1
|
Beltrami S, Rizzo S, Schiuma G, Cianci G, Narducci M, Baroni M, Di Luca D, Rizzo R, Bortolotti D. West Nile virus non-structural protein 1 promotes amyloid Beta deposition and neurodegeneration. Int J Biol Macromol 2025; 305:141032. [PMID: 39954900 DOI: 10.1016/j.ijbiomac.2025.141032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Recent observations highlight a notable surge in West Nile Virus (WNV) infections in Europe that can lead to neuroinvasive consequences associated with neurodegeneration, mainly triggered by WNV Non-Structural protein 1 (NS1). During viral replication, various protein-protein interactions take place, allowing viral proteins to interact with host factors. NS1 is actively secreted in the bloodstream by infected cells and is known to affect endothelial permeability and host immune response. Focusing on the recently discovered antimicrobial roles of Amyloid-Beta (Aβ) in the context Central Nervous System (CNS), we connected WNV late pathology to overlapping features encountered in neurodegenerative diseases. In fact, CNS viral infections, or presence of specific viral components, activate glial cells, which in turn increase Aβ expression as an antiviral mechanism, leading to Aβ accumulation and neuronal damage. Considering West Nile neuroinvasive disease (WNND) as a possible complication of WNV infection, we investigated the impact of soluble WNV (s)NS1 on glial and neuronal cells, in 2D and 3D in vitro models. We reported an increased Aβ deposition after WNV sNS1 treatment, particularly of Aβ-142 isoform, and increased glial activation with a subsequent neurotoxicity. These findings underscore the crucial role of sNS1 in CNS-related effects during WNV infection, suggesting a novel pathogenetic role.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Sabrina Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giovanna Schiuma
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Giorgia Cianci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Marco Narducci
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy; Temple University, Japan Campus, 1 Chome-14-29 Taishido, Setagaya City, Tokyo 154-0004, Japan.
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Roberta Rizzo
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
2
|
Ham O, Jung S, Kim YJ, Woo DH, Jeong JS, Kim W, Kim S, Quah Y, Lee S, Yu WJ. Methotrexate-induced disruption of the serum-glucocorticoid inducible protein kinase 3 signaling pathway and its effects on brain development. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138438. [PMID: 40327939 DOI: 10.1016/j.jhazmat.2025.138438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Methotrexate (MTX) is a widely used chemotherapeutic and immunosuppressive agent. It is frequently detected in the environment due to its low biodegradability and toxic properties, which may pose risk to humans via contaminated drinking water. MTX impacts brain development; however, the underlying mechanisms remain poorly understood. In this study, we aimed to investigate the potential of brain cortical organoids (COs) to exhibit developmental neurotoxicity upon exposure to MTX and elucidated the underlying mechanisms. We showed that MTX affected brain development by increasing reactive oxygen species production, endoplasmic reticulum stress, and apoptosis in COs, affecting immature neurons, gamma-aminobutyric acid (GABA)ergic neurons, and astrocytes. Treatment with folic acid ameliorated the MTX-induced cellular damage. Furthermore, RNA-seq analysis revealed the significant downregulation of serum/glucocorticoid-regulated kinase family member 3 (SGK3) by MTX treatment. Further investigation using RNA interference with an siRNA targeting SGK3 confirmed that the SGK3 signaling pathway plays an essential role in regulating brain development. Finally, we demonstrated calcium homeostasis disruption in MTX-treated COs (MTX-COs). Our findings suggest that MTX affects cortical development in the brain by increasing intracellular ROS and ER stress, ultimately inducing apoptosis through the inhibition of the SGK3 signaling pathway in MTX-COs. Furthermore, abnormal brain development can be caused by an imbalance in intracellular calcium homeostasis and alterations in the neuronal cell expression in MTX-COs. These results indicate that MTX causes developmental neurotoxicity and underscore the importance of informed decision making regarding the clinical use of MTX, particularly during pregnancy.
Collapse
Affiliation(s)
- Onju Ham
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea.
| | - Soontag Jung
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Ye-Ji Kim
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Dong Ho Woo
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ji-Seong Jeong
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Woojin Kim
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Sangyun Kim
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Yixian Quah
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - SeungJin Lee
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Wook-Joon Yu
- Center for Regulatory Toxicology Research, Laboratory of Developmental and Reproductive Toxicology, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea.
| |
Collapse
|
3
|
Sullivan R, Ahrens Q, Mills-Huffnagle SL, Elcheva IA, Hicks SD. A human iPSC-derived midbrain neural stem cell model of prenatal opioid exposure and withdrawal: A proof of concept study. PLoS One 2025; 20:e0319418. [PMID: 40168407 PMCID: PMC11960892 DOI: 10.1371/journal.pone.0319418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025] Open
Abstract
A growing body of clinical literature has described neurodevelopmental delays in infants with chronic prenatal opioid exposure and withdrawal. Despite this, the mechanism of how opioids impact the developing brain remains unknown. Here, we developed an in vitro model of prenatal morphine exposure and withdrawal using healthy human induced pluripotent stem cell (iPSC)-derived midbrain neural progenitors in monolayer. To optimize our model, we identified that a longer neural induction and regional patterning period increases expression of canonical opioid receptors mu and kappa in midbrain neural progenitors compared to a shorter protocol (OPRM1, two-tailed t-test, p = 0.004; OPRK1, p = 0.0003). Next, we showed that the midbrain neural progenitors derived from a longer iPSC neural induction also have scant toll-like receptor 4 (TLR4) expression, a key player in neonatal opioid withdrawal syndrome pathophysiology. During morphine withdrawal, differentiating neural progenitors experience cyclic adenosine monophosphate overshoot compared to cell exposed to vehicle (p = 0.0496) and morphine exposure conditions (p, = 0.0136, 1-way ANOVA). Finally, we showed that morphine exposure and withdrawal alters proportions of differentiated progenitor cell fates (2-way ANOVA, F = 16.05, p < 0.0001). Chronic morphine exposure increased proportions of nestin positive progenitors (p = 0.0094), and decreased proportions of neuronal nuclear antigen positive neurons (NEUN) (p = 0.0047) compared to those exposed to vehicle. Morphine withdrawal decreased proportions of glial fibrillary acidic protein positive cells of astrocytic lineage (p = 0.044), and increased proportions of NEUN-positive neurons (p < 0.0001) compared to those exposed to morphine only. Applications of this paradigm include mechanistic studies underscoring neural progenitor cell fate commitments in early neurodevelopment during morphine exposure and withdrawal.
