1
|
Zhang H, Zhang X, Yun Z, Chen Y, Cang S, Shao Y, Jia E, Chen R. Loss of diurnal oscillatory rhythms in gut microbiota correlates with progression of atherosclerosis. Food Funct 2025; 16:3423-3438. [PMID: 40201963 DOI: 10.1039/d4fo05227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Circadian rhythms in gut microbiota composition are crucial for metabolic function and disease progression, yet the diurnal oscillation patterns of gut microbiota in atherosclerotic cardiovascular disease (ASCVD) and their role in disease progression remain unknown. Here, we investigated gut bacterial dynamics in Apoe-/- mice over 24 hours and elucidated dynamic changes in fecal microbiota composition and function among C57BL/6 and Apoe-/- mice with standard chow diet or high-fat/high-cholesterol diet under ad libitum conditions. Compared with C57BL/6 mice, Apoe-/- mice exhibited significant differences in fecal microbial composition. Rhythmicity analysis revealed that the temporal dynamics of fecal microbiota composition and function in Apoe-/- mice differed significantly from those in C57BL/6 mice, particularly in B. coccoides-dominated oscillatory modules. Functional annotation showed that rhythmic B. coccoides strains inhibited ASCVD progression by enhancing intestinal and endothelial barrier functions. These findings demonstrate that diurnal oscillations in gut microbiota are closely associated with ASCVD progression and provide new insights for microbiota-targeted precision therapies.
Collapse
Affiliation(s)
- He Zhang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Xiaohan Zhang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Zihan Yun
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Yang Chen
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Suhua Cang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Yating Shao
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Erteng Jia
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Renjin Chen
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
2
|
Chen Z, Xiao C, Zhang J, Jian S, Li P, Lin J, He C, Chen Z, Qi Y, Shi J, Chen Q, Chen J, Bo H. The Impact of Diet on the Colonization of Beneficial Microbes from an Ecological Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10069-10092. [PMID: 40234746 DOI: 10.1021/acs.jafc.5c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
With growing recognition of the pivotal role of gut microbiota in human health, probiotics have gained widespread attention for their potential to restore microbial homeostasis. However, a critical challenge persists: limited colonization efficiency among most probiotic strains compromises their therapeutic efficacy. This overview synthesizes ecological principles with cutting-edge microbiome research to elucidate the dynamic interplay between dietary components and probiotic colonization within the intestinal niche. This overview systematically analyzes: (1) stage-specific colonization mechanisms spanning microbial introduction, establishment, and proliferation; (2) nutrient-driven modulation of gut microbiota composition and function; and (3) the dual role of common dietary patterns as both facilitators and disruptors of probiotic persistence. Notably, this overview identifies key dietary strategies, including precision delivery of prebiotic fibers and polyphenol-microbiota crosstalk, that enhance niche adaptation through pH optimization, adhesion potentiation, and competitive exclusion of pathogens. Furthermore, this overview critically evaluates current limitations in probiotic research, particularly strain-specific variability and methodological constraints in simulating host-microbe-diet tripartite interactions. To bridge these gaps, this overview proposes an interdisciplinary framework integrating omics-driven strain selection, engineered delivery systems, and personalized nutrition models. Collectively, this work advances a mechanistic understanding of diet-microbiota interactions while providing actionable insights for developing targeted probiotic therapies and evidence-based dietary interventions to optimize gut ecosystem resilience.
