1
|
Liu Y, Yue J, Jiang Y, Tian X, Shu A. The role of circRNA in insulin resistance and its progression induced by adipose inflammation. J Diabetes Complications 2025; 39:109042. [PMID: 40279985 DOI: 10.1016/j.jdiacomp.2025.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
CircRNAs refer to a type of closed circular non-coding RNA without a 5' cap or a 3' poly (A) structure. They are largely distributed in the cytoplasm or localized in exosomes and cannot be easily degraded by RNA exonuclease activity. Their stable expression is broadly observed across eukaryotic species. Insulin resistance (IR) refers to the inability of insulin to exert its normal biological function, as manifested by the impairment of glucose utilization in peripheral tissues (e.g., muscle and fat tissues). IR is a key factor in the pathogenesis of Type 2 diabetes (T2D) and is closely associated with obesity. Recent studies have shown that certain circRNAs play critical roles in obesity-induced diabetes by regulating IR and participating in inflammatory processes. CircRNAs, with their multiple microRNA (miRNA) binding sites, act as miRNA sponges to eliminate the inhibitory actions of miRNAs and up-regulate the expression of target genes. CircRNAs play a significant role in regulating obesity-induced diabetes through their interactions with disease-related miRNAs. In the present study, we explored the biological characteristics of circRNAs and extensively discussed the role of circRNAs in the development of inflammation and IR in adipocytes, highlighting their potential as therapeutic targets for obesity-induced diabetes. Specific circRNAs (e.g., circARF3 and circ-ZNF609) have been identified as key players in modulating IR and inflammatory responses in adipose tissue. CircRNAs are emerging as important regulators of IR and inflammation in adipocytes, with significant potential for therapeutic intervention in obesity-induced diabetes. Further research is needed to elucidate the mechanisms underlying their actions and to explore strategies for targeting circRNAs in clinical applications.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province 443000, China; Yichang Central people's Hospital, Yichang, Hubei Province 443000, China; The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Jie Yue
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province 443000, China; Yichang Central people's Hospital, Yichang, Hubei Province 443000, China; The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Yuxia Jiang
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province 443000, China; Yichang Central people's Hospital, Yichang, Hubei Province 443000, China; The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Xu Tian
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province 443000, China; Yichang Central people's Hospital, Yichang, Hubei Province 443000, China; The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China
| | - Aihua Shu
- Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province 443000, China; Yichang Central people's Hospital, Yichang, Hubei Province 443000, China; The Institute of Geriatric Anesthesia, China Three Gorges University, Yichang, Hubei Province, 443000, China.
| |
Collapse
|
2
|
Sheng J, Zhang X, Liang W, Lyu J, Zhang B, Min J, Xu A, Xu X, Li JW, Li JL, Zhou R, Liu W. The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila. BMC Biol 2025; 23:69. [PMID: 40038674 PMCID: PMC11881384 DOI: 10.1186/s12915-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Lipid droplets (LDs) are dynamic cytoplasmic lipid-storing organelles that play a pivotal role in maintaining cellular energy balance, lipid homeostasis, and metabolic signaling. Dysregulation of lipid metabolism, particularly excessive lipogenesis, contributes to the abnormal accumulation of LDs in the nervous system, which is associated with several neurodegenerative diseases. Circular RNAs (circRNAs) are a new class of non-coding and regulatory RNAs that are widely expressed in eukaryotes. However, only a subset has been functionally characterized. Here, we identified and functionally characterized a new circular RNA circbabo(5,6,7,8S) that regulates lipogenesis and neuronal integrity in Drosophila melanogaster. RESULTS circbabo(5,6,7,8S) is derived from the babo locus which encodes the type I receptor for transforming growth factor β (TGF-β). Depletion of circbabo(5,6,7,8S) in flies causes elevated lipid droplet accumulation, progressive photoreceptor cell loss and shortened lifespan, phenotypes that are rescued by restoring circbabo(5,6,7,8S) expression. In addition, RNA-seq and epistasis analyses reveal that these abnormalities are caused by aberrant activation of the SREBP signaling pathway. Furthermore, circbabo(5,6,7,8S)-depleted tissues display enhanced activation of the TGF-β signaling pathway and compromised mitochondrial function, resulting in upregulation of reactive oxygen species (ROS). Moreover, we provide evidence that circbabo(5,6,7,8S) encodes the protein circbabo(5,6,7,8S)-p, which inhibits TGF-β signaling by interfering with the assembly of babo/put receptor heterodimer complex. Lastly, we show that dysregulation of the ROS/JNK/SREBP signaling cascade is responsible for the LD accumulation, neurodegeneration, and shortened lifespan phenotypes elicited by circbabo(5,6,7,8S) depletion. CONCLUSIONS Our study demonstrates the physiological role of the protein-coding circRNA circbabo(5,6,7,8S) in regulating lipid metabolism and neuronal integrity.
Collapse
Affiliation(s)
- Jie Sheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xuemei Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Weihong Liang
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Junfang Lyu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bei Zhang
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Jie Min
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Austin Xu
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA
| | - Xingyu Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jennifer W Li
- Department of Medicine, Brown University, Providence, RI, 02912, USA
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Rui Zhou
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA.
| | - Wei Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
- Departments of Medicine, Biological Chemistry & Oncology, Johns Hopkins University School of Medicine, Johns Hopkins All Children'S Hospital, BaltimoreSt. Petersburg, MDFL, 2120533701, USA.
| |
Collapse
|
3
|
Li W, Zhang X, Song J, Yang L, Wang D, Yuan G, Zhao L. Mechanistic insights into GLP-1 receptor agonist-induced weight loss through ceRNA network analysis. Genomics 2025; 117:110988. [PMID: 39761765 DOI: 10.1016/j.ygeno.2025.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND GLP-1 receptor agonists (GLP-1RA) have been extensively utilized in the management of body weight in individuals with obesity. Circular RNA (circRNA), a class of covalently closed RNA molecules, has garnered increasing attention for its potential role in the pathogenesis of obesity. However, the specific mechanisms through which circRNA contributes to GLP-1RA-induced weight loss remains elusive. METHODS High-throughput sequencing analyzed epididymal adipose tissue from obese mice under high-fat, and GLP-1RA intervention (600 μg/kg/d). The functions of differentially expressed (DE) genes were enriched and analyzed. The circRNA-miRNA-mRNA interaction network was constructed in Cytoscape, and KEGG pathway gene enrichment was validated via western blotting. RESULTS A total of 644 DEcircRNAs, 186 DEmiRNAs, and 3474 DEmRNAs were identified. Based on ceRNA score calculations, network diagrams were constructed. Gene Ontology (GO) analysis revealed that DERNAs were linked to lipid and fatty acid metabolism. DE genes within ceRNA pairs were enriched in lipid metabolism pathways, especially the PI3K-Akt and AMPK signaling pathways. GLP-1RA induced the phosphorylation of AKT and AMPK, which subsequently led to a reduction of SREBP-1, ACC, and FAS. CONCLUSION GLP-1RA might activate PI3K-Akt and AMPK signaling pathways to combat obesity through the ceRNA network of circRNAs.
Collapse
Affiliation(s)
- Wenxin Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xinyu Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China; Department of Endocrinology, the Eighth People's Hospital of Wuxi, Wuxi 214000, Jiangsu, China
| | - Jiamin Song
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China.
| | - Li Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212000, Jiangsu, China.
