1
|
Barman S, Kelly A, Dong D, Patel A, Buonopane MJ, Gonzales J, Janoschek B, Draghi A, Dowling DJ. OMIP-111: Immune-Profiling of T Helper 1 (Th1), Th2, and Th17 Signatures in Murine Splenocytes by Targeting Intracellular Cytokines. Cytometry A 2025; 107:221-225. [PMID: 40095325 DOI: 10.1002/cyto.a.24926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Functional cytokines shape both innate and adaptive immune responses in the host after infection or immunization. Deep immunophenotyping of the key functional cytokine signatures associated with T cells in murine lymphoid tissue, especially in the spleen, is challenging. Using spectral flow cytometry, we developed a 17-parameter panel to profile major immune cell subsets along with T cells, memory phenotypes, and functional cytokines in murine splenocytes in steady state as well as in stimulated conditions. This panel dissects the memory T cell compartment via CD62L and CD44 expression after mitogen stimulation. To profile T helper (Th) cell distribution after mitogen stimulation, established Th1 markers IFNγ, TNF, and IL-2; Th2 markers IL-4/5; and the Th17 marker, IL-17, are included. This optimized multicolor spectral flow panel allows a detailed immune-profiling of functional cytokines in the murine T cell compartment and might be useful for exploratory analysis of how these functional cytokines shape host immunity after infection or vaccination. Our panel could be easily modified if researchers wish to tailor the panel to their specific needs.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Aisling Kelly
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Danica Dong
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arsh Patel
- Cytometry Cores, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Brook B, Duval V, Barman S, Speciner L, Sweitzer C, Khanmohammed A, Menon M, Foster K, Ghosh P, Abedi K, Koster J, Nanishi E, Baden LR, Levy O, VanCott T, Micol R, Dowling DJ. Adjuvantation of a SARS-CoV-2 mRNA vaccine with controlled tissue-specific expression of an mRNA encoding IL-12p70. Sci Transl Med 2024; 16:eadm8451. [PMID: 39047117 DOI: 10.1126/scitranslmed.adm8451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Messenger RNA (mRNA) vaccines were pivotal in reducing severe acute respiratory syndrome 2 (SARS-CoV-2) infection burden, yet they have not demonstrated robust durability, especially in older adults. Here, we describe a molecular adjuvant comprising a lipid nanoparticle (LNP)-encapsulated mRNA encoding interleukin-12p70 (IL-12p70). The bioactive adjuvant was engineered with a multiorgan protection (MOP) sequence to restrict transcript expression to the intramuscular injection site. Admixing IL-12-MOP (CTX-1796) with the BNT162b2 SARS-CoV-2 vaccine increased spike protein-specific immune responses in mice. Specifically, the benefits of IL-12-MOP adjuvantation included amplified humoral and cellular immunity and increased immune durability for 1 year after vaccination in mice. An additional benefit included the restoration of immunity in aged mice to amounts comparable to those achieved in young adult animals, alongside amplification with a single immunization. Associated enhanced dendritic cell and germinal center responses were observed. Together, these data demonstrate that an LNP-encapsulated IL-12-MOP mRNA-encoded adjuvant can amplify immunogenicity independent of age, demonstrating translational potential to benefit vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Duval
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Manisha Menon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pallab Ghosh
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Kimia Abedi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jacob Koster
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas VanCott
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - Romain Micol
- Combined Therapeutics Incorporated, Boston, MA 02135, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Soni D, Borriello F, Scott DA, Feru F, DeLeon M, Brightman SE, Cheng WK, Melhem G, Smith JA, Ramirez JC, Barman S, Cameron M, Kelly A, Walker K, Nanishi E, van Haren SD, Phan T, Qi Y, Kinsey R, Raczy MM, Ozonoff A, Pettengill MA, Hubbell JA, Fox CB, Dowling DJ, Levy O. From hit to vial: Precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation. SCIENCE ADVANCES 2024; 10:eadg3747. [PMID: 38959314 PMCID: PMC11221515 DOI: 10.1126/sciadv.adg3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.
