1
|
Bozzi M, Sciandra F, Bigotti MG, Brancaccio A. Misregulation of the Ubiquitin-Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin-Glycoprotein Complex. Cells 2025; 14:721. [PMID: 40422224 DOI: 10.3390/cells14100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin-glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways-primarily the ubiquitin-proteasome and autophagy-lysosome systems-in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
| | - Maria Giulia Bigotti
- Bristol Heart Institute, Bristol Royal Infirmary, Research Floor Level 7, Bristol BS2 8HW, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC (CNR), Largo F. Vito, 00168 Roma, Italy
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
2
|
Chirivì M, Maiullari F, Milan M, Ceraolo MG, Fratini N, Fasciani A, Bousselmi S, Stirm M, Scalera F, Gervaso F, Villa M, Viganò R, Brambilla F, Mauri P, De Falco E, Silvestre DD, Costantini M, Wolf E, Bearzi C, Rizzi R. Mimicking the Dystrophic Cardiac Extracellular Environment through DystroGel. Adv Healthc Mater 2025; 14:e2404251. [PMID: 39962811 PMCID: PMC11973943 DOI: 10.1002/adhm.202404251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/03/2025] [Indexed: 04/08/2025]
Abstract
Advances in understanding the mechanisms behind genetic diseases like Duchenne muscular dystrophy (DMD) underscore the critical role of the extracellular matrix (ECM) composition in disease progression. Effective in vitro models must replicate the intercellular relationships and physicochemical properties of native ECM to fully capture disease-specific characteristics. Although recent biomaterials support the in vitro biofabrication of pathophysiological environments, they often lack disease-specific ECM features. In this study, DystroGel, a hydrogel derived from the cardiac ECM of a porcine DMD model, replicates the distinct molecular composition of dystrophic cardiac tissue for the first time. The findings indicate that the dystrophic ECM matrix exhibits a unique protein profile, impacting cellular processes critical to DMD pathology. This work demonstrates the importance of using a 3D substrate that recreates intercellular dynamics within a defined pathological environment, enhancing the ability to model genetic disorders and providing a valuable tool for advancing personalized therapeutic strategies.
Collapse
Affiliation(s)
- Maila Chirivì
- Department of Molecular MedicineSapienza UniversityViale Regina Elena, 324Rome00161Italy
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoVia Francesco Sforza, 35Milan20122Italy
| | - Fabio Maiullari
- Ph.D. Program in Cellular and Molecular BiologyDepartment of BiologyUniversity of Rome “Tor Vergata”Via della Ricerca Scientifica, 1Rome00133Italy
| | - Marika Milan
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoVia Francesco Sforza, 35Milan20122Italy
| | - Maria Grazia Ceraolo
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoVia Francesco Sforza, 35Milan20122Italy
| | - Nicole Fratini
- Department of Molecular MedicineSapienza UniversityViale Regina Elena, 324Rome00161Italy
| | - Alessandra Fasciani
- Fondazione Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”Via Francesco Sforza, 35Milan20122Italy
| | - Salma Bousselmi
- Neurology UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoVia Francesco Sforza, 35Milan20122Italy
- Ph.D. Program in Cellular and Molecular BiologyDepartment of BiologyUniversity of Rome “Tor Vergata”Via della Ricerca Scientifica, 1Rome00133Italy
| | - Michael Stirm
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU Munich81377MunichGermany
- Center for Innovative Medical Models (CiMM)Department of Veterinary SciencesLMU Munich85764OberschleißheimGermany
| | - Francesca Scalera
- Institute of NanotechnologyNational Research Councilc/o Campus Ecoteknevia MonteroniLecce73100Italy
| | - Francesca Gervaso
- Institute of NanotechnologyNational Research Councilc/o Campus Ecoteknevia MonteroniLecce73100Italy
| | - Michela Villa
- Fondazione Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”Via Francesco Sforza, 35Milan20122Italy
- Department of BiosciencesUniversity of MilanVia Celoria, 26Milan20133Italy
| | - Raffaello Viganò
- Institute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi, 93, SegrateMilan20054Italy
| | - Francesca Brambilla
- Institute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi, 93, SegrateMilan20054Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi, 93, SegrateMilan20054Italy
| | - Elena De Falco
- Institute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi, 93, SegrateMilan20054Italy
| | - Dario Di Silvestre
- Department of BiosciencesUniversity of MilanVia Celoria, 26Milan20133Italy
| | - Marco Costantini
- Institute of Physical Chemistry – Polish Academy of SciencesMarcina Kasprzaka 44/52Warsaw01–224Poland
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU Munich81377MunichGermany
| | - Claudia Bearzi
- Institute for Biomedical TechnologiesNational Research CouncilVia Fratelli Cervi, 93, SegrateMilan20054Italy
| | - Roberto Rizzi
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeC.so della Repubblica 79Latina04100Italy
| |
Collapse
|
3
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Kamal KY, Trombetta-Lima M. Mechanotransduction and Skeletal Muscle Atrophy: The Interplay Between Focal Adhesions and Oxidative Stress. Int J Mol Sci 2025; 26:2802. [PMID: 40141444 PMCID: PMC11943188 DOI: 10.3390/ijms26062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Mechanical unloading leads to profound musculoskeletal degeneration, muscle wasting, and weakness. Understanding the specific signaling pathways involved is essential for uncovering effective interventions. This review provides new perspectives on mechanotransduction pathways, focusing on the critical roles of focal adhesions (FAs) and oxidative stress in skeletal muscle atrophy under mechanical unloading. As pivotal mechanosensors, FAs integrate mechanical and biochemical signals to sustain muscle structural integrity. When disrupted, these complexes impair force transmission, activating proteolytic pathways (e.g., ubiquitin-proteasome system) that accelerate atrophy. Oxidative stress, driven by mitochondrial dysfunction and NADPH oxidase-2 (NOX2) hyperactivation, exacerbates muscle degeneration through excessive reactive oxygen species (ROS) production, impaired repair mechanisms, and dysregulated redox signaling. The interplay between FA dysfunction and oxidative stress underscores the complexity of muscle atrophy pathogenesis: FA destabilization heightens oxidative damage, while ROS overproduction further disrupts FA integrity, creating a self-amplifying vicious cycle. Therapeutic strategies, such as NOX2 inhibitors, mitochondrial-targeted antioxidants, and FAK-activating compounds, promise to mitigate muscle atrophy by preserving mechanotransduction signaling and restoring redox balance. By elucidating these pathways, this review advances the understanding of muscle degeneration during unloading and identifies promising synergistic therapeutic targets, emphasizing the need for combinatorial approaches to disrupt the FA-ROS feedback loop.