| |
Collapse
|
4
|
Shao B, Wang Z, Luo P, Du P, Zhang X, Zhang H, Si X, Ma S, Chen W, Huang Y. Identifying insulin-responsive circRNAs in chicken pectoralis. BMC Genomics 2025; 26:148. [PMID: 39955508 PMCID: PMC11830218 DOI: 10.1186/s12864-025-11347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable, covalently closed non-coding RNAs formed by reverse splicing of precursor mRNA. They play critical roles in various biological processes, including insulin secretion and metabolism. However, their function in avian skeletal muscle's response to insulin remains poorly understood. This study aimed to comprehensively identify insulin-responsive circRNAs and explore their temporal and breed-specific regulation in poultry. RESULTS Using strand-specific RNA sequencing (ssRNA-Seq) on the pectoralis muscles of both Arbor Acres (AA) broilers and Silky fowls following insulin administration (5 IU/kg.BW, PBS as control). We identified 2,027 muscle circRNAs. Insulin-responsive circRNAs were detected in Silky fowls (29) and broilers (45) at 120 min, and in broilers (20) at 15 min post-injection. These circRNAs are enriched in processes such as exocrine pancreas development, response to exogenous stimuli, and regulation of intracellular signal transduction, likely mediated through a circRNA-miRNA network. Fewer insulin-responsive circRNAs were shared between time points in broilers (1) or between breeds (3) at 120 min. We further characterized a conserved insulin-responsive circRNA (circINSR), formed by exon 2 of the Insulin Receptor (INSR). The circINSR showed a similar spatiotemporal expression pattern to INSR, but exhibited distinct changes post-insulin administration. In broilers, INSR expression was dynamically modulated, while circINSR was downregulated only at 15 min (P < 0.01). Conversely, glucose did not change muscle circINSR but increased INSR at 10 min (P < 0.01). Energy restriction significantly downregulated circINSR (P < 0.01) without affecting INSR levels, and pyruvate had no effect on either circINSR or INSR levels. CONCLUSION This study reveals the dynamic and breed-specific roles of circRNAs, particularly circINSR, in avian skeletal muscle's response to insulin. The distinct regulation of circINSR and INSR under various metabolic conditions suggests a complex regulatory mechanism. These findings provide novel insights into the molecular basis of insulin signaling in avian species and highlight the potential of circRNAs as biomarkers for metabolic regulation.
Collapse
Affiliation(s)
- Binghao Shao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Zhang Y, Chen A, Lu S, Liu D, Xuan X, Lei X, Zhong M, Gao F. Noncoding RNA profiling in omentum adipose tissue from obese patients and the identification of novel metabolic biomarkers. Front Genet 2025; 16:1533637. [PMID: 39981261 PMCID: PMC11839770 DOI: 10.3389/fgene.2025.1533637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Background Obesity, a prevalent metabolic disorder, is linked to perturbations in the balance of gene expression regulation. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), play pivotal roles in regulating gene expression. The aim of this study was to identify additional ncRNA candidates that are implicated in obesity, elucidating their potential as key regulators of the pathogenesis of obesity. Methods We identified distinct ncRNA expression profiles in omental adipose tissue in obese and healthy subjects through comprehensive whole-transcriptome sequencing. Subsequent analyses included functional annotation with GO and KEGG pathway mapping, validation via real-time quantitative polymerase chain reaction (qRT‒PCR), the exploration of protein‒protein interactions (PPIs), and the identification of key regulatory genes through network analysis. Results The results indicated that, compared with those in healthy individuals, various lncRNAs, circRNAs, and miRNAs were significantly differentially expressed in obese subjects. Further verifications of top changed gene expressions proved the most genes' consistence with RNA-sequencing including 11 lncRNAs and 4 circRNAs. Gene network analysis highlighted the most significant features associated with metabolic pathways, specifically ENST00000605862, ENST00000558885, and ENST00000686149. Collectively, our findings suggest potential ncRNA therapeutic targets for obesity, including ENST00000605862, ENST00000558885, and ENST00000686149.
Collapse
Affiliation(s)
- Yongjiao Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Ao Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Dong Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaolei Xuan
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaofei Lei
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fei Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| |
Collapse
|
6
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
7
|
Qiu Y, Gan M, Wang X, Liao T, Tang Y, Chen Q, Lei Y, Chen L, Wang J, Zhao Y, Niu L, Wang Y, Zhang S, Shen L, Zhu L. Whole transcriptome sequencing analysis reveals the effect of circZFYVE9/miR-378a-3p/IMMT axis on mitochondrial function in adipocytes. Int J Biol Macromol 2024; 281:136916. [PMID: 39490878 DOI: 10.1016/j.ijbiomac.2024.136916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Recent research highlights the complex regulation of lipid accumulation and mitochondrial function in adipocytes via non-coding RNAs like microRNAs and circular non-coding RNAs. Circular non-coding RNAs act as endogenous regulators, impacting lipid metabolism and mitochondrial function by interacting with miRNAs. Sequencing white and brown adipose tissues in mice revealed significant variations in 1936 mRNAs, 127 miRNAs, and 171 circRNAs. Analyses showed these RNAs' involvement in vital processes like mitochondrial biogenesis, oxidative phosphorylation, and the citric acid cycle, crucial for lipid metabolism. Focus on top differentially regulated miRNAs led to the construction of a regulatory network involving circRNAs, miRNAs, and mRNAs, illuminating the role of endogenous RNAs in lipid metabolism and mitochondrial function. The circZFYVE9/miR-378a-3p/IMMT axis was identified as influential in adipogenic differentiation of 3T3-L1 preadipocytes by regulating mitochondrial function. This study expands the understanding of non-coding RNAs in adipose tissue, particularly their connection to mitochondrial function and metabolism.
Collapse
Affiliation(s)
- Yanhao Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyu Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianci Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanling Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiuyang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhang Lei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinyong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Nicoletti CF, Assmann TS, Souza LL, Martinez JA. DNA Methylation and Non-Coding RNAs in Metabolic Disorders: Epigenetic Role of Nutrients, Dietary Patterns, and Weight Loss Interventions for Precision Nutrition. Lifestyle Genom 2024; 17:151-165. [PMID: 39481358 DOI: 10.1159/000541000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dysregulation of epigenetic processes and abnormal epigenetic profiles are associated with various metabolic disorders. Nutrition, as an environmental factor, can induce epigenetic changes through both direct exposure and transgenerational inheritance, continuously altering gene expression and shaping the phenotype. Nutrients consumed through food or supplementation, such as vitamin B12, folate, vitamin B6, and choline, play a pivotal role in DNA methylation, a critical process for gene regulation. Additionally, there is mounting evidence that the expression of non-coding RNAs (ncRNAs) can be modulated by the intake of specific nutrients and natural compounds, thereby influencing processes involved in the onset and progression of metabolic diseases. SUMMARY Evidence suggests that dietary patterns, weight loss interventions, nutrients and nutritional bioactive compounds can modulate the expression of various microRNA (miRNAs) and DNA methylation levels, contributing to the development of metabolic disorders such as obesity and type 2 diabetes. Furthermore, several studies have proposed that DNA methylation and miRNA expression could serve as biomarkers for the effects of weight loss programs. KEY MESSAGE Despite ongoing debate regarding the effects of nutrient supplementation on DNA methylation levels and the expression of ncRNAs, certain DNA methylation marks and ncRNA expressions might predict the risk of metabolic disorders and act as biomarkers for forecasting the success of therapies within the framework of precision medicine and nutrition. The role of DNA methylation and miRNA expression as potential mediators of the effects of weight loss underscores their potential as biomarkers for the outcomes of weight loss programs. This highlights the influence of dietary patterns and weight loss interventions on the regulation of miRNA expression and DNA methylation levels, suggesting an interaction between these epigenetic factors and the body's response to weight loss.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Taís S Assmann
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - José Alfredo Martinez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| |
Collapse
|
9
|
Zhang M, Du G, Xie L, Xu Y, Chen W. Circular RNA HMGCS1 sponges MIR4521 to aggravate type 2 diabetes-induced vascular endothelial dysfunction. eLife 2024; 13:RP97267. [PMID: 39235443 PMCID: PMC11377038 DOI: 10.7554/elife.97267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Hydroxymethylglutaryl-CoA Synthase/genetics
Collapse
Affiliation(s)
- Ming Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guangyi Du
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
10
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
11
|
Cao H, Li C, Sun X, Yang J, Li X, Yang G, Jin J, Shi X. Circular RNA circMYLK4 shifts energy metabolism from glycolysis to OXPHOS by binding to the calcium channel auxiliary subunit CACNA2D2. J Biol Chem 2024; 300:107426. [PMID: 38823637 PMCID: PMC11245919 DOI: 10.1016/j.jbc.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Skeletal muscle is heterogeneous tissue, composed of fast-twitch fibers primarily relying on glycolysis and slow-twitch fibers primarily relying on oxidative phosphorylation. The relative expression and balance of glycolysis and oxidative phosphorylation in skeletal muscle are crucial for muscle growth and skeletal muscle metabolism. Here, we employed multi-omics approaches including transcriptomics, proteomics, phosphoproteomics, and metabolomics to unravel the role of circMYLK4, a differentially expressed circRNA in fast and slow-twitch muscle fibers, in muscle fiber metabolism. We discovered that circMYLK4 inhibits glycolysis and promotes mitochondrial oxidative phosphorylation. Mechanistically, circMYLK4 interacts with the voltage-gated calcium channel auxiliary subunit CACNA2D2, leading to the inhibition of Ca2+ release from the sarcoplasmic reticulum. The decrease in cytoplasmic Ca2+ concentration inhibits the expression of key enzymes, PHKB and PHKG1, involved in glycogen breakdown, thereby suppressing glycolysis. On the other hand, the increased fatty acid β-oxidation enhances the tricarboxylic acid cycle and mitochondrial oxidative phosphorylation. In general, circMYLK4 plays an indispensable role in maintaining the metabolic homeostasis of skeletal muscle.
