1
|
Famili-Youth EHH, Famili-Youth A, Yang D, Siddique A, Wu EY, Liu W, Resnick MB, Chen Q, Brodsky AS. Aberrant expression of collagen type X in solid tumor stroma is associated with EMT, immunosuppressive and pro-metastatic pathways, bone marrow stromal cell signatures, and poor survival prognosis. BMC Cancer 2025; 25:247. [PMID: 39939916 PMCID: PMC11823173 DOI: 10.1186/s12885-025-13641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Collagen type X (ColXα1, encoded by COL10A1) is expressed specifically in the cartilage-to-bone transition, in bone marrow cells, and in osteoarthritic (OA) cartilage. We have previously shown that ColXα1 is expressed in breast tumor stroma, correlates with tumor-infiltrating lymphocytes, and predicts poor adjuvant therapy outcomes in ER+/HER2+ breast cancer. However, the underlying molecular mechanisms for these effects are unknown. In this study, we performed bioinformatic analysis of COL10A1-associated gene modules in breast and pancreatic cancer as well as in cells from bone marrow and OA cartilage. These findings provide important insights into the mechanisms of transcriptional and extracellular matrix changes which impact the local stromal microenvironment and tumor progression. METHODS Immunohistochemistry was performed to examine collagen type X expression in solid tumors. WGCNA was used to generate COL10A1-associated gene networks in breast and pancreatic tumor cohorts using RNA-Seq data from The Cancer Genome Atlas. Computational analysis was employed to assess the impact of these gene networks on development and progression of cancer and OA. Data processing and statistical analysis was performed using R and various publicly-available computational tools. RESULTS Expression of COL10A1 and its associated gene networks highlights inflammatory and immunosuppressive microenvironments, which identify aggressive breast and pancreatic tumors and contribute to metastatic potential in a sex-dependent manner. Both cancer types are enriched in stroma, and COL10A1 implicates bone marrow-derived fibroblasts as contributors to the epithelial-to-mesenchymal transition (EMT) in these tumors. Heightened expression of COL10A1 and its associated gene networks is correlated with poorer patient outcomes in both breast and pancreatic cancer. Common transcriptional changes and chondrogenic activity are shared between cancer and OA cartilage, suggesting that similar microenvironmental alterations may underlie both diseases. CONCLUSIONS COL10A1-associated gene networks may hold substantial value as regulators and biomarkers of aggressive tumor phenotypes with implications for therapy development and clinical outcomes. Identification of tumors which exhibit high expression of COL10A1 and its associated genes may reveal the presence of bone marrow-derived stromal microenvironments with heightened EMT capacity and metastatic potential. Our analysis may enable more effective risk assessment and more precise treatment of patients with breast and pancreatic cancer.
Collapse
Affiliation(s)
- Elliot H H Famili-Youth
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Aryana Famili-Youth
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ayesha Siddique
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Elizabeth Y Wu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wenguang Liu
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Present address: School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Famili-Youth EHH, Famili-Youth A, Yang D, Siddique A, Wu EY, Liu W, Resnick MB, Chen Q, Brodsky AS. Aberrant expression of collagen type X in solid tumor stroma is associated with EMT, immunosuppressive and pro-metastatic pathways, bone marrow stromal cell signatures, and poor survival prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.621984. [PMID: 39605631 PMCID: PMC11601388 DOI: 10.1101/2024.11.13.621984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Collagen type X (ColXα1, encoded by COL10A1) is expressed specifically in the cartilage-to-bone transition, in bone marrow cells, and in osteoarthritic (OA) cartilage. We have previously shown that ColXα1 is expressed in breast tumor stroma, correlates with tumor-infiltrating lymphocytes, and predicts poor adjuvant therapy outcomes in ER+/HER2+ breast cancer. However, the underlying molecular mechanisms for these effects are unknown. In this study, we performed bioinformatic analysis of COL10A1-associated gene modules in breast and pancreatic cancer as well as in cells from bone marrow and OA cartilage. These findings provide important insights into the mechanisms of transcriptional and extracellular matrix changes which impact the local stromal microenvironment and tumor progression. Methods Immunohistochemistry was performed to examine collagen type X expression in solid tumors. WGCNA was used to generate COL10A1-associated gene networks in breast and pancreatic tumor cohorts using RNA-Seq data from The Cancer Genome Atlas. Computational analysis was employed to assess the impact of these gene networks on development and progression of cancer and OA. Data processing and statistical analysis was performed using R and various publicly-available computational tools. Results Expression of COL10A1 and its associated gene networks highlights inflammatory and immunosuppressive microenvironments, which identify aggressive breast and pancreatic tumors and contribute to metastatic potential in a sex-dependent manner. Both cancer types are enriched in stroma, and COL10A1 implicates bone marrow-derived fibroblasts as drivers of the epithelial-to-mesenchymal transition (EMT) in these tumors. Heightened expression of COL10A1 and its associated gene networks is correlated with poorer patient outcomes in both breast and pancreatic cancer. Common transcriptional changes and chondrogenic activity are shared between cancer and OA cartilage, suggesting that similar microenvironmental alterations may underlie both diseases. Conclusions COL10A1-associated gene networks may hold substantial value as regulators and biomarkers of aggressive tumor phenotypes with implications for therapy development and clinical outcomes. Identification of tumors which exhibit high expression of COL10A1 and its associated genes may reveal the presence of bone marrow-derived stromal microenvironments with heightened EMT capacity and metastatic potential. Our analysis may enable more effective risk assessment and more precise treatment of patients with breast and pancreatic cancer.