Collapse
Affiliation(s)
- Dheeraj Soni
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David A. Scott
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederic Feru
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria DeLeon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E. Brightman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Juan C. Ramirez
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Aisling Kelly
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Kristina Walker
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon Daniel van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tony Phan
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Yizhi Qi
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Robert Kinsey
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Matthew A. Pettengill
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffery A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Christopher B. Fox
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - David J. Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Salgado CL, Corea AFM, Covre LP, Fonseca-Martins AMD, Falqueto A, Guedes HLDM, Rossi-Bergmann B, Gomes DCO. Intranasal delivery of LaAg vaccine improves immunity of aged mice against visceral Leishmaniasis. Acta Trop 2024; 252:107125. [PMID: 38280636 DOI: 10.1016/j.actatropica.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
There are no approved vaccines yet for human visceral leishmaniasis (VL), the most severe form of the leishmaniasis clinical manifestations that is fatal in over 95 % of untreated cases. It is well-accepted that immunological changes during aging have deleterious impact on the efficacy of vaccines and response to infections. In this work, we compared the response of young and aged mice to intranasal vaccination with killed Leishmania amazonensis promastigote antigens (LaAg) that were then challenged with L. infantum infection, a species that causes visceral leishmaniasis. Intranasal vaccination with LaAg induced a similar reduction in parasitism and hepatosplenomegaly in both young and aged mice compared to their unvaccinated counterparts. Following infection, there was also a less prominent inflammatory profile particularly in the vaccinated aged group, with lower production of TNF-α and nitrite compared to the respective unvaccinated group. Interestingly, the LaAg intranasal vaccination promoted increased production of IFN-γ that was observed in both young- and aged vaccinated groups. Additionally, CD4+ and CD8+T cells from both vaccinated groups presented decreased expression of the inhibitory receptors PD-1 and KLRG1 compared to their unvaccinated controls. Interestingly, a strong positive correlation was observed between the expression of both inhibitory receptors PD-1 and KLRG1 and parasitism, which was more conspicuous in the unvaccinated-aged mice than in the others. Overall, this study helps define new strategies to improve vaccine effectiveness and provides a perspective for prophylactic alternatives against leishmaniasis.
Collapse
Affiliation(s)
- Caio Loureiro Salgado
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | | | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Division of Medicine, University College London, London, United Kingdom
| | | | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Cláudio Oliviera Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitoria, Brazil; Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitoria, Brazil.
| |
Collapse
|
6
|
Kim E, Khan MS, Ferrari A, Huang S, Kenniston TW, Cassaniti I, Baldanti F, Gambotto A. Second Boost of Omicron SARS-CoV-2 S1 Subunit Vaccine Induced Broad Humoral Immune Responses in Elderly Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578925. [PMID: 38370806 PMCID: PMC10871204 DOI: 10.1101/2024.02.05.578925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Currently approved COVID-19 vaccines prevent symptomatic infection, hospitalization, and death from the disease. However, repeated homologous boosters, while considered a solution for severe forms of the disease caused by new SARS-CoV-2 variants in elderly individuals and immunocompromised patients, cannot provide complete protection against breakthrough infections. This highlights the need for alternative platforms for booster vaccines. In our previous study, we assessed the boost effect of the SARS-CoV-2 Beta S1 recombinant protein subunit vaccine (rS1Beta) in aged mice primed with an adenovirus-based vaccine expressing SARS-CoV-2-S1 (Ad5.S1) via subcutaneous injection or intranasal delivery, which induced robust