1
|
Lešnik S, Konc J, Vodopivec T, Čamernik K, Karolina Potokar U, Legiša M. Small-molecule inhibitors of 6-phosphofructo-1-kinase simultaneously suppress lactate and superoxide generation in cancer cells. PLoS One 2025; 20:e0321998. [PMID: 40397908 DOI: 10.1371/journal.pone.0321998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 03/14/2025] [Indexed: 05/23/2025] Open
Abstract
Deregulated energy metabolism is a hallmark of cancer, characterized by increased glycolytic flux. Cancer-specific modification of 6-phosphofructo-1-kinase (PFK) impairs its ability to regulate the enzyme's activity which increases glycolytic flux. Consequently, excessive cytosolic NADH formation triggers a harmful redox imbalance in cancer cells, which is rapidly neutralized by the formation of lactic acid and superoxide (SOX). To learn more about deregulated glycolysis in cancer cells, a supercomputer used the atomic model of the crystal structure of human PFK1 for virtual screening a database of 4.5 million compounds by docking with the catalytic binding sites of the enzyme. The screening revealed two compounds capable of reducing modified, cancer-specific PFK1 activity and simultaneously suppressing lactate and SOX formation. A dose-dependent inhibition was observed in the cells treated by compounds in the following tumorigenic cells: Jurkat (Acute T cells leukemia); Caco-2 (colorectal adenocarcinoma); COLO 829 (melanoma); and MDA-MB-231 (breast gland adenocarcinoma). In addition, two selected compounds assessed for cytostatic and cytotoxic activity showed no negative effects on tumorigenic cells. However, during incubation, the strengths of inhibitions continuously decreased, both during lactate and SOX formation. No such effects were observed if compounds were sequentially submitted to the cells at low concentrations every 24 hours. Additional experiments performed by Jurkat cells revealed reduced respiration and glycolysis rates in the cells treated with compounds concerning the untreated cells. Inhibition of modified cancer-specific PFK1 activity reduces deregulated glycolytic flux, prevents abundant cytosolic NADH formation, and restores redox balance thus simultaneously preventing the formation of deleterious effects of lactate and SOX, two crucial players in cancer initiation and development.
Collapse
Affiliation(s)
- Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenija
| | - Janez Konc
- Department of Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Vodopivec
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Čamernik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matic Legiša
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
2
|
Xue F, Yang H, Xu P, Zhang S, Britzen-Laurent N, Bao LL, Grützmann R, Krautz C, Pilarsky C. CRISPR/Cas9 Screening Highlights PFKFB3 Gene as a Major Contributor to 5-Fluorouracil Resistance in Esophageal Cancer. Cancers (Basel) 2025; 17:1637. [PMID: 40427135 PMCID: PMC12109790 DOI: 10.3390/cancers17101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Esophageal cancer (EC) is the eighth most common cancer and the sixth most common cause of death worldwide. Esophageal squamous cell carcinoma (ESCC) comprises the majority of esophageal cancers globally, and 5-Fluorouraci (5-FU) is one of the commonly used chemotherapeutics for this type of cancer. Chemoresistance to drugs is a main obstacle in the successful treatment of this malignancy. METHODS In this study, we used the CRISPR/Cas9 screening method to determine the target gene related to 5-FU drug resistance in esophageal cancer. RESULTS Our research findings indicate that the loss of PFKFB3 can increase the resistance of different human esophageal squamous cell carcinoma cell lines to 5-FU through various pathways. Specifically, in KYSE-70 cells, loss of PFKFB3 can induce epithelial-mesenchymal transition (EMT) and prolong the S phase of the cell cycle, allowing cancer cells to evade the effects of 5-FU and develop resistance. In the KYSE-270 and KYSE-150 cell lines, loss of PFKFB3 can upregulate the expression of Slug and Mcl-1, indirectly regulate Chk1 and promote its autophosphorylation, which in turn inhibits apoptosis, thus counteracting the effects of 5-FU. CONCLUSIONS Our research not only enriches our understanding of the biological characteristics of different ESCC cell lines but also provides new clinical insights for future personalized treatments. Assessing the status of PFKFB3 can help predict resistance to 5-FU in ESCC patients with different genetic backgrounds, allowing for more precise treatment planning. This personalized approach has the potential to improve treatment efficacy, reduce unnecessary drug use and side effects, and ultimately improve patient survival rates and quality of life.
Collapse
Affiliation(s)
- Feng Xue
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Hai Yang
- Department of Surgery, Juraklinik Scheßlitz, 96110 Scheßlitz, Germany;
| | - Pengyan Xu
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Shuman Zhang
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Nathalie Britzen-Laurent
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91052 Erlangen, Germany;
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Christian Krautz
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (F.X.); (P.X.); (S.Z.); (N.B.-L.); (R.G.); (C.K.)
| |
Collapse
|
3
|
Liang Y, Su T, Zhu S, Sun R, Qin J, Yue Z, Wang X, Liang Z, Tan X, Bian Y, Zhao F, Tang D, Yin G. Astragali Radix-Curcumae Rhizoma normalizes tumor blood vessels by HIF-1α to anti-tumor metastasis in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156562. [PMID: 40023968 DOI: 10.1016/j.phymed.2025.156562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Abnormal tumor blood vessels can significantly promote the malignant progression of tumors, prompting researchers to focus on drugs that normalize these vessels for clinical treatment. The combination of the Qi-tonifying drug Astragali Radix and the blood-activating drug Curcumae Rhizoma, referred to as AC, exhibited significant anti-tumor metastasis effects. However, the association between the anti-tumor metastasis effect of AC and its potential role in regulating tumor vascular remodeling warrants further exploration. PURPOSE This study aimed to elucidate the mechanism through which AC induces tumor blood vessel normalization in colon cancer (CC). METHODS The potential active components of AC were identified through UPLC-MS/MS. An orthotopic transplantation model of CC was established in BALB/c mice using the CT26-Lucifer cell line, and the effects of AC were evaluated using IVIS imaging, hematoxylin and eosin (H&E) staining, and immunohistochemistry. Network pharmacology and molecular biology analyses were employed to identify the potential direct targets of AC. Subsequently, RT-PCR and Western blotting techniques were utilized to validate the findings obtained from network pharmacology. Furthermore, ELISA and other methodologies were used to investigate glycolysis-related indicators, along with immunofluorescence technology to demonstrate changes in vascular leakage and perfusion characteristics associated with blood vessel normalization. RESULTS We identified HIF-1α as a potential direct target of AC. This interaction influences the glycolytic processes in both tumor cells and tumor-associated endothelial cells (TECs) by directly binding to HIF-1α and modulating its nuclear translocation, thereby determining the integrity of TEC junctions. Mechanistically, AC directly regulates the key enzyme PFKFB3 in glycolysis by modulating HIF-1α expression and inhibiting its nuclear translocation. This action reduces tumor glycolytic flux, decreases the internalization of VE-cad, and influences the expression of downstream matrix metalloproteinases (MMPs), thereby strengthening the adherens and tight junctions between TECs and restoring vascular integrity. CONCLUSION This study presents novel findings that AC can regulate glycolysis through the inhibition of HIF-1α nuclear translocation, thereby promoting the normalization of tumor blood vessels and effectively inhibiting tumor metastasis. These results suggested that AC may serve as an effective therapeutic agent for normalizing tumor blood vessels.