Collapse
Affiliation(s)
- Elliot H H Famili-Youth
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aryana Famili-Youth
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ayesha Siddique
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Elizabeth Y Wu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Wenguang Liu
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Yang J, Xu T, Wang H, Wang L, Cheng Y. Mechanisms of Berberine in anti-pancreatic ductal adenocarcinoma revealed by integrated multi-omics profiling. Sci Rep 2024; 14:22929. [PMID: 39358545 PMCID: PMC11446930 DOI: 10.1038/s41598-024-74943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
This study integrates pharmacology databases with bulk RNA-seq and scRNA-seq to reveal the latent anti-PDAC capacities of BBR. Target genes of BBR were sifted through TargetNet, CTD, SwissTargetPrediction, and Binding Database. Based on the GSE183795 dataset, DEG analysis, GSEA, and WGCNA were sequentially run to build a disease network. Through sub-network filtration acquired PDAC-related hub genes. A PPI network was established using the shared genes. Degree algorithm from cytoHubba screened the key cluster in the network. Analysis of differential mRNA expression and ROC curves gauged the diagnostic performance of clustered genes. CYBERSORT uncovered the potential role of the key cluster on PDAC immunomodulation. ScRNA-seq analysis evaluated the distribution and expression profile of the key cluster at the single-cell level, assessing enrichment within annotated cell subpopulations to delineate the target distribution of BBR in PDAC. We identified 425 drug target genes and 771 disease target genes, using 57 intersecting genes to construct the PPI network. CytoHubba anchored the top 10 highest contributing genes to be the key cluster. mRNA expression levels and ROC curves confirmed that these genes showed good robustness for PDAC. CYBERSORT revealed that the key cluster influenced immune pathways predominantly associated with Macrophages M0, CD8 T cells, and naïve B cells. ScRNA-seq analysis clarified that BBR mainly acted on epithelial cells and macrophages in PDAC tissues. BBR potentially targets CDK1, CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to exert therapeutic effects on PDAC. The mechanisms of action appear to significantly involve macrophage polarization-related immunological responses.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwei Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Yanmei Cheng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li X, Kaur N, Albahrani M, Karpf AR, Black AR, Black JD. Crosstalk between protein kinase C α and transforming growth factor β signaling mediated by Runx2 in intestinal epithelial cells. J Biol Chem 2023; 299:103017. [PMID: 36791912 PMCID: PMC10036670 DOI: 10.1016/j.jbc.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor β (TGFβ) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFβ signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFβ receptor 1 (TGFβR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFβR1 mRNA and protein expression in these cells. Effects on TGFβR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFβR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFβR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFβR1 signaling axis. In further support of a link between PKCα and TGFβ signaling, PKCα knockdown reduced the ability of TGFβ to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFβR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFβR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFβR1 in endometrial cancer cells, and PKCα, Runx2, and TGFβR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFβ signaling may be a common mechanism in diverse epithelial tissues.
