1
|
Luis-Ravelo D, Fumagallo-Reading F, Febles-Casquero A, Lopez-Fernandez J, Marcellino DJ, Gonzalez-Hernandez T. Dopamine Receptor D3 Induces Transient, mTORC1-Dependent Autophagy That Becomes Persistent, AMPK-Mediated, and Neuroprotective in Experimental Models of Huntington's Disease. Cells 2025; 14:652. [PMID: 40358175 PMCID: PMC12071662 DOI: 10.3390/cells14090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Huntington disease's (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
| | - Felipe Fumagallo-Reading
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
| | - Alejandro Febles-Casquero
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| | - Jonathan Lopez-Fernandez
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| | - Daniel J. Marcellino
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden;
| | - Tomas Gonzalez-Hernandez
- Institute of Biomedical Technologies, University of La Laguna, 38200 Tenerife, Spain; (D.L.-R.); (F.F.-R.)
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain
| |
Collapse
|
2
|
Kim DH, Kim DJ, Park SJ, Jang WJ, Jeong CH. Inhibition of GLS1 and ASCT2 Synergistically Enhances the Anticancer Effects in Pancreatic Cancer Cells. J Microbiol Biotechnol 2025; 35:e2412032. [PMID: 40223274 PMCID: PMC12010092 DOI: 10.4014/jmb.2412.12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Pancreatic cancer, a leading cause of cancer-related deaths, is characterized by increased dependence on glutamine metabolism. Telaglenastat (CB-839), a glutaminase (GLS) inhibitor targets glutamine metabolism; however, its efficacy as monotherapy is limited owing to metabolic adaptations. In this study, we demonstrated that CB-839 effectively inhibited cell growth in pancreatic cancer cells, but activated the general control nonderepressible 2 (GCN2)-activating transcription factor 4 (ATF4) signaling pathway. ATF4 knockdown reduced glutamine transporter alanine, serine, and cysteine transporter 2 (ASCT2) expression, glutamine uptake, and cell viability under glutamine deprivation-recovery conditions, confirming its protective role in mitigating glutamine-related metabolic stress. Notably, the combination of CB-839 and the ASCT2 inhibitor V-9302 demonstrated a synergistic effect, significantly suppressing pancreatic cancer cell survival. These findings highlight ATF4 and ASCT2 as crucial therapeutic targets and indicate that dual inhibition of GLS and ASCT2 may enhance treatment outcomes for pancreatic cancer.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
3
|
Liu CJ, Ho KT, Huang HS, Lu ZH, Hsieh MHC, Chang YS, Wang WH, Lai ECC, Tsai YS. Sodium glucose co-transporter 2 inhibitor prevents nephrolithiasis in non-diabetes by restoring impaired autophagic flux. EBioMedicine 2025; 114:105668. [PMID: 40138887 PMCID: PMC11986249 DOI: 10.1016/j.ebiom.2025.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/20/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT2i) offer significant cardiovascular and kidney protection, independent of diabetes mellitus (DM). Recent cohort studies also suggest that SGLT2i can decrease the risk of nephrolithiasis in patients with DM. We aimed to use both animal models and human data to investigate whether SGLT2i can prevent nephrolithiasis and explored autophagy as a possible mechanism. METHODS We utilised SGLT2i, dapagliflozin (DAPA), on a glyoxylate (GOX)-induced calcium oxalate (CaOx) nephrolithiasis non-DM mouse model to test whether SGLT2i inhibited CaOx stone formation through modulating autophagy. Moreover, the clinical data retrieved from the National Health Insurance Research Database was analysed to confirm the findings from animal models. FINDINGS DAPA increased urine citrate, magnesium, pH, and decreased oxalate, effectively inhibiting CaOx stones in GOX mice. While autophagy was increased in the kidneys of GOX mice, as demonstrated by upregulated AMP-activated protein kinase (AMPK) and increased LC3B conversion; impaired autophagic flux was indicated by p62 accumulation. DAPA improved autophagy by downregulating mammalian target of rapamycin (mTOR), AMPK, and restoring autophagic flux. Rapamycin co-treatment preserved DAPA's nephrolithiasis inhibition, while hydroxychloroquine (HCQ) co-treatment abolished it. Finally, cohort data confirmed that SGLT2i reduced nephrolithiasis risk, but this protective effect disappeared if HCQ had been used within the prior year, suggesting that HCQ may compromise SGLT2i's protection against nephrolithiasis. INTERPRETATION SGLT2i, DAPA, inhibits nephrolithiasis by restoring impaired autophagic flux, and co-administration with autophagy inhibitor, HCQ, compromises SGLT2i's protection. FUNDING This research was funded by grants from the National Science and Technology Council, Taiwan (110-2314-B-006-023, 110-2320-B-006-017MY3, and 112-2314-B-006-058) and the research grants (NCKUH-11202005, -11210020) from the National Cheng Kung University Hospital, Tainan, Taiwan.
Collapse
Affiliation(s)
- Chan-Jung Liu
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Urology, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan.
| | - Kaun-Ta Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Urology, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Ze-Hong Lu
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Urology, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Miyuki Hsing-Chun Hsieh
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan; Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Shan Chang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 704302, Taiwan
| | - Wei-Hsuan Wang
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan; Population Health Data Center, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704302, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, 704302, Taiwan.
| |
Collapse
|
4
|
Smiles WJ, Ovens AJ, Yu D, Ling NXY, Poblete Goycoolea AC, Morrison KR, Murphy EO, Glaser A, O’Byrne SFM, Taylor S, Chalk AM, Walkley CR, McAloon LM, Scott JW, Kemp BE, Hoque A, Langendorf CG, Petersen J, Galic S, Oakhill JS. AMPK phosphosite profiling by label-free mass spectrometry reveals a multitude of mTORC1-regulated substrates. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:8. [PMID: 40052110 PMCID: PMC11879883 DOI: 10.1038/s44324-025-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The nutrient-sensitive protein kinases AMPK and mTORC1 form a fundamental negative feedback loop that governs cell growth and proliferation. mTORC1 phosphorylates α2-S345 in the AMPK αβγ heterotrimer to suppress its activity and promote cell proliferation under nutrient stress conditions. Whether AMPK contains other functional mTORC1 substrates is unknown. Using mass spectrometry, we generated precise stoichiometry profiles of phosphorylation sites across all twelve AMPK complexes expressed in proliferating human cells and identified seven sites displaying sensitivity to pharmacological mTORC1 inhibition. These included the abundantly phosphorylated residues β1-S182 and β2-S184, which were confirmed as mTORC1 substrates on purified AMPK, and four residues in the unique γ2 N-terminal extension. β-S182/184 phosphorylation was elevated in α1-containing complexes relative to α2, an effect attributed to the α-subunit serine/threonine-rich loop. Mutation of β1-S182 to non-phosphorylatable Ala had no effect on basal and ligand-stimulated AMPK activity; however, β2-S184A mutation increased nuclear AMPK activity, enhanced cell proliferation under nutrient stress and altered expression of genes implicated in glucose metabolism and Akt signalling. Our results indicate that mTORC1 directly or indirectly phosphorylates multiple AMPK residues that may contribute to metabolic rewiring in cancerous cells.