Collapse
Affiliation(s)
- Yan Liang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingting Su
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijiao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruolan Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahui Qin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zengyaran Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhongqing Liang
- School of Acupuncture-Moxibustion and Tuina · School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Decai Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Gang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 2025; 66:35. [PMID: 40116120 PMCID: PMC12002672 DOI: 10.3892/ijo.2025.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yanyu Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Lin Fu
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Huiling Chen
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China
| | - Zhongshu Wang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yan Zhang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yu Huang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yi Xiao
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
5
|
Tao DL, Chen JM, Wu JP, Zhao SS, Qi BF, Yang X, Fan YY, Song JK, Zhao GH. Neospora caninum hijacks host PFKFB3-driven glycolysis to facilitate intracellular propagation of parasites. Vet Res 2025; 56:94. [PMID: 40307939 PMCID: PMC12042381 DOI: 10.1186/s13567-025-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 05/02/2025] Open
Abstract
Infection with Neospora caninum leads to reproductive failure in ruminants, such as cattle and goats; however, no effective vaccines or treatments are currently available to control this infection. Carefully regulating the glycolysis of host cells is essential for the intracellular survival of pathogens. Nonetheless, the impact of N. caninum infection on host cell glycolysis and the effects and mechanisms of host cell glycolysis on the intracellular survival of this parasite remains unclear. In this study, the analysis of metabolomics and transcriptomics revealed that N. caninum infection increases the expression of glycolysis-related enzymes and lactate production in caprine endometrial epithelial cells (EECs). The study's findings demonstrate that the inhibition of host cell glycolysis using 2-DG or sodium oxamate (an LDH-A inhibitor) inhibits host cell glycolysis and the intracellular propagation of N. caninum tachyzoites. Moreover, the addition of lactate further promotes the replication of N. caninum tachyzoites both in vivo and in vitro. Further investigation found that N. caninum infection induces host cell glycolysis via up-regulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression, while knockdown of PFKFB3 with small-interfering RNA or 3-PO significantly inhibits host cell glycolysis and the propagation of N. caninum tachyzoites both in vivo and in vitro. Additionally, a mechanistic study showed that N. caninum infection activates the JNK signalling pathway and inhibits the ubiquitination degradation of HIF-1α. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that N. caninum infection induces the expression of HIF-1α, which binds to the promoter region of pfkfb3. Our findings indicate that cellular glycolysis may serve as a potential therapeutic target for neosporosis, offering a novel insight for further investigating the intracellular survival mechanisms of N. caninum.
Collapse
Affiliation(s)
- De-Liang Tao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jin-Ming Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jiang-Ping Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Shan-Shan Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Bu-Fan Qi
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Ying-Ying Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China.
| |
Collapse
|
6
|
Qiao Y, Liu Y, Ran R, Zhou Y, Gong J, Liu L, Zhang Y, Wang H, Fan Y, Fan Y, Nan G, Zhang P, Yang J. Lactate metabolism and lactylation in breast cancer: mechanisms and implications. Cancer Metastasis Rev 2025; 44:48. [PMID: 40295451 PMCID: PMC12037681 DOI: 10.1007/s10555-025-10264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
As the end-product of glycolysis, lactate serves as a regulator of protein lactylation in addition to being an energy substrate, metabolite, and signaling molecule in cancer. The reprogramming of glucose metabolism and the Warburg effect in breast cancer results in extensive lactate production and accumulation, making it likely that lactylation in tumor tissue is also abnormal. This review summarizes evidence on lactylation derived from studies of lactate metabolism and disease, highlighting the role of lactate in the tumor microenvironment of breast cancer and detailing the levels of lactylation and cancer-promoting mechanisms across various tumors. The roles of lactate and lactylation, along with potential intervention mechanisms, are presented and discussed, offering valuable insights for future research on the role of lactylation in tumors.
Collapse
Affiliation(s)
- Yifan Qiao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yijia Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ran
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhou
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yusi Zhang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Fan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihan Fan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gengrui Nan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Zhang
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
- Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Dadao, Nanchang, 330209, China.
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Tyrin AS, Boiko DA, Kolomoets NI, Ananikov VP. Digitization of molecular complexity with machine learning. Chem Sci 2025; 16:6895-6908. [PMID: 40115180 PMCID: PMC11922160 DOI: 10.1039/d4sc07320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/23/2025] [Indexed: 03/23/2025] Open
Abstract
Digitization of molecular complexity is of key importance in chemistry and life sciences to develop structure-activity relationships in chemical behavior and biological activity. The complexity of a given molecule compared to others is largely based on intuitive perception and lacks a standardized numerical measure. Quantifying molecular complexity remains a fundamental challenge, with key implications currently remaining controversial. In this study, we introduce a novel machine learning-based framework employing a Learning to Rank (LTR) approach to quantify molecular complexity on the basis of labeled data. As a result, we developed a ranking model utilizing the dataset that comprizes approximately 300 000 data points across diverse chemical structures, leveraging human expertise to capture complex decision rules that researchers intuitively use. Applications of our model in mapping the current organic chemistry landscape, analyzing FDA-approved drugs, guiding lead optimization processes, and interpreting total synthesis approaches reveal key trends in increasing molecular complexity and synthetic strategy evolution. Our study advances the methodologies available for quantifying molecular complexity, changing it from an elusive property to a numerical characteristic. With machine learning, we managed to digitize human perception of molecular complexity. Moreover, a corresponding large labeled dataset was produced for future research in this area.
Collapse
Affiliation(s)
- Andrei S Tyrin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky prospekt 47 Moscow 119991 Russia http://AnanikovLab.ru
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky prospekt 47 Moscow 119991 Russia http://AnanikovLab.ru
| | - Nikita I Kolomoets
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky prospekt 47 Moscow 119991 Russia http://AnanikovLab.ru
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky prospekt 47 Moscow 119991 Russia http://AnanikovLab.ru
| |
Collapse
|
8
|
Chaikin CA, Thakkar AV, Steffeck AWT, Pfrender EM, Hung K, Zhu P, Waldeck NJ, Nozawa R, Song W, Futtner CR, Quattrocelli M, Bass J, Ben-Sahra I, Peek CB. Control of circadian muscle glucose metabolism through the BMAL1-HIF axis in obesity. Proc Natl Acad Sci U S A 2025; 122:e2424046122. [PMID: 40127275 PMCID: PMC12002348 DOI: 10.1073/pnas.2424046122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Disruptions of circadian rhythms are widespread in modern society and lead to accelerated and worsened symptoms of metabolic syndrome. In healthy mice, the circadian clock factor BMAL1 is required for skeletal muscle function and metabolism. However, the importance of muscle BMAL1 in the development of metabolic diseases, such as diet-induced obesity (DIO), remains unclear. Here, we demonstrate that skeletal muscle-specific BMAL1-deficient mice exhibit worsened glucose tolerance upon high-fat diet feeding, despite no evidence of increased weight gain. Metabolite profiling from Bmal1-deficient muscles revealed impaired glucose utilization specifically at early steps in glycolysis that dictate the switch between anabolic and catabolic glucose fate. We provide evidence that this is due to abnormal control of the nutrient stress-responsive hypoxia-inducible factor (HIF) pathway. Genetic HIF1α stabilization in muscle Bmal1-deficient mice restores glucose tolerance and expression of 217/736 dysregulated genes during DIO, including glycolytic enzymes. Together, these data indicate that during DIO, skeletal muscle BMAL1 is an important regulator of HIF-driven glycolysis and metabolic flexibility, which influences the development of high-fat-diet-induced glucose intolerance.
Collapse
Affiliation(s)
- Claire A. Chaikin
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Abhishek V. Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Adam W. T. Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Eric M. Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Kaitlyn Hung
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Nathan J. Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Rino Nozawa
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Weimin Song
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Christopher R. Futtner
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Clara B. Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
9
|
Niu Z, He J, Wang S, Xue B, Zhang H, Hou R, Xu Z, Sun J, He F, Pei X. Targeting Glycolysis for Treatment of Breast Cancer Resistance: Current Progress and Future Prospects. Int J Biol Sci 2025; 21:2589-2605. [PMID: 40303296 PMCID: PMC12035887 DOI: 10.7150/ijbs.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Breast cancer stands as one of the most prevalent malignant tumors threatening women's health and is a leading cause of cancer-related mortality. Its treatment faces significant challenges, including drug tolerance and disease recurrence. Glycolysis serves not only as a critical metabolic pathway for energy acquisition in breast cancer cells but also essentially promotes tumor proliferation, invasion, metastasis, and the development of resistance to therapy. Recent studies have revealed a close association between glycolytic reprogramming and drug resistance in breast cancer, with high-level glycolysis emerging as a hallmark of malignancy, deeply involved in the initiation and progression of tumors. This review summarizes recent advances in research on key enzymes and signaling pathways regulating glycolysis within the bodies of breast cancer patients. It explores in depth these molecular mechanisms and their complex interaction networks, offering a fresh perspective on overcoming drug resistance in breast cancer. Moreover, it underscores the importance of developing specific inhibitors targeting key enzymes and regulators of glycolysis and suggests that combining such inhibitors with existing anticancer drugs could substantially enhance therapeutic outcomes for breast cancer patients and reduce the occurrence of drug resistance.