Collapse
Affiliation(s)
- Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohui Sun
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinjin Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xine Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
13
|
Zhao Y, Zhang W, Raza SHA, Qu X, Yang Z, Deng J, Ma J, Aloufi BH, Wang J, Zan L. CircSSBP2 acts as a MiR-2400 sponge to promote intramuscular preadipocyte proliferation by regulating NDRG1. Mol Genet Genomics 2024; 299:48. [PMID: 38700639 DOI: 10.1007/s00438-024-02138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
14
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| |
Collapse
|
15
|
Meng X, Li W, Yu T, Lu F, Wang C, Yuan H, Yang W, Dong W, Xiao W, Zhang X. Hsa_circ_0086414/transducer of ERBB2 (TOB2) axis-driven lipid elimination and tumor suppression in clear cell renal cell cancer via perilipin 3. Int J Biol Macromol 2024; 261:129636. [PMID: 38272402 DOI: 10.1016/j.ijbiomac.2024.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Renal cell cancer (RCC) is characterized by abnormal lipid accumulation. However, the specific mechanism by which such lipid deposition is eliminated remains unclear. Circular RNAs (circRNAs) widely regulate various biological processes, but the effect of circRNAs on lipid metabolism in cancers, especially clear cell renal cell carcinoma (ccRCC), remains poorly understood. METHODS The downregulated circRNA, hsa_circ_0086414, was identified from high-throughput RNA-sequencing data of human ccRCC and pair-matched normal tissues. The target relationship between circRNA_0086414 and miR-661, and the transducer of ERBB2 (TOB2) was predicted using publicly available software programs and verified by luciferase reporter assays. The clinical prognostic value of TOB2 was evaluated by bioinformatic analysis. The expression levels of circRNA_0086414, miR-661, TOB2, and perilipin 3 (PLIN3) were measured by quantitative reverse-transcription polymerase chain reaction or western blot analysis. Cell Counting Kit-8, transwell assays, and xenograft models were employed to assess the biological behaviors of the hsa_circ_0086414/TOB2 axis. Oil Red staining and triglyceride assay was conducted to assess lipid deposition. RESULTS Herein, we identified a downregulated circRNA, hsa_circ_0086414. Functionally, the restored hsa_circ_0086414 inhibited ccRCC proliferation, metastasis, and lipid accumulation in vitro and in vivo. Furthermore, the downregulated TOB2 predicted adverse prognosis and promoted cancer progression and lipid deposition in ccRCC. Mechanically, the binding of hsa_circ_0086414 to miR-661, as a miRNA sponge, upregulates the expression of TOB2, wielding an anti-oncogene effect. Importantly, the restored hsa_circ_0086414/TOB2 axis significantly contributed to the elimination of lipid deposition by inhibiting the lipid metabolism regulator PLIN3 in ccRCC cells. CONCLUSIONS Our data highlight the importance of the hsa_circ_0086414/TOB2/PLIN3 axis as a tumor suppressor and lipid eliminator in ccRCC. The positive modulation of the hsa_circ_0086414/TOB2 axis might lead to the development of novel treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feiyi Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
16
|
Guo W, Ciwang R, Wang L, Zhang S, Liu N, Zhao J, Zhou L, Li H, Gao X, He J. CircRNA-5335 Regulates the Differentiation and Proliferation of Sheep Preadipocyte via the miR-125a-3p/STAT3 Pathway. Vet Sci 2024; 11:70. [PMID: 38393088 PMCID: PMC10891738 DOI: 10.3390/vetsci11020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The content of intramuscular fat (IMF) from preadipocytes is proportional to meat quality in livestock. However, the roles of circRNAs in IMF deposition in sheep are not well known. In this study, we show that circRNA-5335/miR-125a-3p/STAT3 play a crucial adjective role in the proliferation and differentiation of sheep preadipocytes. In this study, we characterized the roles of differentially expressed circRNA-5335/miR-125a-3p/STAT3, which were screened from sheep of different months of age and based on sequencing data. Firstly, the expression profiles of circRNA-5335/miR-125a-3p/STAT3 were identified during the differentiation of preadipocytes in vitro by RT-qPCR and WB. Then, the targeting relationship of the circRNA-5335/miR-125a-3p/STAT3 was verified by dual-luciferase reporter assays. The results of RT-qPCR, CCK8, EdU and Oil Red O staining assay showed that miR-125a-3p suppressed the differentiation and raised the proliferation of preadipocytes by targeting STAT3. As a competing endogenous RNA, the downregulation of circRNA-5335 decreased the expression of STAT3 by increasing miR-125a-3p, which inhibited the differentiation of preadipocytes and promoted proliferation. Our present study demonstrates the functional significance of circRNA-5335/miR-125a-3p/STAT3 in the differentiation of sheep preadipocytes, and provides novel insights into exploring the mechanism of IMF.
Collapse
Affiliation(s)
- Wei Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Renzeng Ciwang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Shandong Animal Husbandry Chief Station, Jinan 250100, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxiao Gao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
17
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Zhu R, Feng Y, Yang X, Li R, Song Z, Liu Q, Shi D, Huang J. Functionally conserved PPARG exonic circRNAs enhance intramuscular fat deposition by regulating PPARG and HSL. Int J Biol Macromol 2024; 257:128613. [PMID: 38070814 DOI: 10.1016/j.ijbiomac.2023.128613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023]
Abstract
Circular RNAs (circRNA) are a kind of endogenous biological macromolecules that play significant roles in many biological processes, including adipogenesis, a precisely orchestrated process that is mediated by a large number of factors. Among them, peroxisome proliferator-activated receptor gamma (PPARG), is undoubtedly the most important regulator of adipocyte development in all types of adipose tissue. The formation of intramuscular fat (IMF), is a key factor that influences the meat quality in livestock animals. PPARG has been demonstrated to show a positive correlation with IMF deposition although the regulatory mechanism involved is not known. This study demonstrates that PPARG mediates IMF deposition by producing multiple exonic circRNAs (circPPARGs). Three circPPARGs promote adipogenic differentiation and inhibit the proliferation of intramuscular preadipocytes and these effects are conserved across several species including buffaloes, cattle and mice. Notably, circPPARG1 interacts with PPARG protein to inhibit the transcription of hormone sensitive lipase (HSL) involved in lipolysis. In addition, the positive effects of circPPARG1 on IMF deposition were identified in mice in vivo. Thus, PPARG drives IMF deposition, not only through the common transcription factor pathway, but also by producing circRNAs. This study provides new insights into our understanding of the regulatory mechanisms of PPARG in IMF deposition.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China
| | - Ye Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China
| | - Xintong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China
| | - Ruirui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China.
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
19
|
Wei X, Yi X, Liu J, Sui X, Li L, Li M, Lv H, Yi H. Circ-phkb promotes cell apoptosis and inflammation in LPS-induced alveolar macrophages via the TLR4/MyD88/NF-kB/CCL2 axis. Respir Res 2024; 25:62. [PMID: 38287405 PMCID: PMC10826187 DOI: 10.1186/s12931-024-02677-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Circular RNAs (CircRNAs) have been associated with acute lung injury (ALI), but their molecular mechanisms remain unclear. METHODS This study developed a rat model of lipopolysaccharide (LPS)-induced ALI and evaluated the modeling effect by hematoxylin and eosin staining, Masson's trichrome staining, lung wet-to-dry weight ratio, terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) detection of inflammatory factors (interleukin-1β, tumor necrosis factor alpha, and interleukin-6). Using lung tissues from a rat model of LPS-induced ALI, we then conducted circRNA sequencing, mRNA sequencing, and bioinformatics analysis to obtain differential circRNA and mRNA expression profiles as well as potential ceRNA networks. Furthermore, we performed quantitative real-time polymerase chain reaction (qRT-PCR) assays to screen for circ-Phkb in ALI rat lung tissues, alveolar macrophages, and LPS-induced NR8383 cells. We conducted induction with or without LPS with circ-Phkb siRNA and overexpression lentivirus in NR8383. Cell Counting Kit-8, C5-Ethynyl-2'-deoxyuridine (Edu), TUNEL, and cytometry were used to identify proliferation and apoptosis, respectively. We detected inflammatory factors using ELISA. Finally, we used Western blot to detect the apoptosis-related proteins and TLR4/MyD88/NF-kB/CCL2 pathway activation. RESULTS Our results revealed that both circRNA and mRNA profiles are different from those of the Sham group. We observed a significant circ-Phkb upregulation in NR8383 cells and LPS-exposed rats. Apoptosis and inflammation were greatly reduced when circ-Phkb expression was reduced in NR8383 cells, cell proliferation was increased, and circ-Phkb overexpression was decreased. CONCLUSIONS In terms of mechanism, circ-Phkb suppression inhibits CCL2 expression via the TLR4/MyD88/NF-kB pathway in LPS-induced alveolar macrophages.