Collapse
MESH Headings
- Humans
- Neural Stem Cells/metabolism
- Neural Stem Cells/drug effects
- Neural Stem Cells/cytology
- Mesencephalon/cytology
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mesencephalon/pathology
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Morphine/adverse effects
- Morphine/pharmacology
- Female
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Cell Differentiation/drug effects
- Pregnancy
- Substance Withdrawal Syndrome/pathology
- Substance Withdrawal Syndrome/metabolism
- Prenatal Exposure Delayed Effects
- Toll-Like Receptor 4/metabolism
- Proof of Concept Study
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/genetics
Collapse
Affiliation(s)
- Rhea Sullivan
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Quinn Ahrens
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sara L. Mills-Huffnagle
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Irina A. Elcheva
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
4
|
Wang S, He Q, Qu Y, Yin W, Zhao R, Wang X, Yang Y, Guo ZN. Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy. Neural Regen Res 2024; 19:2430-2443. [PMID: 38526280 PMCID: PMC11090435 DOI: 10.4103/1673-5374.391313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 03/26/2024] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.
Collapse
Affiliation(s)
- Siji Wang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qianyan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wenjing Yin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xuyutian Wang
- Department of Breast Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
5
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
6
|
König LE, Rodriguez S, Hug C, Daneshvari S, Chung A, Bradshaw GA, Sahin A, Zhou G, Eisert RJ, Piccioni F, Das S, Kalocsay M, Sokolov A, Sorger P, Root DE, Albers MW. TYK2 as a novel therapeutic target in Alzheimer's Disease with TDP-43 inclusions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595773. [PMID: 38895380 PMCID: PMC11185596 DOI: 10.1101/2024.06.04.595773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Neuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD)1,2 and amyotrophic lateral sclerosis (ALS)3, raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS4. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death4. Here, we report that cdsRNA is also spatially coincident with pTDP-43 cytoplasmic inclusions in brain cells of patients with AD pathology and that type-I interferon response genes are significantly upregulated in brain regions affected by AD. We updated our machine-learning pipeline DRIAD-SP (Drug Repurposing In Alzheimer's Disease with Systems Pharmacology) to incorporate cryptic exon (CE) detection as a proxy of pTDP-43 inclusions and demonstrated that the FDA-approved JAK inhibitors baricitinib and ruxolitinib that block interferon signaling show a protective signal only in cortical brain regions expressing multiple CEs. Furthermore, the JAK family member TYK2 was a top hit in a CRISPR screen of cdsRNA-mediated death in differentiated human neural cells. The selective TYK2 inhibitor deucravacitinib, an FDA-approved drug for psoriasis, rescued toxicity elicited by cdsRNA. Finally, we identified CCL2, CXCL10, and IL-6 as candidate predictive biomarkers for cdsRNA-related neurodegenerative diseases. Together, we find parallel neuroinflammatory mechanisms between TDP-43 associated-AD and ALS and nominate TYK2 as a possible disease-modifying target of these incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Laura E. König
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Shayda Daneshvari
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Alexander Chung
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Gary A. Bradshaw
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Asli Sahin
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - George Zhou
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Robyn J. Eisert
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Federica Piccioni
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - Peter Sorger
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
| | - David E. Root
- Broad Institute of MIT and Harvard, 75 Ames Street,
Cambridge, MA 02142, USA
| | - Mark W. Albers
- Laboratory of Systems Pharmacology, Harvard Program in
Therapeutic Science, Harvard Medical School, Armenise 132, 200 Longwood Avenue,
Boston, MA 02115, USA
- Department of Neurology, Massachusetts General Hospital,
114 16 Street, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Barron A, Barrett L, Tuulari J, Karlsson L, Karlsson H, McCarthy C, O'Keeffe G. sFlt-1 impairs neurite growth and neuronal differentiation in SH-SY5Y cells and human neurons. Biosci Rep 2024; 44:BSR20240562. [PMID: 38700092 PMCID: PMC11130541 DOI: 10.1042/bsr20240562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and βIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced βIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Lauren Barrett
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| |
Collapse
|
8
|
Alvarez MRS, Moreno PG, Grijaldo-Alvarez SJB, Yadlapati A, Zhou Q, Narciso MP, Completo GC, Nacario RC, Rabajante JF, Heralde FM, Lebrilla CB. The effects of immortalization on the N-glycome and proteome of CDK4-transformed lung cancer cells. Glycobiology 2024; 34:cwae030. [PMID: 38579012 PMCID: PMC11041852 DOI: 10.1093/glycob/cwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.