Collapse
Affiliation(s)
- Zixu Niu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Siyuan Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Bingjian Xue
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruohan Hou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zimeng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- The First Clinical Medical College of Zhengzhou University, Zhengzhou, 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
10
|
Kimura TDC, Scarini JF, Gonçalves MWA, Ferreira IV, Egal ESA, Altemani A, Mariano FV. Interplay between miRNA expression and glucose metabolism in oral squamous cell carcinoma. Arch Oral Biol 2025; 171:106162. [PMID: 39700740 DOI: 10.1016/j.archoralbio.2024.106162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Given the urgent need for improved diagnostic and therapeutic strategies in oral squamous cell carcinoma (OSCC), this review aims to explore the intricate interplay between OSCC and alterations in glucose metabolism, with a particular focus on the pivotal role of microRNAs (miRNAs) in this context. MATERIAL AND METHODS Data were extracted from a vast literature survey by using PubMed, Embase, and Web of Science search engines with relevant keywords. RESULTS In OSCC, miRNAs exert regulatory control over the expression of genes involved in glucose metabolism pathways. Dysregulation of specific miRNAs has been implicated in the modulation of key glycolytic enzymes and glucose transporters, intracellular signaling cascades, and interaction with transcription factors, all of which collectively affect glucose uptake and glycolysis, contributing significantly to the observed metabolic alterations in OSCC cells. CONCLUSION A comprehensive understanding of these intricate molecular interactions holds significant promise for the development of targeted therapeutic interventions and refined diagnostic approaches to treat OSCC patients.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iara Vieira Ferreira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erika Said Abu Egal
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Zhu F, Ren L, Cheng W, Zhou H, Li Y, Liu N, Rong G, Liu Y, Yu P, Lv J, Cheng Y, Chen C. A Dynamic Deferoxamine Polymer with Exceptional Performance in Mitochondrial Iron Depletion and Cytosolic Protein Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412093. [PMID: 39945100 DOI: 10.1002/smll.202412093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Indexed: 03/20/2025]
Abstract
Deferoxamine (DFO) is an FDA-approved naturally occurring iron chelator commonly used to treat transfusion-induced iron overload. The abundant and flexible hydroxamic acid groups in DFO enable exceptional iron binding capacity and high protein binding via hydrogen bonding interactions. However, the applications of DFO to sequester intracellular iron and to deliver proteins inside cells are limited due to poor membrane-permeability. Herein, the fabrication of a dynamic DFO polymer is proposed to achieve robust intracellular protein delivery and efficient mitochondrial iron depletion. Specifically, DFO is grafted onto a polycatechol scaffold via dynamic catechol-boronate chemistry. The obtained DFO polymer shows robust protein binding capacity, and the formed protein complexes show high resistance toward serum proteins. It effectively delivers various cargo proteins into cytosol of treated cells with maintained bioactivity. In addition, the polymer delivers DFO inside cells, and the released DFO efficiently depletes mitochondrial iron, which significantly inhibits mitochondrial oxidative phosphorylation and glycolysis. Remarkable synergistic cytotoxic effects are achieved when the DFO polymer is loaded with toxic proteins. This study provides a general strategy for facile preparation of bioactive polymer toward robust protein delivery, and the designed polymer can be a promising carrier for the delivery of protein therapeutics to treat cancer.
Collapse
Affiliation(s)
- Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lanfang Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenhua Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Haohan Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yuhan Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Guangyu Rong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Yunfeng Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Panting Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chao Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
12
|
Zarzuela L, Durán RV, Tomé M. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Mol Oncol 2025; 19:592-613. [PMID: 38105543 PMCID: PMC11887670 DOI: 10.1002/1878-0261.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.
Collapse
Affiliation(s)
- Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| | - Raúl V. Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa – CABIMER, Consejo Superior de Investigaciones CientíficasUniversidad de Sevilla, Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
13
|
Egelberg M, De Marchi T, Schultz N, Tran L, Karlsson P, Holmberg E, Pekar G, Killander F, Niméus E. The potential radiosensitization target PFKFB3 is related to response to radiotherapy in SweBCG91RT: a randomized clinical trial with long-term follow-up. BMC Cancer 2025; 25:374. [PMID: 40022029 PMCID: PMC11869729 DOI: 10.1186/s12885-025-13703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/10/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Several cancer types have increased PFKFB3, a glycolytic enzyme for which potent inhibitors have been found. Inhibition of PFKFB3 impairs DNA repair after irradiation of cancer cells, making it a possible radiosensitization target. The SweBCG91RT trial, in which breast cancer patients were randomized to postoperative radiotherapy or not, was used to investigate PFKFB3 as a clinical marker of sensitivity to adjuvant radiotherapy. METHODS Nuclear protein levels of PFKFB3 were assessed with immunohistochemistry in primary breast tumors (n = 970) and whole-cell RNA levels with microarray gene expression (n = 765). Multivariable competing risks regression analysis was employed for the effect of radiotherapy on incidence of ipsilateral breast tumor recurrence (IBTR), depending on PFKFB3 levels. RESULTS Tumors with high levels of nuclear protein and RNA had the largest effect on incidence of IBTR of adjuvant radiotherapy, however without evidence of an interaction. PFKFB3 RNA correlated with subtype, as high levels were more common among the human epidermal growth factor receptor 2 (HER2) positive and Luminal A subtypes than Luminal B and triple negative tumors. CONCLUSION High PFKFB3 is associated with a larger reduction of IBTR after radiotherapy but PFKFB3 cannot reliably be used as a predictive marker of sensitivity to adjuvant radiotherapy in breast cancer. PFKFB3 expression differed with subtype, indicating that it may be a better marker among Luminal A and HER2 positive tumors, but this is yet to be investigated. TRIAL REGISTRATION The trial has been retrospectively registered at clinicaltrials.gov 2024-10-03 (NCT06637202).
Collapse
Affiliation(s)
- Moa Egelberg
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC D13, Lund, 221 83, Sweden.
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Radiology, Kristianstad Hospital, Kristianstad, Sweden.
| | - Tommaso De Marchi
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niklas Schultz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Tran
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Gyula Pekar
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Clinical Pathology and Cytology, Unilabs AB, Skaraborg Hospital, Skövde, Sweden
| | - Fredrika Killander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Skåne University Hospital, Lund, Sweden
| | - Emma Niméus
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC D13, Lund, 221 83, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Division of Surgery, Department of Clinical Sciences Lund, Faculty of Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Zhu X, Zhou X, Li S, Liu Z, Yu S, Shi H, Zhu L, Song B, Si Z, Sun M, Zhu W. PFKFB3 decreases α-ketoglutarate production while partial PFKFB3 knockdown in macrophages ameliorates arthritis in tumor necrosis factor-transgenic mice. Int Immunopharmacol 2025; 148:114102. [PMID: 39870011 DOI: 10.1016/j.intimp.2025.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
OBJECTIVE Aberrant 6-phosphofructo-2kinase/fructose-2,6-bisphoshatase 3 (PFKFB3) expression is tightly correlated with multiple steps of tumorigenesis; however, the pathological significance of PFKFB3 in macrophages in patients with rheumatoid arthritis (RA) remains obscure. In this study, we examined whether PFKFB3 modulates macrophage activation and promotes RA development. METHOD Peripheral blood mononuclear cells (PBMCs) from patients with RA, THP-1 cells, and bone marrow-derived macrophages from conditional PFKFB3-knockout mice were used to investigate the mechanism underlying PFKFB3-induced macrophage regulation of RA. RESULT We demonstrated that patients with RA have higher PFKFB3 levels than healthy volunteers. PFKFB3 silencing suppressed M1 macrophage polarization and downregulated IL-1β, CD80, IFIT1, CCL8, and CXCL10 in macrophages of patients with RA. PFKFB3 overexpression markedly upregulated IRF5, HIF1α, IL-1β, CD80, IFI27, IFI44, IFIT1, IFIT3, CCL2, CCL8, CXCL10, CXCL11, and MMP13 in phorbol 12-myristate 13-acetate-induced THP-1 cells, although these changes were partially reversed by PFK15, an inhibitor of PFKFB3 enzyme activity. Co-immunoprecipitation assays revealed that PFKFB3 interacted with GLUD1 and decreased glutamate dehydrogenase (GDH) activity and α-ketoglutarate production. PFKFB3, TNFα, IL-6, IFNγ, CXCL9, CXCL10, CXCL11, MMP13, and MMP19 were downregulated in bone marrow-derived macrophages of conditional PFKFB3-knockout mice relative to those of wild-type mice. Partial PFKFB3 knockdown in macrophages ameliorated the clinical signs of arthritis and bone destruction, inhibited proinflammatory factor expression, and promoted GDH activity and α-ketoglutarate production in tumor necrosis factor-transgenic mice. Single-cell sequencing revealed that macrophages were the most abundant cells in the ankles of arthritic mice, and partial PFKFB3 knockdown promoted M2-like polarization and was correlated with TREM2, SPP1, APOE, and C1Q expression. CONCLUSION PFKFB3 is upregulated in macrophages in patients with RA. PFKFB3 aggravates arthritis by modulating macrophage activity, which may be related to decreased α-ketoglutarate production.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Xiaohui Zhou
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Shuaiyi Li
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Zenghui Liu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Shidi Yu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Hong Shi
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - LingLing Zhu
- Department of Rheumatology, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Baohui Song
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Zihou Si
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Mingshuang Sun
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
| | - Wei Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China.