Collapse
Affiliation(s)
- Xuxia Wei
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xiaomeng Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jianrong Liu
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Xin Sui
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Lijuan Li
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Mei Li
- VIP Healthcare Center, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| | - Haijin Lv
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| | - Huimin Yi
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
20
|
Yi X, Wan X, Khan MA, Sun X, Wang Z, Chen K, Peng L. Expression Analysis of circRNAs in Human Adipogenesis. Diabetes Metab Syndr Obes 2024; 17:45-54. [PMID: 38192493 PMCID: PMC10771721 DOI: 10.2147/dmso.s381603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
PURPOSE Adipogenesis is one of the major pathways for generating obesity or overweight that can cause a range of metabolic disorders. Circular RNAs (circRNAs), a specific type of RNAs, have a significant influence on metabolic disorders. This study aims to find differentially expressed circRNAs (DECs) during human subcutaneous adipose tissue (SATs) adipogenesis. PATIENTS AND METHODS The human adipose tissue-derived stromal cells (hADSCs) were isolated from human SATs (n = 3), and then induced into adipocytes. Total RNAs were extracted from hADSCs and adipocytes, and he DECs were detected using circRNA microarray. The GO and KEGG pathways of DECs were analyzed by bioinformatic methods, and partial DECs were further validated by quantitative polymerase chain reaction (qPCR). RESULTS Our study detected a total of 1987 DECs, among which, 1134 were found upregulated and 853 were downregulated. GO analysis showed that the upregulated DECs have catalytic activity in intracellular organelle and cytoplasms, whereas downregulated DECs are enriched in organelle lumen, and are involved in positive regulation of developmental process. In addition, pathway results demonstrated that upregulated DECs are involved in platinum drug resistance and cellular senescence, and downregulated DECs are enriched in proteoglycans in cancer and focal adhesion pathway. Two circRNAs, namely has_circ_0001600 and has_circ_0001947 were validated to be significantly upregulated in adipocytes compared to hADSCs. CONCLUSION Our study explored DECs between hADSCs derived from SATs and adipocytes, and report that two circRNAs named has_circ_0001600 and has_circ_0001947 might be important factors involved in human adipogenesis, however, the molecular mechanism should be further explored.
Collapse
Affiliation(s)
- Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Md Asaduzzaman Khan
- Research Division, Nature Study Society of Bangladesh, Dhaka, 1000, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, People’s Republic of China
| |
Collapse
|
21
|
Li J, Wang X, Shi L, Liu B, Sheng Z, Chang S, Cai X, Shan G. A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305902. [PMID: 37953462 PMCID: PMC10787103 DOI: 10.1002/advs.202305902] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Indexed: 11/14/2023]
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in physiology and human diseases. However, evolutionarily conserved circRNAs with potent functions in cancers are rarely reported. In this study, a mammalian conserved circRNA circLARP1B is identified to play critical roles in hepatocellular carcinoma (HCC). Patients with high circLARP1B levels have advanced prognostic stage and poor overall survival. CircLARP1B facilitates cellular metastatic properties and lipid accumulation through promoting fatty acid synthesis in HCC. CircLARP1B deficient mice exhibit reduced metastasis and less lipid accumulation in an induced HCC model. Multiple lines of evidence demonstrate that circLARP1B binds to heterogeneous nuclear ribonucleoprotein D (HNRNPD) in the cytoplasm, and thus affects the binding of HNRNPD to sensitive transcripts including liver kinase B1 (LKB1) mRNA. This regulation causes decreased LKB1 mRNA stability and lower LKB1 protein levels. Antisense oligodeoxynucleotide complementary to theHNRNPD binding sites in circLARP1B increases the HNRNPD binding to LKB1 mRNA. Through the HNRNPD-LKB1-AMPK pathway, circLARP1B promotes HCC metastasis and lipid accumulation. Results from AAV8-mediated hepatocyte-directed knockdown of circLARP1B or Lkb1 in mouse models also demonstrate critical roles of hepatocytic circLARP1B regulatory pathway in HCC metastasis and lipid accumulation, and indicate that circLARP1B may be potential target of HCC treatment.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiaolin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Liang Shi
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Boqiang Liu
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Zhiyong Sheng
- School of Life ScienceBengbu Medical CollegeBengbu233030China
| | - Shuhui Chang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
| | - Xiujun Cai
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Ge Shan
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefei230027China
- Department of Pulmonary and Critical Care MedicineRegional Medical Center for National Institute of Respiratory DiseasesSir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
22
|
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, Xiong Y, Qian L. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother 2023; 168:115744. [PMID: 37862970 DOI: 10.1016/j.biopha.2023.115744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of single-stranded noncoding RNAs with a covalently closed loop structure, are generated in a circular conformation via non-canonical splicing or back-splicing events. Functionally, circRNAs have been elucidated to soak up microRNAs (miRNAs) and RNA binding proteins (RBPs), serve as protein scaffolds, maintain mRNA stability, and regulate gene transcription and translation. Notably, circRNAs are strongly implicated in the regulation of β-cell functions, insulin resistance, adipocyte functions, inflammation as well as oxidative stress via acting as miRNA sponges and RBP sponges. Basic and clinical studies have demonstrated that aberrant alterations of circRNAs expressions are strongly associated with the initiation and progression of diabetes mellitus (DM) and its complications. Here in this review, we present a summary of the biogenesis, transportation, degradation and functions of circRNAs, and highlight the recent findings on circRNAs and their action mechanisms in DM and its complications. Overall, this review should contribute greatly to our understanding of circRNAs in DM pathogenesis, offering insights into the further perspectives of circRNAs for DM diagnosis and therapy.
Collapse
Affiliation(s)
- Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Man Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yujia Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China.
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
23
|
Shen X, Tang J, Huang Y, Lan X, Lei C, Chen H. CircRNF111 Contributes to Adipocyte Differentiation by Elevating PPARγ Expression via miR-27a-3p. Epigenetics 2023; 18:2145058. [PMID: 36377797 PMCID: PMC9980459 DOI: 10.1080/15592294.2022.2145058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The content and distribution of adipocytes is an important factor that affects meat quality. Previous studies showed that circRNAs are involved in various physiological processes. Nevertheless, more research is needed to investigate the function of circRNAs in adipogenesis. The present study examines the effects of circRNF111 on adipogenesis of bovine preadipocyte and aims to elucidate the underlying molecular mechanisms. In our study, the sequence signature of circRNF111 was identified using bioinformatics, RNA-FISH, and sequencing. Mechanistically, knockdown or exogenous expression of circRNF111 in preadipocytes was done to prove the functional significance of circRNF111. Combined with bioinformatics, a dual fluorescein reporter system, and immunoprecipitation, the interaction between circRNF111, miR-27a-3p, and the target gene PPARγ was verified. The results reveal that circRNF111 is positively correlated with adipocyte differentiation. The newly identified bovine circRNF111 functions as a miR-27a-3p sponge to rescue the inhibitory effect of miR-27a-3p on the PPARγ gene, thereby promoting adipogenesis.