Collapse
Affiliation(s)
- Khaled Y. Kamal
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, 9700 Groningen, The Netherlands;
| |
Collapse
|
5
|
Etxaniz U, Marks I, Albin T, Diaz M, Bhardwaj R, Anderson A, Tyaglo O, Hoang T, Missinato MA, Svensson K, Badillo B, Kovach PR, Leung L, Cochran M, Kwon HW, Ahad Shah MN, Maruyama R, Yokota T, Doppalapudi VR, Darimont B, Younis H, Flanagan WM, Levin AA, Huang H, Karamanlidis G. AOC 1044 induces exon 44 skipping and restores dystrophin protein in preclinical models of Duchenne muscular dystrophy. Nucleic Acids Res 2025; 53:gkaf241. [PMID: 40183632 PMCID: PMC11969676 DOI: 10.1093/nar/gkaf241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe disorder caused by mutations in the dystrophin gene, resulting in loss of functional dystrophin protein in muscle. While phosphorodiamidate morpholino oligomers (PMOs) are promising exon-skipping therapeutics aimed at restoring dystrophin expression, their effectiveness is often limited by poor muscle delivery. We developed AOC 1044, an antibody-oligonucleotide conjugate (AOC) that combines a PMO-targeting exon 44 with an antibody against the transferrin receptor (TfR1), enhancing delivery to muscle tissues for patients with DMD amenable to exon 44 skipping (DMD44). AOC 1044 induces dose-dependent exon 44 skipping and its mouse-active variant elicited dose-dependent dystrophin restoration in skeletal and cardiac muscle in a DMD mouse model. This treatment also reduced muscle damage, as evidenced by decreases in serum creatine kinase and key liver enzymes, suggesting that restored dystrophin is functionally active. In nonhuman primates, single or repeated AOC 1044 doses resulted in dose-dependent increases in PMO concentration and exon 44 skipping across a range of muscle tissues, including the heart. Collectively, these findings highlight AOC 1044 as a promising therapeutic candidate for patients with DMD44, offering improved muscle targeting and meaningful dystrophin restoration, with potential clinical benefits in reducing muscle degeneration.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Dystrophin/genetics
- Dystrophin/metabolism
- Exons
- Mice
- Disease Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Morpholinos
- Humans
- Mice, Inbred mdx
- Male
- Receptors, Transferrin/immunology
- Receptors, Transferrin/antagonists & inhibitors
Collapse
Affiliation(s)
- Usue Etxaniz
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Isaac Marks
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Tyler Albin
- Seawolf Therapeutics, 9880 Campus Point Drive, Suite 210, San Diego, CA 92121, United States
| | - Matthew Diaz
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Raghav Bhardwaj
- Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, United States
| | - Aaron Anderson
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Olecya Tyaglo
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Tiffany Hoang
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Maria Azzurra Missinato
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Kristoffer Svensson
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Ben Badillo
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Philip R Kovach
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Laura Leung
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Md Nur Ahad Shah
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Rika Maruyama
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Toshifumi Yokota
- Yokota Lab, Department of Medical Genetics, University of Alberta, Edmonton,T6G 2H, Canada
| | - Venkata R Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Beatrice Darimont
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Husam S Younis
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - W Michael Flanagan
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Arthur A Levin
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| | - Georgios Karamanlidis
- Avidity Biosciences, Inc., 10578 Science Drive, Suite 125, San Diego, CA 92121, United States
| |
Collapse
|
6
|
Suriyagandhi V, Ma Y, Paparozzi V, Guarnieri T, Di Pietro B, Dimitri GM, Tieri P, Sala C, Lai D, Nardini C. Mechanotransduction and inflammation: An updated comprehensive representation. MECHANOBIOLOGY IN MEDICINE 2025; 3:100112. [PMID: 40396134 PMCID: PMC12082120 DOI: 10.1016/j.mbm.2024.100112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 05/22/2025]
Abstract
Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling. While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in relatively compartmentalized areas, and we therefore argue here that to understand the relationship of mechanical stimuli with inflammation - with a high translational potential - it is crucial to offer and analyze a unified view of mechanotransduction. We therefore present here pathway representation, recollected with the standard systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an exemplar and emerging molecule with potential for medical translation.
Collapse
Affiliation(s)
- Vennila Suriyagandhi
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
| | - Ying Ma
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
- Department of Computer Science and Engineering, Southeast University, 211189 Nanjing, PR China
| | - Veronica Paparozzi
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
| | - Tiziana Guarnieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Biagio Di Pietro
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
| | | | - Paolo Tieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
| | - Claudia Sala
- Department of Medical and Surgical Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Darong Lai
- Department of Computer Science and Engineering, Southeast University, 211189 Nanjing, PR China
| | - Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), 00185 Roma, Italy
| |
Collapse
|
7
|
Belkin TG, Masterman EI, Yildiz GS, Kiriazis H, Mellett NA, Cross J, Grigolon K, Dogra A, Donner D, Chooi R, Liang A, Kompa AR, Sadoshima J, Edgley AJ, Greening DW, Meikle PJ, Tham YK, McMullen JR. An optimized plasmalogen modulating dietary supplement provides greater protection in a male than female mouse model of dilated cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100273. [PMID: 39802264 PMCID: PMC11708127 DOI: 10.1016/j.jmccpl.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown. To determine whether an optimized AG supplement could restore plasmalogen levels and attenuate cardiac dysfunction/pathology, we placed a cardiac-specific transgenic DCM mouse model of both sexes on chow +/-1.5 % AG supplementation at ∼10 weeks of age for 16 weeks. Cardiac function was assessed by echocardiography, tissues were collected for histological and molecular analyses including lipidomics and proteomics via liquid chromatography-mass spectrometry. AG supplementation increased total plasmalogens in DCM hearts and attenuated lung congestion of both sexes, but only prevented cardiac dysfunction in males. This was associated with attenuated cardiac and renal enlargement, a more favorable pro-cardiac gene expression profile, and a trend for lower cardiac fibrosis. By lipidomics, specific d18:1 ceramide species associated with cardiac pathology were lower in the DCM hearts from mice on the AG diet, and tetralinoleoyl cardiolipins, a lipid crucial for mitochondrial function was restored with AG supplementation. Proteomic analysis of hearts from male DCM mice receiving AG supplementation revealed enrichment in mitochondrial protein network, as well as upregulation of extracellular matrix binding proteins including agrin, a protein associated with cardiac regeneration. In summary, AG supplementation restored plasmalogens in DCM hearts but showed greater therapeutic potential in males than females.