| |
Collapse
|
15
|
Batori RK, Bordan Z, Padgett CA, Huo Y, Chen F, Atawia RT, Lucas R, Ushio-Fukai M, Fukai T, Belin de Chantemele EJ, Stepp DW, Fulton DJR. PFKFB3 Connects Glycolytic Metabolism with Endothelial Dysfunction in Human and Rodent Obesity. Antioxidants (Basel) 2025; 14:172. [PMID: 40002359 PMCID: PMC11851787 DOI: 10.3390/antiox14020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity and type 2 diabetes (T2D) increase cardiovascular risk, largely due to altered metabolic state. An early consequence of T2D/obesity is the loss of endothelial function and impaired nitric oxide (NO) signaling. In blood vessels, endothelial nitric oxide synthase (eNOS) synthesizes NO to maintain vessel homeostasis. The biological actions of NO are compromised by superoxide that is generated by NADPH oxidases (NOXs). Herein we investigated how altered metabolism affects superoxide/NO balance in obesity. We found that eNOS expression and NO bioavailability are significantly decreased in endothelial cells (ECs) from T2D patients and animal models of obesity. In parallel, PFKFB3, a key glycolytic regulatory enzyme, is significantly increased in ECs of obese animals. EC overexpression of wild-type and a cytosol-restricted mutant PFKFB3 decreased NO production due to increased eNOS-T495 phosphorylation. PFKFB3 also blunted Akt-S473 phosphorylation, reducing stimulus-dependent phosphorylation of S1177 and the activation of eNOS. Furthermore, PFKFB3 enhanced the activities of NOX1 and NOX5, which are major contributors to endothelial dysfunction. Prolonged exposure of ECs to high glucose or TNFα, which are hallmarks of T2D, leads to increased PFKFB3 expression. These results demonstrate a novel functional relationship between endothelial metabolism, ROS, and NO balance that may contribute to endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
| | - Caleb A. Padgett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
| | - Yuqing Huo
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Reem T. Atawia
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (R.K.B.); (Z.B.); (C.A.P.); (R.L.); (M.U.-F.); (T.F.); (E.J.B.d.C.); (D.W.S.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Xiao Y, Wu Y, Wang Q, Li M, Deng C, Gu X. Repression of PFKFB3 sensitizes ovarian cancer to PARP inhibitors by impairing homologous recombination repair. Cell Commun Signal 2025; 23:48. [PMID: 39863903 PMCID: PMC11762855 DOI: 10.1186/s12964-025-02056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance. METHODS We conducted in vitro and in vivo experiments to assess the role of PFKFB3 in OC and its impact on PARPi resistance. We analyzed PFKFB3 expression and activity in primary OC tissues and cell lines using western blotting and immunohistochemistry. CRISPR-Cas9 and pharmacological inhibitors were employed to inhibit PFKFB3, and the effects on PARPi resistance, homologous recombination (HR) repair efficiency, and DNA damage were evaluated. RNA sequencing and proximity labeling were employed to identify the molecular mechanisms underlying PFKFB3-mediated resistance. The in vivo efficacy of PARPi and PFK158 combination therapy was evaluated in OC xenograft models. RESULTS PFKFB3 activity was significantly elevated in OC tissues and associated with PARPi resistance. Inhibition of PFKFB3, both genetically and pharmacologically, sensitized OC cells to PARPis, impaired HR repair and increased DNA damage. Proximity labeling revealed replication protein A3 (RPA3) as a novel PFKFB3-binding protein involved in HR repair. In vivo, the combination of PFK158 and olaparib significantly inhibited tumor growth, increased DNA damage, and induced apoptosis in OC xenografts without exacerbating adverse effects. CONCLUSIONS Our findings demonstrate that PFKFB3 is crucial for PARPi resistance in OC. Inhibiting PFKFB3 sensitizes HR-proficient OC cells to PARPis by impairing HR repair, leading to increased DNA damage and apoptosis. PFKFB3 represents a promising therapeutic target for overcoming PARPi resistance and improving outcomes in OC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
| | - Qilong Wang
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100083, China
| | - Mo Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China
| | - Chaolin Deng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiaoyang Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital), Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
17
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
18
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
19
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
20
|
Xia J, Zhou C, Zhao H, Zhang J, Chai X. LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis. Dig Dis Sci 2025; 70:215-232. [PMID: 39641899 DOI: 10.1007/s10620-024-08756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive malignancy among malignant tumours, with a high incidence globally. LINC01614, a long non-coding RNA, has been identified as an essential regulator in multiple cancer types. However, its biological functions and underlying molecular mechanisms in CRC remain largely unknown. METHODS In this study, we employed RT-qPCR to assess the expression levels of LINC01614 in CRC samples. In vitro, glucose metabolism experiments were conducted to evaluate glucose metabolism in cells. The binding relationship between miR-4443, PFKFB3, and LINC01614 was confirmed through fluorescence reporter gene detection. The subcellular localization of LINC01614 in CRC cells was determined using FISH and subcellular fractionation experiments. Additionally, a mouse subcutaneous tumor model was established for in vivo experiments. RESULTS Our findings reveal that LINC01614 is upregulated in CRC tissues. Silencing of LINC01614 suppresses the malignant behaviors of CRC cells, including cell proliferation, invasion, migration, and aerobic glycolysis. Furthermore, we discovered that LINC01614 promotes the expression of PFKFB3. Additional experiments demonstrated that LINC01614 binds to miR-4443, leading to the upregulation of PFKFB3 expression. Further experiments confirmed that the LINC01614/miR-4443/PFKFB3 axis promotes CRC cell malignancy by enhancing aerobic glycolysis. Additionally, we found that STAT1 promotes the transcription of LINC01614. CONCLUSION These findings uncover a novel regulatory pathway wherein STAT1-induced LINC01614 enhances PFKFB3 expression by sponging miR-4443, thereby accelerating CRC development. This understanding may lead to novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Chenglin Zhou
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Heng Zhao
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Jun Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Xiaoming Chai
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China.
| |
Collapse
|
21
|
Li K, Liu X, Lu R, Zhao P, Tian Y, Li J. Bleomycin pollution and lung health: The therapeutic potential of peimine in bleomycin-induced pulmonary fibrosis by inhibiting glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117451. [PMID: 39626488 DOI: 10.1016/j.ecoenv.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
The increasing use of anticancer drugs has led to the emergence of environmental contaminants such as bleomycin (BLM), which poses significant threats to both aquatic ecosystems and human health. Bleomycin, known for its DNA-damaging properties, is extensively used in oncology. Its resistance to biodegradation, along with the limitations of conventional wastewater treatment processes, facilitates environmental accumulation from various sources, highlighting the need for effective management and treatment strategies to mitigate ecological and health risks. This study investigates the link between BLM pollution and pulmonary fibrosis, a progressive lung disease characterized by tissue scarring and loss of function. We demonstrate that BLM induces pulmonary fibrosis in mice and enhances glycolysis and fibroblast activation. Our findings also indicate that peimine, a natural compound derived from Fritillaria, suppresses fibroblast activation and ameliorates pulmonary fibrosis by inhibiting glycolysis through the PI3K/Akt/PFKFB3 signaling pathway. Taken together, this study underscores the environmental and health risks associated with the accumulation of cytostatic drugs like BLM and highlights the therapeutic potential of natural compounds such as peimine. Our results contribute to the development of novel strategies for the prevention and treatment of pulmonary fibrosis and call for better management practices to mitigate the environmental impact of cytostatic drugs.