Collapse
Affiliation(s)
- William J. Smiles
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J. Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Dingyi Yu
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Naomi X. Y. Ling
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | | | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Emmanuel O. Murphy
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Sophie F. Monks O’Byrne
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Scott Taylor
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Alistair M. Chalk
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Carl R. Walkley
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Luke M. McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - John W. Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- The Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3052 Australia
| | - Bruce E. Kemp
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Christopher G. Langendorf
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Sandra Galic
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| |
Collapse
|
5
|
Balnis J, Jackson EL, Drake LA, Singer DV, Bossardi Ramos R, Singer HA, Jaitovich A. Rapamycin improves satellite cells' autophagy and muscle regeneration during hypercapnia. JCI Insight 2025; 10:e182842. [PMID: 39589836 PMCID: PMC11721297 DOI: 10.1172/jci.insight.182842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Both CO2 retention, or hypercapnia, and skeletal muscle dysfunction predict higher mortality in critically ill patients. Mechanistically, muscle injury and reduced myogenesis contribute to critical illness myopathy, and while hypercapnia causes muscle wasting, no research has been conducted on hypercapnia-driven dysfunctional myogenesis in vivo. Autophagy flux regulates myogenesis by supporting skeletal muscle stem cell - satellite cell - activation, and previous data suggest that hypercapnia inhibits autophagy. We tested whether hypercapnia worsens satellite cell autophagy flux and myogenic potential and if autophagy induction reverses these deficits. Satellite cell transplantation and lineage-tracing experiments showed that hypercapnia undermined satellite cells' activation, replication, and myogenic capacity. Bulk and single-cell sequencing analyses indicated that hypercapnia disrupts autophagy, senescence, and other satellite cell programs. Autophagy activation was reduced in hypercapnic cultured myoblasts, and autophagy genetic knockdown phenocopied these changes in vitro. Rapamycin stimulation led to AMPK activation and downregulation of the mTOR pathway, which are both associated with accelerated autophagy flux and cell replication. Moreover, hypercapnic mice receiving rapamycin showed improved satellite cell autophagy flux, activation, replication rate, and posttransplantation myogenic capacity. In conclusion, we have shown that hypercapnia interferes with satellite cell activation, autophagy flux, and myogenesis, and systemic rapamycin administration improves these outcomes.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Emily L. Jackson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Lisa A. Drake
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine and
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
6
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
7
|
Xia Q, Zhang J. Interaction Between Autophagy and the Inflammasome in Human Tumors: Implications for the Treatment of Human Cancers. Cell Biochem Funct 2025; 43:e70035. [PMID: 39722223 DOI: 10.1002/cbf.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a physiologically regulated cellular process orchestrated by autophagy-related genes (ATGs) that, depending on the tumor type and stage, can either promote or suppress tumor growth and progression. It can also modulate cancer stem cell maintenance and immune responses. Therefore, targeted manipulation of autophagy may inhibit tumor development by overcoming tumor-promoting mechanisms. The inflammasome is another multifunctional bioprocess that induces a form of pro-inflammatory programmed cell death, called pyroptosis. Dysregulation or overactivation of the inflammasome has been implicated in tumor pathogenesis and development. Additionally, autophagy can inhibit the NLRP3 inflammasome by removing inflammatory drivers. Recent research suggests that the NLRP3 inflammasome, in turn, affects autophagy. Understanding the complex interplay between autophagy and inflammasomes could lead to more precise and effective strategies for cancer treatments. In this review, we summarize the impact of autophagy and inflammasome dysregulation on tumor progression or suppression. We then highlight their targeting for cancer treatment as monotherapy or in combination with other therapies. Furthermore, we discuss the interaction between autophagy and tumor-promoting inflammation or the NLRP3 inflammasome. Finally, based on recent findings, we review the potential of this interaction for cancer treatment.
Collapse
Affiliation(s)
- Qing Xia
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhou Zhang
- Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Yu SMW, King E, Fribourg M, Hartzell S, Tsou L, Gee L, D'Agati VD, Thurman JM, He JC, Cravedi P. A Newly Identified Protective Role of C5a Receptor 1 in Kidney Tubules against Toxin-Induced Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:126-142. [PMID: 39427763 PMCID: PMC11686444 DOI: 10.1016/j.ajpath.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Acute kidney injury (AKI) remains a major reason for hospitalization with limited therapeutic options. Although complement activation is implicated in AKI, the role of C5a receptor 1 (C5aR1) in kidney tubular cells is unclear. Herein, aristolochic acid nephropathy (AAN) and folic acid nephropathy (FAN) models were used to establish the role of C5aR1 in kidney tubules during AKI in germline C5ar1-/-, myeloid cell-specific, and kidney tubule-specific C5ar1 knockout mice. After aristolochic acid and folic acid injection, C5ar1-/- mice had increased AKI severity and a higher degree of tubular injury. Macrophage depletion in C5ar1-/- mice or myeloid cell-specific C5ar1 deletion did not affect the outcomes of aristolochic acid-induced AKI. RNA-sequencing data from renal tubular epithelial cells (RTECs) showed that C5ar1 deletion was associated with the down-regulation of mitochondrial metabolism and ATP production transcriptional pathways. Metabolic studies confirmed reduced mitochondrial membrane potential at baseline and increased mitochondrial oxidative stress after injury in C5ar1-/- RTECs. Moreover, C5ar1-/- RTECs had enhanced glycolysis, glucose uptake, and lactate production on injury, corroborated by metabolomics analysis of kidneys from AAN mice. Kidney tubule-specific C5ar1 knockout mice recapitulated exacerbated AKI observed in C5ar1-/- mice in AAN and FAN. These data indicate that C5aR1 signaling in kidney tubules exerts renoprotective effects against toxin-induced AKI by limiting overt glycolysis and maintaining mitochondrial function, thereby revealing a novel link between the complement system and tubular cell metabolism.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| | - Emily King
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Susan Hartzell
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Liam Tsou
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Logan Gee
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Joshua M Thurman
- Medicine-Renal Med Diseases/Hypertension, Colorado University, Aurora, Colorado
| | - John Cijiang He
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York; James J. Peters Department of Veterans Affairs Medical Center, New York, New York
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Mount Sinai Hospital, New York, New York.