Collapse
Affiliation(s)
- Michael Russelle S Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Patrick Gabriel Moreno
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
| | - Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Michelle P Narciso
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Francisco M Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, 1000, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Group, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
9
|
Culibrk RA, Ebbert KA, Yeisley DJ, Chen R, Qureshi FA, Hahn J, Hahn MS. Impact of Suramin on Key Pathological Features of Sporadic Alzheimer's Disease-Derived Forebrain Neurons. J Alzheimers Dis 2024; 98:301-318. [PMID: 38427475 DOI: 10.3233/jad-230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100μM suramin for 72 h, followed by assessments for amyloid-β, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.
Collapse
Affiliation(s)
- Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Katherine A Ebbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fatir A Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
10
|
Roussel-Gervais A, Sgroi S, Cambet Y, Lemeille S, Seredenina T, Krause KH, Jaquet V. Genetic knockout of NTRK2 by CRISPR/Cas9 decreases neurogenesis and favors glial progenitors during differentiation of neural progenitor stem cells. Front Cell Neurosci 2023; 17:1289966. [PMID: 38161998 PMCID: PMC10757602 DOI: 10.3389/fncel.2023.1289966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The tropomyosin receptor kinase B (TrkB) is encoded by the NTRK2 gene. It belongs to the family of transmembrane tyrosine kinases, which have key roles in the development and maintenance of the nervous system. Brain-derived neurotrophic factor (BDNF) and the neurotrophins NT3 and NT4/5 have high affinity for TrkB. Dysregulation of TrkB is associated to a large spectrum of diseases including neurodegeneration, psychiatric diseases and some cancers. The function of TrkB and its role in neural development have mainly been decrypted using transgenic mouse models, pharmacological modulators and human neuronal cell lines overexpressing NTRK2. In this study, we identified high expression and robust activity of TrkB in ReNcell VM, an immortalized human neural progenitor stem cell line and generated NTRK2-deficient (NTRK2-/-) ReNcell VM using the CRISPR/Cas9 gene editing technology. Global transcriptomic analysis revealed major changes in expression of specific genes responsible for neurogenesis, neuronal development and glial differentiation. In particular, key neurogenic transcription factors were massively down-regulated in NTRK2-/- cells, while early glial progenitor markers were enriched in NTRK2-/- cells compared to NTRK2+/+. This indicates a previously undescribed inhibitory role of TrkB on glial differentiation in addition to its well-described pro-neurogenesis role. Altogether, we have generated for the first time a human neural cell line with a loss-of-function mutation of NTRK2, which represents a reproducible and readily available cell culture system to study the role of TrkB during human neural differentiation, analyze the role of TrkB isoforms as well as validate TrkB antibodies and pharmacological agents targeting the TrkB pathway.
Collapse
Affiliation(s)
- Audrey Roussel-Gervais
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphanie Sgroi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yves Cambet
- READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Siqueira E, Kim BH, Reser L, Chow R, Delaney K, Esteller M, Ross MM, Shabanowitz J, Hunt DF, Guil S, Ausió J. Analysis of the interplay between MeCP2 and histone H1 during in vitro differentiation of human ReNCell neural progenitor cells. Epigenetics 2023; 18:2276425. [PMID: 37976174 PMCID: PMC10769555 DOI: 10.1080/15592294.2023.2276425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- National Council for Scientific and Technological Development (CNPq), Brasilia, Federal District, Brazil
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Larry Reser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Kerry Delaney
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Mark M. Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- GermansTrias i Pujol Health Science Research Institute, Badalona, Barcelona, Catalonia, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Lo TY, Chan ASL, Cheung ST, Yung LY, Leung MMH, Wong YH. Multi-target regulatory mechanism of Yang Xin Tang - a traditional Chinese medicine against dementia. Chin Med 2023; 18:101. [PMID: 37587513 PMCID: PMC10428601 DOI: 10.1186/s13020-023-00813-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Yang Xin Tang (YXT) is a traditional Chinese herbal preparation which has been reported to improve cognitive function and memory in patients with dementia. As the underlying mechanism of action of YXT has not been elucidated, we examined the effects of YXT and its major herbal components in regulating gene transcription and molecular targets related to Alzheimer's disease (AD). METHODS Aqueous and ethanol extracts of YXT and selected herbal components were prepared and validated by standard methods. A series of biochemical and cellular assays were employed to assess the ability of the herbal extracts to inhibit acetylcholinesterase, reduce β-amyloid aggregation, stimulate the differentiation of neural progenitor cells, suppress cyclooxygenase, and protect neurons against β-amyloid or N-methyl-D-aspartate-induced cytotoxicity. The effects of YXT on multiple molecular targets were further corroborated by a panel of nine reporter gene assays. RESULTS Extracts of YXT and two of its constituent herbs, Poria cocos and Poria Sclerotium pararadicis, significantly inhibited β-amyloid aggregation and β-amyloid-induced cytotoxicity. A protective effect of the YXT extract was similarly observed against N-methyl-D-aspartate-induced cytotoxicity in primary neurons, and this activity was shared by extracts of Radix Astragali and Rhizoma Chuanxiong. Although the YXT extract was ineffective, extracts of Poria cocos, Poria Sclerotium pararadicis and Radix Polygalae inhibited acetylcholine esterase, with the latter also capable of upregulating choline acetyltransferase. YXT and its components significantly inhibited the activities of the pro-inflammatory cyclooxygenases. Additionally, extracts of YXT and several of its constituent herbs significantly stimulated the phosphorylation of extracellular signal-regulated kinases and cAMP-responsive element binding protein, two molecular targets involved in learning and memory, as well as in the regulation of neurogenesis. CONCLUSIONS Several constituents of YXT possess multiple regulatory effects on known therapeutic targets of AD that range from β-amyloid to acetylcholinesterase. The demonstrated neuroprotective and neurogenic actions of YXT lend credence to its use as an alternative medicine for treating AD.