humoral immune responses (1). In this follow-up study, we demonstrated that a second booster dose of a non-adjuvanted recombinant Omicron (BA.1) S1 subunit vaccine with Toll-like receptor 4 (TLR4) agonist RS09 (rS1RS09OM) was effective in stimulating strong S1-specific immune responses and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants in 100-week-old mice. Importantly, the second booster dose elicits cross-reactive antibody responses, resulting in ACE2 binding inhibition against the spike protein of SARS-CoV-2 variants, including Omicron (BA.1) and its subvariants. Interestingly, the levels of IgG and neutralizing antibodies correlated with the level of ACE2 inhibition in the booster serum samples, although Omicron S1-specific IgG level showed a weaker correlation compared to Wuhan S1-specific IgG level. Furthermore, we compared the immunogenic properties of the rS1 subunit vaccine in young, middle-aged, and elderly mice, resulting in reduced immunogenicity with age, especially an impaired Th1-biased immune response in aged mice. Our findings demonstrate that the new variant of concern (VOC) rS1 subunit vaccine as a second booster has the potential to offer cross-neutralization against a broad range of variants and to improve vaccine effectiveness against newly emerging breakthrough SARS-CoV-2 variants in elderly individuals who were previously primed with the authorized vaccines.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Chan BCL, Li P, Tsang MSM, Sung JCC, Kwong KWY, Zheng T, Hon SSM, Lau CP, Ho RCY, Chen F, Lau CBS, Leung PC, Wong CK. Adjuvant activities of immunostimulating natural products: Astragalus membranaceus (Fisch.) Bge. and Coriolus versicolor in BNT162b2 vaccination against COVID-19 infection. J Leukoc Biol 2024; 115:177-189. [PMID: 37713617 DOI: 10.1093/jleuko/qiad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The global pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been developing all over the world for more than 3 years. In late 2020, several variants of concern of SARS-CoV-2 virus emerged, with increased viral fitness and transmissibility by mutations of the spike proteins of the viral particle, denting hopes of the use of early-generation vaccines for a widespread protective immunity against viral infection. The use of adjuvants may enhance the immune responses of the conventional application of the COVID-19 vaccine. We have shown that the water extract of 2 β-glucan-enriched immunostimulating natural products, Astragalus membranaceus (Fisch.) Bge. (AM) and Coriolus versicolor (CV), could induce innate immunity-related cytokines from human monocytes (CCL5, interleukin [IL]-6, IL-10, and tumor necrosis factor α) and monocyte-derived dendritic cells (IL-1β, IL-10, IL-12, and tumor necrosis factor α). Using BALB/c mice, orally administrated AM and CV (1,384 and 742 mg/kg/d) for 4 d after vaccination, respectively, could enhance (1) the immunoglobulin G binding activities of BNT162b2 vaccination against ancestral and Delta SARS-CoV-2 spike proteins by 5.8- and 4.3-fold, respectively; (2) the immunoglobulin G3 subclass production of BNT162b2 vaccination against ancestral and variant SARS-CoV-2 spike proteins; and (3) the in vitro antibody-neutralizing activities of BNT162b2 vaccinated mice. In conclusion, combining AM and CV was effective in acting as an oral adjuvant with the messenger RNA vaccine BNT162b2 to improve the antigen binding activities against SARS-CoV-2 ancestral and variant SARS-CoV-2 spike proteins, probably via trained immunity of macrophages and dendritic cells.
Collapse
Affiliation(s)
- Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, Royal Melbourne Institute of Technology University, Bundoora, 264 Plenty Rd, Mill Park VIC 3082, Victoria, Australia
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, 71-77 Yau Ma Hom Road, Kwai Chung, NT, Hong Kong, China
| | - Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, 71-77 Yau Ma Hom Road, Kwai Chung, NT, Hong Kong, China
| | - Tao Zheng
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Sharon Sze-Man Hon
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
| | - Ching-Po Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Ronald Chi-Yan Ho
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Fang Chen
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Ma Liu Shui, Shatin, NT, Hong Kong, China
| |
Collapse
|
8
|
O'Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. J Allergy Clin Immunol 2023; 152:1107-1120.e6. [PMID: 37595760 PMCID: PMC10841117 DOI: 10.1016/j.jaci.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.