Collapse
Affiliation(s)
- Teleah G. Belkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, VIC, Australia
- School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | | | - Gunes S. Yildiz
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, VIC, Australia
| | | | - Jonathon Cross
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyah Grigolon
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Akshima Dogra
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Daniel Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, VIC, Australia
| | - Roger Chooi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Amy Liang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Andrew R. Kompa
- Department of Medicine, The University of Melbourne, VIC, Australia
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Amanda J. Edgley
- Department of Medicine, The University of Melbourne, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, VIC, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Faculty of Medicine Nursing and Health Sciences, Monash University, VIC, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, School of Translational Medicine, Monash University, Clayton, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, VIC, Australia
- Department of Diabetes, School of Translational Medicine, Monash University, Clayton, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Julie R. McMullen
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
- Department of Physiology, Monash University, VIC, Australia
- Monash Alfred Baker Centre for Cardiovascular Research, Faculty of Medicine Nursing and Health Sciences, Monash University, VIC, Australia
- Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
8
|
Lupu M, Pintilie IM, Teleanu RI, Marin GG, Vladâcenco OA, Severin EM. Early Cardiac Dysfunction in Duchenne Muscular Dystrophy: A Case Report and Literature Update. Int J Mol Sci 2025; 26:1685. [PMID: 40004149 PMCID: PMC11855830 DOI: 10.3390/ijms26041685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe X-linked recessive disorder characterized by progressive muscle degeneration due to dystrophin deficiency. Cardiac involvement, particularly dilated cardiomyopathy, significantly impacts morbidity and mortality, typically manifesting after age 10. This case report presents a rare instance of early-onset cardiac involvement in a 3-year-old male with a confirmed deletion in exon 55 of the dystrophin gene. The patient developed dilated cardiomyopathy at 3 years and 8 months, with progressive left ventricular dysfunction despite early treatment with corticosteroids, ACE inhibitors, and beta-blockers. Genetic mechanisms and genotype-phenotype correlations related to cardiac involvement were reviewed, highlighting emerging therapies such as exon skipping, vamorolone, ifetroban, and rimeporide. Studies indicate that variants in exons 12, 14-17, 31-42, 45, and 48-49 are associated with more severe cardiac impairment. This case emphasizes the need for early, ongoing cardiac assessment and personalized treatment to address disease heterogeneity. While current DMD care standards improve survival, optimizing management through early intervention and novel therapies remains essential. Further research is needed to better understand genotype-phenotype correlations and improve cardiac outcomes for patients with DMD.
Collapse
Affiliation(s)
- Maria Lupu
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
| | - Iustina Mihaela Pintilie
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Raluca Ioana Teleanu
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Georgiana Gabriela Marin
- Clinical Cardiology Department of Oncological Institute, Prof. Dr. Alexandru Trestioreanu, 022328 Bucharest, Romania;
| | - Oana Aurelia Vladâcenco
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
- Department of Paediatric Neurology, Dr. Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Emilia Maria Severin
- Clinical Neurosciences Department, Paediatric Neurology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.L.); (R.I.T.); (O.A.V.); (E.M.S.)
| |
Collapse
|
9
|
Oppeneer T, Qi Y, Henshaw J, Larimore K, Puoliväli J, Carter C, Fant P, Brennan S, Wetzel LA, Sigg MA, O'Neill CA. BMN 351-Induced Exon Skipping and Dystrophin Expression in Skeletal and Cardiac Muscle Lead to Preservation of Motor Function in a Mouse Model of Exon 51 Skip-Amenable Duchenne Muscular Dystrophy. Nucleic Acid Ther 2025; 35:81-92. [PMID: 39916519 DOI: 10.1089/nat.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations of the DMD gene that prevent the expression of functional dystrophin protein. BMN 351 is an antisense oligonucleotide (ASO) designed to induce skipping of exon 51 of dystrophin pre-mRNA and production of internally deleted but functional dystrophin. We determined whether extended-term BMN 351 dosing leads to exon skipping, dystrophin production, and improved motor function in hDMDdel52/mdx mice containing a human exon 52-deleted DMD transgene. Weekly intravenous doses of vehicle, 6 mg/kg BMN 351, or 18 mg/kg BMN 351 were administered for 25 weeks, and samples were analyzed 4 and 12 weeks post-dosing. BMN 351 produced dose-dependent exon skipping levels in the heart and quadriceps muscles, accompanied by dose-dependent increases in mean dystrophin levels of 17% to 55% 12 weeks post-dosing. Compared with vehicle-treated hDMDdel52/mdx mice, BMN 351 ameliorated DMD-related histopathologic changes in the gastrocnemius muscle and heart. Both BMN 351 doses preserved fine motor kinematics, which was worse in vehicle-treated hDMDdel52/mdx mice compared with wild-type 4 and 12 weeks post-dosing. Liver samples demonstrated findings consistent with ASO accumulation, to which mice are considered especially sensitive compared to humans and other non-clinical species. These results support further non-clinical and clinical development of BMN 351.