Collapse
Affiliation(s)
- Tung Yan Lo
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Anthony Siu Lung Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Suet Ting Cheung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lisa Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Manton Man Hon Leung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
- State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.
- Center for Aging Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Hong Kong Center for Neurodegenerative Diseases, Units 1501-1502, 17 Science Park West Avenue, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
13
|
Salgado B, Sastre I, Bullido MJ, Aldudo J. Herpes Simplex Virus Type 1 Induces AD-like Neurodegeneration Markers in Human Progenitor and Differentiated ReNcell VM Cells. Microorganisms 2023; 11:1205. [PMID: 37317179 DOI: 10.3390/microorganisms11051205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
An increasing body of evidence strongly suggests that infections or reactivations of herpes simplex virus type 1 (HSV-1) may be closely linked to Alzheimer's disease (AD). Promising results have been obtained using cell and animal models of HSV-1 infection, contributing to the understanding of the molecular mechanisms linking HSV-1 infection and AD neurodegeneration. ReNcell VM is a human neural stem cell line that has been used as a model system to study the impact of various infectious agents on the central nervous system. In this study, we demonstrate the suitability of the ReNcell VM cell line for developing a new in vitro model of HSV-1 infection. By following standard differentiation protocols, we were able to derive various nervous cell types, including neurons, astrocytes, and oligodendrocytes, from neural precursors. Additionally, we demonstrated the susceptibility of ReNcell VM cells, including precursor and differentiated cells, to HSV-1 infection and subsequent viral-induced AD-like neurodegeneration. Our findings support the use of this cell line to generate a new research platform for investigating AD neuropathology and its most significant risk factors, which may lead to important discoveries in the context of this highly impactful disease.
Collapse
Affiliation(s)
- Blanca Salgado
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Isabel Sastre
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Maria J Bullido
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Jesus Aldudo
- Centro de Biologia Molecular "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autonoma de Madrid, 28049 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
14
|
Sriraja LO, Werhli A, Petsalaki E. Phosphoproteomics data-driven signalling network inference: Does it work? Comput Struct Biotechnol J 2022; 21:432-443. [PMID: 36618990 PMCID: PMC9798138 DOI: 10.1016/j.csbj.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
The advent of global phosphoproteome profiling has led to wide phosphosite coverage and therefore the opportunity to predict kinase-substrate associations from these datasets. However, the regulatory kinase is unknown for most substrates, due to biased and incomplete database annotations. In this study we compare the performance of six pairwise measures to predict kinase-substrate associations using a data driven approach on publicly available time resolved and perturbation mass spectrometry-based phosphoproteome data. First, we validated the performance of these measures using as a reference both a literature-based phosphosite-specific protein interaction network and a predicted kinase-substrate (KS) interactions set. The overall performance in predicting kinase-substrate associations using pairwise measures across both these reference sets was poor. To expand into the wider interactome space, we applied the approach on a network comprising pairs of substrates regulated by the same kinase (substrate-substrate associations) but found the performance to be equally poor. However, the addition of a sequence similarity filter for substrate-substrate associations led to a significant boost in performance. Our findings imply that the use of a filter to reduce the search space, such as a sequence similarity filter, can be used prior to the application of network inference methods to reduce noise and boost the signal. We also find that the current gold standard for reference sets is not adequate for evaluation as it is limited and context-agnostic. Therefore, there is a need for additional evaluation methods that have increased coverage and take into consideration the context-specific nature of kinase-substrate associations.
Collapse
Affiliation(s)
- Lourdes O. Sriraja
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Adriano Werhli
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Centro de Ciências Computacionais - Universidade Federal do Rio Grande - FURG, Avenida Itália, km 8, s/n, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil2
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
15
|
Charpignon ML, Vakulenko-Lagun B, Zheng B, Magdamo C, Su B, Evans K, Rodriguez S, Sokolov A, Boswell S, Sheu YH, Somai M, Middleton L, Hyman BT, Betensky RA, Finkelstein SN, Welsch RE, Tzoulaki I, Blacker D, Das S, Albers MW. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun 2022; 13:7652. [PMID: 36496454 PMCID: PMC9741618 DOI: 10.1038/s41467-022-35157-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.