| |
Collapse
|
9
|
Wang Y, Yao Y, Zhang Y, Yu Y, Luo J, Sweet MJ, Yu C. Rational Design of Advanced Gene Delivery Carriers: Macrophage Phenotype Matters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401504. [PMID: 39558810 DOI: 10.1002/adma.202401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Nucleic acid delivery in hard-to-transfect macrophages have attracted increasing attention in diverse applications such as defence against bacterial infection. Regulated by microenvironments in specific applications, macrophages have a heterogenous nature and exist in different phenotypes with diverse functions, e.g., pro-inflammatory and anti-inflammatory. However, it is not clear whether macrophage phenotype affects nucleic acid delivery, and which one is harder to transfect, and the design of nucleic acid carriers in harder-to-transfect macrophage phenotypes is largely unexplored. Herein, it is first revealed that nucleic acid delivery efficacy in macrophages is influenced by phenotype: IL-4-treated "M2-like" macrophages with suppressed mammalian target of rapamycin complex 1 (mTORC1) levels are harder-to-transfect than "M1-like" macrophages for mRNA and DNA. This knowledge is then translated to the purpose-design of gene delivery carriers for harder-to-transfect M2 phenotype macrophages dominant upon bacteria immune evasion. By loading chloroquine in tetrasulfide bond-containing organosilica nanoparticles, the resultant composite promotes macrophage M2 polarization to M1 and increases mTORC1 levels for enhanced translation. The design is demonstrated in vitro and in vivo for pathogenic Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) infections. It is expected that the findings may provide new knowledge and gene delivery solutions in other applications where the M2 phenotype macrophage is dominant.
Collapse
Affiliation(s)
- Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yining Yao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yingjie Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
10
|
Ovens AJ, Yu D, Dite TA, Kemp BE, Oakhill JS. Measuring Cellular Adenine Nucleotides by Liquid Chromatography-Coupled Mass Spectrometry. Methods Mol Biol 2025; 2882:3-14. [PMID: 39992502 DOI: 10.1007/978-1-0716-4284-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Adenine nucleotides (AXPs, also referred to as adenosines or adenylates) are a group of organic molecules including adenosine 5'- mono-, di-, and tri-phosphate (AMP, ADP, and ATP, respectively) that, combined, resembles an electrochemical storage cell to facilitate cellular energy storage and transfer. ATP, generated from ADP by photosynthesis, anaerobic respiration, and oxidative phosphorylation, powers many energy-requiring processes in the cell through hydrolysis of its terminal (γ) phosphate, whereas ADP is equilibrated with AMP and ATP by the adenylate kinase reaction. AXPs are major signaling molecules that regulate a wide range of anabolic and catabolic enzymes including AMP-activated protein kinase (AMPK), phosphofructokinase, and pyruvate dehydrogenase.Methods to determine concentrations of AXPs from cells and biological samples have historically relied on high-performance liquid chromatography (HPLC)/capillary electrophoresis techniques to measure [ATP] and [ADP]. However, due to its low basal concentrations, these techniques lack sufficient sensitivity to directly measure [AMP], which must be extrapolated using assumptions of adenylate kinase equilibrium that neglect AMP degradation and synthesis pathways. Here, we describe a detailed protocol to accurately measure [AXP] from cells by liquid chromatography-coupled mass spectrometry (LC/MS), applicable to a wide range of fields including our specific interest in AMPK-dependent metabolic regulation.
Collapse
Affiliation(s)
- Ashley J Ovens
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Dingyi Yu
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Toby A Dite
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Bruce E Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Kapuy O, Holczer M, Csabai L, Korcsmáros T. Oscillatory autophagy induction is enabled by an updated AMPK-ULK1 regulatory wiring. PLoS One 2024; 19:e0313302. [PMID: 39724154 DOI: 10.1371/journal.pone.0313302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle. While many of these interactions have been known for decades, recent discoveries have revealed how mTORC1, AMPK, and ULK1 are truly interconnected. Although these new findings initially appeared contradictory to established models, additional experiments and our systems biology analysis clarify the updated regulatory structure. Through computational modelling of the autophagy oscillatory response, we show how this regulatory network governs autophagy induction. Our results not only reconcile previous conflicting experimental observations but also offer insights for refining autophagy regulation and advancing understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Luca Csabai
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
12
|
Maitland MER, Onea G, Owens DDG, Gonga-Cavé BC, Wang X, Arrowsmith CH, Barsyte-Lovejoy D, Lajoie GA, Schild-Poulter C. Interplay between β-propeller subunits WDR26 and muskelin regulates the CTLH E3 ligase supramolecular complex. Commun Biol 2024; 7:1668. [PMID: 39702571 DOI: 10.1038/s42003-024-07371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The Pro/N-degron recognizing C-terminal to LisH (CTLH) complex is an E3 ligase of emerging interest in the developmental biology field and for targeted protein degradation (TPD) modalities. The human CTLH complex forms distinct supramolecular ring-shaped structures dependent on the multimerization of WDR26 or muskelin β-propeller proteins. Here, we find that, in HeLa cells, CTLH complex E3 ligase activity is dictated by an interplay between WDR26 and muskelin in tandem with muskelin autoregulation. Proteomic experiments revealed that complex-associated muskelin protein turnover is a major ubiquitin-mediated degradation event dependent on the CTLH complex in unstimulated HeLa cells. We observed that muskelin and WDR26 binding to the scaffold of the complex is interchangeable, indicative of the formation of separate WDR26 and muskelin complexes, which correlated with distinct proteomes in WDR26 and muskelin knockout cells. We found that mTOR inhibition-induced degradation of Pro/N-degron containing protein HMGCS1 is distinctly regulated by a muskelin-specific CTLH complex. Finally, we found that mTOR inhibition also activated muskelin degradation, likely as an autoregulatory feedback mechanism to regulate CTLH complex activity. Thus, rather than swapping substrate receptors, the CTLH E3 ligase complex controls substrate selectivity through the differential association of its β-propeller oligomeric subunits WDR26 and muskelin.
Collapse
Affiliation(s)
- Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Dominic D G Owens
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Amphista Therapeutics, The Cori Building, Granta Park, Cambridge, UK
| | - Brianna C Gonga-Cavé
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada
- Don Rix Protein Identification Facility, University of Western Ontario, London, ON, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biochemistry, University of Western Ontario, London, ON, N6G 2V4, Canada.