Collapse
Affiliation(s)
- Kangchen Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xuefang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruilong Lu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
22
|
Makino Y, Rajapakshe KI, Chellakkan Selvanesan B, Okumura T, Date K, Dutta P, Abou-Elkacem L, Sagara A, Min J, Sans M, Yee N, Siemann MJ, Enriquez J, Smith P, Bhattacharya P, Kim M, Dede M, Hart T, Maitra A, Thege FI. Metabolic reprogramming by mutant GNAS creates an actionable dependency in intraductal papillary mucinous neoplasms of the pancreas. Gut 2024; 74:75-88. [PMID: 39277181 PMCID: PMC12014225 DOI: 10.1136/gutjnl-2024-332412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Oncogenic 'hotspot' mutations of KRAS and GNAS are two major driver alterations in intraductal papillary mucinous neoplasms (IPMNs), which are bona fide precursors to pancreatic ductal adenocarcinoma. We previously reported that pancreas-specific Kras G12D and Gnas R201C co-expression in p48Cre; KrasLSL-G12D; Rosa26LSL-rtTA; Tg (TetO-GnasR201C) mice ('Kras;Gnas' mice) caused development of cystic lesions recapitulating IPMNs. OBJECTIVE We aim to unveil the consequences of mutant Gnas R201C expression on phenotype, transcriptomic profile and genomic dependencies. DESIGN We performed multimodal transcriptional profiling (bulk RNA sequencing, single-cell RNA sequencing and spatial transcriptomics) in the 'Kras;Gnas' autochthonous model and tumour-derived cell lines (Kras;Gnas cells), where Gnas R201C expression is inducible. A genome-wide CRISPR/Cas9 screen was conducted to identify potential vulnerabilities in KrasG12D;GnasR201C co-expressing cells. RESULTS Induction of Gnas R201C-and resulting G(s)alpha signalling-leads to the emergence of a gene signature of gastric (pyloric type) metaplasia in pancreatic neoplastic epithelial cells. CRISPR screening identified the synthetic essentiality of glycolysis-related genes Gpi1 and Slc2a1 in Kras G12D;Gnas R201C co-expressing cells. Real-time metabolic analyses in Kras;Gnas cells and autochthonous Kras;Gnas model confirmed enhanced glycolysis on Gnas R201C induction. Induction of Gnas R201C made Kras G12D expressing cells more dependent on glycolysis for their survival. Protein kinase A-dependent phosphorylation of the glycolytic intermediate enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) was a driver of increased glycolysis on Gnas R201C induction. CONCLUSION Multiple orthogonal approaches demonstrate that Kras G12D and Gnas R201C co-expression results in a gene signature of gastric pyloric metaplasia and glycolytic dependency during IPMN pathogenesis. The observed metabolic reprogramming may provide a potential target for therapeutics and interception of IPMNs.
Collapse
Affiliation(s)
- Yuki Makino
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kimal I Rajapakshe
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Benson Chellakkan Selvanesan
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Takashi Okumura
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Kenjiro Date
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | | | - Lotfi Abou-Elkacem
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Akiko Sagara
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jimin Min
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Marta Sans
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Nathaniel Yee
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Megan J Siemann
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Jose Enriquez
- Cancer Systems Imaging, UTMDACC, Houston, Texas, USA
| | | | | | - Michael Kim
- Surgical Oncology, UTMDACC, Houston, Texas, USA
| | - Merve Dede
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
| | - Traver Hart
- Bioinformatics & Computational Biology, UTMDACC, Houston, Texas, USA
- Department of Cancer Biology, UTMDACC, Houston, Texas, USA
| | - Anirban Maitra
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| | - Fredrik Ivar Thege
- Translational Molecular Pathology, UTMDACC, Houston, Texas, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, UTMDACC, Houston, Texas, USA
| |
Collapse
|
23
|
Liu Q, Li J, Li X, Zhang L, Yao S, Wang Y, Tuo B, Jin H. Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). Int J Mol Med 2024; 54:105. [PMID: 39301662 PMCID: PMC11448561 DOI: 10.3892/ijmm.2024.5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Liver fibrosis is a pathophysiologic manifestation of chronic liver disease and a precursor to cirrhosis and hepatocellular carcinoma. Glycolysis provides intermediate metabolites as well as energy support for cell proliferation and phenotypic transformation in liver fibers. 6‑Phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 3 (PFKFB3) is a key activator of glycolysis and plays an important role in the process of glycolysis. The role of PFKFB3‑mediated glycolysis in myocardial fibrosis, renal fibrosis and pulmonary fibrosis has been demonstrated, and the role of PFKFB3 in the activation of hepatic stellate cells by aerobic glycolysis has been proven by relevant experiments. The present study reviews the research progress on the role and mechanism of action of PFKFB3‑mediated glycolysis in the progression of hepatic fibrosis to discuss the role of PFKFB3‑mediated glycolysis in hepatic fibrosis and to provide new ideas for research on PFKFB3 as a target for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiajia Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
24
|
Klaus L, Reichardt SD, Neif M, Walter L, Gayer FA, Reichardt HM. Teratoma Development in 129.MOLF-Chr19 Mice Elicits Two Waves of Immune Cell Infiltration. Int J Mol Sci 2024; 25:12750. [PMID: 39684459 DOI: 10.3390/ijms252312750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Teratomas are a highly differentiated type of testicular germ cell tumors (TGCTs), the most common type of solid cancer in young men. Prominent inflammatory infiltrates are a hallmark of TGCTs, although their compositions and dynamics in teratomas remain elusive. Here, we reached out to characterize the infiltrating immune cells and their activation and polarization state by using high-throughput gene expression analysis of 129.MOLF-Chr19 mice that spontaneously develop testicular teratomas. We showed that inconspicuous testes without any apparent alterations in size or morphology can be clustered into three groups based on their expression of stemness and immune genes, supporting a model in which initial oncogenic transformation elicits a first wave of T-cell infiltration. Moderately and severely enlarged tumorous testes then displayed a progressive infiltration with T cells, monocytes/macrophages, and B cells. Importantly, T cells seem to adopt an inactive state caused by an overexpression of immune checkpoint molecules and the polarization of monocytes/macrophages to an anti-inflammatory phenotype. Our findings are supported by the analysis of metabolic gene expression, which unveiled alterations indicative of tumor growth and immune cell infiltration. Collectively, testicular teratomas, at least in mice, are characterized by a diverse inflammatory infiltrate containing T cells that putatively become inactivated, allowing the tumors to further grow. We believe that these findings may provide a rationale for the development of new immunomodulatory therapies for TGCTs.
Collapse
Affiliation(s)
- Lucas Klaus
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maria Neif
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Dermatology, University Hospital Münster, 48149 Münster, Germany
| | - Lutz Walter
- German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Fabian A Gayer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Clinic of Urology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
25
|
Piro MC, Pecorari R, Smirnov A, Cappello A, Foffi E, Lena AM, Shi Y, Melino G, Candi E. p63 affects distinct metabolic pathways during keratinocyte senescence, evaluated by metabolomic profile and gene expression analysis. Cell Death Dis 2024; 15:830. [PMID: 39543093 PMCID: PMC11564703 DOI: 10.1038/s41419-024-07159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Unraveling the molecular nature of skin aging and keratinocyte senescence represents a challenging research project in epithelial biology. In this regard, depletion of p63, a p53 family transcription factor prominently expressed in human and mouse epidermis, accelerates both aging and the onset of senescence markers in vivo animal models as well as in ex vivo keratinocytes. Nonetheless, the biochemical link between p63 action and senescence phenotype remains largely unexplored. In the present study, through ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) and gas chromatography/mass spectrometry (GC/MS) metabolomic analysis, we uncover interesting pathways linking replicative senescence to metabolic alterations during p63 silencing in human keratinocytes. Integration of our metabolomic profiling data with targeted transcriptomic investigation empowered us to demonstrate that absence of p63 and senescence share similar modulation profiles of oxidative stress markers, pentose phosphate pathway metabolites and lyso-glycerophospholipids, the latter due to enhanced phospholipases gene expression profile often under p63 direct/indirect gene control. Additional biochemical features identified in deranged keratinocytes include a relevant increase in lipids production, glucose and pyruvate levels as confirmed by upregulation of gene expression of key lipid synthesis and glycolytic enzymes, which, together with improved vitamins uptake, characterize senescence phenotype. Silencing of p63 in keratinocytes instead, translates into a blunted flux of metabolites through both glycolysis and the Krebs cycle, likely due to a p63-dependent reduction of hexokinase 2 and citrate synthase gene expression. Our findings highlight the potential role of p63 in counteracting keratinocyte senescence also through fine regulation of metabolite levels and relevant biochemical pathways. We believe that our research might contribute significantly to the discovery of new implications of p63 in keratinocyte senescence and related diseases.
Collapse
Affiliation(s)
- Maria Cristina Piro
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | | | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- IDI-IRCCS, Rome, Italy
| | - Angela Cappello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Erica Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy.