Collapse
Affiliation(s)
- Zelin Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Chuntao Xiao
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiantang Zhang
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Shiqi Jian
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Pinyue Li
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jiayi Lin
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Cai He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Zixia Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Yutong Qi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jingwen Shi
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Qizhu Chen
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Jun Chen
- College of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| | - Huaben Bo
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong China
| |
Collapse
|
3
|
Ahmad M, Aduru SV, Smith RP, Zhao Z, Lopatkin AJ. The role of bacterial metabolism in antimicrobial resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01155-0. [PMID: 39979446 DOI: 10.1038/s41579-025-01155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
The relationship between bacterial metabolism and antibiotic treatment is complex. On the one hand, antibiotics leverage cell metabolism to function. On the other hand, increasing research has highlighted that the metabolic state of the cell also impacts all aspects of antibiotic biology, from drug efficacy to the evolution of antimicrobial resistance (AMR). Given that AMR is a growing threat to the current global antibiotic arsenal and ability to treat infectious diseases, understanding these relationships is key to improving both public and human health. However, quantifying the contribution of metabolism to antibiotic activity and subsequent bacterial evolution has often proven challenging. In this Review, we discuss the complex and often bidirectional relationships between metabolism and the various facets of antibiotic treatment and response. We first summarize how antibiotics leverage metabolism for their function. We then focus on the converse of this relationship by specifically delineating the unique contribution of metabolism to three distinct but related arms of antibiotic biology: antibiotic efficacy, AMR evolution and AMR mechanisms. Finally, we note the relevance of metabolism in clinical contexts and explore the future of metabolic-based strategies for personalized antimicrobial therapies. A deeper understanding of these connections is crucial for the broader scientific community to address the growing crisis of AMR and develop future effective therapeutics.
Collapse
Affiliation(s)
- Mehrose Ahmad
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Sai Varun Aduru
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Robert P Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Zirui Zhao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Schubert C, Nguyen BD, Sichert A, Näpflin N, Sintsova A, Feer L, Näf J, Daniel BBJ, Steiger Y, von Mering C, Sauer U, Hardt WD. Monosaccharides drive Salmonella gut colonization in a context-dependent or -independent manner. Nat Commun 2025; 16:1735. [PMID: 39966379 PMCID: PMC11836396 DOI: 10.1038/s41467-025-56890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The carbohydrates that fuel gut colonization by S. Typhimurium are not fully known. To investigate this, we designed a quality-controlled mutant pool to probe the metabolic capabilities of this enteric pathogen. Using neutral genetic barcodes, we tested 35 metabolic mutants across five different mouse models with varying microbiome complexities, allowing us to differentiate between context-dependent and context-independent nutrient sources. Results showed that S. Typhimurium uses D-mannose, D-fructose and likely D-glucose as context-independent carbohydrates across all five mouse models. The utilization of D-galactose, N-acetylglucosamine and hexuronates, on the other hand, was context-dependent. Furthermore, we showed that D-fructose is important in strain-to-strain competition between Salmonella serovars. Complementary experiments confirmed that D-glucose, D-fructose, and D-galactose are excellent niches for S. Typhimurium to exploit during colonization. Quantitative measurements revealed sufficient amounts of carbohydrates, such as D-glucose or D-galactose, in the murine cecum to drive S. Typhimurium colonization. Understanding these key substrates and their context-dependent or -independent use by enteric pathogens will inform the future design of probiotics and therapeutics to prevent diarrheal infections such as non-typhoidal salmonellosis.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nicolas Näpflin
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lilith Feer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin B J Daniel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Mayassi T, Li C, Segerstolpe Å, Brown EM, Weisberg R, Nakata T, Yano H, Herbst P, Artis D, Graham DB, Xavier RJ. Spatially restricted immune and microbiota-driven adaptation of the gut. Nature 2024; 636:447-456. [PMID: 39567686 PMCID: PMC11816900 DOI: 10.1038/s41586-024-08216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The intestine is characterized by an environment in which host requirements for nutrient and water absorption are consequently paired with the requirements to establish tolerance to the outside environment. To better understand how the intestine functions in health and disease, large efforts have been made to characterize the identity and composition of cells from different intestinal regions1-8. However, the robustness, nature of adaptability and extent of resilience of the transcriptional landscape and cellular underpinning of the intestine in space are still poorly understood. Here we generated an integrated resource of the spatial and cellular landscape of the murine intestine in the steady and perturbed states. Leveraging these data, we demonstrated that the spatial landscape of the intestine was robust to the influence of the microbiota and was adaptable in a spatially restricted manner. Deploying a model of spatiotemporal acute inflammation, we demonstrated that both robust and adaptable features of the landscape were resilient. Moreover, highlighting the physiological relevance and value of our dataset, we identified a region of the middle colon characterized by an immune-driven multicellular spatial adaptation of structural cells to the microbiota. Our results demonstrate that intestinal regionalization is characterized by robust and resilient structural cell states and that the intestine can adapt to environmental stress in a spatially controlled manner through the crosstalk between immunity and structural cell homeostasis.