Collapse
MESH Headings
- Animals
- Dystrophin/genetics
- Dystrophin/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Exons/genetics
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Disease Models, Animal
- Humans
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Male
- Motor Activity/drug effects
Collapse
Affiliation(s)
- Todd Oppeneer
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | - Yulan Qi
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | - Joshua Henshaw
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | - Kevin Larimore
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | | | - Caitlyn Carter
- Charles River Laboratories, Inc., Mattawan, Michigan, USA
| | - Pierluigi Fant
- Charles River Laboratories France Safety Assessment SAS, Saint-Germain-Nuelles, France
| | | | - Laura A Wetzel
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | - Monika A Sigg
- BioMarin Pharmaceutical Inc., San Rafael, California, USA
| | | |
Collapse
|
10
|
Elasbali AM, Anjum F, AlKhamees OA, Abu Al-Soud W, Adnan M, Shamsi A, Hassan MI. A structural genomics approach to investigate Dystrophin mutations and their impact on the molecular pathways of Duchenne muscular dystrophy. Front Genet 2025; 16:1517707. [PMID: 39981262 PMCID: PMC11841421 DOI: 10.3389/fgene.2025.1517707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background Dystrophin is a key protein encoded by the DMD gene, serves as a scaffold linking the cytoskeleton to the extracellular matrix that plays a critical role in muscle contraction, relaxation, and structural integrity. Mutations, particularly single-point amino acid substitutions, can lead to dysfunctional Dystrophin, causing muscular dystrophies, with Duchenne muscular dystrophy (DMD) being the most severe form. Objective This study aimed to evaluate the effects of 184 single-point amino acid substitutions on the structure and function of Dystrophin using computational approaches. Methods Many computational tools were used to predict the impact of amino acid substitutions on protein stability, solubility, and function. Pathogenic potential was assessed using disease phenotype predictors and CADD scores, while allele frequency data from gnomAD contextualized mutation prevalence. Additionally, aggregation propensity, frustration analysis, and post-translational modification sites were analyzed for functional disruptions. Results Of the 184 substitutions analyzed, 50 were identified as deleterious, with 41 predicted to be pathogenic. Seventeen mutations were localized in the Calponin-homology (CH) 1 domain, a critical functional region of Dystrophin. Six substitutions (N26H, N26K, G47W, D98G, G109A, and G109R) were predicted to decrease protein solubility and were located in minimally frustrated regions, potentially compromising Dystrophin functionality and contributing to DMD pathogenesis. Conclusion This study provides novel insights into the molecular mechanisms of DMD, highlighting specific mutations that disrupt Dystrophin's solubility and function. These findings could inform future therapeutic strategies targeting Dystrophin mutations to address DMD pathogenesis.
Collapse
Affiliation(s)
- Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Osama A. AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Kai F, Leidal AM, Weaver VM. Tension-induced organelle stress: an emerging target in fibrosis. Trends Pharmacol Sci 2025; 46:117-131. [PMID: 39818520 PMCID: PMC11805623 DOI: 10.1016/j.tips.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma. This stiffening appropriates actomyosin-mediated mechanical tension within cells to ultimately affect cell fate decisions and function. Recent studies demonstrate that subcellular organelles are physically connected to the actin cytoskeleton and sensitive to mechanoperturbations. These insights highlight mechanisms that may contribute to the chronic organelle stress in many fibrotic diseases, including those of the lung and liver. In this review, we discuss the hypothesis that a stiffened fibrotic ECM corrupts intracellular mechanical tension to compromise organelle homeostasis. We summarize potential therapeutics that could intervene in this mechanical dialog and that may have clinical benefit for resolving pathological organelle stress in fibrosis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Andrew M Leidal
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Radiation Oncology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Aartsma-Rus A. Histone deacetylase inhibition with givinostat: a multi-targeted mode of action with the potential to halt the pathological cascade of Duchenne muscular dystrophy. Front Cell Dev Biol 2025; 12:1514898. [PMID: 39834392 PMCID: PMC11743666 DOI: 10.3389/fcell.2024.1514898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis. HDAC inhibition has consequently been investigated as a therapeutic approach for muscular dystrophies that, significantly, works independently from specific genetic mutations, making it potentially suitable for all patients with DMD. This review discusses how HDAC inhibition addresses DMD pathophysiology in a multi-targeted mode of action and summarizes the recent evidence on the rationale for HDAC inhibition with givinostat, which is now approved by the United States Food and Drug Administration for the treatment of DMD in patients aged 6 years and older.
Collapse
Affiliation(s)
- A. Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
13
|
Wan L, Ge X, Xu Q, Huang G, Yang T, Campbell KP, Yan Z, Wu J. Structure and assembly of the dystrophin glycoprotein complex. Nature 2025; 637:1252-1260. [PMID: 39663450 DOI: 10.1038/s41586-024-08310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
The dystrophin glycoprotein complex (DGC) has a crucial role in maintaining cell membrane stability and integrity by connecting the intracellular cytoskeleton with the surrounding extracellular matrix1-3. Dysfunction of dystrophin and its associated proteins results in muscular dystrophy, a disorder characterized by progressive muscle weakness and degeneration4,5. Despite the important roles of the DGC in physiology and pathology, its structural details remain largely unknown, hindering a comprehensive understanding of its assembly and function. Here we isolated the native DGC from mouse skeletal muscle and obtained its high-resolution structure. Our findings unveil a markedly divergent structure from the previous model of DGC assembly. Specifically, on the extracellular side, β-, γ- and δ-sarcoglycans co-fold to form a specialized, extracellular tower-like structure, which has a central role in complex assembly by providing binding sites for α-sarcoglycan and dystroglycan. In the transmembrane region, sarcoglycans and sarcospan flank and stabilize the single transmembrane helix of dystroglycan, rather than forming a subcomplex as previously proposed6-8. On the intracellular side, sarcoglycans and dystroglycan engage in assembly with the dystrophin-dystrobrevin subcomplex through extensive interaction with the ZZ domain of dystrophin. Collectively, these findings enhance our understanding of the structural linkage across the cell membrane and provide a foundation for the molecular interpretation of many muscular dystrophy-related mutations.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofei Ge
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiandi Yang
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
14
|
Scano M, Benetollo A, Dalla Barba F, Akyurek EE, Carotti M, Sacchetto R, Sandonà D. Efficacy of Cystic Fibrosis Transmembrane Regulator Corrector C17 in Beta-Sarcoglycanopathy-Assessment of Patient's Primary Myotubes. Int J Mol Sci 2024; 25:13313. [PMID: 39769077 PMCID: PMC11676211 DOI: 10.3390/ijms252413313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the SGCB gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system. These data, collected using HEK-293 cells expressing either the I119F- or Y184C mutants of β-SG, were subsequently confirmed in primary myotubes derived from an LGMD2E/R4 patient carrying a homozygous I92T mutation. The knowledge that β-SG with an amino acid substitution shares a pathway of degradation with α-SG mutants, allowed us to explore the pharmacological approach successfully tested in LGMD2D/R3. Several CFTR correctors, particularly corrector C17, preserved β-SG mutants from degradation and promoted localization at the sarcolemma of the entire SG complex. The presence of the complex, despite containing a mutated subunit, improved sarcolemma integrity, as evidenced by the reduced creatine kinase release from myotubes under hypoosmotic stress. These results suggest that β-SG missense mutants undergo proteasomal degradation as α-SG mutants, and that CFTR correctors, particularly C17, may be used as a potential therapeutic option for recovering and stabilizing the SG complex in patients with sarcoglycanopathies.