Collapse
Affiliation(s)
- Timothy R O'Meara
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Soumik Barman
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Danica Dong
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Manisha Menon
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Md
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
9
|
Routhu NK, Stampfer SD, Lai L, Akhtar A, Tong X, Yuan D, Chicz TM, McNamara RP, Jakkala K, Davis-Gardner ME, St Pierre EL, Smith B, Green KM, Golden N, Picou B, Jean SM, Wood J, Cohen J, Moore IN, Patel N, Guebre-Xabier M, Smith G, Glenn G, Kozlowski PA, Alter G, Ahmed R, Suthar MS, Amara RR. Efficacy of mRNA-1273 and Novavax ancestral or BA.1 spike booster vaccines against SARS-CoV-2 BA.5 infection in nonhuman primates. Sci Immunol 2023; 8:eadg7015. [PMID: 37191508 PMCID: PMC10451060 DOI: 10.1126/sciimmunol.adg7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Samuel David Stampfer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Akil Akhtar
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Xin Tong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kishor Jakkala
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandon Smith
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, LA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Greg Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mehul S. Suthar
- Department of Pediatrics, Division of Infectious Diseases Vaccine Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Doss-Gollin S, Thomas S, Brook B, Abedi K, Lebas C, Auderset F, Lugo-Rodriguez Y, Sanchez-Schmitz G, Dowling DJ, Levy O, van Haren SD. Human in vitro modeling of adjuvant formulations demonstrates enhancement of immune responses to SARS-CoV-2 antigen. NPJ Vaccines 2023; 8:163. [PMID: 37884538 PMCID: PMC10603059 DOI: 10.1038/s41541-023-00759-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Adjuvants can enhance vaccine immunogenicity, but their mechanism of action is often incompletely understood, hampering rapid applicability for pandemic vaccines. Herein, we characterized the cellular and molecular activity of adjuvant formulations available for pre-clinical evaluation, including several developed for global open access. We applied four complementary human in vitro platforms to assess individual and combined adjuvants in unformulated, oil-in-water, and liposomal delivery platforms. Liposomal co-formulation of MPLA and QS-21 was most potent in promoting dendritic cell maturation, selective production of Th1-polarizing cytokines, and activation of SARS-CoV-2 Spike-specific CD4+ and CD8+ T cells in a co-culture assay. Select formulations also significantly enhanced Spike antigen-specific humoral immunity in vivo. This study confirms the utility of the cumulative use of human in vitro tools to predict adjuvanticity potential. Thus, human in vitro modeling may advance public health by accelerating the development of affordable and scalable adjuvants for vaccines tailored to vulnerable populations.
Collapse
Affiliation(s)
- Simon Doss-Gollin
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sanya Thomas
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kimia Abedi
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Célia Lebas
- Vaccine Formulation Institute, 1228 Plan-les-Ouates, Geneva, Switzerland
| | - Floriane Auderset
- Vaccine Formulation Institute, 1228 Plan-les-Ouates, Geneva, Switzerland
| | | | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Daddi L, Dorsett Y, Geng T, Bokoliya S, Yuan H, Wang P, Xu W, Zhou Y. Baseline Gut Microbiome Signatures Correlate with Immunogenicity of SARS-CoV-2 mRNA Vaccines. Int J Mol Sci 2023; 24:11703. [PMID: 37511464 PMCID: PMC10380288 DOI: 10.3390/ijms241411703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The powerful immune responses elicited by the mRNA vaccines targeting the SARS-CoV-2 Spike protein contribute to their high efficacy. Yet, their efficacy can vary greatly between individuals. For vaccines not based on mRNA, cumulative evidence suggests that differences in the composition of the gut microbiome, which impact vaccine immunogenicity, are some of the factors that contribute to variations in efficacy. However, it is unclear if the microbiome impacts the novel mode of immunogenicity of the SARS-CoV-2 mRNA vaccines. We conducted a prospective longitudinal cohort study of individuals receiving SARS-CoV-2 mRNA vaccines where we measured levels of anti-Spike IgG and characterized microbiome composition, at pre-vaccination (baseline), and one week following the first and second immunizations. While we found that microbial diversity at all timepoints correlated with final IgG levels, only at baseline did microbial composition and predicted function correlate with vaccine immunogenicity. Specifically, the phylum Desulfobacterota and genus Bilophila, producers of immunostimulatory LPS, positively correlated with IgG, while Bacteroides was negatively correlated. KEGG predicted pathways relating to SCFA metabolism and sulfur metabolism, as well as structural components such as flagellin and capsular polysaccharides, also positively correlated with IgG levels. Consistent with these findings, depleting the microbiome with antibiotics reduced the immunogenicity of the BNT162b2 vaccine in mice. These findings suggest that gut microbiome composition impacts the immunogenicity of the SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Lauren Daddi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tingting Geng
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Suresh Bokoliya
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Hanshu Yuan
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Penghua Wang
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, CT 06269, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Lee B, Nanishi E, Levy O, Dowling DJ. Precision Vaccinology Approaches for the Development of Adjuvanted Vaccines Targeted to Distinct Vulnerable Populations. Pharmaceutics 2023; 15:1766. [PMID: 37376214 PMCID: PMC10305121 DOI: 10.3390/pharmaceutics15061766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize immunizations across the lifespan. Here, we focus on two key elements of precision vaccinology, as applied to epidemic/pandemic response and preparedness, including (a) selecting robust combinations of adjuvants and antigens, and (b) coupling these platforms with appropriate formulation systems. In this context, several considerations exist, including the intended goals of immunization (e.g., achieving immunogenicity versus lessening transmission), reducing the likelihood of adverse reactogenicity, and optimizing the route of administration. Each of these considerations is accompanied by several key challenges. On-going innovation in precision vaccinology will expand and target the arsenal of vaccine components for protection of vulnerable populations.