Collapse
Affiliation(s)
- Marie-Laure Charpignon
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bowen Su
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Steve Rodriguez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Yi-Han Sheu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melek Somai
- Inception Labs, Collaborative for Health Delivery Sciences, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College London NHS Healthcare Trust, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
| | - Stan N Finkelstein
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy E Welsch
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Dementia Research Institute, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Mungenast L, Züger F, Selvi J, Faia-Torres AB, Rühe J, Suter-Dick L, Gullo MR. Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. Int J Mol Sci 2022; 23:ijms231911525. [PMID: 36232822 PMCID: PMC9569964 DOI: 10.3390/ijms231911525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| | - Fabian Züger
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jasmin Selvi
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg–IMTEK, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Maurizio R. Gullo
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| |
Collapse
|
17
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
18
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Shao X, Wang C, Wang C, Han L, Han Y, Nižetić D, Zhang Y, Han L. Mechanical Stress Induces a Transient Suppression of Cytokine Secretion in Astrocytes Assessed at the Single-Cell Level with a High-Throughput Microfluidic Chip. Adv Healthc Mater 2021; 10:e2100698. [PMID: 34549544 DOI: 10.1002/adhm.202100698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/27/2021] [Indexed: 11/11/2022]
Abstract
Brain cells are constantly subjected to mechanical signals. Astrocytes are the most abundant glial cells of the central nervous system (CNS), which display immunoreactivity and have been suggested as an emerging disease focus in the recent years. However, how mechanical signals regulate astrocyte immunoreactivity, and the cytokine release in particular, remains to be fully characterized. Here, human neural stem cells are used to induce astrocytes, from which the release of 15 types of cytokines are screened, and nine of them are detected using a protein microfluidic chip. When a gentle compressive force is applied, altered cell morphology and reinforced cytoskeleton are observed. The force induces a transient suppression of cytokine secretions including IL-6, MCP-1, and IL-8 in the early astrocytes. Further, using a multiplexed single-cell culture and protein detection microfluidic chip, the mechanical effects at a single-cell level are analyzed, which validates a concerted downregulation by force on IL-6 and MCP-1 secretions in the cells releasing both factors. This work demonstrates an original attempt of employing the protein detection microfluidic chips in the assessment of mechanical regulation on the brain cells at a single-cell resolution, offering novel approach and unique insights for the understanding of the CNS immune regulation.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
- Suzhou Research Institute Shandong University Suzhou 215123 China
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 308232
| | - Chunhua Wang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Chao Wang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Lei Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Yunrui Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Dean Nižetić
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 308232
- The Blizard Institute Barts and The London School of Medicine Queen Mary University of London London E1 2AT UK
| | - Yu Zhang
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Lin Han
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| |
Collapse
|
20
|
Sucha R, Kubickova M, Cervenka J, Hruska-Plochan M, Bohaciakova D, Vodickova Kepkova K, Novakova T, Budkova K, Susor A, Marsala M, Motlik J, Kovarova H, Vodicka P. Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 2021; 10:271174. [PMID: 34357391 PMCID: PMC8353267 DOI: 10.1242/bio.058727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Collapse
Affiliation(s)
- Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martina Kubickova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Tereza Novakova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Katerina Budkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martin Marsala
- Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, Department of Anesthesiology, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Hana Kovarova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| |
Collapse
|
21
|
Rodriguez S, Sahin A, Schrank BR, Al-Lawati H, Costantino I, Benz E, Fard D, Albers AD, Cao L, Gomez AC, Evans K, Ratti E, Cudkowicz M, Frosch MP, Talkowski M, Sorger PK, Hyman BT, Albers MW. Genome-encoded cytoplasmic double-stranded RNAs, found in C9ORF72 ALS-FTD brain, propagate neuronal loss. Sci Transl Med 2021; 13:eaaz4699. [PMID: 34233951 PMCID: PMC8779652 DOI: 10.1126/scitranslmed.aaz4699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/29/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Triggers of innate immune signaling in the CNS of patients with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD) remain elusive. We report the presence of cytoplasmic double-stranded RNA (cdsRNA), an established trigger of innate immunity, in ALS-FTD brains carrying C9ORF72 intronic hexanucleotide expansions that included genomically encoded expansions of the G4C2 repeat sequences. The presence of cdsRNA in human brains was coincident with cytoplasmic TAR DNA binding protein 43 (TDP-43) inclusions, a pathologic hallmark of ALS/FTD. Introducing cdsRNA into cultured human neural cells induced type I interferon (IFN-I) signaling and death that was rescued by FDA-approved JAK inhibitors. In mice, genomically encoded dsRNAs expressed exclusively in a neuronal class induced IFN-I and death in connected neurons non-cell-autonomously. Our findings establish that genomically encoded cdsRNAs trigger sterile, viral-mimetic IFN-I induction and propagated death within neural circuits and may drive neuroinflammation and neurodegeneration in patients with ALS/FTD.
Collapse
Affiliation(s)
- Steven Rodriguez
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Asli Sahin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Benjamin R Schrank
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Hawra Al-Lawati
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Isabel Costantino
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Eric Benz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Darian Fard
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alefiya D Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Psychology, Endicott College, Beverly, MA 01915, USA
| | - Luxiang Cao
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alexis C Gomez
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Ratti
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Merit Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Talkowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Jiang B, Gao Y, Che J, Lu W, Kaltheuner IH, Dries R, Kalocsay M, Berberich MJ, Jiang J, You I, Kwiatkowski N, Riching KM, Daniels DL, Sorger PK, Geyer M, Zhang T, Gray NS. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol 2021; 17:675-683. [PMID: 33753926 PMCID: PMC8590456 DOI: 10.1038/s41589-021-00765-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.