Collapse
Affiliation(s)
- Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (M.S.); (A.B.); (F.D.B.); (M.C.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (M.S.); (A.B.); (F.D.B.); (M.C.)
| | - Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (M.S.); (A.B.); (F.D.B.); (M.C.)
| | - Eylem Emek Akyurek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy; (E.E.A.); (R.S.)
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (M.S.); (A.B.); (F.D.B.); (M.C.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy; (E.E.A.); (R.S.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (M.S.); (A.B.); (F.D.B.); (M.C.)
| |
Collapse
|
15
|
Huang C, Gao Z, Zhang Y, Li G, Ge L. Treatment of giant fecalith colonic obstruction in a patient with Duchenne muscular dystrophy using endoscopic injection of hydrogen peroxide: a case report and literature review. Front Med (Lausanne) 2024; 11:1456246. [PMID: 39703526 PMCID: PMC11656305 DOI: 10.3389/fmed.2024.1456246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder primarily affecting cardiac and skeletal muscles, with gastrointestinal obstruction being an infrequent complication. Case report We present a 17-year-old boy with DMD (G-to-T transversion at c.4150 in the gene encoding dystrophin protein) who developed severe colonic obstruction due to fecal impaction. Abdominal computed tomography revealed an obstructing fecalith in the left colon (length: 39.5 cm, width: 18.3 cm, height: 12.7 cm). Despite the application of initial conservative measures including fasting, enemas, and fluid resuscitation, the obstruction persisted. Therefore, we performed manual disimpaction and endoscopic injection of hydrogen peroxide, effectively alleviating the obstruction. Discussion This case underscores the necessity of devising stage-specific, tailored strategies for the prevention and management of gastrointestinal complications in patients with DMD.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Colorectal Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Zhichao Gao
- Department of Neurosurgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yuhang Zhang
- Department of Orthopedics, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Guofeng Li
- Department of Colorectal Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Lida Ge
- Department of Hepatobiliary Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Leckie J, Zia A, Yokota T. An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Genes (Basel) 2024; 15:1489. [PMID: 39596689 PMCID: PMC11593839 DOI: 10.3390/genes15111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population. This review offers an updated analysis of all theoretical exon-skipping strategies and their applicability across the patient population, with a specific focus on DMD-associated mutations documented in the UMD-DMD database. Unlike previous studies, this approach leverages the inclusion of phenotypic data for each mutation, providing a more comprehensive and clinically relevant perspective. METHODS The theoretical applicability of all single and double exon-skipping strategies, along with multi exon-skipping strategies targeting exons 3-9 and 45-55, was evaluated for all DMD mutations reported in the UMD-DMD database. RESULTS Single and double exon-skipping approaches were applicable for 92.8% of large deletions, 93.7% of small lesions, 72.4% of duplications, and 90.3% of all mutations analyzed. Exon 51 was the most relevant target and was applicable for 10.6% of all mutations and 17.2% of large deletions. Additionally, two multi-exon-skipping approaches, targeting exons 45-55 and 3-9, were relevant for 70.6% of large deletions and 19.2% of small lesions. CONCLUSIONS Current FDA-approved ASOs were applicable to 27% of the UMD-DMD population analyzed, leaving a significant portion of patients without access to exon-skipping therapies. The clinical translation of alternative approaches is critical to expanding the accessibility of these therapies for the DMD population.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Abdullah Zia
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
17
|
Gishto T, Methoxha S, Shuka N, Preci R, Simoni L. Management of Cardiac Involvement in Becker Muscular Dystrophy: A Case Report. Cureus 2024; 16:e73029. [PMID: 39640169 PMCID: PMC11618128 DOI: 10.7759/cureus.73029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Becker muscular dystrophy (BMD) is an X-linked recessive neuromuscular disorder caused by a mutation in the dystrophin gene. Cardiac involvement is a frequent finding in BMD, and manifestations may vary from asymptomatic cardiac involvement to developing symptoms of heart failure and severe cardiomyopathy. We presented the case of a 32-year-old wheelchair-dependent BMD patient who came to our cardiology clinic with a two-month history of heart palpitations, rest and nocturnal dyspnea, fatigue, and generalized muscular weakness. Upon evaluation, a 24-hour Holter rhythm showed complex ventricular arrhythmia and 300 polymorphic ventricular extrasystoles with episodes of ventricular bigeminy, while echocardiography revealed a dilated left ventricle with severe systolic dysfunction (left ventricular ejection fraction (LVEF) 23%) and impaired global contractility. An implantable cardioverter defibrillator (ICD) was implanted, and guideline direct medical therapy (GDMT), sacubitril/valsartan, bisoprolol, furosemide, spironolactone, and dapagliflozin were initiated. The patient was discharged five days later, in an improved clinical condition, without dyspnea. A follow-up appointment two weeks after discharge was recommended in order to evaluate the patient's symptoms and the effectiveness of GDMT and a follow-up echocardiography at least three months after discharge to evaluate the heart's systolic and diastolic function.