Collapse
Affiliation(s)
- Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China,CONTACT Hong Chen College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
24
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Wang S, Pan C, Sheng H, Yang M, Yang C, Feng X, Hu C, Ma Y. Construction of a molecular regulatory network related to fat deposition by multi-tissue transcriptome sequencing of Jiaxian red cattle. iScience 2023; 26:108346. [PMID: 38026203 PMCID: PMC10665818 DOI: 10.1016/j.isci.2023.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Intramuscular fat (IMF) refers to the fat that accumulates between muscle bundles or within muscle cells, whose content significantly impacts the taste, tenderness, and flavor of meat products, making it a crucial economic characteristic in livestock production. However, the intricate mechanisms governing IMF deposition, involving non-coding RNAs (ncRNAs), genes, and complex regulatory networks, remain largely enigmatic. Identifying adipose tissue-specific genes and ncRNAs is paramount to unravel these molecular mysteries. This study, conducted on Jiaxian red cattle, harnessed whole transcriptome sequencing to unearth the nuances of circRNAs and miRNAs across seven distinct tissues. The interplay of these ncRNAs was assessed through differential expression analysis and network analysis. These findings are not only pivotal in unveiling the intricacies of fat deposition mechanisms but also lay a robust foundation for future research, setting the stage for enhancing IMF content in Jiaxian red cattle breeding.
Collapse
Affiliation(s)
- Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Mengli Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chaoyun Yang
- Xichang College, Liangshan Prefecture, Sichuan Province, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
26
|
Dandare A, Khan MJ, Naeem A, Liaquat A. Clinical relevance of circulating non-coding RNAs in metabolic diseases: Emphasis on obesity, diabetes, cardiovascular diseases and metabolic syndrome. Genes Dis 2023; 10:2393-2413. [PMID: 37554181 PMCID: PMC10404886 DOI: 10.1016/j.gendis.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) participate in the regulation of several cellular processes including transcription, RNA processing and genome rearrangement. The aberrant expression of ncRNAs is associated with several pathological conditions. In this review, we focused on recent information to elucidate the role of various regulatory ncRNAs i.e., micro RNAs (miRNAs), circular RNAs (circRNAs) and long-chain non-coding RNAs (lncRNAs), in metabolic diseases, e.g., obesity, diabetes mellitus (DM), cardiovascular diseases (CVD) and metabolic syndrome (MetS). The mechanisms by which ncRNAs participated in disease pathophysiology were also highlighted. miRNAs regulate the expression of genes at transcriptional and translational levels. circRNAs modulate the regulation of gene expression via miRNA sponging activity, interacting with RNA binding protein and polymerase II transcription regulation. lncRNAs regulate the expression of genes by acting as a protein decoy, miRNA sponging, miRNA host gene, binding to miRNA response elements (MRE) and the recruitment of transcriptional element or chromatin modifiers. We examined the role of ncRNAs in the disease pathogenesis and their potential role as molecular markers for diagnosis, prognosis and therapeutic targets. We showed the involvement of ncRNAs in the onset of obesity and its progression to MetS and CVD. miRNA-192, miRNA-122, and miRNA-221 were dysregulated in all these metabolic diseases. Other ncRNAs, implicated in at least three diseases include miRNA-15a, miRNA-26, miRNA-27a, miRNA-320, and miRNA-375. Dysregulation of ncRNAs increased the risk of development of DM and MetS and its progression to CVD in obese individuals. Hence, these molecules are potential targets to arrest or delay the progression of metabolic diseases.
Collapse
Affiliation(s)
- Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University, Sokoto 840104, Nigeria
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Ministry of Public Health, POB42, Doha, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Afrose Liaquat
- Shifa College of Medicine, Shifa Tameer-E-Millat University, Islamabad 45550, Pakistan
| |
Collapse
|
27
|
Chen S, Song P, Wang Y, Wang Z, Xue J, Jiang Y, Zhou Y, Zhao J, Tang L. CircMAPK9 promotes adipogenesis through modulating hsa-miR-1322/FTO axis in obesity. iScience 2023; 26:107756. [PMID: 37692283 PMCID: PMC10492215 DOI: 10.1016/j.isci.2023.107756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Circular RNA (circRNA) is a special category of non-coding RNA that has garnered increasing attention in the exploration of lipid metabolism. However, the functional regulation mechanisms of circRNAs in obesity diseases remain unclear. By whole transcriptome sequencing, a total of 164 circular RNAs were found to exhibit differential expression between lean and obese individuals. RT-qPCR was used to detect significant expression of circMAPK9 in obese individuals, and it was closely related to BMI. Western blot, triglyceride detection, and Oil Red O staining were employed to investigate the role of circMAPK9/hsa-miR-1322/FTO in adipogenesis. In adipocytes, the connection between hsa-miR-1322 and circMAPK9 was verified using fluorescence in situ hybridization, luciferase reporter assay, and RNA immunoprecipitation. It was found that circMAPK9 competed for binding hsa-miR-1322 in the cytoplasm, weakening the inhibitory effect on FTO and promoting adipogenesis. Our study revealed the regulatory mechanism and important role of circMAPK9 in the process of adipogenesis.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Peng Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Zeng Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jiaming Xue
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yicheng Jiang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Jie Zhao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province, China
| |
Collapse
|
28
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Shao J, Wang M, Zhang A, Liu Z, Jiang G, Tang T, Wang J, Jia X, Lai S. Interference of a mammalian circRNA regulates lipid metabolism reprogramming by targeting miR-24-3p/Igf2/PI3K-AKT-mTOR and Igf2bp2/Ucp1 axis. Cell Mol Life Sci 2023; 80:252. [PMID: 37587272 PMCID: PMC11071982 DOI: 10.1007/s00018-023-04899-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
White adipose tissue (WAT) is important for regulating the whole systemic energy homeostasis. Excessive WAT accumulation further contributes to the development of obesity and obesity-related illnesses. More detailed mechanisms for WAT lipid metabolism reprogramming, however, are still elusive. Here, we report the abnormally high expression of a circular RNA (circRNA) mmu_circ_0001874 in the WAT and liver of mice with obesity. mmu_circ_0001874 interference achieved using a specific adeno-associated virus infects target tissues, down-regulating lipid accumulation in the obesity mice WAT, and liver tissues. Mechanistically, miR-24-3p directly interacts with the lipid metabolism effect of mmu_circ_0001874 and participates in adipogenesis and lipid accumulation by targeting Igf2/PI3K-AKT-mTOR axis. Moreover, mmu_circ_0001874 binds to Igf2bp2 to interact with Ucp1, up-regulating Ucp1 translation and increasing thermogenesis to decrease lipid accumulation. In conclusion, our data highlight a physiological role for circRNA in lipid metabolism reprogramming and suggest mmu_circ_0001874/miR-24-3p/Igf2/PI3K-AKT-mTOR and mmu_circ_0001874/Igf2bp2/Ucp1 axis may represent a potential mechanism for controlling lipid accumulation in obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anjing Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Genglong Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
30
|
Tian W, Liu Y, Zhang W, Nie R, Ling Y, Zhang B, Zhang H, Wu C. CircDOCK7 facilitates the proliferation and adipogenic differentiation of chicken abdominal preadipocytes through the gga-miR-301b-3p/ACSL1 axis. J Anim Sci Biotechnol 2023; 14:91. [PMID: 37408086 DOI: 10.1186/s40104-023-00891-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Abdominal fat deposition depends on both the proliferation of preadipocytes and their maturation into adipocytes, which is a well-orchestrated multistep process involving many regulatory molecules. Circular RNAs (circRNAs) have emergingly been implicated in mammalian adipogenesis. However, circRNA-mediated regulation in chicken adipogenesis remains unclear. Our previous circRNA sequencing data identified a differentially expressed novel circRNA, 8:27,886,180|27,889,657, during the adipogenic differentiation of chicken abdominal preadipocytes. This study aimed to investigate the regulatory role of circDOCK7 in the proliferation and adipogenic differentiation of chicken abdominal preadipocytes, and explore its molecular mechanisms of competing endogenous RNA underlying chicken adipogenesis. RESULTS Our results showed that 8:27,886,180|27,889,657 is an exonic circRNA derived from the head-to-tail splicing of exons 19-22 of the dedicator of cytokinesis 7 (DOCK7) gene, abbreviated as circDOCK7. CircDOCK7 is mainly distributed in the cytoplasm of chicken abdominal preadipocytes and is stable because of its RNase R resistance and longer half-life. CircDOCK7 is significantly upregulated in the abdominal fat tissues of fat chickens compared to lean chickens, and its expression gradually increases during the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. Functionally, the gain- and loss-of-function experiments showed that circDOCK7 promoted proliferation, G0/G1- to S-phase progression, and glucose uptake capacity of chicken abdominal preadipocytes, in parallel with adipogenic differentiation characterized by remarkably increased intracellular lipid droplet accumulation and triglyceride and acetyl coenzyme A content in differentiated chicken abdominal preadipocytes. Mechanistically, a pull-down assay and a dual-luciferase reporter assay confirmed that circDOCK7 interacted with gga-miR-301b-3p, which was identified as an inhibitor of chicken abdominal adipogenesis. Moreover, the ACSL1 gene was demonstrated to be a direct target of gga-miR-301b-3p. Chicken ACSL1 protein is localized in the endoplasmic reticulum and mitochondria of chicken abdominal preadipocytes and acts as an adipogenesis accelerator. Rescue experiments showed that circDOCK7 could counteract the inhibitory effects of gga-miR-301b-3p on ACSL1 mRNA abundance as well as the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. CONCLUSIONS CircDOCK7 serves as a miRNA sponge that directly sequesters gga-miR-301b-3p away from the ACSL1 gene, thus augmenting adipogenesis in chickens. These findings may elucidate a new regulatory mechanism underlying abdominal fat deposition in chickens.