Collapse
Affiliation(s)
- Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ruben Dries
- Department of Hematology and Oncology, Boston University, Boston, MA, USA
- Department of Computational Medicine, Boston University, Boston, MA, USA
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Inchul You
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Pamies D, Sartori C, Schvartz D, González-Ruiz V, Pellerin L, Nunes C, Tavel D, Maillard V, Boccard J, Rudaz S, Sanchez JC, Zurich MG. Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. Int J Mol Sci 2021; 22:4065. [PMID: 33920048 PMCID: PMC8071021 DOI: 10.3390/ijms22084065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023] Open
Abstract
Astrogliosis has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism, and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes as a function of age have been reported, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected in supporting a functional switch of astrocytes from neurotrophic to neurotoxic. This study aimed to explore the metabolic changes occurring in astrocytes during their activation. Astrocytes were derived from human ReN cell neural progenitors and characterized. They were activated by exposure to tumor necrosis factor alpha (TNFα) or interleukin 1β (IL1β) for 24 h. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics and extracellular flux analyses. ReN-derived astrocytes reactivity was observed by the modifications of genes and proteins linked to inflammation (cytokines, nuclear factor-kappa B (NFκB), signal transducers and activators of transcription (STATs)) and immune pathways (major histocompatibility complex (MHC) class I). Increased NFκB1, NFκB2 and STAT1 expression, together with decreased STAT3 expression, suggest an activation towards the detrimental pathway. Strong modifications of astrocyte cytoskeleton were observed, including a glial fibrillary acidic protein (GFAP) decrease. Astrogliosis was accompanied by changes in energy metabolism characterized by increased glycolysis and lactate release. Increased glycolysis is reported for the first time during human astrocyte activation. Astrocyte activation is strongly tied to energy metabolism, and a possible association between NFκB signaling and/or MHC class I pathway and glycolysis is suggested.
Collapse
Affiliation(s)
- David Pamies
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
| | - Chiara Sartori
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
| | - Domitille Schvartz
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, CH-1211 Genève, Switzerland
| | - Víctor González-Ruiz
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
- Analytical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland and School of Pharmaceutical Sciences, University of Geneva, CH-1211 Genève, Switzerland
| | - Luc Pellerin
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- INSERM U1082, Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86021 Poitiers, France
| | - Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
| | - Denise Tavel
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
| | - Vanille Maillard
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
| | - Julien Boccard
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
- Analytical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland and School of Pharmaceutical Sciences, University of Geneva, CH-1211 Genève, Switzerland
| | - Serge Rudaz
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
- Analytical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland and School of Pharmaceutical Sciences, University of Geneva, CH-1211 Genève, Switzerland
| | - Jean-Charles Sanchez
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
- Translational Biomarker Group, Department of Internal Medicine Specialties, University of Geneva, CH-1211 Genève, Switzerland
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland; (D.P.); (C.S.); (L.P.); (C.N.); (D.T.); (V.M.)
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland; (D.S.); (V.G.-R.); (J.B.); (S.R.); (J.-C.S.)
| |
Collapse
|
24
|
Ghazali ZS, Eskandari M, Bonakdar S, Renaud P, Mashinchian O, Shalileh S, Bonini F, Uckay I, Preynat-Seauve O, Braschler T. Neural priming of adipose-derived stem cells by cell-imprinted substrates. Biofabrication 2021; 13. [PMID: 33126230 DOI: 10.1088/1758-5090/abc66f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane silicone substrates on fixed differentiated neural progenitor cells (ReNcellTMVM). The ReNcellTMcell line consists of immortalized human neural progenitor cells that are capable to differentiate into neural cells. The fabricated cell-imprinted silicone substrates represent the geometrical micro- and nanotopology of the target cell morphology. During the molding procedure, no transfer of cellular proteins was detectable. In the first test with undifferentiated ReNcellTMVM cells, the cell-imprinted substrates could accelerate neural differentiation. With adipose-derived stem cells cultivated on the imprinted substrates, we observed modifications of cell morphology, shifting from spread to elongated shape. Both immunofluorescence and quantitative gene expression analysis showed upregulation of neural stem cell and early neuronal markers. Our study, for the first time, demonstrated the effectiveness of cell-imprinted substrates for neural priming of adipose-derived stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Iran Pasteur Institute, Tehran, Iran
| | - Philippe Renaud
- STI-IMT-LMIS4, Station 17, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Omid Mashinchian
- Nestlé Research, École Polytechnique Fédérale de Lausanne Innovation Park, 1015 Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shahriar Shalileh
- School of Electrical and computer engineering, University of Tehran, Tehran, Iran
| | - Fabien Bonini
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilker Uckay
- Orthopedic Surgery Service, Geneva University Hospitals, Geneva, Switzerland
| | | | - Thomas Braschler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, Zhou G, Johnson NT, Hyman BT, Sorger PK, Albers MW, Sokolov A. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun 2021; 12:1033. [PMID: 33589615 PMCID: PMC7884393 DOI: 10.1038/s41467-021-21330-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023] Open
Abstract
Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a large amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA) for another indication is a more rapid and less expensive option. We present DRIAD (Drug Repurposing In AD), a machine learning framework that quantifies potential associations between the pathology of AD severity (the Braak stage) and molecular mechanisms as encoded in lists of gene names. DRIAD is applied to lists of genes arising from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs are inspected for common trends among their targets. We propose that the DRIAD method can be used to nominate drugs that, after additional validation and identification of relevant pharmacodynamic biomarker(s), could be readily evaluated in a clinical trial.
Collapse
Affiliation(s)
- Steve Rodriguez
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Clemens Hug
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Petar Todorov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nienke Moret
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Kyle Evans
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - George Zhou
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nathan T Johnson
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mark W Albers
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Červenka J, Tylečková J, Kupcová Skalníková H, Vodičková Kepková K, Poliakh I, Valeková I, Pfeiferová L, Kolář M, Vaškovičová M, Pánková T, Vodička P. Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in vitro Differentiation. Front Cell Neurosci 2021; 14:612560. [PMID: 33584205 PMCID: PMC7876319 DOI: 10.3389/fncel.2020.612560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin β-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.