Collapse
Affiliation(s)
- Taulant Gishto
- Cardiovascular Disease, University Hospital Center "Mother Teresa", Tirana, ALB
| | - Silvia Methoxha
- Cardiovascular Disease, University Hospital Center "Mother Teresa", Tirana, ALB
| | - Naltin Shuka
- Cardiovascular Medicine, University Hospital Center "Mother Teresa", Tirana, ALB
| | - Rudina Preci
- Cardiovascular Medicine, University Hospital Center "Mother Teresa", Tirana, ALB
| | - Leonard Simoni
- Cardiovascular Disease, University Hospital Center "Mother Teresa", Tirana, ALB
| |
Collapse
|
18
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
19
|
Qualtieri A, De Benedittis S, Cerantonio A, Citrigno L, Di Palma G, Gallo O, Cavalcanti F, Spadafora P. Molecular Study of the Fukutin-Related Protein ( FKRP) Gene in Patients from Southern Italy with Duchenne/Becker-like Phenotype. Int J Mol Sci 2024; 25:10356. [PMID: 39408683 PMCID: PMC11476872 DOI: 10.3390/ijms251910356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic variants localized in the gene coding for the Fukutin-Related Protein (FKRP) are responsible for Limb-Girdle Muscular Dystrophy type 9 (LGMDR9), Congenital Muscular Dystrophies type 1C (MDC1C), Walker-Warburg Syndrome (WWS), and Muscle-Eye-Brain diseases (MEBs). LGMDR9 is the fourth most common hereditary Limb Girdle Muscular Dystrophy in Italy. LGMDR9 patients with severe disease show an overlapping Duchenne/Becker phenotype and may have secondary dystrophin reduction on muscle biopsy. We conducted a molecular analysis of the FKRP gene by direct sequencing in 153 patients from Southern Italy (Calabria) with Duchenne/Becker-like phenotypes without confirmed genetic diagnosis. Mutational screening of the patients (112 men and 41 women, aged between 5 and 84 years), revealed pathogenic variants in 16 subjects. The most frequent variants identified were c.427C > A, p.R143S, and c.826C > A, p.L276I (NM_024301.5). The results obtained show that the Duchenne/Becker-like phenotype is frequently determined by mutations in the FKRP gene in our cohort and highlight the importance of considering LGMDR9 in the differential diagnosis of dystrophinopathies in Calabria. Finally, this study, which, to our knowledge, is the first conducted on Calabrian subjects, will contribute to the rapid identification and management of LGMDR9 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council, 87050 Mangone, Italy; (A.Q.); (S.D.B.); (A.C.); (L.C.); (G.D.P.); (O.G.); (F.C.)
| |
Collapse
|
20
|
Cochran M, Marks I, Albin T, Arias D, Kovach P, Darimont B, Huang H, Etxaniz U, Kwon HW, Shi Y, Diaz M, Tyaglo O, Levin A, Doppalapudi VR. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-Phosphorodiamidate Morpholino Oligomer Conjugates for Drug Development. J Med Chem 2024; 67:14868-14884. [PMID: 39197837 PMCID: PMC11403617 DOI: 10.1021/acs.jmedchem.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are promising treatments for Duchenne muscular dystrophy (DMD). They work via induction of exon skipping and restoration of dystrophin protein in skeletal and heart muscles. The structure-activity relationships (SARs) of AOCs comprising antibody-phosphorodiamidate morpholino oligomers (PMOs) depend on several aspects of their component parts. We evaluate the SAR of antimouse transferrin receptor 1 antibody (αmTfR1)-PMO conjugates: cleavable and noncleavable linkers, linker location on the PMO, and the impact of drug-to-antibody ratios (DARs) on plasma pharmacokinetics (PK), oligonucleotide delivery to tissues, and exon skipping. AOCs containing a stable linker with a DAR9.7 were the most effective PMO delivery vehicles in preclinical studies. We demonstrate that αmTfR1-PMO conjugates induce dystrophin protein restoration in the skeletal and heart muscles of mdx mice. Our results show that αmTfR1-PMO conjugates are a potentially effective approach for the treatment of DMD.
Collapse
Affiliation(s)
- Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Isaac Marks
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Tyler Albin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Philip Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | | | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Usue Etxaniz
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Hae Won Kwon
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Yunyu Shi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Matthew Diaz
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Olecya Tyaglo
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Arthur Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| | - Venkata Ramana Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, California 92121, United States
| |
Collapse
|
21
|
Li Z, Abram L, Peall KJ. Deciphering the Pathophysiological Mechanisms Underpinning Myoclonus Dystonia Using Pluripotent Stem Cell-Derived Cellular Models. Cells 2024; 13:1520. [PMID: 39329704 PMCID: PMC11430605 DOI: 10.3390/cells13181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Dystonia is a movement disorder with an estimated prevalence of 1.2% and is characterised by involuntary muscle contractions leading to abnormal postures and pain. Only symptomatic treatments are available with no disease-modifying or curative therapy, in large part due to the limited understanding of the underlying pathophysiology. However, the inherited monogenic forms of dystonia provide an opportunity for the development of disease models to examine these mechanisms. Myoclonus Dystonia, caused by SGCE mutations encoding the ε-sarcoglycan protein, represents one of now >50 monogenic forms. Previous research has implicated the involvement of the basal ganglia-cerebello-thalamo-cortical circuit in dystonia pathogenesis, but further work is needed to understand the specific molecular and cellular mechanisms. Pluripotent stem cell technology enables a patient-derived disease modelling platform harbouring disease-causing mutations. In this review, we discuss the current understanding of the aetiology of Myoclonus Dystonia, recent advances in producing distinct neuronal types from pluripotent stem cells, and their application in modelling Myoclonus Dystonia in vitro. Future research employing pluripotent stem cell-derived cellular models is crucial to elucidate how distinct neuronal types may contribute to dystonia and how disruption to neuronal function can give rise to dystonic disorders.