- IDI-IRCCS, Rome, Italy.
| |
Collapse
|
26
|
Pang S, Shen Y, Wang Y, Chu X, Ma L, Zhou Y. ROCK1 regulates glycolysis in pancreatic cancer via the c-MYC/PFKFB3 pathway. Biochim Biophys Acta Gen Subj 2024; 1868:130669. [PMID: 38996990 DOI: 10.1016/j.bbagen.2024.130669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Dysregulation of Rho-associated coiled coil-containing protein kinases (ROCKs) is involved in the metastasis and progression of various malignant tumors. However, how one of the isomers, ROCK1, regulates glycolysis in tumor cells is incompletely understood. Here, we attempted to elucidate how ROCK1 influences pancreatic cancer (PC) progression by regulating glycolytic activity. METHODS The biological function of ROCK1 was analyzed in vitro by establishing a silenced cell model. Coimmunoprecipitation confirmed the direct binding between ROCK1 and c-MYC, and a luciferase reporter assay revealed the binding of c-MYC to the promoter of the PFKFB3 gene. These results were verified in animal experiments. RESULTS ROCK1 was highly expressed in PC tissues and enriched in the cytoplasm, and its high expression was associated with a poor prognosis. Silencing ROCK1 inhibited the proliferation and migration of PC cells and promoted their apoptosis. Mechanistically, ROCK1 directly interacted with c-MYC, promoted its phosphorylation (Ser 62) and suppressed its degradation, thereby increasing the transcription of the key glycolysis regulatory factor PFKFB3, enhancing glycolytic activity and promoting PC growth. Silencing ROCK1 increased gemcitabine (GEM) sensitivity in vivo and in vitro. CONCLUSIONS ROCK1 promotes glycolytic activity in PC cells and promotes PC tumor growth through the c-MYC/PFKFB3 signaling pathway. ROCK1 knockdown can inhibit PC tumor growth in vivo and increase the GEM sensitivity of PC tumors, providing a crucial clinical therapeutic strategy for PC.
Collapse
Affiliation(s)
- Shuyang Pang
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yuting Shen
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yanan Wang
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Xuanning Chu
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 639, Longmian Avenue, Nanjing, Jiangsu 211198, PR China
| | - Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai 200025, China.
| |
Collapse
|
27
|
Zhang Y, Zhang C, Feng R, Meng T, Peng W, Song J, Ma W, Xu W, Chen X, Chen J, Liang C. CXCR4 regulates macrophage M1 polarization by altering glycolysis to promote prostate fibrosis. Cell Commun Signal 2024; 22:456. [PMID: 39327570 PMCID: PMC11426013 DOI: 10.1186/s12964-024-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chen Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wei Peng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenming Ma
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenlong Xu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xianguo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
28
|
Li Q, Ma J, Zhang Y, Sun F, Li W, Shen W, Ai Z, Li C, Wang S, Wei X, Yan S. PFKFB3 deprivation attenuates the cisplatin resistance via blocking its autophagic elimination in colorectal cancer cells. Front Pharmacol 2024; 15:1433137. [PMID: 39295937 PMCID: PMC11408296 DOI: 10.3389/fphar.2024.1433137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3) is highly expressed in several cancers and plays important roles during the whole pathological process of cancer. It is also involved in chemoresistance, while the intrinsic mechanism needs to be further revealed. METHODS The different responses to cisplatin (DDP) between wild type (WT) and DDP-resistant (DDR) colorectal cancer (CRC) cells were analyzed by several assays. Coumarin conjugated DDP (CP-DDP) was utilized to trace the distribution of DDP. Pharmacological and genetic methods were used to deprive autophagy and PFKFB3, and the effects were investigated. The mouse xenograft model was performed to confirm the effect of the PFKFB3 inhibitor on reversing DDP resistance. RESULTS DDR cells showed a lower capacity for apoptosis upon DDP treatment, but exhibited higher levels of autophagy and PFKFB3. CP-DDP partly co-localized with LC3, and its content lessened faster in DDR cells. Deprivation of both autophagy and PFKFB3 attenuated CP-DDP elimination, and reversed the DDP resistance. Moreover, PFKFB3 inhibition reduced DDP-induced autophagy. PFKFB3 inhibitor in combination with DDP led to a remarkable reduction in tumor growth in vivo. DISCUSSIONS Inhibition of PFKFB3 reduced the autophagy induced by DDP, and therefore extended the retention time of CP-DDP. Meanwhile, PFKFB3 deprivation reversed the DDP resistance and made it a potent therapeutic target for CRC.
Collapse
Affiliation(s)
- Qianqian Li
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Jianxing Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaqin Zhang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Fengyao Sun
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Wen Li
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Wenzhi Shen
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Zhiying Ai
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Changli Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaonan Wei
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Siyuan Yan
- Shandong Provincial Precision Medicine Laboratory for Chronic Non-communicable Diseases, Institute of Precision Medicine, Jining Medical University, Jining, China
| |
Collapse
|
29
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
30
|
Jia W, Wu Q, Shen M, Yu X, An S, Zhao L, Huang G, Liu J. PFKFB3 regulates breast cancer tumorigenesis and Fulvestrant sensitivity by affecting ERα stability. Cell Signal 2024; 119:111184. [PMID: 38640982 DOI: 10.1016/j.cellsig.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Estrogen receptor alpha (ERα) is expressed in approximately 70% of breast cancer cases and determines the sensitivity and effectiveness of endocrine therapy. 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase3 (PFKFB3) is a glycolytic enzyme that is highly expressed in a great many human tumors, and recent studies have shown that it plays a significant role in improving drug sensitivity. However, the role of PFKFB3 in regulating ERα expression and the underlying mechanism remains unclear. Here, we find by using immunohistochemistry (IHC) that PFKFB3 is elevated in ER-positive breast cancer and high expression of PFKFB3 resulted in a worse prognosis. In vitro and in vivo experiments verify that PFKFB3 promotes ER-positive breast cancer cell proliferation. The overexpression of PFKFB3 promotes the estrogen-independent ER-positive breast cancer growth. In an estrogen-free condition, RNA-sequencing data from MCF7 cells treated with siPFKFB3 showed enrichment of the estrogen signaling pathway, and a luciferase assay demonstrated that knockdown of PFKFB3 inhibited the ERα transcriptional activity. Mechanistically, down-regulation of PFKFB3 promotes STUB1 binding to ERα, which accelerates ERα degradation by K48-based ubiquitin linkage. Finally, growth of ER-positive breast cancer cells in vivo was more potently inhibited by fulvestrant combined with the PFKFB3 inhibitor PFK158 than for each drug alone. In conclusion, these data suggest that PFKFB3 is identified as an adverse prognosis factor for ER-positive breast cancer and plays a previously unrecognized role in the regulation of ERα stability and activity. Our results further explores an effective approach to improve fulvestrant sensitivity through the early combination with a PFKFB3 inhibitor.
Collapse
Affiliation(s)
- Wenzhi Jia
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Wu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Clinical Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai, China.
| |
Collapse
|
31
|
Imbert-Fernandez Y, Chang SM, Lanceta L, Sanders NM, Chesney J, Clem BF, Telang S. Genomic Deletion of PFKFB3 Decreases In Vivo Tumorigenesis. Cancers (Basel) 2024; 16:2330. [PMID: 39001392 PMCID: PMC11240529 DOI: 10.3390/cancers16132330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Rapidly proliferative processes in mammalian tissues including tumorigenesis and embryogenesis rely on the glycolytic pathway for energy and biosynthetic precursors. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) plays an important regulatory role in glycolysis by activating the key rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase (PFK-1). We have previously determined that decreased PFKFB3 expression reduced glycolysis and growth in transformed cells in vitro and suppressed xenograft growth in vivo. In earlier studies, we created a constitutive knockout mouse to interrogate the function of PFKFB3 in vivo but failed to generate homozygous offspring due to the requirement for PFKFB3 for embryogenesis. We have now developed a novel transgenic mouse model that exhibits inducible homozygous pan-tissue Pfkfb3 gene deletion (Pfkfb3fl/fl). We have induced Pfkfb3 genomic deletion in these mice and found that it effectively decreased PFKFB3 expression and activity. To evaluate the functional consequences of Pfkfb3 deletion in vivo, we crossed Cre-bearing Pfkfb3fl/fl mice with oncogene-driven tumor models and found that Pfkfb3 deletion markedly decreased their glucose uptake and growth. In summary, our studies reveal a critical regulatory function for PFKFB3 in glycolysis and tumorigenesis in vivo and characterize an effective and powerful model for further investigation of its role in multiple biological processes.