- Department of Oncology, University of Western Ontario, London, ON, N6G 2V4, Canada.
| |
Collapse
|
13
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
14
|
Zeng L, Wang SY, Du MH, Chu BB, Ming SL. The vitamin D receptor is essential for the replication of pseudorabies virus. mBio 2024; 15:e0213724. [PMID: 39475231 PMCID: PMC11633143 DOI: 10.1128/mbio.02137-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
The vitamin D receptor (VDR) is a nuclear steroid receptor that regulates the expression of genes across various biological functions. However, the role of VDR in pseudorabies virus (PRV) infection has not yet been explored. We discovered that VDR positively influenced PRV proliferation because knockdown of VDR impaired PRV proliferation, whereas its overexpression promoted it. Additionally, we observed that PRV infection upregulated VDR transcription alongside 1,25-dihydroxyvitamin D3 (VD3) synthesis, contingent on p53 activation. Furthermore, VDR knockdown hindered PRV-induced lipid synthesis, implicating VDR's involvement in this process. To decipher the mechanism behind VDR's stimulation of lipid synthesis during PRV infection, we conducted RNA sequencing (RNA-seq) and found significant enrichment of genes in the Ca2+ signaling pathway. Measurements of Ca2+ indicated that VDR facilitated Ca2+ absorption. Moreover, the PI3K/AKT/mTORC1 and AMPK/mTORC1 pathways were also enriched in our RNA-seq data. Interfering with VDR expression, or chelating Ca2+ using BAPTA-AM, markedly impacted the activation of PI3K/AKT/mTORC1 and AMPK/mTORC1 pathways, lipid synthesis, and PRV proliferation. In summary, our study demonstrates that PRV infection promotes VDR expression, thereby enhancing Ca2+ absorption and activating PI3K/AKT/mTORC1- and AMPK/mTORC1-mediated lipid synthesis. Our findings offer new insights into strategies for PRV prevention.IMPORTANCEVitamin D, beyond its well-known benefits for bone health and immune function, also plays a pivotal role in regulating gene expression through its receptor, the vitamin D receptor (VDR). Although VDR's influence spans multiple biological processes, its relationship with viral infections, particularly pseudorabies virus (PRV), remains underexplored. Our research illustrates a complex interplay where PRV infection boosts VDR expression, which in turn enhances Ca2+ absorption, leading to the activation of critical lipid synthesis pathways, PI3K/AKT/mTORC1 and AMPK/mTORC1. These findings not only deepen our understanding of the intricate dynamics between host molecular mechanisms and viral proliferation but also open avenues for exploring new strategies aimed at preventing PRV infection. By targeting components of the VDR-related signaling pathways, we can potentially develop novel therapeutic interventions against PRV and possibly other similar viral infections.
Collapse
Affiliation(s)
- Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shu-Yi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Meng-Hua Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Zhang N, Guo K, Lin W, Wang Z, Zhang F, Zhang X, Zheng D, Ma W. Yunnan baiyao exerts anti-glioma activity by inducing autophagy-dependent necroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118658. [PMID: 39103023 DOI: 10.1016/j.jep.2024.118658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yunnan Baiyao (YB), a traditional herbal formulation, has been used for over a century to manage bleeding and enhance blood circulation. Its ingredients are widely recognized for their anti-cancer properties. However, its impact on glioma, the most common primary malignant tumor of the central nervous system, remains unexplored. AIM OF THE STUDY This study aims to investigate the anti-glioma activity of YB in vitro and in vivo, and to elucidate the underlying mechanism of action. METHODS U-87 MG cells were treated with YB and subjected to cell proliferation assay, colony formation assay, and flow cytometry with Annexin V/PI staining to confirm anti-glioma activity. The induction of necroptosis and autophagy was confirmed through live-cell imaging, western blotting, and immunofluorescence analysis. The role of apoptosis, necroptosis, autophagy, and AMPK was validated using specific inhibitors. The in vivo anti-glioma activity of YB was evaluated using subcutaneous and orthotopic xenograft models in nude mice and chemically induced glioma rat models. RESULTS YB induced necroptotic rather than apoptotic cell death in glioma U-87 MG cells, as evidenced by increased phosphorylated MLKL levels and plasma membrane disruptions. Rescue experiments further confirmed the role of necroptosis. Importantly, YB-triggered necroptosis was found to be dependent on autophagy induction, which relies on the AMPK signaling pathway. In line with these findings, YB demonstrated significant anti-glioma activity in vivo. CONCLUSIONS Our study reveals that YB exerts potent anti-glioma effects both in vitro and in vivo through the induction of autophagy-dependent necroptosis.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China; Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kaiqiang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Fuming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Dayuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, 999078, China.
| |
Collapse
|
16
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Wang Z, Wang Z, Zou C. LdAMPKα2 knockdown accelerated the growth but depressed the chitin biosynthesis in Lymantria dispar larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106198. [PMID: 39672627 DOI: 10.1016/j.pestbp.2024.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
AMPK (AMP-activated protein kinase) is a crucial cellular energy sensor across all eukaryotic species. Its multiple roles in maintaining energy homeostasis, regulating cellular metabolic processes have been widely investigated in mammals. In contrast, the function of AMPK in insects has been less reported. Here, we successfully identified three AMPK subunits from Lymantria dispar (L. dispar), a Lepidoptera pest in forestry. Based on that, in particular, the role of AMPK signaling in regulating larval development, as well as chitin biosynthesis was investigated by the application of RNAi-mediated LdAMPKα2 knockdown. The results indicated that knockdown of LdAMPKα2 significantly increased the body weight of L. dispar larvae, and dramatically upregulated the expression of LdmTOR, LdS6K and LdSREBP1, the key genes in mTOR (mammalian target of rapamycin) signaling pathway. While, it significantly reduced the expression of Ld4EBP, a critical repressor of mTOR pathway. Besides, the glucose level was increased and trehalose level was decreased in L. dispar after LdAMPKα2 silencing. Furthermore, we found that the chitin content in the epidermis, as well as the expressions of four key genes in the chitin biosynthesis pathway, LdGFAT, LdPAGM, LdUAP and LdCHSA, were significantly decreased after LdAMPKα2 knockdown. Taken together, these results revealed that AMPK signaling played a pivotal role in regulating the growth and development, as well as carbohydrate metabolism and chitin biosynthesis in L. dispar larvae. The findings expand our understanding of the comprehensive regulatory role of AMPK signaling in insects.