Collapse
Affiliation(s)
- Zongze Li
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Laura Abram
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kathryn J. Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (Z.L.); (L.A.)
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
22
|
Bin EP, Zaobornyj T, Garces M, D'Annunzio V, Buchholz B, Marchini T, Evelson P, Gelpi RJ, Donato M. Remote ischemic preconditioning prevents sarcolemmal-associated proteolysis by MMP-2 inhibition. Mol Cell Biochem 2024; 479:2351-2363. [PMID: 37728809 DOI: 10.1007/s11010-023-04849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The death of myocytes occurs through different pathways, but the rupture of the plasma membrane is the key point in the transition from reversible to irreversible injury. In the myocytes, three major groups of structural proteins that link the extracellular and intracellular milieus and confer structural stability to the cell membrane: the dystrophin-associated protein complex, the vinculin-integrin link, and the spectrin-based submembranous cytoskeleton. The objective was to determine if remote ischemic preconditioning (rIPC) preserves membrane-associated cytoskeletal proteins (dystrophin and β-dystroglycan) through the inhibition of metalloproteinase type 2 (MMP-2) activity. A second objective was to describe some of the intracellular signals of the rIPC, that modify mitochondrial function at the early reperfusion. Isolated rat hearts were subjected to 30 min of global ischemia and 120 min of reperfusion (I/R). rIPC was performed by 3 cycles of ischemia/reperfusion in the lower limb (rIPC). rIPC significantly decreased the infarct size, induced Akt/GSK-3 β phosphorylation and inhibition of the MPTP opening. rIPC improved mitochondrial function, increasing membrane potential, ATP production and respiratory control. I/R increased ONOO- production, which activates MMP-2. This enzyme degrades β-dystroglycan and dystrophin and collaborates to sarcolemmal disruption. rIPC attenuates the breakdown of β-dystroglycan and dystrophin through the inhibition of MMP-2 activity. Furthermore, we confirm that rIPC activates different intracellular pathway that involves the an Akt/Gsk3β and MPTP pore with preservation of mitochondrial function.
Collapse
Affiliation(s)
- Eliana P Bin
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tamara Zaobornyj
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Química, Buenos Aires, Argentina
| | - Mariana Garces
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Verónica D'Annunzio
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Martín Donato
- Universidad de Buenos Aires, Facultad de Ciencias Médicas, Instituto de Fisiopatología Cardiovascular, 950 J. E. Uriburu, 2nd floor, C1114AAD, Buenos Aires, Argentina.
- Universidad de Buenos Aires - CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
24
|
Dhoke NR, Kim H, Azzag K, Crist SB, Kiley J, Perlingeiro RCR. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs. Cells 2024; 13:972. [PMID: 38891104 PMCID: PMC11171783 DOI: 10.3390/cells13110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies.
Collapse
Affiliation(s)
- Neha R. Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Sarah B. Crist
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.D.); (H.K.); (K.A.); (S.B.C.); (J.K.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
26
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
27
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li FW, Page PG, Vo AH, Hadhazy M, Spencer MJ, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. JCI Insight 2024; 9:e173246. [PMID: 38175727 PMCID: PMC11143963 DOI: 10.1172/jci.insight.173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
The Murphy Roths Large (MRL) mouse strain has "super-healing" properties that enhance recovery from injury. In mice, the DBA/2J strain intensifies many aspects of muscular dystrophy, so we evaluated the ability of the MRL strain to suppress muscular dystrophy in the Sgcg-null mouse model of limb girdle muscular dystrophy. A comparative analysis of Sgcg-null mice in the DBA/2J versus MRL strains showed greater myofiber regeneration, with reduced structural degradation of muscle in the MRL strain. Transcriptomic profiling of dystrophic muscle indicated strain-dependent expression of extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized myoscaffolds. Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix. Dystrophic myoscaffolds from the MRL background, but not the DBA/2J background, were enriched in myokines like IGF-1 and IL-6. C2C12 myoblasts seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J muscles showed the MRL background induced greater myoblast differentiation compared with dystrophic DBA/2J myoscaffolds. Thus, the MRL background imparts its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank W. Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H. Vo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Wang X, Zhu Y, Liu T, Zhou L, Fu Y, Zhao J, Li Y, Zheng Y, Yang X, Di X, Yang Y, He Z. Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo. MedComm (Beijing) 2024; 5:e423. [PMID: 38188603 PMCID: PMC10771042 DOI: 10.1002/mco2.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an incurable X-linked recessive genetic disease caused by mutations in the dystrophin gene. Many researchers aim to restore truncated dystrophin via viral vectors. However, the low packaging capacity and immunogenicity of vectors have hampered their clinical application. Herein, we constructed four lentiviral vectors with truncated and sequence-optimized dystrophin genes driven by muscle-specific promoters. The four lentiviral vectors stably expressed mini-dystrophin in C2C12 muscle cells in vitro. To estimate the treatment effect in vivo, we transferred the lentiviral vectors into neonatal C57BL/10ScSn-Dmdmdx mice through local injection. The levels of modified dystrophin expression increased, and their distribution was also restored in treated mice. At the same time, they exhibited the restoration of pull force and a decrease in the number of mononuclear cells. The remissions lasted 3-6 months in vivo. Moreover, no integration sites of vectors were distributed into the oncogenes. In summary, this study preliminarily demonstrated the feasibility and safety of lentiviral vectors with mini-dystrophin for DMD gene therapy and provided a new strategy to restore truncated dystrophin.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yanghui Zhu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Taiqing Liu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Lingyan Zhou
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yunhai Fu
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinhua Zhao
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yinqi Li
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yeteng Zheng
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaodong Yang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangjie Di
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiyao He
- Department of PharmacyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengduSichuanChina
| |
Collapse
|
29
|