Collapse
Affiliation(s)
- Yoannis Imbert-Fernandez
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
| | - Simone M. Chang
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Lilibeth Lanceta
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
| | - Nicole M. Sanders
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
| | - Jason Chesney
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
| | - Brian F. Clem
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Sucheta Telang
- Department of Medicine, Division of Medical Oncology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (Y.I.-F.)
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
32
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
33
|
Zhang T, Chen S, Li L, Jin Y, Liu S, Liu Z, Shi F, Xie L, Guo P, Cannon AC, Ergashev A, Yao H, Huang C, Zhang B, Wu L, Sun H, Chen S, Shan Y, Yu Z, Tolosa EJ, Liu J, Fernandez-Zapico ME, Ma F, Chen G. PFKFB3 controls acinar IP3R-mediated Ca2+ overload to regulate acute pancreatitis severity. JCI Insight 2024; 9:e169481. [PMID: 38781030 PMCID: PMC11383365 DOI: 10.1172/jci.insight.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.
Collapse
Affiliation(s)
- Tan Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuepeng Jin
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhu Liu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Shi
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifen Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Andrew C. Cannon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akmal Ergashev
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chaohao Huang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yunfeng Shan
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Feng Ma
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Gang Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
35
|
Li H, Liang L, Li J. Transcriptomic Profiling in Low-Risk Thyroid Cancer Induced by Microwave Ablation. Int J Endocrinol 2024; 2024:6674506. [PMID: 38779358 PMCID: PMC11111303 DOI: 10.1155/2024/6674506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/10/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Background Peripheral blood mononuclear cells (PBMCs) serve as the immune system's primary transportation hub outside of the affected ablated tissue. This study aims to explore the transcriptomic profiling of the immune response in PBMCs induced by microwave ablation (MWA) in low-risk thyroid cancer. Methods For eight patients diagnosed with low-risk thyroid cancer, 10 ml of peripheral venous blood was collected before MWA as well as one day and one month after MWA. mRNA was extracted from PBMCs for transcriptome next-generation gene sequencing and qRT-PCR analyses. The plasma samples were used for chemokine detection purposes. Results One day and one month after MWA, there were significant changes in GSEA, particularly in the NF-kappa B-TNFα pathway, inflammatory response, and early and late estrogen response. Common changes in differently expressed genes resulted in a significant downregulation of tumor-promoting genes (BCL3, NR6A1, and PFKFB3). One day after low-risk thyroid cancer MWA, GO enrichment analysis mainly revealed processes related to oxygen transport and other pathways. One month after MWA, GO enrichment analysis mainly revealed regulation of toll-like receptor signaling and other pathways. Furthermore, inflammation-related cytokines and regulatory genes, as well as tumor-promoting cytokines and regulatory genes, were downregulated after MWA. Conclusions This study presents a comprehensive profile of the systemic immune response induced by thermal ablation for treating low-risk thyroid cancer. More significantly, this study provides valuable insight into potential references for systemic antitumor immunity of ablation against low-risk thyroid cancer. This trial is registered with ChiCTR1900024544.
Collapse
Affiliation(s)
- Huarong Li
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Lei Liang
- Department of Ultrasound, Aerospace Center Hospital, Beijing 100049, China
| | - Jianming Li
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
37
|
Littleflower AB, Parambil ST, Antony GR, Subhadradevi L. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment. Biochimie 2024; 220:107-121. [PMID: 38184121 DOI: 10.1016/j.biochi.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
38
|
Lu Z, Pan Y, Wang S, Wu J, Miao C, Wang Z. Multi-omics and immunogenomics analysis revealed PFKFB3 as a targetable hallmark and mediates sunitinib resistance in papillary renal cell carcinoma: in silico study with laboratory verification. Eur J Med Res 2024; 29:236. [PMID: 38622715 PMCID: PMC11017615 DOI: 10.1186/s40001-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.
Collapse
Affiliation(s)
- Zhongwen Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Yongsheng Pan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Songbo Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China.
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
39
|
Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Fujita S, Morikawa T, Koide S, Oshima M, Nishiyama A, Murakami K, Haraguchi M, Tamaki S, Yamamoto T, Yabushita T, Tanaka Y, Nagamatsu G, Honda H, Okamoto S, Goda N, Tamura T, Nakamura-Ishizu A, Suematsu M, Iwama A, Suda T, Takubo K. Context-dependent modification of PFKFB3 in hematopoietic stem cells promotes anaerobic glycolysis and ensures stress hematopoiesis. eLife 2024; 12:RP87674. [PMID: 38573813 PMCID: PMC10994660 DOI: 10.7554/elife.87674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.
Collapse
Affiliation(s)
- Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of MedicineKyotoJapan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular CenterOsakaJapan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and EngineeringTokyoJapan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
| | - Koichi Murakami
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
- Advanced Medical Research Center, Yokohama City UniversityKanagawaJapan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yosuke Tanaka
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Go Nagamatsu
- Center for Advanced Assisted Reproductive Technologies, University of YamanashiYamanashiJapan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencySaitamaJapan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical UniversityTokyoJapan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of MedicineTokyoJapan
| | - Nobuhito Goda
- Department of Life Sciences and Medical BioScience, Waseda University School of Advanced Science and EngineeringTokyoJapan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of MedicineKanagawaJapan
- Advanced Medical Research Center, Yokohama City UniversityKanagawaJapan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical UniversityTokyoJapan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of MedicineTokyoJapan
- Live Imaging Center, Central Institute for Experimental AnimalsKanagawaJapan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of TokyoTokyoJapan
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyoJapan
- Department of Cell Fate Biology and Stem Cell Medicine, Tohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
40
|
Chen W, Ye X, Chen Y, Zhao T, Zhou H. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anticancer Drugs 2024; 35:344-357. [PMID: 38241195 DOI: 10.1097/cad.0000000000001574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Gastric cancer is a kind of malignant tumor that seriously endangers human life and health. Its incidence rate and mortality rate are among the highest in the global malignant tumors. Therefore, this study explored the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in the progression of gastric cancer and its underlying mechanism. Patients with gastric cancer were collected, and human GC cell lines (stomach gastric carcinoma 7901, stomach gastric carcinoma 823 , human gastric carcinoma cell line 803 and adenocarcinoma gastric stomach) were used in this study. We utilized glucose consumption, cell migration, and ELISA assay kits to investigate the function of GC. To understand its mechanism, we employed quantitative PCR (qPCR), western blot, and m6A methylated RNA immunoprecipitation assay. FKFB3 protein expression levels in patients with gastric cancer were increased. The induction of PFKFB3 mRNA expression levels in patients with gastric cancer or gastric cancer cell lines. Gastric cancer patients with high PFKFB3 expression had a lower survival rate. PFKFB3 high expression possessed the probability of pathological stage, lymph node metastasis or distant metastasis in patients with gastric cancer. PFKFB3 upregulation promoted cancer progression and Warburg effect progression of gastric cancer. PFKFB3 upregulation reduced pyroptosis and suppressed nucleotidebinding domain, leucinerich repeat containing protein 3-induced pyroptosis of gastric cancer. M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability. Taken together, the M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability and reduced pyroptosis in the model of gastric cancer through the Warburg effect. The PFKFB3 gene represents a potential therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wanyuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College
| | - Xiaolin Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University
| | - Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tongwei Zhao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
41
|
Pająk B, Zieliński R, Priebe W. The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity. Molecules 2024; 29:1298. [PMID: 38542934 PMCID: PMC10975218 DOI: 10.3390/molecules29061298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 01/03/2025] Open
Abstract
Glucose metabolism is a crucial biological pathway maintaining the activation of extra- and intracellular signaling pathways involved in the immune response. Immune cell stimulation via various environmental factors results in their activation and metabolic reprogramming to aerobic glycolysis. Different immune cells exhibit cell-type-specific metabolic patterns when performing their biological functions. Numerous published studies have shed more light on the importance of metabolic reprogramming in the immune system. Moreover, this knowledge is crucial for revealing new ways to target inflammatory pathologic states, such as autoimmunity and hyperinflammation. Here, we discuss the role of glycolysis in immune cell activity in physiological and pathological conditions, and the potential use of inhibitors of glycolysis for disease treatment.