Collapse
Affiliation(s)
- Branden Lee
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA 02115, USA; (B.L.); (E.N.); (O.L.)
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Kim E, Khan MS, Ferrari A, Huang S, Sammartino JC, Percivalle E, Kenniston TW, Cassaniti I, Baldanti F, Gambotto A. SARS-CoV-2 S1 Subunit Booster Vaccination Elicits Robust Humoral Immune Responses in Aged Mice. Microbiol Spectr 2023; 11:e0436322. [PMID: 37162333 PMCID: PMC10269910 DOI: 10.1128/spectrum.04363-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concerns about reduced vaccine effectiveness and the increased risk of infection, and while repeated homologous booster shots are recommended for elderly and immunocompromised individuals, they cannot completely protect against breakthrough infections. In our previous study, we assessed the immunogenicity of an adenovirus-based vaccine expressing SARS-CoV-2 S1 (Ad5.S1) in mice, which induced robust humoral and cellular immune responses (E. Kim, F. J. Weisel, S. C. Balmert, M. S. Khan, et al., Eur J Immunol 51:1774-1784, 2021, https://doi.org/10.1002/eji.202149167). In this follow-up study, we found that the mice had high titers of anti-S1 antibodies 1 year after vaccination, and one booster dose of the nonadjuvanted rS1Beta (recombinant S1 protein of SARS-CoV-2 Beta [B.1.351]) subunit vaccine was effective at stimulating strong long-lived S1-specific immune responses and inducing significantly high neutralizing antibodies against Wuhan, Beta, and Delta strains, with 3.6- to 19.5-fold increases. Importantly, the booster dose also elicited cross-reactive antibodies, resulting in angiotensin-converting enzyme 2 (ACE2) binding inhibition against spikes of SARS-CoV-2, including Omicron variants, persisting for >28 weeks after booster vaccination. Interestingly, the levels of neutralizing antibodies were correlated not only with the level of S1 binding IgG but also with ACE2 inhibition. Our findings suggest that the rS1Beta subunit vaccine candidate as a booster has the potential to offer cross-neutralization against broad variants and has important implications for the vaccine control of newly emerging breakthrough SARS-CoV-2 variants in elderly individuals primed with adenovirus-based vaccines like AZD1222 and Ad26.COV2.S. IMPORTANCE Vaccines have significantly reduced the incidences of severe coronavirus disease 2019 (COVID-19) cases and deaths. However, the emergence of SARS-CoV-2 variants has raised concerns about their increased transmissibility and ability to evade neutralizing antibodies, especially among elderly individuals who are at higher risks of mortality and reductions of vaccine effectiveness. To address this, a heterologous booster vaccination strategy has been considered as a solution to protect the elderly population against breakthrough infections caused by emerging variants. This study evaluated the booster effect of an S1 subunit vaccine in aged mice that had been previously primed with adenoviral vaccines, providing valuable preclinical evidence for elderly people vaccinated with the currently approved COVID-19 vaccines. This study confirms the potential for using the S1 subunit vaccine as a booster to enhance cross-neutralizing antibodies against emerging variants of concern.