Collapse
Affiliation(s)
- Weihua Tian
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ye Liu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenhui Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Ru W, Zhang S, Liu J, Liu W, Huang B, Chen H. Non-Coding RNAs and Adipogenesis. Int J Mol Sci 2023; 24:9978. [PMID: 37373126 PMCID: PMC10298535 DOI: 10.3390/ijms24129978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Adipogenesis is regarded as an intricate network in which multiple transcription factors and signal pathways are involved. Recently, big efforts have focused on understanding the epigenetic mechanisms and their involvement in the regulation of adipocyte development. Multiple studies investigating the regulatory role of non-coding RNAs (ncRNAs) in adipogenesis have been reported so far, especially lncRNA, miRNA, and circRNA. They regulate gene expression at multiple levels through interactions with proteins, DNA, and RNA. Exploring the mechanism of adipogenesis and developments in the field of non-coding RNA may provide a new insight to identify therapeutic targets for obesity and related diseases. Therefore, this article outlines the process of adipogenesis, and discusses updated roles and mechanisms of ncRNAs in the development of adipocytes.
Collapse
Affiliation(s)
- Wenxiu Ru
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Sihuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China;
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650212, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (W.R.); (W.L.)
| |
Collapse
|
32
|
Deng S, Qian L, Liu L, Liu H, Xu Z, Liu Y, Wang Y, Chen L, Zhou Y. Circular RNA ARHGAP5 inhibits cisplatin resistance in cervical squamous cell carcinoma by interacting with AUF1. Cancer Sci 2023; 114:1582-1595. [PMID: 36632741 PMCID: PMC10067438 DOI: 10.1111/cas.15723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical squamous cell carcinoma (CSCC) is one of the leading causes of cancer death in women worldwide. Patients with advanced cervical carcinoma always have a poor prognosis once resistant to cisplatin due to the lack of effective treatment. It is urgent to investigate the molecular mechanisms of cisplatin resistance. Circular RNAs (circRNAs) are known to exert their regulatory functions in a series of malignancies. However, their effects on CSCC remain to be elucidated. Here, we found that cytoplasmic circARHGAP5, derived from second and third exons of the ARHGAP5 gene, was downregulated in cisplatin-resistant tissues compared with normal cervix tissues and untreated cervical cancer tissues. In addition, experiments from overexpression/knockdown cell lines revealed that circARHGAP5 could inhibit cisplatin-mediated cell apoptosis in CSCC cells both in vitro and in vivo. Mechanistically, circARHGAP5 interacted with AU-rich element RNA-binding protein (AUF1) directly. Overexpression of AUF1 could also inhibit cell apoptosis mediated by cisplatin. Furthermore, we detected the potential targets of AUF1 related to the apoptotic pathway and found that bcl-2-like protein 11 (BIM) was not only negatively regulated by AUF1 but positively regulated by circARHGAP5, which indicated that BIM mRNA might be degraded by AUF1 and thereby inhibited tumor cell apoptosis. Collectively, our data indicated that circARHGAP5 directly bound to AUF1 and prevented AUF1 from interacting with BIM mRNA, thereby playing a pivotal role in cisplatin resistance in CSCC. Our study provides insights into overcoming cancer resistance to cisplatin treatment.
Collapse
Affiliation(s)
- Sisi Deng
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Lili Qian
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Luwen Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Hanyuan Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Zhihao Xu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yujie Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yingying Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Liang Chen
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Science and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ying Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
33
|
Zhang X, Gu S, Shen S, Luo T, Zhao H, Liu S, Feng J, Yang M, Yi L, Fan Z, Liu Y, Han R. Identification of Circular RNA Profiles in the Liver of Diet-Induced Obese Mice and Construction of the ceRNA Network. Genes (Basel) 2023; 14:688. [PMID: 36980960 PMCID: PMC10048691 DOI: 10.3390/genes14030688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular, cerebrovascular, metabolic, and respiratory diseases, and it has become an important social health problem affecting the health of the population. Obesity is affected by both genetic and environmental factors. In this study, we constructed a diet-induced obese C57BL/6J mouse model and performed deep RNA sequencing (RNA-seq) on liner-depleted RNA extracted from the liver tissues of the mice to explore the underlying mechanisms of obesity. A total of 7469 circular RNAs (circRNAs) were detected, and 21 were differentially expressed (DE) in the high-fat diet (HFD) and low-fat diet (LFD) groups. We then constructed a comprehensive circRNA-associated competing endogenous RNA (ceRNA) network. Bioinformatic analysis indicated that DE circRNAs associated with lipid metabolic-related pathways may act as miRNA sponges to modulate target gene expression. CircRNA1709 and circRNA4842 may serve as new candidates to regulate the expression of PTEN. This study provides systematic circRNA-associated ceRNA profiling in HFD mouse liver, and the results can aid early diagnosis and the selection of treatment targets for obesity in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Shuhua Gu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Shunyi Shen
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Tao Luo
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Haiyi Zhao
- College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Sijia Liu
- College of Basic Medical, Hebei North University, Zhangjiakou 075000, China
| | - Jingjie Feng
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Maosheng Yang
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Laqi Yi
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Zhaohan Fan
- College of The First Clinical, Hebei North University, Zhangjiakou 075000, China
| | - Yu Liu
- Laboratory Animal Center, Hebei North University, Zhangjiakou 075000, China
- Hebei Key Lab of Laboratory Animal Science, Shijiazhuang 050000, China
| | - Rui Han
- Laboratory Animal Center, Hebei North University, Zhangjiakou 075000, China
| |
Collapse
|
34
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
35
|
Huang CJ, Choo KB. Circular RNA- and microRNA-Mediated Post-Transcriptional Regulation of Preadipocyte Differentiation in Adipogenesis: From Expression Profiling to Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054549. [PMID: 36901978 PMCID: PMC10002489 DOI: 10.3390/ijms24054549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Adipogenesis is an indispensable cellular process that involves preadipocyte differentiation into mature adipocyte. Dysregulated adipogenesis contributes to obesity, diabetes, vascular conditions and cancer-associated cachexia. This review aims to elucidate the mechanistic details on how circular RNA (circRNA) and microRNA (miRNA) modulate post-transcriptional expression of targeted mRNA and the impacted downstream signaling and biochemical pathways in adipogenesis. Twelve adipocyte circRNA profiling and comparative datasets from seven species are analyzed using bioinformatics tools and interrogations of public circRNA databases. Twenty-three circRNAs are identified in the literature that are common to two or more of the adipose tissue datasets in different species; these are novel circRNAs that have not been reported in the literature in relation to adipogenesis. Four complete circRNA-miRNA-mediated modulatory pathways are constructed via integration of experimentally validated circRNA-miRNA-mRNA interactions and the downstream signaling and biochemical pathways involved in preadipocyte differentiation via the PPARγ/C/EBPα gateway. Despite the diverse mode of modulation, bioinformatics analysis shows that the circRNA-miRNA-mRNA interacting seed sequences are conserved across species, supporting mandatory regulatory functions in adipogenesis. Understanding the diverse modes of post-transcriptional regulation of adipogenesis may contribute to the development of novel diagnostic and therapeutic strategies for adipogenesis-associated diseases and in improving meat quality in the livestock industries.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, School of Agriculture, Chinese Culture University, 11114 Taipei, Taiwan
- Correspondence: (C.-J.H.); (K.B.C.)
| | - Kong Bung Choo
- Department of Preclinical Sciences, M Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Selangor, Malaysia
- Correspondence: (C.-J.H.); (K.B.C.)
| |
Collapse
|
36
|
Yan S, Pei Y, Li J, Tang Z, Yang Y. Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals. Biomolecules 2023; 13:biom13020314. [PMID: 36830683 PMCID: PMC9953704 DOI: 10.3390/biom13020314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.