Shiba N, Yang X, Sato M, Kadota S, Suzuki Y, Agata M, Nagamine K, Izumi M, Honda Y, Koganehira T, Kobayashi H, Ichimura H, Chuma S, Nakai J, Tohyama S, Fukuda K, Miyazaki D, Nakamura A, Shiba Y. Efficacy of exon-skipping therapy for DMD cardiomyopathy with mutations in actin binding domain 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102060. [PMID: 38028197 PMCID: PMC10654596 DOI: 10.1016/j.omtn.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Exon-skipping therapy is a promising treatment strategy for Duchenne muscular dystrophy (DMD), which is caused by loss-of-function mutations in the DMD gene encoding dystrophin, leading to progressive cardiomyopathy. In-frame deletion of exons 3-9 (Δ3-9), manifesting a very mild clinical phenotype, is a potential targeted reading frame for exon-skipping by targeting actin-binding domain 1 (ABD1); however, the efficacy of this approach for DMD cardiomyopathy remains uncertain. In this study, we compared three isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing Δ3-9, frameshifting Δ3-7, or intact DMD. RNA sequencing revealed a resemblance in the expression patterns of mechano-transduction-related genes between Δ3-9 and wild-type samples. Furthermore, we observed similar electrophysiological properties between Δ3-9 and wild-type hiPSC-CMs; Δ3-7 hiPSC-CMs showed electrophysiological alterations with accelerated CaMKII activation. Consistently, Δ3-9 hiPSC-CMs expressed substantial internally truncated dystrophin protein, resulting in maintaining F-actin binding and desmin retention. Antisense oligonucleotides targeting exon 8 efficiently induced skipping exons 8-9 to restore functional dystrophin and electrophysiological parameters in Δ3-7 hiPSC-CMs, bringing the cell characteristics closer to those of Δ3-9 hiPSC-CMs. Collectively, exon-skipping targeting ABD1 to convert the reading frame to Δ3-9 may become a promising therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Department of Pediatrics, Shinshu University, Matsumoto 390-8621, Japan
| | - Xiao Yang
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Yota Suzuki
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masahiro Agata
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Kohei Nagamine
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Tomoya Koganehira
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Junichi Nakai
- Graduate Schools of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Akinori Nakamura
- Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Matsumoto 399-8701, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
30
|
Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic Approaches to Treatment of Muscular Dystrophies. Biomolecules 2023; 13:1536. [PMID: 37892218 PMCID: PMC10605463 DOI: 10.3390/biom13101536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic muscle-wasting disorders that are subdivided based on the region of the body impacted by muscle weakness as well as the functional activity of the underlying genetic mutations. A common feature of the pathophysiology of muscular dystrophies is chronic inflammation associated with the replacement of muscle mass with fibrotic scarring. With the progression of these disorders, many patients suffer cardiomyopathies with fibrosis of the cardiac tissue. Anti-inflammatory glucocorticoids represent the standard of care for Duchenne muscular dystrophy, the most common muscular dystrophy worldwide; however, long-term exposure to glucocorticoids results in highly adverse side effects, limiting their use. Thus, it is important to develop new pharmacotherapeutic approaches to limit inflammation and fibrosis to reduce muscle damage and promote repair. Here, we examine the pathophysiology, genetic background, and emerging therapeutic strategies for muscular dystrophies.
Collapse
Affiliation(s)
- Alan Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| | - Bridget K. Diviak
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Cameron I. Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Grant W. Severson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Sofia A. Acosta
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Tempe, AZ 85287 4501, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA; (B.K.D.); (C.I.S.); (G.W.S.); (S.A.A.)
| |
Collapse
|
31
|
Lek A, Wong B, Keeler A, Blackwood M, Ma K, Huang S, Sylvia K, Batista AR, Artinian R, Kokoski D, Parajuli S, Putra J, Carreon CK, Lidov H, Woodman K, Pajusalu S, Spinazzola JM, Gallagher T, LaRovere J, Balderson D, Black L, Sutton K, Horgan R, Lek M, Flotte T. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne's Muscular Dystrophy. N Engl J Med 2023; 389:1203-1210. [PMID: 37754285 PMCID: PMC11288170 DOI: 10.1056/nejmoa2307798] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).
Collapse
Affiliation(s)
- Angela Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Brenda Wong
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Allison Keeler
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Meghan Blackwood
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Kaiyue Ma
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shushu Huang
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Katelyn Sylvia
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - A Rita Batista
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Rebecca Artinian
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Danielle Kokoski
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shestruma Parajuli
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Juan Putra
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - C Katte Carreon
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Hart Lidov
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keryn Woodman
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Sander Pajusalu
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Janelle M Spinazzola
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Thomas Gallagher
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Joan LaRovere
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Diane Balderson
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Lauren Black
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keith Sutton
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Richard Horgan
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Monkol Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Terence Flotte
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| |
Collapse
|
32
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
34
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li F, Page PG, Vo AH, Hadhazy M, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547098. [PMID: 37425960 PMCID: PMC10327155 DOI: 10.1101/2023.06.29.547098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic background shifts the severity of muscular dystrophy. In mice, the DBA/2J strain confers a more severe muscular dystrophy phenotype, whereas the Murphy's Roth Large (MRL) strain has "super-healing" properties that reduce fibrosis. A comparative analysis of the Sgcg null model of Limb Girdle Muscular Dystrophy in the DBA/2J versus MRL strain showed the MRL background was associated with greater myofiber regeneration and reduced structural degradation of muscle. Transcriptomic profiling of dystrophic muscle in the DBA/2J and MRL strains indicated strain-dependent expression of the extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized "myoscaffolds". Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix, and dystrophic myoscaffolds from the MRL background were enriched in myokines. C2C12 myoblasts were seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J matrices. Acellular myoscaffolds from the dystrophic MRL background induced myoblast differentiation and growth compared to dystrophic myoscaffolds from the DBA/2J matrices. These studies establish that the MRL background also generates its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
35
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
36
|
Hermann H, Wuebbles RD, Burkin DJ. A gene therapy approach for the treatment of limb-girdle muscular dystrophy 2C/R5. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2023; 29:160-161. [PMID: 37063481 PMCID: PMC10101990 DOI: 10.1016/j.omtm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
37
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|