Collapse
Affiliation(s)
- Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Muhammad S. Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Josè C. Sammartino
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Thomas W. Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Okada Y, Kayano T, Anzai A, Zhang T, Nishiura H. Protection against SARS-CoV-2 BA.4 and BA.5 subvariants via vaccination and natural infection: A modeling study. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2530-2543. [PMID: 36899545 DOI: 10.3934/mbe.2023118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With continuing emergence of new SARS-CoV-2 variants, understanding the proportion of the population protected against infection is crucial for public health risk assessment and decision-making and so that the general public can take preventive measures. We aimed to estimate the protection against symptomatic illness caused by SARS-CoV-2 Omicron variants BA.4 and BA.5 elicited by vaccination against and natural infection with other SARS-CoV-2 Omicron subvariants. We used a logistic model to define the protection rate against symptomatic infection caused by BA.1 and BA.2 as a function of neutralizing antibody titer values. Applying the quantified relationships to BA.4 and BA.5 using two different methods, the estimated protection rate against BA.4 and BA.5 was 11.3% (95% confidence interval [CI]: 0.01-25.4) (method 1) and 12.9% (95% CI: 8.8-18.0) (method 2) at 6 months after a second dose of BNT162b2 vaccine, 44.3% (95% CI: 20.0-59.3) (method 1) and 47.3% (95% CI: 34.1-60.6) (method 2) at 2 weeks after a third BNT162b2 dose, and 52.3% (95% CI: 25.1-69.2) (method 1) and 54.9% (95% CI: 37.6-71.4) (method 2) during the convalescent phase after infection with BA.1 and BA.2, respectively. Our study indicates that the protection rate against BA.4 and BA.5 are significantly lower compared with those against previous variants and may lead to substantial morbidity, and overall estimates were consistent with empirical reports. Our simple yet practical models enable prompt assessment of public health impacts posed by new SARS-CoV-2 variants using small sample-size neutralization titer data to support public health decisions in urgent situations.
Collapse
Affiliation(s)
- Yuta Okada
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Taishi Kayano
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Asami Anzai
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Tong Zhang
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| |
Collapse
|
15
|
Brook B, Fatou B, Kumar Checkervarty A, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The mRNA vaccine BNT162b2 demonstrates impaired T H1 immunogenicity in human elders in vitro and aged mice in vivo. RESEARCH SQUARE 2022:rs.3.rs-2395118. [PMID: 36597547 PMCID: PMC9810224 DOI: 10.21203/rs.3.rs-2395118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have been key to addressing the SARS-CoV-2 pandemic but have impaired immunogenicity and durability in vulnerable older populations. We evaluated the mRNA vaccine BNT162b2 in human in vitro whole blood assays with supernatants from adult (18-50 years) and elder (≥60 years) participants measured by mass spectrometry and proximity extension assay proteomics. BNT162b2 induced increased expression of soluble proteins in adult blood (e.g., C1S, PSMC6, CPN1), but demonstrated reduced proteins in elder blood (e.g., TPM4, APOF, APOC2, CPN1, and PI16), including 30-85% lower induction of TH1-polarizing cytokines and chemokines (e.g., IFNγ, and CXCL10). Elder TH1 impairment was validated in mice in vivo and associated with impaired humoral and cellular immunogenicity. Our study demonstrates the utility of a human in vitro platform to model age-specific mRNA vaccine activity, highlights impaired TH1 immunogenicity in older adults, and provides rationale for developing enhanced mRNA vaccines with greater immunogenicity in vulnerable populations.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC, Canada
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Amy C Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Lindsey R Baden
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Paolo Palma
- Bambino Gesù Children's Hospital, Rome, Italy
- Chair of Pediatrics, University of Rome, Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Simon D van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
16
|
O’Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.07.519460. [PMID: 36523401 PMCID: PMC9753785 DOI: 10.1101/2022.12.07.519460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Obesity and Type 2 Diabetes Mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including COVID-19. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used SARS-CoV-2 mRNA vaccines. Objective To establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. Methods We utilized a murine model of diet-induced obesity and insulin resistance to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. Results Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet (ND), HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8 + T cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in ND mice but not in HFD mice. Conclusion We demonstrate impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases. Capsule summary Obesity and type 2 diabetes impair SARS-CoV-2 mRNA vaccine efficacy in a murine model.
Collapse
Affiliation(s)
- Timothy R. O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Marisa E. McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Danica Dong
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Carly Dillen
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA 21201
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Broad Institute of MIT & Harvard, Cambridge, MA, USA 02142
| | - Matthew B. Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|