Collapse
Affiliation(s)
- Zizhuo Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
18
|
Castrogiovanni P, Sanfilippo C, Imbesi R, Lazzarino G, Li Volti G, Tibullo D, Vicario N, Parenti R, Giuseppe L, Barbagallo I, Alanazi AM, Vecchio M, Cappello F, Musumeci G, Di Rosa M. Skeletal muscle of young females under resistance exercise exhibits a unique innate immune cell infiltration profile compared to males and elderly individuals. J Muscle Res Cell Motil 2024; 45:171-190. [PMID: 38578562 DOI: 10.1007/s10974-024-09668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Cristina Sanfilippo
- Neurologic Unit, Department of Medical, Surgical Sciences and Advanced Technologies, AOU "Policlinico-San Marco", University of Catania, Via Santa Sofia n.78, Sicily, GF, Ingrassia, Catania, 95100, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Lazzarino Giuseppe
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Ignazio Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95124, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, 90127, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, 90139, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, 95125, Italy.
| |
Collapse
|
19
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
20
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024; 68:321-336. [PMID: 38994736 PMCID: PMC12055038 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
22
|
Roths M, Rudolph TE, Krishna S, Michael A, Selsby JT. One day of environment-induced heat stress damages the murine myocardium. Am J Physiol Heart Circ Physiol 2024; 327:H978-H988. [PMID: 39212770 PMCID: PMC11482254 DOI: 10.1152/ajpheart.00180.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The physiological consequences of environment-induced heat stress (EIHS), caused by prolonged exposure to excess heat and humidity, are largely unknown. The purpose of this investigation was to determine the extent to which EIHS alters cardiac health. We hypothesized that 24 h of EIHS would cause cardiac injury and cellular dysfunction in a murine EIHS model. To test this hypothesis, 7-wk-old female mice were housed under thermoneutral (TN) conditions (n = 12; 31.2 ± 1.01°C, 35 ± 0.7% humidity) or EIHS conditions (n = 14; 37.6 ± 0.01°C, 42.0 ± 0.06% humidity) for 24 h. Environment-induced heat stress increased rectal temperature by 2.1°C (P < 0.01) and increased subcutaneous temperature by 1.8°C (P < 0.01). Body weight was decreased by 10% (P = 0.03), heart weight/body weight was increased by 26% (P < 0.01), and tissue water content was increased by 11% (P < 0.05) in EIHS compared with TN. In comparison with TN, EIHS increased protein abundance of heat shock protein (HSP) 27 by 84% (P = 0.01); however, HSPs 90, 60, 70, and phosphorylated HSP 27 were similar between groups. Histological inspection of the heart revealed that EIHS animals had increased myocyte vacuolation in the left ventricle (P = 0.01), right ventricle (P < 0.01), and septum (P = 0.01) compared with TN animals. Biochemical indices are suggestive of mitochondrial remodeling, increased autophagic flux, and robust activation of endoplasmic reticulum stress in hearts from EIHS mice compared with TN mice. These data demonstrate that 1 day of EIHS is sufficient to induce myocardial injury and biochemical dysregulation.NEW & NOTEWORTHY The consequences of prolonged environment-induced heat stress (EIHS) on heart health are largely unknown. We discovered that a 24-h exposure to environmental conditions sufficient to cause EIHS resulted in cardiac edema and histopathologic changes in the right and left ventricles. Furthermore, among other biochemical changes, EIHS increased autophagic flux and caused endoplasmic reticulum stress. These data raise the possibility that thermic injury, even when insufficient to cause heat stroke, can damage the myocardium.
Collapse
Affiliation(s)
- Melissa Roths
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | - Alyona Michael
- Veterinary Diagnostic Laboratory, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
23
|
Kang C, Xiao Q, Wang X, Guo W, Zhang H, Yuan L, Zhao Z, Hao W. Chlormequat chloride induces hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition. Food Chem Toxicol 2024; 190:114790. [PMID: 38849044 DOI: 10.1016/j.fct.2024.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Chlormequat chloride (CCC), a widely used plant growth regulator, is a choline analogue that has been shown to have endocrine-disrupting effects. Previous studies have shown that maternal exposure to CCC could induce hyperlipidemia and growth disruption in rat offspring. This study aims to further investigate the effects of peripubertal exposure to CCC on pubertal development and lipid homeostasis, as well as the underlying mechanisms. In vivo, male weanling rats were exposed to CCC (0, 20, 75 and 200 mg/kg bw/day) from post-natal day 21-60 via daily oral gavage. The results in rats showed that 75 mg/kg CCC treatment induced hepatic steatosis, predominantly microvesicular steatosis with a small amount of macrovesicular steatosis, in rat livers and 200 mg/kg CCC treatment induced liver damage including inflammatory infiltration, hepatic sinusoidal dilation and necrosis. In vitro, HepG2 cells were treated with CCC (0, 30, 60, 120, 240 and 480 μg/mL) for 24 h. And the results showed that CCC above 120 μg/mL induced an increase in triglyceride and neutral lipid levels of HepG2 cells. Mechanism exploration revealed that CCC treatment promoted the activation of mTOR/SREBP1 signalling pathway and inhibited activation of AMPK in both in vivo rat livers and in vitro HepG2 cells. Treatment with AMPK activator Acadesine (AICAR) could alleviate the lipid accumulation in HepG2 cells induced by CCC. Collectively, the present results indicate that CCC might induce hepatic steatosis by promoting mTOR/SREBP1 mediated lipogenesis via AMPK inhibition.
Collapse
Affiliation(s)
- Chengping Kang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhe Zhao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
25
|
Liu S, Wu J, Tong X, Huang LH. A novel target to turn cold tumors into hot tumors: lysosomal 25-hydroxycholesterol activates AMPKα and immunosuppressive tumor-associated macrophages. Cell Mol Immunol 2024; 21:801-803. [PMID: 38740924 PMCID: PMC11291875 DOI: 10.1038/s41423-024-01171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Shuangshuang Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaqi Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao Tong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Baimanov D, Li S, Gao XJ, Cai R, Liu K, Li J, Liu Y, Cong Y, Wang X, Liu F, Li Q, Zhang G, Wei H, Wang J, Chen C, Gao X, Li Y, Wang L. A phosphatase-like nanomaterial promotes autophagy and reprograms macrophages for cancer immunotherapy. Chem Sci 2024; 15:10838-10850. [PMID: 39027281 PMCID: PMC11253186 DOI: 10.1039/d4sc01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Su Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg 5020 Salzburg Austria
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Ke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Junjie Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 P. R. China
| | - Qi Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences Shenzhen P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| |
Collapse
|
27
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
28
|
Cao S, Jiang J, Yin H, Wang L, Lu Q. Abnormal energy metabolism in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2024; 134:112149. [PMID: 38692019 DOI: 10.1016/j.intimp.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.