Collapse
Affiliation(s)
- Toufic Mayassi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chenhao Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca Weisberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Jo K, Linh VTN, Yang JY, Heo B, Kim JY, Mun NE, Im JH, Kim KS, Park SG, Lee MY, Yoo SW, Jung HS. Machine learning-assisted label-free colorectal cancer diagnosis using plasmonic needle-endoscopy system. Biosens Bioelectron 2024; 264:116633. [PMID: 39126906 DOI: 10.1016/j.bios.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Early and accurate detection of colorectal cancer (CRC) is critical for improving patient outcomes. Existing diagnostic techniques are often invasive and carry risks of complications. Herein, we introduce a plasmonic gold nanopolyhedron (AuNH)-coated needle-based surface-enhanced Raman scattering (SERS) sensor, integrated with endoscopy, for direct mucus sampling and label-free detection of CRC. The thin and flexible stainless-steel needle is coated with polymerized dopamine, which serves as an adhesive layer and simultaneously initiates the nucleation of gold nanoparticle (AuNP) seeds on the needle surface. The AuNP seeds are further grown through a surface-directed reduction using Au ions-hydroxylamine hydrochloride solution, resulting in the formation of dense AuNHs. The formation mechanism of AuNHs and the layered structure of the plasmonic needle-based SERS (PNS) sensor are thoroughly analyzed. Furthermore, a strong field enhancement of the PNS sensor is observed, amplified around the edges of the polyhedral shapes and at nanogap sites between AuNHs. The feasibility of the PNS sensor combined with endoscopy system is further investigated using mouse models for direct colonic mucus sampling and verifying noninvasive label-free classification of CRC from normal controls. A logistic regression-based machine learning method is employed and successfully differentiates CRC and normal mice, achieving 100% sensitivity, 93.33% specificity, and 96.67% accuracy. Moreover, Raman profiling of metabolites and their correlations with Raman signals of mucus samples are analyzed using the Pearson correlation coefficient, offering insights for identifying potential cancer biomarkers. The developed PNS-assisted endoscopy technology is expected to advance the early screening and diagnosis approach of CRC in the future.
Collapse
Affiliation(s)
- Kangseok Jo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun-Yeong Yang
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Boyou Heo
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Jun Young Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Na Eun Mun
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Jin Hee Im
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Su Woong Yoo
- Biomedical Science Graduate Program, Chonnam National University, Hwasun, 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, South Korea; Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun, 58128, South Korea.
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering Division, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
8
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
9
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Zhang X, Wang J, Liu Y, Wang H, Li B, Li Q, Wang Y, Zong Y, Wang J, Meng Q, Wu S, Hao R, Li X, Chen R, Chen H. In situ profiling reveals spatially metabolic injury in the initiation of polystyrene nanoplastic-derived intestinal epithelial injury in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172037. [PMID: 38575003 DOI: 10.1016/j.scitotenv.2024.172037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.
Collapse
Affiliation(s)
- Xianan Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Jing Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuansheng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hemin Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qing Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuru Zong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Rongzhang Hao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Department of Nutrition & Food Hygiene, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Holmberg SM, Feeney RH, Prasoodanan P K V, Puértolas-Balint F, Singh DK, Wongkuna S, Zandbergen L, Hauner H, Brandl B, Nieminen AI, Skurk T, Schroeder BO. The gut commensal Blautia maintains colonic mucus function under low-fiber consumption through secretion of short-chain fatty acids. Nat Commun 2024; 15:3502. [PMID: 38664378 PMCID: PMC11045866 DOI: 10.1038/s41467-024-47594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.
