanisms, which include epigenetic changes and metabolic rewiring, are presented. Finally, the emerging role of innate immune memory on reproduction is discussed. Advances in the comprehension of ILC functions and innate immune memory may contribute to uncovering the immunological mechanisms underlying female fertility/infertility, placental development, and distinct outcomes in second pregnancies related to higher birth weight and lower incidence of complications.
Collapse
|
12
|
Betzler AC, Ezić J, Abou Kors T, Hoffmann TK, Wirth T, Brunner C. T Cell Specific BOB.1/OBF.1 Expression Promotes Germinal Center Response and T Helper Cell Differentiation. Front Immunol 2022; 13:889564. [PMID: 35603192 PMCID: PMC9114770 DOI: 10.3389/fimmu.2022.889564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
The transcriptional co-activator BOB.1/OBF.1 is expressed in both B and T cells. The main characteristic of conventional BOB.1/OBF.1 deficient mice is the complete absence of germinal centers (GCs). This defect was mainly attributed to the defective B cell compartment. However, it is unknown whether and how BOB.1/OBF.1 expression in T cells contributes to the GC reaction. To finally clarify this question, we studied the in vivo function of BOB.1/OBF.1 in CD4+ T and follicular T helper (TFH) cell subpopulations by conditional mutagenesis, in the presence of immunocompetent B lymphocytes. BOB.1/OBF.1 deletion in CD4+ T as well as TFH cells resulted in impaired GC formation demonstrating that the impaired GC reaction described for conventional BOB.1/OBF.1-deficient mice cannot exclusively be traced back to the B cell compartment. Furthermore, we show a requirement of BOB.1/OBF.1 for T helper (TH) cell subsets, particularly for TFH cell differentiation.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Tsima Abou Kors
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Wirth
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
13
|
Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers (Basel) 2022; 14:2071. [PMID: 35565201 PMCID: PMC9102917 DOI: 10.3390/cancers14092071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| |
Collapse
|
14
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Barichello T. The role of innate lymphoid cells (ILCs) in mental health. DISCOVER MENTAL HEALTH 2022; 2:2. [PMID: 35224555 PMCID: PMC8855986 DOI: 10.1007/s44192-022-00006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
One hundred and thirty years after lymphoid and myeloid cells were discovered, in 2008, the researchers presented to the scientific community the population of innate lymphoid cells (ILCs) identified in humans and mice. Human ILC subsets were first identified in secondary lymphoid tissues and subsequently reported in the intestine, lung, liver, skin, and meninges. ILCs (ILC1, ILC2, ILC3, and ILCreg) subgroups present plastic properties concerning cytokines, chemokines, and other mediators present in the microenvironment. ILC1s were characterized by their ability to produce interferon (IFN)-γ. ILC2s have a function in innate and adaptive type 2 inflammation by producing effector cytokines such as interleukin (IL)-5 and IL-13. Meningeal ILC2s were activated in an IL-33-dependent mechanism releasing type-2 cytokines and demonstrating that ILC2s proliferate in reaction to IL-33 activation. ILC3s have been discovered as a significant contribution to the homeostasis of the gut barrier and as a source of IL-22. IL-22 presents a pleiotropic activity reinforcing the gut barrier immunity by stimulating anti-microbial peptide synthesis and promoting microbial regulation. Additionally, ILCs can have a pathogenic or protective effect on many disorders, and further research is needed to determine what elements influence the nature of their actions in diverse situations. The narrative review summarizes the role of the ILCs in mental health.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense (UNESC), Criciúma, SC Brazil
| |
Collapse
|
16
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Kumar A, Cao W, Endrias K, Kuchipudi SV, Mittal SK, Sambhara S. Innate lymphoid cells (ILC) in SARS-CoV-2 infection. Mol Aspects Med 2021; 80:101008. [PMID: 34399986 PMCID: PMC8361007 DOI: 10.1016/j.mam.2021.101008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Innate Lymphoid Cells (ILCs) are a class of innate immune cells that form the first line of defense against internal or external abiotic and biotic challenges in the mammalian hosts. As they reside in both the lymphoid and non-lymphoid tissues, they are involved in clearing the pathogens through direct killing or by secretion of cytokines that modulate the adaptive immune responses. There is burgeoning evidence that these cells are important in clearing viral infections; therefore, it is critical to understand their role in the resolution or exacerbation of the disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this review, we summarize the recent findings related to ILCs in response to SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Weiping Cao
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kedan Endrias
- College of Arts and Sciences, Georgia State University, Atlanta, GA, USA
| | - Suresh V Kuchipudi
- Department of Veterinary and Biomedical Sciences and the HUCJ Institutes of Life Sciences, Penn State University, University Park, PA, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
18
|
Bottino C, Dondero A, Castriconi R. Inhibitory axes impacting on the activity and fate of Innate Lymphoid Cells. Mol Aspects Med 2021; 80:100985. [PMID: 34176653 DOI: 10.1016/j.mam.2021.100985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023]
Abstract
In neoplastic patients, an effective immune response ideally should be achieved by the coordinated action of different immune cells with tumor-suppressive functions. These include the more cytolytic members of the Innate Lymphoid Cells (ILCs) family represented by the Natural Killer (NK) cells, whose activities in cancer patients, however, can be hampered by several inhibitory signals. These are generated by membrane-bound and soluble molecules that, interacting with specific inhibitory receptors, create inhibitory axes impacting the NK cell differentiation and effector functions. These breaks, which now represent major immunotherapeutic targets, may be sensitive to interferon (IFN)-γ, whose source, in vivo, is represented by different cell types including the NK and ILC1. Since also ILCs can express receptors of the inhibitory axes like PD-1 and TIGIT, their therapeutic blockade might further amplify the IFN-γ release that, as an unwanted side effect, would promote the onset of NK cell-resistant tumor variants (NKRTV) expressing ligands involved in inhibitory axes. These variants might also arise from the activity of other cytokines such as IL-27, which can increase the expression of HLA class I and PD-Ls in different cell types, including tumor cells. Besides the amplification of membrane-bound inhibitory axes, tumors can reduce the number of infiltrating cytolytic ILCs, promote the recruitment of poorly cytolytic NK cell subsets, and manipulate to their advantage the infiltrating immune cells, which acquire tumor-promoting activities. This occurs thanks to the production of soluble factors including TGF-β1 and IL-18 that, alone or in combination, modify the activating and chemokine receptor repertoire of NK cells, and induce the ILCs differentiation towards cells ineffective in fighting cancer or, even worse, with tumor-promoting functions. The present review aims to present and discuss major inhibitory axes impacting on ILCs functions, migration, and differentiation with a major focus on tumor context.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.
| |
Collapse
|