Collapse
Affiliation(s)
- Shumei Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
29
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Xiao J, Wang S, Chen L, Ding X, Dang Y, Han M, Zheng Y, Shen H, Wu S, Wang M, Yang D, Li N, Dong C, Hu M, Su C, Li W, Hui L, Ye Y, Tang H, Wei B, Wang H. 25-Hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages. Immunity 2024; 57:1087-1104.e7. [PMID: 38640930 DOI: 10.1016/j.immuni.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhao Dang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mingshun Han
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Shen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sifan Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingchang Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Na Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Dong
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Weiyun Li
- Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Lijian Hui
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Cancer Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China; Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Hongyan Wang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
31
|
Yang C, Rubin L, Yu X, Lazarovici P, Zheng W. Preclinical evidence using synthetic compounds and natural products indicates that AMPK represents a potential pharmacological target for the therapy of pulmonary diseases. Med Res Rev 2024; 44:1326-1369. [PMID: 38229486 DOI: 10.1002/med.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024]
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a highly conserved eukaryotic enzyme discovered as a key regulator of cellular energy homeostasis, with anti-inflammation, antioxidative stress, anticancer, and antifibrosis beneficial effects. AMPK is dysregulated in human pulmonary diseases such as acute lung injury, nonsmall cell lung cancer, pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. This review provides an overview of the beneficial role of natural, synthetic, and Chinese traditional medicines AMPK modulators in pulmonary diseases, and highlights the role of the AMPK signaling pathway in the lung, emphasizing the importance of finding lead compounds and drugs that can target and modulate AMPK to treat the lung diseases.
Collapse
Affiliation(s)
- Chao Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Xiyong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
32
|
Shen R, Qin S, Lv Y, Liu D, Ke Q, Shi C, Jiang L, Yang J, Zhou Y. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167060. [PMID: 38354757 DOI: 10.1016/j.bbadis.2024.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.
Collapse
Affiliation(s)
- Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yunhui Lv
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
33
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
34
|
Al-Salam S, Jagadeesh GS, Sudhadevi M, Yasin J. Galectin-3 and Autophagy in Renal Acute Tubular Necrosis. Int J Mol Sci 2024; 25:3604. [PMID: 38612416 PMCID: PMC11012141 DOI: 10.3390/ijms25073604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Acute kidney injury (AKI) is a public health burden with increasing morbidity and mortality rates and health care costs. Acute tubular necrosis (ATN) is the most common cause of AKI. Cisplatin (CIS) is a platinum-based chemotherapeutic agent used in the treatment of a wide variety of malignancies such as lung, breast, ovary, testis, bladder, cervix, and head and neck cancers. Autophagy plays an important role in AKI. Galectin-3 (Gal-3) is significantly increased in renal tubules in AKI; however, its role in autophagy is not well understood. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used to induce AKI using a CIS mouse model of ATN. Renal Gal-3 and autophagy proteins' expression were measured using standard histologic, immunofluorescent, and enzyme-linked immunosorbent assay techniques. The data were presented as the mean ± S.E. Statistically significant differences (p < 0.05) were calculated between experimental groups and corresponding control groups by one-way analysis of variance. There was a significant increase in renal concentrations of Gal-3 in the Gal-3 wild-type CIS-treated mice when compared with sham control mice. There were significantly higher concentrations of renal LC3B, ATG13, Ulk-1, Beclin, ATG5, ATG12, ATG9A, and p-AMPK in the CIS-treated Gal-3 KO mice than in the Gal-3 wild-type CIS-treated mice. Further, there were significantly higher concentrations of mTOR, p- NF-κB, beta-catenin, and p62 in the kidneys of the Gal-3 wild-type CIS-treated mice than in the Gal-3 KO CIS-treated mice. Our findings affirm the connection between Gal-3 and autophagy, revealing its central role as a connector with prosurvival signaling proteins. Gal-3 plays a pivotal role in orchestrating cellular responses by interacting with prosurvival signal pathways and engaging with autophagy proteins. Notably, our observations highlight that the absence of Gal-3 can enhance autophagy in CIS-induced ATN.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Govindan S. Jagadeesh
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Manjusha Sudhadevi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Alain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
35
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
36
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Holczer M, Besze B, Lehel A, Kapuy O. The Dual Role of Sulforaphane-Induced Cellular Stress-A Systems Biological Study. Int J Mol Sci 2024; 25:1220. [PMID: 38279216 PMCID: PMC11154497 DOI: 10.3390/ijms25021220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress. Our goal was to investigate how SFN-dependent autophagy activation affects different stages of ER stress induction. We approached our scientific analysis from a systems biological perspective using both theoretical and molecular biological techniques. We found that SFN induced the various cell-death mechanisms in a concentration- and time-dependent manner. The short SFN treatment at low concentrations promoted autophagy, whereas the longer treatment at higher concentrations activated cell death. We proved that SFN activated autophagy in a mTORC1-dependent manner and that the presence of ULK1 was required for its function. A low concentration of SFN pre- or co-treatment combined with short and long ER stress was able to promote cell survival via autophagy induction in each treatment, suggesting the potential medical importance of SFN in ER stress-related diseases.
Collapse
Affiliation(s)
| | | | | | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary; (M.H.); (B.B.); (A.L.)
| |
Collapse
|
38
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
39
|
Huang Y, Han M, Shi Q, Li X, Mo J, Liu Y, Chu Z, Li W. Li, P HY-021068 alleviates cerebral ischemia-reperfusion injury by inhibiting NLRP1 inflammasome and restoring autophagy function in mice. Exp Neurol 2024; 371:114583. [PMID: 37884189 DOI: 10.1016/j.expneurol.2023.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a severe pathological condition that involves oxidative stress, inflammatory response, and neuronal damage. HY-021068 belongs to a new drug of chemical class 1, which is a potential thromboxane synthase inhibitor. Our preliminary experiment found that HY-021068 has significant anti-neuroinflammatory and neuroprotective effects. However, the protective effect and mechanism of HY-021068 in CIRI remain unclear. To investigate the protective effect and mechanism of HY-021068 in CIRI mice. In mice, CIRI was induced by bilateral common carotid artery occlusion and reperfusion. Mice were treated with HY-021068 or LV-NLRP1-shRNA (lentivirus-mediated shRNA transfection to knock down NLRP1 expression). The locomotor activity, neuronal damage, pathological changes, postsynaptic density protein-95 (PSD-95) expression, NLRP1 inflammasome activation, autophagy markers, and apoptotic proteins were assessed in CIRI mice. In this study, treatment with HY-021065 and LV-NLRP1-shRNA significantly improved motor dysfunction and neuronal damage after CIRI in mice. HY-021065 and NLRP1 knockdown significantly ameliorated the pathological damage and increased PSD-95 expression in the cortex and hippocampus CA1 and CA3 regions. The further studies showed that compared with the CIRI model group, HY-021065 and NLRP1 knockdown treatment inhibited the expressions of NLRP1, ASC, caspase-1, and IL-1β, restored the expressions of p-AMPK/AMPK, Beclin1, LC3II/LC3I, p-mTOR/m-TOR and P62, and regulated the expressions of BCL-2, Caspase3, and BAX in brain tissues of CIRI mice in CIRI mice. These results suggest that HY-021068 exerts a protective role in CIRI mice by inhibiting NLRP1 inflammasome activation and regulating autophagy function and neuronal apoptosis. HY-021068 is expected to become a new therapeutic drug for CIRI.