Collapse
Affiliation(s)
- Shanying Yan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| |
Collapse
|
37
|
Identification of circRNA expression profiles and the potential role of hsa_circ_0006916 in silicosis and pulmonary fibrosis. Toxicology 2023; 483:153384. [PMID: 36403901 DOI: 10.1016/j.tox.2022.153384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators in the biological development of various diseases, but their expression profiles, functions and mechanisms in silicosis and pulmonary fibrosis remain largely unexplored. In this study, we constructed a mouse model of pulmonary fibrosis by intratracheal injection of silica particles and then performed transcriptome RNA sequencing of lung tissues. The results showed that 78 circRNAs, 39 miRNAs and 262 mRNAs were differentially expressed. Among them, five circRNAs, three miRNAs and four mRNAs were further selected, and their abnormal expression was verified in mouse fibrotic lung tissues by RT-qPCR assay. The circRNA-associated ceRNA network including 206 ceRNA triplets was constructed based on abnormally expressed circRNAs, miRNAs and mRNAs, and miR-199b-5p, miR-296-5p and miR-708-5p were identified as hub miRNAs connected to circRNAs and mRNAs. Subsequently, GO and KEGG pathway enrichment analyses were performed to detect the potential roles of differentially expressed mRNAs in pulmonary fibrosis, which were mainly involved in immune response, Th17 cell differentiation, NF-κB signaling pathway and PI3K-Akt signaling pathway. Furthermore, we identified that hsa_circ_0006916 was up-regulated in pulmonary fibrosis. To characterize the potential role of hsa_circ_0006916, we transfected siRNA targeting hsa_circ_0006916 into alveolar macrophages and found that knockdown of hsa_circ_0006916 significantly increased the expression levels of M1 molecules IL-1β and TNF-α and reduced the expression level of M2 molecule TGF-β1, indicating that hsa_circ_0006916 may play an important role in the activation of M1-M2 polarization effect in macrophages. Our results provided important evidence on the possible contribution of these abnormal circRNAs to the development of silicosis and pulmonary fibrosis.
Collapse
|
38
|
Raza SHA, Wijayanti D, Pant SD, Abdelnour SA, Hashem NM, Amin A, Wani AK, Prakash A, Dawood MAO, Zan L. Exploring the physiological roles of circular RNAs in livestock animals. Res Vet Sci 2022; 152:726-735. [PMID: 36270182 DOI: 10.1016/j.rvsc.2022.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Circular RNAs (circRNAs) are a recently identified class of RNAs produced via back-splicing and covalent linkage between RNA ends, resulting in a circularized RNA molecule. Physiologically, circRNAs are known to influence a variety of biological pathways, and can also regulate transcription, post-transcription, RNA splicing, or interaction with other proteins or microRNAs (miRNAs). Functionally, circRNAs are known to competitively bind to various other RNA molecules including miRNAs and other competing endogenous RNA such as long noncoding RNA, thereby significantly influencing gene expression. Since gene expression is a crucial factor that underlies economically important livestock traits, it is likely that circRNAs significantly influence livestock traits like growth, milk production, reproduction, meat quality, hair follicle growth, and gametogenesis. Thousands of circRNAs have been recognized in different species of animals, and some of these circRNAs have also been shown to regulate stress responses that may be crucial for animal welfare. Therefore, in this review, we aim to highlight the biogenesis of circRNAs, along with its potential implications for livestock. The presented summary would offer a fundamental understanding of the molecular machinery that underlies circRNAs and associated biological phenomena and emphasize the need for further explorations into the role of circRNAs in the other productive, reproductive, and physiological attributes in animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dwi Wijayanti
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (144411), India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, USA
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Egypt; Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo 11835, Egypt
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
40
|
Du K, Bai X, Chen L, Shi Y, Wang HD, Cai MC, Sun WQ, Wang J, Chen SY, Jia XB, Lai SJ. Integrated analysis of microRNAs, circular RNAs, long non-coding RNAs, and mRNAs revealed competing endogenous RNA networks involved in brown adipose tissue whitening in rabbits. BMC Genomics 2022; 23:779. [PMID: 36443655 PMCID: PMC9703717 DOI: 10.1186/s12864-022-09025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The brown adipose tissue (BAT) is a target for treating obesity. BAT losses thermogenic capacity and gains a "white adipose tissue-like" phenotype ("BAT whitening") under thermoneutral environments, which is a potential factor causing a low curative effect in BAT-related obesity treatments. Circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNA) to mRNAs and function in various processes by sponging shared microRNAs (miRNAs). However, the roles of circRNA- and lncRNA-related ceRNA networks in regulating BAT whitening remain litter known. RESULTS In this study, BATs were collected from rabbits at day0 (D0), D15, D85, and 2 years (Y2). MiRNA-seq was performed to investigate miRNA changes during BAT whitening. Then, a combined analysis of circRNA-seq and whole-transcriptome sequencing was used for circRNA assembly and quantification during BAT whitening. Our data showed that 1187 miRNAs and 6204 circRNAs were expressed in the samples, and many of which were identified as significantly changed during BAT whitening. Target prediction showed that D0-selective miRNAs were significantly enriched in the Ras, MAPK, and PI3K-Akt signaling pathways, and Y2-selective miRNAs were predicted to be involved in cell proliferation. The cyclization of several circRNAs could form novel response elements of key thermogenesis miRNAs at the back-splicing junction (BSJ) sites, and in combination with a dual-luciferase reporter assay confirmed the binding between the BSJ site of novel_circ_0013792 and ocu-miR-378-5p. CircRNAs and lncRNAs have high cooperativity in sponging miRNAs during BAT whitening. Both circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA triple networks were significantly involved in immune response-associated biological processes. The D15-selective circRNA might promote BAT whitening by increasing the expression of IDH2. The Y2-selective circRNA-related ceRNA network and lncRNA-related ceRNA network might regulate the formation of the WAT-like phenotype of BAT via MAPK and Ras signaling pathways, respectively. CONCLUSIONS Our work systematically revealed ceRNA networks during BAT whitening in rabbits and might provide new insight into BAT-based obesity treatments.
Collapse
Affiliation(s)
- Kun Du
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Xue Bai
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Li Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Yu Shi
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Hao-ding Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Ming-cheng Cai
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wen-qiang Sun
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Jie Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Shi-yi Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Xian-bo Jia
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| | - Song-jia Lai
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huimin Road, Wenjiang, 611130 Sichuan China
| |
Collapse
|
41
|
Li Q, Wang L, Xing K, Yang Y, Abiola Adetula A, Liu Y, Yi G, Zhang H, Sweeney T, Tang Z. Identification of circRNAs Associated with Adipogenesis Based on RNA-seq Data in Pigs. Genes (Basel) 2022; 13:2062. [PMID: 36360299 PMCID: PMC9689998 DOI: 10.3390/genes13112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 04/10/2024] Open
Abstract
Adipocytes or fat cells play a vital role in the storage and release of energy in pigs, and many circular RNAs (circRNAs) have emerged as important regulators in various tissues and cell types in pigs. However, the spatio-temporal expression pattern of circRNAs between different adipose deposition breeds remains elusive. In this study, RNA sequencing (RNA-seq) produced transcriptome profiles of Western Landrace (lean-type) and Chinese Songliao black pigs (obese-type) with different thicknesses of subcutaneous fat tissues and were used to identify circRNAs involved in the regulation of adipogenesis. Gene expression analysis revealed 883 circRNAs, among which 26 and 11 circRNAs were differentially expressed between Landrace vs. Songliao pigs and high- vs. low-thickness groups, respectively. We also analyzed the interaction between circRNAs and microRNAs (miRNAs) and constructed their interaction network in adipogenesis; gene ontology classification and pathway analysis revealed two vital circRNAs, with the majority of their target genes enriched in biological functions such as fatty acids biosynthesis, fatty acid metabolism, and Wnt/TGF-β signaling pathways. These candidate circRNAs can be taken as potential targets for further experimental studies. Our results show that circRNAs are dynamically expressed and provide a valuable basis for understanding the molecular mechanism of circRNAs in pig adipose biology.