Collapse
Affiliation(s)
- Beata Pająk
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- WPD Pharmaceuticals, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| |
Collapse
|
42
|
Pi P, Zeng L, Zeng Z, Zong K, Han B, Bai X, Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1319827. [PMID: 38510704 PMCID: PMC10951080 DOI: 10.3389/fendo.2024.1319827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can affect almost any joint, mainly resulting in joint dysfunction and pain. Worldwide, OA affects more than 240 million people and is one of the leading causes of activity limitation in adults. However, the pathogenesis of OA remains elusive, resulting in the lack of well-established clinical treatment strategies. Recently, energy metabolism alterations have provided new insights into the pathogenesis of OA. Accumulating evidence indicates that glucose metabolism plays a key role in maintaining cartilage homeostasis. Disorders of glucose metabolism can lead to chondrocyte hypertrophy and extracellular matrix degradation, and promote the occurrence and development of OA. This article systematically summarizes the regulatory effects of different enzymes and factors related to glucose metabolism in OA, as well as the mechanism and potential of various substances in the treatment of OA by affecting glucose metabolism. This provides a theoretical basis for a better understanding of the mechanism of OA progression and the development of optimal prevention and treatment strategies.
Collapse
Affiliation(s)
- Peng Pi
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Liqing Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Zhipeng Zeng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Keqiang Zong
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- School of Physical Education, Qiqihar University, Heilongjiang, Qiqihar, China
| | - Bing Han
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Xizhe Bai
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yan Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
43
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J, Yang H. Metabolism-regulating non-coding RNAs in breast cancer: roles, mechanisms and clinical applications. J Biomed Sci 2024; 31:25. [PMID: 38408962 PMCID: PMC10895768 DOI: 10.1186/s12929-024-01013-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Shiliang Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Lingxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Tong Mo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu, 215004, People's Republic of China
| | - Jun Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, People's Republic of China.
| |
Collapse
|
44
|
Gao X, Wang Z, Xu Y, Feng S, Fu S, Luo Z, Miao J. PFKFB3-Meditated Glycolysis via the Reactive Oxygen Species-Hypoxic Inducible Factor 1α Axis Contributes to Inflammation and Proliferation of Staphylococcus aureus in Epithelial Cells. J Infect Dis 2024; 229:535-546. [PMID: 37592764 DOI: 10.1093/infdis/jiad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
Mastitis caused by antibiotic-resistant strains of Staphylococcus aureus is a significant concern in the livestock industry due to the economic losses it incurs. Regulating immunometabolism has emerged as a promising approach for preventing bacterial inflammation. To investigate the possibility of alleviating inflammation caused by S aureus infection by regulating host glycolysis, we subjected the murine mammary epithelial cell line (EpH4-Ev) to S aureus challenge. Our study revealed that S aureus can colonize EpH4-Ev cells and promote inflammation through hypoxic inducible factor 1α (HIF1α)-driven glycolysis. Notably, the activation of HIF1α was found to be dependent on the production of reactive oxygen species (ROS). By inhibiting PFKFB3, a key regulator in the host glycolytic pathway, we successfully modulated HIF1α-triggered metabolic reprogramming by reducing ROS production in S aureus-induced mastitis. Our findings suggest that there is a high potential for the development of novel anti-inflammatory therapies that safely inhibit the glycolytic rate-limiting enzyme PFKFB3.
Collapse
Affiliation(s)
- Xing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiyuan Feng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shaodong Fu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Bedfordshire, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| |
Collapse
|
45
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
46
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
47
|
Liu XT, Huang Y, Liu D, Jiang YC, Zhao M, Chung LH, Han XD, Zhao Y, Chen J, Coleman P, Ting KK, Tran C, Su Y, Dennis CV, Bhatnagar A, Liu K, Don AS, Vadas MA, Gorrell MD, Zhang S, Murray M, Kavurma MM, McCaughan GW, Gamble JR, Qi Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J Transl Med 2024; 22:43. [PMID: 38200582 PMCID: PMC10782643 DOI: 10.1186/s12967-023-04830-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yu Huang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Da Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yingxin Celia Jiang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Xingxing Daisy Han
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Paul Coleman
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Ka Ka Ting
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Collin Tran
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claude Vincent Dennis
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Atul Bhatnagar
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Anthony Simon Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mathew Alexander Vadas
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Mark Douglas Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Geoffrey William McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Jennifer Ruth Gamble
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
48
|
Jiang D, Guo J, Liu Y, Li W, Lu D. Glycolysis: an emerging regulator of osteoarthritis. Front Immunol 2024; 14:1327852. [PMID: 38264652 PMCID: PMC10803532 DOI: 10.3389/fimmu.2023.1327852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) has been a leading cause of disability in the elderly and there remains a lack of effective therapeutic approaches as the mechanisms of pathogenesis and progression have yet to be elucidated. As OA progresses, cellular metabolic profiles and energy production are altered, and emerging metabolic reprogramming highlights the importance of specific metabolic pathways in disease progression. As a crucial part of glucose metabolism, glycolysis bridges metabolic and inflammatory dysfunctions. Moreover, the glycolytic pathway is involved in different areas of metabolism and inflammation, and is associated with a variety of transcription factors. To date, it has not been fully elucidated whether the changes in the glycolytic pathway and its associated key enzymes are associated with the onset or progression of OA. This review summarizes the important role of glycolysis in mediating cellular metabolic reprogramming in OA and its role in inducing tissue inflammation and injury, with the aim of providing further insights into its pathological functions and proposing new targets for the treatment of OA.
Collapse
Affiliation(s)
- Dingming Jiang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Guo
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingquan Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxin Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Linping District Nanyuan Street Community Health Center, Hangzhou, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
49
|
Wang X, Zhang J, Wu Y, Zhang Y, Zhang S, Li A, Wang J, Wang Z. RORα inhibits gastric cancer proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity. Cancer Cell Int 2024; 24:12. [PMID: 38184549 PMCID: PMC10770990 DOI: 10.1186/s12935-023-03201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Glycolysis is critical for harvesting abundant energy to maintain the tumor microenvironment in malignant tumors. Retinoic acid-related orphan receptor α (RORα) has been identified as a circadian gene. However, the association of glycolysis with RORα in regulating gastric cancer (GC) proliferation remains poorly understood. METHODS Bioinformatic analysis and retrospective study were utilized to explore the role of RORα in cell cycle and glycolysis in GC. The mechanisms were performed in vitro and in vivo including colony formation, Cell Counting Kit-8 (CCK-8), Epithelial- mesenchymal transition (EMT) and subcutaneous tumors of mice model assays. The key drives between RORα and glycolysis were verified through western blot and chip assays. Moreover, we constructed models of high proliferation and high glucose environments to verify a negative feedback and chemoresistance through a series of functional experiments in vitro and in vivo. RESULTS RORα was found to be involved in the cell cycle and glycolysis through a gene set enrichment analysis (GSEA) algorithm. GC patients with low RORα expression were not only associated with high circulating tumor cells (CTC) and high vascular endothelial growth factor (VEGF) levels. However, it also presented a positive correlation with the standard uptake value (SUV) level. Moreover, the SUVmax levels showed a positive linear relation with CTC and VEGF levels. In addition, RORα expression levels were associated with glucose 6 phosphate dehydrogenase (G6PD) and phosphofructokinase-2/fructose-2,6-bisphosphatase (PFKFB3) expression levels, and GC patients with low RORα and high G6PD or low RORα and high PFKFB3 expression patterns had poorest disease-free survival (DFS). Functionally, RORα deletion promoted GC proliferation and drove glycolysis in vitro and in vivo. These phenomena were reversed by the RORα activator SR1078. Moreover, RORα deletion promoted GC proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity in vitro and in vivo. Mechanistically, RORα was recruited to the G6PD and PFKFB3 promoters to modulate their transcription. Next, high proliferation and high glucose inhibited RORα expression, which indicated that negative feedback exists in GC. Moreover, RORα deletion improved fluorouracil chemoresistance through inhibition of glucose uptake. CONCLUSION RORα might be a novel biomarker and therapeutic target for GC through attenuating glycolysis.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Junyi Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuqing Zhang
- Department of Occupational Health and Environmental Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Siyuan Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Angqing Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
50
|
Dong XM, Chen L, Wu P, Cheng LH, Wang Y, Yang Y, Zhang Y, Tang WY, Xie T, Zhou JL. Targeted metabolomics reveals PFKFB3 as a key target for elemene-mediated inhibition of glycolysis in prostate cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155185. [PMID: 38134863 DOI: 10.1016/j.phymed.2023.155185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that β-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that β-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating β-elemene's anti-PCa activity. CONCLUSION This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.
Collapse
Affiliation(s)
- Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Xiangya School of Pharmaceutical Sciences, Central South University. Changsha, Hunan 410013, China
| | - Long-Hui Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Wang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Youjian Yang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Yongwei Zhang
- Dalian HolleyKingkong Pharmaceutical Co., Ltd., Dalian 116199, China
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|