Collapse
Affiliation(s)
- Sandra M Holmberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Rachel H Feeney
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Vishnu Prasoodanan P K
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Fabiola Puértolas-Balint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Dhirendra K Singh
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Supapit Wongkuna
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lotte Zandbergen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Hans Hauner
- Institute in Nutritional Medicine, TU Munich, Munich, Germany
- TU Munich, School of Medicine, Munich, Germany
| | - Beate Brandl
- ZIEL Institute for Food and Health, TU Munich, Munich, Germany
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Thomas Skurk
- ZIEL Institute for Food and Health, TU Munich, Munich, Germany
| | - Bjoern O Schroeder
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Culver RN, Spencer SP, Violette A, Lemus Silva EG, Takeuchi T, Nafarzadegan C, Higginbottom SK, Shalon D, Sonnenburg J, Huang KC. Improved mouse models of the small intestine microbiota using region-specific sampling from humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590999. [PMID: 38712253 PMCID: PMC11071525 DOI: 10.1101/2024.04.24.590999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Our understanding of region-specific microbial function within the gut is limited due to reliance on stool. Using a recently developed capsule device, we exploit regional sampling from the human intestines to develop models for interrogating small intestine (SI) microbiota composition and function. In vitro culturing of human intestinal contents produced stable, representative communities that robustly colonize the SI of germ-free mice. During mouse colonization, the combination of SI and stool microbes altered gut microbiota composition, functional capacity, and response to diet, resulting in increased diversity and reproducibility of SI colonization relative to stool microbes alone. Using a diverse strain library representative of the human SI microbiota, we constructed defined communities with taxa that largely exhibited the expected regional preferences. Response to a fiber-deficient diet was region-specific and reflected strain-specific fiber-processing and host mucus-degrading capabilities, suggesting that dietary fiber is critical for maintaining SI microbiota homeostasis. These tools should advance mechanistic modeling of the human SI microbiota and its role in disease and dietary responses.
Collapse
Affiliation(s)
- Rebecca N. Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean Paul Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Evelyn Giselle Lemus Silva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tadashi Takeuchi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ceena Nafarzadegan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven K. Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dari Shalon
- Envivo Bio, Inc., San Francisco, CA 94107, USA
| | - Justin Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
13
|
Kondo M, Torisu T, Nagasue T, Shibata H, Umeno J, Kawasaki K, Fujioka S, Matsuno Y, Moriyama T, Kitazono T. Duodenal microbiome in chronic kidney disease. Clin Exp Nephrol 2024; 28:263-272. [PMID: 38095826 DOI: 10.1007/s10157-023-02434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND The intestinal microbiome is involved in the pathogenesis of chronic kidney disease (CKD). Despite its importance, the microbiome of the small intestinal mucosa has been little studied due to sampling difficulties, and previous studies have mainly focused on fecal sources for microbiome studies. We aimed to characterize the small intestinal microbiome of CKD patients by studying the microbiome collected from duodenal and fecal samples of CKD patients and healthy controls. METHODS Overall, 28 stage 5 CKD patients and 21 healthy participants were enrolled. Mucosal samples were collected from the deep duodenum during esophagogastroduodenoscopy and fecal samples were also collected. The 16S ribosomal RNA gene sequencing using Qiime2 was used to investigate and compare the microbial structure and metagenomic function of the duodenal and fecal microbiomes. RESULTS The duodenal flora of CKD patients had decreased alpha diversity compared with the control group. On the basis of taxonomic composition, Veillonella and Prevotella were significantly reduced in the duodenal flora of CKD patients. The tyrosine and tryptophan metabolic pathways were enhanced in the urea toxin-related metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes database. CONCLUSION The small intestinal microbiome in CKD patients is significantly altered, indicating that increased intestinal permeability and production of uremic toxin may occur in the upper small intestine of CKD patients.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Tomohiro Nagasue
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
- International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
14
|