Collapse
Affiliation(s)
- Qiaowei Li
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Liyuan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hongfu Zhang
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Innovation Group of Pig Genome Design and Breeding, Research Center for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
42
|
Coppedè F, Franzago M, Giardina E, Nigro CL, Matullo G, Moltrasio C, Nacmias B, Pileggi S, Sirchia SM, Stoccoro A, Storlazzi CT, Stuppia L, Tricarico R, Merla G. A perspective on diet, epigenetics and complex diseases: where is the field headed next? Epigenomics 2022; 14:1281-1304. [DOI: 10.2217/epi-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dietary factors can regulate epigenetic processes during life, modulating the intracellular pools of metabolites necessary for epigenetic reactions and regulating the activity of epigenetic enzymes. Their effects are strong during the prenatal life, when epigenetic patterns are written, allowing organogenesis. However, interactions between diet and the epigenome continue throughout life and likely contribute to the onset and progression of various complex diseases. Here, we review the contribution of dietary factors to the epigenetic changes observed in complex diseases and suggest future steps to better address this issue, focusing on neurobehavioral, neuropsychiatric and neurodegenerative disorders, cardiovascular diseases, obesity and Type 2 diabetes, cancer and inflammatory skin diseases.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy
| | - Marica Franzago
- Department of Medicine & Aging, School of Medicine & Health Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy
- Center for Advanced Studies & Technology, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, 00179, Italy
- Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, 00133, Italy
| | | | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, 10126, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
- Department of Medical Surgical & Health Sciences, University of Trieste, Trieste, 34137, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research & Child Health, University of Florence, Florence, 50139, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, 50143, Italy
| | - Silvana Pileggi
- Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy
| | - Silvia Maria Sirchia
- Department of Health Sciences, Medical Genetics, University of Milan, Milan, 20142, Italy
| | - Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Pisa, 56126, Italy
| | | | - Liborio Stuppia
- Center for Advanced Studies & Technology, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy
- Department of Psychological, Health & Territorial Sciences, School of Medicine & Health Sciences, “G. d'Annunzio” University of Chieti–Pescara, Chieti, 66100, Italy
| | - Rossella Tricarico
- Department of Biology & Biotechnology, University of Pavia, Pavia, 27100, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
43
|
Zhang X, Liu X, Jiang T, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. Circular RNA circZEB1 regulates goat brown adipocytes differentiation and thermogenesis through miR-326-3p. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Ren W, Yuan Y, Peng J, Mutti L, Jiang X. The function and clinical implication of circular RNAs in lung cancer. Front Oncol 2022; 12:862602. [PMID: 36338714 PMCID: PMC9629004 DOI: 10.3389/fonc.2022.862602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Luciano Mutti
- The Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Liu Y, Dou Y, Qi K, Li C, Song C, Li X, Li X, Qiao R, Wang K, Han X. CircSETBP1 Acts as a MiR-149-5p Sponge to Promote Intramuscular Fat Deposition by Regulating CRTCs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12841-12851. [PMID: 36165804 DOI: 10.1021/acs.jafc.2c05697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) appear to be crucial in the process of adipogenesis according to mounting data. CircSETBP1 is a newly discovered circRNA associated with adipogenesis. Sequencing verification and RNase R treatment have confirmed the circular nature of circSETBP1 in porcine tissue. The precise function and mechanism of circSETBP1 in adipocyte biology are still unclear. Cell counting kit-8 (CCK8), Oil red O staining, and quantitative real-time polymerase chain reaction (qRT-PCR) were employed in this investigation to reveal the functions of circSETBP1 and miR-149-5p in the growth and development of porcine intramuscular (IM) preadipocytes. CircSETBP1 overexpression accelerated cell differentiation while reducing cell proliferation. The opposite outcome was produced by overexpressing miR-149-5p. Meanwhile, circSETBP1 down-regulated the expression of miR-149-5p and miR-149-5p restrained the expression of CRTC1/CRTC2. CircSETBP1 was directly targeted by miR-149-5p, and CRTC1/CRTC2 were the target genes of miR-149-5p using bioinformatic analysis, the dual-Luciferase reporter system, and qRT-PCR. In conclusion, circSETBP1 controls the proliferation and differentiation of porcine IM preadipocytes and 3T3-L1 cells by regulating the miR-149-5p/CRTCs axis. The results of this study not only illuminate the molecular mechanism of circSETBP1/miR-149-5p involved in the deposition of porcine intramuscular fat (IMF), but they also provide a significant theoretical reference for raising quality of pork.
Collapse
Affiliation(s)
- Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
46
|
Fang X, Miao R, Wei J, Wu H, Tian J. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Comput Struct Biotechnol J 2022; 20:5935-5951. [PMID: 36382190 PMCID: PMC9646750 DOI: 10.1016/j.csbj.2022.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.
Collapse
|
47
|
Liu K, Liu X, Deng Y, Li Z, Tang A. CircRNA-mediated regulation of brown adipose tissue adipogenesis. Front Nutr 2022; 9:926024. [PMID: 35967789 PMCID: PMC9372764 DOI: 10.3389/fnut.2022.926024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.
Collapse
Affiliation(s)
- Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xin Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
48
|
Rajcsanyi LS, Diebels I, Pastoors L, Kanber D, Peters T, Volckmar AL, Zheng Y, Grosse M, Dieterich C, Hebebrand J, Kaiser FJ, Horsthemke B, Hinney A. Evidence for correlations between BMI-associated SNPs and circRNAs. Sci Rep 2022; 12:12643. [PMID: 35879369 PMCID: PMC9314347 DOI: 10.1038/s41598-022-16495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) are regulators of processes like adipogenesis. Their expression can be modulated by SNPs. We analysed links between BMI-associated SNPs and circRNAs. First, we detected an enrichment of BMI-associated SNPs on circRNA genomic loci in comparison to non-significant variants. Analysis of sex-stratified GWAS data revealed that circRNA genomic loci encompassed more genome-wide significant BMI-SNPs in females than in males. To explore whether the enrichment is restricted to BMI, we investigated nine additional GWAS studies. We showed an enrichment of trait-associated SNPs in circRNAs for four analysed phenotypes (body height, chronic kidney disease, anorexia nervosa and autism spectrum disorder). To analyse the influence of BMI-affecting SNPs on circRNA levels in vitro, we examined rs4752856 located on hsa_circ_0022025. The analysis of heterozygous individuals revealed an increased level of circRNA derived from the BMI-increasing SNP allele. We conclude that genetic variation may affect the BMI partly through circRNAs.
Collapse
Affiliation(s)
- Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. .,Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany.
| | - Inga Diebels
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lydia Pastoors
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | - Martin Grosse
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | | | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. .,Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany.
| |
Collapse
|
49
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
50
|
Zhang Y, Tian Z, Ye H, Sun X, Zhang H, Sun Y, Mao Y, Yang Z, Li M. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Dis 2022; 8:268. [PMID: 35595755 PMCID: PMC9122900 DOI: 10.1038/s41420-022-01062-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
As noncoding RNAs, circular RNAs (circRNAs) are covalently enclosed endogenous biomolecules in eukaryotes that have tissue specificity and cell specificity. circRNAs were once considered a rare splicing byproduct. With the development of high-throughput sequencing, it has been confirmed that they are expressed in thousands of mammalian genes. To date, only a few circRNA functions and regulatory mechanisms have been verified. Adipose is the main tissue for body energy storage and energy supply. Adipocyte metabolism is a physiological process involving a series of genes and affects biological activities in the body, such as energy metabolism, immunity, and signal transmission. When adipocyte formation is dysregulated, it will cause a series of diseases, such as atherosclerosis, obesity, fatty liver, and diabetes. In recent years, many noncoding RNAs involved in adipocyte metabolism have been revealed. This review provides a comprehensive overview of the basic structure and biosynthetic mechanism of circRNAs, and further discusses the circRNAs related to adipocyte formation in adipose tissue and liver. Our review will provide a reference for further elucidating the genetic regulation mechanism of circRNAs involved in adipocyte metabolism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhichen Tian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Haibo Ye
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Xiaomei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Huiming Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yujia Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Yongjiang Mao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China.,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| | - Mingxun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, 225009, Yangzhou, Jiangsu, China. .,Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu province, College of Animal Science and Technology, Yangzhou University, 225009, Yangzhou, Jiangsu, China.
| |
Collapse
|