Collapse
Affiliation(s)
- Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiřina Tylečková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Helena Kupcová Skalníková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Kateřina Vodičková Kepková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Ievgeniia Poliakh
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ivona Valeková
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Laboratory of DNA Integrity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Tereza Pánková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Vodička
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| |
Collapse
|
27
|
Drouin A, Wallbillich N, Theberge M, Liu S, Katz J, Bellovoda K, Se Yun Cheon S, Gootkind F, Bierman E, Zavras J, Berberich MJ, Kalocsay M, Guastaldi F, Salvadori N, Troulis M, Fusco DN. Impact of Zika virus on the human type I interferon osteoimmune response. Cytokine 2021; 137:155342. [PMID: 33130337 DOI: 10.1016/j.cyto.2020.155342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The developing field of osteoimmunology supports importance of an interferon (IFN) response pathway in osteoblasts. Clarifying osteoblast-IFN interactions is important because IFN is used as salvage anti-tumor therapy but systemic toxicity is high with variable clinical results. In addition, osteoblast response to systemic bursts and disruptions of IFN pathways induced by viral infection may influence bone remodeling. ZIKA virus (ZIKV) infection impacts bone development in humans and IFN response in vitro. Consistently, initial evidence of permissivity to ZIKV has been reported in human osteoblasts. HYPOTHESIS Osteoblast-like Saos-2 cells are permissive to ZIKV and responsive to IFN. METHODS Multiple approaches were used to assess whether Saos-2 cells are permissive to ZIKV infection and exhibit IFN-mediated ZIKV suppression. Proteomic methods were used to evaluate impact of ZIKV and IFN on Saos-2 cells. RESULTS Evidence is presented confirming Saos-2 cells are permissive to ZIKV and support IFN-mediated suppression of ZIKV. ZIKV and IFN differentially impact the Saos-2 proteome, exemplified by HELZ2 protein which is upregulated by IFN but non responsive to ZIKV. Both ZIKV and IFN suppress proteins associated with microcephaly/pseudo-TORCH syndrome (BI1, KI20A and UBP18), and ZIKV induces potential entry factor PLVAP. CONCLUSIONS Transient ZIKV infection influences osteoimmune state, and IFN and ZIKV activate distinct proteomes in Saos-2 cells, which could inform therapeutic, engineered, disruptions.
Collapse
Affiliation(s)
- Arnaud Drouin
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States; Department of Pathology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Nicholas Wallbillich
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Marc Theberge
- Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States
| | - Sharon Liu
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States
| | - Joshua Katz
- Tulane University, 6823 St Charles Ave, New Orleans, LA 70118, United States
| | - Kamela Bellovoda
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Scarlett Se Yun Cheon
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Frederick Gootkind
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Emily Bierman
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Jason Zavras
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology, Harvard Medical School, Armenise Building, 200 Longwood, Ave, Boston, MA 02115, United States
| | - Marian Kalocsay
- Laboratory of Systems Pharmacology, Harvard Medical School, Armenise Building, 200 Longwood, Ave, Boston, MA 02115, United States
| | - Fernando Guastaldi
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Nicolas Salvadori
- Institut de recherche pour le développement (IRD)-PHPT, Marseille, France; Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Maria Troulis
- Department of Oral & Maxillofacial Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, United States
| | - Dahlene N Fusco
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70114, United States.
| |
Collapse
|
28
|
Martinez De La Cruz B, Markus R, Malla S, Haig MI, Gell C, Sang F, Bellows E, Sherif MA, McLean D, Lourdusamy A, Self T, Bodi Z, Smith S, Fay M, Macdonald IA, Fray R, Knight HM. Modifying the m 6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Mol Psychiatry 2021; 26:7141-7153. [PMID: 34663904 PMCID: PMC8872986 DOI: 10.1038/s41380-021-01282-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.
Collapse
Affiliation(s)
- Braulio Martinez De La Cruz
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK ,grid.415971.f0000 0004 0605 8588Present Address: MRC Laboratory of Molecular Cell Biology, UCL, London, UK
| | - Robert Markus
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Sunir Malla
- grid.4563.40000 0004 1936 8868Deep Seq: Next Generation Sequencing Facility, University of Nottingham, Nottingham, UK
| | - Maria Isabel Haig
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Chris Gell
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Fei Sang
- grid.4563.40000 0004 1936 8868Deep Seq: Next Generation Sequencing Facility, University of Nottingham, Nottingham, UK
| | - Eleanor Bellows
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mahmoud Awad Sherif
- grid.4563.40000 0004 1936 8868Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Denise McLean
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Anbarasu Lourdusamy
- grid.4563.40000 0004 1936 8868Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tim Self
- grid.4563.40000 0004 1936 8868School of Life Sciences Imaging Facility, University of Nottingham, Nottingham, UK
| | - Zsuzsanna Bodi
- grid.4563.40000 0004 1936 8868Division of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Stuart Smith
- grid.4563.40000 0004 1936 8868Children’s Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Michael Fay
- grid.4563.40000 0004 1936 8868Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Ian A. Macdonald
- grid.4563.40000 0004 1936 8868Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rupert Fray
- grid.4563.40000 0004 1936 8868Division of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Helen Miranda Knight
- Division of Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
29
|
Robledinos-Antón N, Escoll M, Guan KL, Cuadrado A. TAZ Represses the Neuronal Commitment of Neural Stem Cells. Cells 2020; 9:cells9102230. [PMID: 33023162 PMCID: PMC7600930 DOI: 10.3390/cells9102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The mechanisms involved in regulation of quiescence, proliferation, and reprogramming of Neural Stem Progenitor Cells (NSPCs) of the mammalian brain are still poorly defined. Here, we studied the role of the transcriptional co-factor TAZ, regulated by the WNT and Hippo pathways, in the homeostasis of NSPCs. We found that, in the murine neurogenic niches of the striatal subventricular zone and the dentate gyrus granular zone, TAZ is highly expressed in NSPCs and declines with ageing. Moreover, TAZ expression is lost in immature neurons of both neurogenic regions. To characterize mechanistically the role of TAZ in neuronal differentiation, we used the midbrain-derived NSPC line ReNcell VM to replicate in a non-animal model the factors influencing NSPC differentiation to the neuronal lineage. TAZ knock-down and forced expression in NSPCs led to increased and reduced neuronal differentiation, respectively. TEADs-knockdown indicated that these TAZ co-partners are required for the suppression of NSPCs commitment to neuronal differentiation. Genetic manipulation of the TAZ/TEAD system showed its participation in transcriptional repression of SOX2 and the proneuronal genes ASCL1, NEUROG2, and NEUROD1, leading to impediment of neurogenesis. TAZ is usually considered a transcriptional co-activator promoting stem cell proliferation, but our study indicates an additional function as a repressor of neuronal differentiation.