Collapse
Affiliation(s)
- Xinyue Li
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mustafa Albahrani
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
5
|
Husanie H, Abu-Remaileh M, Maroun K, Abu-Tair L, Safadi H, Atlan K, Golan T, Aqeilan RI. Loss of tumor suppressor WWOX accelerates pancreatic cancer development through promotion of TGFβ/BMP2 signaling. Cell Death Dis 2022; 13:1074. [PMID: 36572673 PMCID: PMC9792466 DOI: 10.1038/s41419-022-05519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is one of the most lethal cancers, owing to its late diagnosis and resistance to chemotherapy. The tumor suppressor WW domain-containing oxidoreductase (WWOX), one of the most active fragile sites in the human genome (FRA16D), is commonly altered in pancreatic cancer. However, the direct contribution of WWOX loss to pancreatic cancer development and progression remains largely unknown. Here, we report that combined conditional deletion of Wwox and activation of KRasG12D in Ptf1a-CreER-expressing mice results in accelerated formation of precursor lesions and pancreatic carcinoma. At the molecular level, we found that WWOX physically interacts with SMAD3 and BMP2, which are known activators of the TGF-β signaling pathway. In the absence of WWOX, TGFβ/BMPs signaling was enhanced, leading to increased macrophage infiltration and enhanced cancer stemness. Finally, overexpression of WWOX in patient-derived xenografts led to diminished aggressiveness both in vitro and in vivo. Overall, our findings reveal an essential role of WWOX in pancreatic cancer development and progression and underscore its role as a bona fide tumor suppressor.
Collapse
Affiliation(s)
- Hussam Husanie
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Abu-Remaileh
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kian Maroun
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Abu-Tair
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hazem Safadi
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karine Atlan
- grid.17788.310000 0001 2221 2926Department of Pathology, Hadassah Medical Center, Jerusalem, Israel
| | - Talia Golan
- grid.12136.370000 0004 1937 0546Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rami I. Aqeilan
- grid.9619.70000 0004 1937 0538The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Hosen SMZ, Uddin MN, Xu Z, Buckley BJ, Perera C, Pang TCY, Mekapogu AR, Moni MA, Notta F, Gallinger S, Pirola R, Wilson J, Ranson M, Goldstein D, Apte M. Metastatic phenotype and immunosuppressive tumour microenvironment in pancreatic ductal adenocarcinoma: Key role of the urokinase plasminogen activator (PLAU). Front Immunol 2022; 13:1060957. [PMID: 36591282 PMCID: PMC9794594 DOI: 10.3389/fimmu.2022.1060957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have revealed the role of dysregulated urokinase plasminogen activator (encoded by PLAU) expression and activity in several pathways associated with cancer progression. However, systematic investigation into the association of PLAU expression with factors that modulate PDAC (pancreatic ductal adenocarcinoma) progression is lacking, such as those affecting stromal (pancreatic stellate cell, PSC)-cancer cell interactions, tumour immunity, PDAC subtypes and clinical outcomes from potential PLAU inhibition. METHODS This study used an integrated bioinformatics approach to identify prognostic markers correlated with PLAU expression using different transcriptomics, proteomics, and clinical data sets. We then determined the association of dysregulated PLAU and correlated signatures with oncogenic pathways, metastatic phenotypes, stroma, immunosuppressive tumour microenvironment (TME) and clinical outcome. Finally, using an in vivo orthotopic model of pancreatic cancer, we confirmed the predicted effect of inhibiting PLAU on tumour growth and metastasis. RESULTS Our analyses revealed that PLAU upregulation is not only associated with numerous other prognostic markers but also associated with the activation of various oncogenic signalling pathways, aggressive phenotypes relevant to PDAC growth and metastasis, such as proliferation, epithelial-mesenchymal transition (EMT), stemness, hypoxia, extracellular cell matrix (ECM) degradation, upregulation of stromal signatures, and immune suppression in the tumour microenvironment (TME). Moreover, the upregulation of PLAU was directly connected with signalling pathways known to mediate PSC-cancer cell interactions. Furthermore, PLAU upregulation was associated with the aggressive basal/squamous phenotype of PDAC and significantly reduced overall survival, indicating that this subset of patients may benefit from therapeutic interventions to inhibit PLAU activity. Our studies with a clinically relevant orthotopic pancreatic model showed that even short-term PLAU inhibition is sufficient to significantly halt tumour growth and, importantly, eliminate visible metastasis. CONCLUSION Elevated PLAU correlates with increased aggressive phenotypes, stromal score, and immune suppression in PDAC. PLAU upregulation is also closely associated with the basal subtype type of PDAC; patients with this subtype are at high risk of mortality from the disease and may benefit from therapeutic targeting of PLAU.