Collapse
Affiliation(s)
- Ye Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Min Han
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Qifeng Shi
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiajia Mo
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China
| | - Yan Liu
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhaoxing Chu
- Hefei Industrial and Pharmaceutical Co., Ltd, Hefei 230200, Anhui, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College; Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education; Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
40
|
Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J 2023; 480:1951-1968. [PMID: 37962491 PMCID: PMC10754287 DOI: 10.1042/bcj20230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Collapse
Affiliation(s)
- Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| |
Collapse
|
41
|
Aruldas R, Orenstein LB, Spencer S. Metformin Prevents Cocaine Sensitization: Involvement of Adenosine Monophosphate-Activated Protein Kinase Trafficking between Subcellular Compartments in the Corticostriatal Reward Circuit. Int J Mol Sci 2023; 24:16859. [PMID: 38069180 PMCID: PMC10706784 DOI: 10.3390/ijms242316859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Repeated cocaine exposure produces an enhanced locomotor response (sensitization) paralleled by biological adaptations in the brain. Previous studies demonstrated region-specific responsivity of adenosine monophosphate-activated protein kinase (AMPK) to repeated cocaine exposure. AMPK maintains cellular energy homeostasis at the organismal and cellular levels. Here, our objective was to quantify changes in phosphorylated (active) and total AMPK in the cytosol and synaptosome of the medial prefrontal cortex, nucleus accumbens, and dorsal striatum following acute or sensitizing cocaine injections. Brain region and cellular compartment selective changes in AMPK and pAMPK were found with some differences associated with acute withdrawal versus ongoing cocaine treatment. Our additional goal was to determine the behavioral and molecular effects of pretreatment with the indirect AMPK activator metformin. Metformin potentiated the locomotor activating effects of acute cocaine but blocked the development of sensitization. Sex differences largely obscured any protein-level treatment group effects, although pAMPK in the NAc shell cytosol was surprisingly reduced by metformin in rats receiving repeated cocaine. The rationale for these studies was to inform our understanding of AMPK activation dynamics in subcellular compartments and provide additional support for repurposing metformin for treating cocaine use disorder.
Collapse
Affiliation(s)
- Rachel Aruldas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Sade Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Alfatah M, Cui L, Goh CJH, Cheng TYN, Zhang Y, Naaz A, Wong JH, Lewis J, Poh WJ, Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep 2023; 42:113205. [PMID: 37792530 DOI: 10.1016/j.celrep.2023.113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore.
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | | | - Yizhong Zhang
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome #02-01, Singapore 138672, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Jacqueline Lewis
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wei Jie Poh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, A(∗)STAR, 31 Biopolis Way, Singapore 138669, Singapore; Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
43
|
Fu W, Wu G. Design of negative-regulating proteins of Rheb/mTORC1 with much-reduced sizes of the tuberous sclerosis protein complex. Protein Sci 2023; 32:e4731. [PMID: 37462942 PMCID: PMC10382911 DOI: 10.1002/pro.4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The mTORC1 signaling pathway regulates cell growth and metabolism in a variety of organisms from yeast to human, and inhibition of the mTORC1 pathway has the prospect to treat cancer or achieve longevity. The tuberous sclerosis protein complex (TSCC) is a master negative regulator of the mTORC1 signaling pathway through hydrolyzing the GTP loaded on the small GTPase Rheb, which is a key activator of mTOR. However, the large size (~700 kDa) and complex structural organization of TSCC render it vulnerable to degradation and inactivation, thus limiting its potential application. In this work, based on thorough analysis and understanding of the structural mechanism of how the stabilization domain of TSC2 secures the association of TSC2-GAP with Rheb and thus enhances its GAP activity, we designed two proteins, namely SSG-MTM (short stabilization domain and GAP domain-membrane targeting motif) and SSG-TSC1N, which were able to function like TSCC to negatively regulate Rheb and mTORC1, but with much-reduced sizes (~1/15 and ~ 1/9 of the size of TSCC, respectively). Biochemical and cell biological assays demonstrated that these designed proteins indeed could promote the GTPase activity of Rheb to hydrolyze GTP, inhibit the kinase activity of mTORC1, and prevent mTORC1 from down-regulating catabolism and autophagy.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOEShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
44
|
Casas M, Murray KD, Hino K, Vierra NC, Simó S, Trimmer JS, Dixon RE, Dickson EJ. NPC1-dependent alterations in K V2.1-Ca V1.2 nanodomains drive neuronal death in models of Niemann-Pick Type C disease. Nat Commun 2023; 14:4553. [PMID: 37507375 PMCID: PMC10382591 DOI: 10.1038/s41467-023-39937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes communicate through cholesterol transfer at endoplasmic reticulum (ER) contact sites. At these sites, the Niemann Pick C1 cholesterol transporter (NPC1) facilitates the removal of cholesterol from lysosomes, which is then transferred to the ER for distribution to other cell membranes. Mutations in NPC1 result in cholesterol buildup within lysosomes, leading to Niemann-Pick Type C (NPC) disease, a progressive and fatal neurodegenerative disorder. The molecular mechanisms connecting NPC1 loss to NPC-associated neuropathology remain unknown. Here we show both in vitro and in an animal model of NPC disease that the loss of NPC1 function alters the distribution and activity of voltage-gated calcium channels (CaV). Underlying alterations in calcium channel localization and function are KV2.1 channels whose interactions drive calcium channel clustering to enhance calcium entry and fuel neurotoxic elevations in mitochondrial calcium. Targeted disruption of KV2-CaV interactions rescues aberrant CaV1.2 clustering, elevated mitochondrial calcium, and neurotoxicity in vitro. Our findings provide evidence that NPC is a nanostructural ion channel clustering disease, characterized by altered distribution and activity of ion channels at membrane contacts, which contribute to neurodegeneration.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry & Behavioral Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
45
|
Ruiz-Velasco A, Raja R, Chen X, Ganenthiran H, Kaur N, Alatawi NHO, Miller JM, Abouleisa RR, Ou Q, Zhao X, Fonseka O, Wang X, Hille SS, Frey N, Wang T, Mohamed TM, Müller OJ, Cartwright EJ, Liu W. Restored autophagy is protective against PAK3-induced cardiac dysfunction. iScience 2023; 26:106970. [PMID: 37324527 PMCID: PMC10265534 DOI: 10.1016/j.isci.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Despite the development of clinical treatments, heart failure remains the leading cause of mortality. We observed that p21-activated kinase 3 (PAK3) was augmented in failing human and mouse hearts. Furthermore, mice with cardiac-specific PAK3 overexpression exhibited exacerbated pathological remodeling and deteriorated cardiac function. Myocardium with PAK3 overexpression displayed hypertrophic growth, excessive fibrosis, and aggravated apoptosis following isoprenaline stimulation as early as two days. Mechanistically, using cultured cardiomyocytes and human-relevant samples under distinct stimulations, we, for the first time, demonstrated that PAK3 acts as a suppressor of autophagy through hyper-activation of the mechanistic target of rapamycin complex 1 (mTORC1). Defective autophagy in the myocardium contributes to the progression of heart failure. More importantly, PAK3-provoked cardiac dysfunction was mitigated by administering an autophagic inducer. Our study illustrates a unique role of PAK3 in autophagy regulation and the therapeutic potential of targeting this axis for heart failure.