Bhosle A, Bae S, Zhang Y, Chun E, Avila-Pacheco J, Geistlinger L, Pishchany G, Glickman JN, Michaud M, Waldron L, Clish CB, Xavier RJ, Vlamakis H, Franzosa EA, Garrett WS, Huttenhower C. Integrated annotation prioritizes metabolites with bioactivity in inflammatory bowel disease. Mol Syst Biol 2024; 20:338-361. [PMID: 38467837 PMCID: PMC10987656 DOI: 10.1038/s44320-024-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Microbial biochemistry is central to the pathophysiology of inflammatory bowel diseases (IBD). Improved knowledge of microbial metabolites and their immunomodulatory roles is thus necessary for diagnosis and management. Here, we systematically analyzed the chemical, ecological, and epidemiological properties of ~82k metabolic features in 546 Integrative Human Microbiome Project (iHMP/HMP2) metabolomes, using a newly developed methodology for bioactive compound prioritization from microbial communities. This suggested >1000 metabolic features as potentially bioactive in IBD and associated ~43% of prevalent, unannotated features with at least one well-characterized metabolite, thereby providing initial information for further characterization of a significant portion of the fecal metabolome. Prioritized features included known IBD-linked chemical families such as bile acids and short-chain fatty acids, and less-explored bilirubin, polyamine, and vitamin derivatives, and other microbial products. One of these, nicotinamide riboside, reduced colitis scores in DSS-treated mice. The method, MACARRoN, is generalizable with the potential to improve microbial community characterization and provide therapeutic candidates.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Ludwig Geistlinger
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Gleb Pishchany
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wendy S Garrett
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
15
|
Moore ML, Ford JL, Schladweiler MC, Dye JA, Jackson TW, Miller CN. Gut metabolic changes during pregnancy reveal the importance of gastrointestinal region in sample collection. Metabolomics 2024; 20:40. [PMID: 38460019 PMCID: PMC11168590 DOI: 10.1007/s11306-024-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy. OBJECTIVES We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome. METHODS Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit. RESULTS Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites. CONCLUSIONS The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.
Collapse
Affiliation(s)
- Makala L Moore
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
17
|
Miyakoshi M. Multilayered regulation of amino acid metabolism in Escherichia coli. Curr Opin Microbiol 2024; 77:102406. [PMID: 38061078 DOI: 10.1016/j.mib.2023.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Amino acid metabolism in Escherichia coli has long been studied and has established the basis for regulatory mechanisms at the transcriptional, posttranscriptional, and posttranslational levels. In addition to the classical signal transduction cascade involving posttranslational modifications (PTMs), novel PTMs in the two primary nitrogen assimilation pathways have recently been uncovered. The regulon of the master transcriptional regulator NtrC is further expanded by a small RNA derived from the 3´UTR of glutamine synthetase mRNA, which coordinates central carbon and nitrogen metabolism. Furthermore, recent advances in sequencing technologies have revealed the global regulatory networks of transcriptional and posttranscriptional regulators, Lrp and GcvB. This review provides an update of the multilayered and interconnected regulatory networks governing amino acid metabolism in E. coli.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 305-8575 Ibaraki, Japan.
| |
Collapse
|
18
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
19
|
Steinbach E, Masi D, Ribeiro A, Serradas P, Le Roy T, Clément K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024; 150:155712. [PMID: 37884078 DOI: 10.1016/j.metabol.2023.155712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The study of the gut microbiome holds great promise for understanding and treating metabolic diseases, as its functions and derived metabolites can influence the metabolic status of the host. While research on the fecal microbiome has provided valuable insights, it tells us only part of the story. This limitation arises from the substantial variations in microorganism distribution throughout the gastrointestinal tract due to changes in physicochemical conditions. Thus, relying solely on the fecal microbiome may not be sufficient to draw comprehensive conclusions about metabolic diseases. The proximal part of the small intestine, particularly the jejunum, indeed, serves as the crucial site for digestion and absorption of nutrients, suggesting a potential role of its microbiome in metabolic regulation. Unfortunately, it remains relatively underexplored due to limited accessibility. This review presents current evidence regarding the relationships between the microbiome in the upper small intestine and various phenotypes, focusing on obesity and type 2 diabetes, in both humans and rodents. Research on humans is still limited with variability in the population and methods used. Accordingly, to better understand the role of the whole gut microbiome in metabolic diseases, studies exploring the human microbiome in different niches are needed.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Sapienza University of Rome, Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, 00161 Rome, Italy
| | - Agnès Ribeiro
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| |
Collapse
|