Collapse
Affiliation(s)
- Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Maribel Escoll
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, 28029 Madrid, Spain; (N.R.-A.); (M.E.)
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-915-854-383; Fax: +34-915-854-401
| |
Collapse
|
30
|
Aarum J, Cabrera CP, Jones TA, Rajendran S, Adiutori R, Giovannoni G, Barnes MR, Malaspina A, Sheer D. Enzymatic degradation of RNA causes widespread protein aggregation in cell and tissue lysates. EMBO Rep 2020; 21:e49585. [PMID: 32945072 PMCID: PMC7534620 DOI: 10.15252/embr.201949585] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA‐binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single‐stranded pyrimidine‐rich bulges or loops surrounded by double‐stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one‐to‐one protein‐nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble.
Collapse
Affiliation(s)
- Johan Aarum
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Claudia P Cabrera
- Barts and The London NIHR Cardiovascular Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Tania A Jones
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Shiron Rajendran
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Rocco Adiutori
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Michael R Barnes
- Barts and The London NIHR Cardiovascular Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Malaspina
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Denise Sheer
- Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Lindhout FW, Kooistra R, Portegies S, Herstel LJ, Stucchi R, Snoek BL, Altelaar AFM, MacGillavry HD, Wierenga CJ, Hoogenraad CC. Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons. eLife 2020; 9:e58124. [PMID: 32940601 PMCID: PMC7498259 DOI: 10.7554/elife.58124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
The differentiation of neuronal stem cells into polarized neurons is a well-coordinated process which has mostly been studied in classical non-human model systems, but to what extent these findings are recapitulated in human neurons remains unclear. To study neuronal polarization in human neurons, we cultured hiPSC-derived neurons, characterized early developmental stages, measured electrophysiological responses, and systematically profiled transcriptomic and proteomic dynamics during these steps. The neuron transcriptome and proteome shows extensive remodeling, with differential expression profiles of ~1100 transcripts and ~2200 proteins during neuronal differentiation and polarization. We also identified a distinct axon developmental stage marked by the relocation of axon initial segment proteins and increased microtubule remodeling from the distal (stage 3a) to the proximal (stage 3b) axon. This developmental transition coincides with action potential maturation. Our comprehensive characterization and quantitative map of transcriptome and proteome dynamics provides a solid framework for studying polarization in human neurons.
Collapse
Affiliation(s)
- Feline W Lindhout
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Robbelien Kooistra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Lotte J Herstel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrechtNetherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
- Department of Neuroscience, Genentech, IncSan FranciscoUnited States
| |
Collapse
|
32
|
Bunina D, Abazova N, Diaz N, Noh KM, Krijgsveld J, Zaugg JB. Genomic Rewiring of SOX2 Chromatin Interaction Network during Differentiation of ESCs to Postmitotic Neurons. Cell Syst 2020; 10:480-494.e8. [PMID: 32553182 PMCID: PMC7322528 DOI: 10.1016/j.cels.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Cellular differentiation requires dramatic changes in chromatin organization, transcriptional regulation, and protein production. To understand the regulatory connections between these processes, we generated proteomic, transcriptomic, and chromatin accessibility data during differentiation of mouse embryonic stem cells (ESCs) into postmitotic neurons and found extensive associations between different molecular layers within and across differentiation time points. We observed that SOX2, as a regulator of pluripotency and neuronal genes, redistributes from pluripotency enhancers to neuronal promoters during differentiation, likely driven by changes in its protein interaction network. We identified ATRX as a major SOX2 partner in neurons, whose co-localization correlated with an increase in active enhancer marks and increased expression of nearby genes, which we experimentally confirmed for three loci. Collectively, our data provide key insights into the regulatory transformation of SOX2 during neuronal differentiation, and we highlight the significance of multi-omic approaches in understanding gene regulation in complex systems. Complex interplay of RNA, protein, and chromatin during neuronal differentiation Multi-omic profiling reveals divergent roles of SOX2 in stem cells and neurons SOX2 on-chromatin interaction network changes from pluripotent to neuronal factors ATRX interacts with SOX2 in neurons and co-binds highly expressed neuronal genes
Collapse
Affiliation(s)
- Daria Bunina
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Nade Abazova
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Collaboration for joint PhD degree between the European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Nichole Diaz
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Heidelberg University, Medical Faculty Heidelberg University, Faculty of Biosciences, Heidelberg, Germany.
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1 Heidelberg 69117, Germany.
| |
Collapse
|
33
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|