Collapse
Affiliation(s)
- Andrea Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Rida Raja
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Xinyi Chen
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Haresh Ganenthiran
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Namrita Kaur
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nasser hawimel o Alatawi
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jessica M. Miller
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St, Louisville, KY 40202, USA
| | - Riham R.E. Abouleisa
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St, Louisville, KY 40202, USA
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St, Louisville, KY 40202, USA
| | - Xiangjun Zhao
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Oveena Fonseka
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Susanne S. Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Tao Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St, Louisville, KY 40202, USA
| | - Oliver J. Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Elizabeth J. Cartwright
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
46
|
Li M, Wei X, Xiong J, Feng JW, Zhang CS, Lin SC. Hierarchical inhibition of mTORC1 by glucose starvation-triggered AXIN lysosomal translocation and by AMPK. LIFE METABOLISM 2023; 2:load005. [PMID: 39872013 PMCID: PMC11749110 DOI: 10.1093/lifemeta/load005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 01/29/2025]
Abstract
When glucose is replete, mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is active and anchored to the lysosomal surface via the two GTPases, Ras-related GTPase (RAG) and Ras homolog enriched in brain (Rheb), which are regulated by Ragulator and tuberous sclerosis complex 2 (TSC2), respectively. When glucose is low, aldolase senses low fructose-1,6-bisphosphate level and promotes the translocation of AXIN-liver kinase B1 (LKB1) to the lysosomal surface, which leads to the activation of AMP-activated protein kinase (AMPK) and the inhibition of RAGs, sundering mTORC1 from the lysosome and causing its inactivation. AMPK can also inactivate mTORC1 by phosphorylating Raptor and TSC2. However, the hierarchy of AXIN- and AMPK-mediated inhibition of mTORC1 remains poorly defined. Here, we show that AXIN translocation does not require AMPK expression or activity. In glucose starvation conditions, knockout of AXIN extended the half-life of mTORC1 inhibition from 15 to 60 min, whereas knockout of AMPK only extended it to 30 min. RAGBGTP (constitutively active RAGB) almost entirely blocked the lysosomal dissociation and inhibition of mTORC1 under glucose starvation, but it did not inhibit AMPK, indicating that under these conditions, it is AXIN lysosomal translocation that inhibits mTORC1, and it does so via inhibition of RAGs. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a mimetic of AMP, which activates both cytosolic AMPK and lysosomal AMPK, fully inhibited mTORC1 even when it is stably anchored to the lysosome by RAGBGTP, whereas glucose starvation mildly inhibited such anchored mTORC1. Together, we demonstrate that the lysosomal translocation of AXIN plays a primary role in glucose starvation-triggered inhibition of mTORC1 by inhibiting RAGs, and that AMPK activity inhibits mTORC1 through phosphorylating Raptor and TSC2, especially under severe stress.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinye Xiong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jin-Wei Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
47
|
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Novak SW, Yu J, Gilson R, Hellberg K, Fang L, Sheridan A, Hah N, Shadel GS, Manor U, Shaw RJ. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023; 380:eabj5559. [PMID: 37079666 PMCID: PMC10794112 DOI: 10.1126/science.abj5559] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Nazma Malik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bibiana I. Ferreira
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo E. Hollstein
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie D. Curtis
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Gilson
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lingjing Fang
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arlo Sheridan
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
48
|
Hajdú B, Csabai L, Márton M, Holczer M, Korcsmáros T, Kapuy O. Oscillation of Autophagy Induction under Cellular Stress and What Lies behind It, a Systems Biology Study. Int J Mol Sci 2023; 24:7671. [PMID: 37108830 PMCID: PMC10143760 DOI: 10.3390/ijms24087671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
One of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress. We propose an additional regulatory molecule in the autophagy control network that delays some of AMPK's effect on the system, making the model output more consistent with experimental results. Furthermore, a network analysis on AutophagyNet was carried out to identify which proteins could be the proposed regulatory components in the system. These regulatory proteins should satisfy the following rules: (1) they are induced by AMPK; (2) they promote ULK1; (3) they down-regulate mTOR upon cellular stress. We have found 16 such regulatory components that have been experimentally proven to satisfy at least two of the given rules. Identifying such critical regulators of autophagy induction could support anti-cancer- and ageing-related therapeutic efforts.
Collapse
Affiliation(s)
- Bence Hajdú
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Margita Márton
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Marianna Holczer
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich NR4 7UG, UK
- Department of Genetics, Eötvös Loránd University, 1117 Budapest, Hungary
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
49
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 389] [Impact Index Per Article: 194.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
50
|
Morrison KR, Wang T, Chan KY, Trotter EW, Gillespie A, Michael MZ, Oakhill JS, Hagan IM, Petersen J. Elevated basal AMP-activated protein kinase activity sensitizes colorectal cancer cells to growth inhibition by metformin. Open Biol 2023; 13:230021. [PMID: 37042113 PMCID: PMC10090877 DOI: 10.1098/rsob.230021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.
Collapse
Affiliation(s)
- Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Kuan Yoow Chan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Eleanor W. Trotter
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ari Gillespie
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Dept. Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, SouthAustralia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|