Collapse
Affiliation(s)
- S. M. Zahid Hosen
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Zhihong Xu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Benjamin J. Buckley
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Chamini Perera
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Tony C. Y. Pang
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Alpha Raj Mekapogu
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ron Pirola
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Wilson
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Marie Ranson
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Minoti Apte
- Pancreatic Research Group, SWS Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
7
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
8
|
Mi J, Wang S, Liu P, Liu C, Zhuang D, Leng X, Zhang Q, Bai F, Feng Q, Wu X. CUL4B Upregulates RUNX2 to Promote the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Epigenetically Repressing the Expression of miR-320c and miR-372/373-3p. Front Cell Dev Biol 2022; 10:921663. [PMID: 35784474 PMCID: PMC9243338 DOI: 10.3389/fcell.2022.921663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional differentiation potential. The molecular mechanisms that regulate multidirectional differentiation, such as the osteogenic differentiation of PDLSCs, remain to be elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase (CRL4B) complex, is involved in regulating a variety of developmental and physiological processes including the skeletal development and stemness of cancer stem cells. However, nothing is known about the possible role of CUL4B in the osteogenic differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs. Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to repress the expression of miR-320c and miR-372/373-3p, which results in the upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic differentiation. In brief, the present study reveals the role of CUL4B as a new regulator of osteogenic differentiation in PDLSCs.
Collapse
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Shenzhen Research Institute of Shandong University, Shenzhen, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| | - Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Pediatrics Dentistry, Department of Preventive Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xue Leng
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Jun Mi, ; Xunwei Wu,
| |
Collapse
|
9
|
Krauß L, Urban BC, Hastreiter S, Schneider C, Wenzel P, Hassan Z, Wirth M, Lankes K, Terrasi A, Klement C, Cernilogar FM, Öllinger R, de Andrade Krätzig N, Engleitner T, Schmid RM, Steiger K, Rad R, Krämer OH, Reichert M, Schotta G, Saur D, Schneider G. HDAC2 Facilitates Pancreatic Cancer Metastasis. Cancer Res 2022; 82:695-707. [PMID: 34903606 PMCID: PMC9359718 DOI: 10.1158/0008-5472.can-20-3209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
The mortality of patients with pancreatic ductal adenocarcinoma (PDAC) is strongly associated with metastasis, a multistep process that is incompletely understood in this disease. Although genetic drivers of PDAC metastasis have not been defined, transcriptional and epigenetic rewiring can contribute to the metastatic process. The epigenetic eraser histone deacetylase 2 (HDAC2) has been connected to less differentiated PDAC, but the function of HDAC2 in PDAC has not been comprehensively evaluated. Using genetically defined models, we show that HDAC2 is a cellular fitness factor that controls cell cycle in vitro and metastasis in vivo, particularly in undifferentiated, mesenchymal PDAC cells. Unbiased expression profiling detected a core set of HDAC2-regulated genes. HDAC2 controlled expression of several prosurvival receptor tyrosine kinases connected to mesenchymal PDAC, including PDGFRα, PDGFRβ, and EGFR. The HDAC2-maintained program disabled the tumor-suppressive arm of the TGFβ pathway, explaining impaired metastasis formation of HDAC2-deficient PDAC. These data identify HDAC2 as a tractable player in the PDAC metastatic cascade. The complexity of the function of epigenetic regulators like HDAC2 implicates that an increased understanding of these proteins is needed for implementation of effective epigenetic therapies. SIGNIFICANCE HDAC2 has a context-specific role in undifferentiated PDAC and the capacity to disseminate systemically, implicating HDAC2 as targetable protein to prevent metastasis.
Collapse
Affiliation(s)
- Lukas Krauß
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Bettina C. Urban
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Sieglinde Hastreiter
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Carolin Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Patrick Wenzel
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, German
| | - Katharina Lankes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Andrea Terrasi
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Christine Klement
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Filippo M. Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Roland M. Schmid
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, Mainz, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Wang Z, Yan H, Cheng D, Xu L, Shen T, Chen Y, Han R, Xue Y. Novel lncRNA LINC01614 Facilitates Bladder Cancer Proliferation, Migration and Invasion Through the miR-217/RUNX2/Wnt/β-Catenin Axis. Cancer Manag Res 2021; 13:8387-8397. [PMID: 34795524 PMCID: PMC8593351 DOI: 10.2147/cmar.s330019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background LncRNA plays a vital role in tumorigenesis and development. This study aimed to explore the novel lncRNA affecting bladder cancer progression. Methods The open-access data of bladder cancer patients, including transcriptome profiles and corresponding clinical information were all obtained from The Cancer Genome Atlas database. All the statistical analysis were performed using R software, SPSS and GraphPad Prism 8. CCK8, colony formation, apoptosis detection and tumorigenicity assay were used to assess cell proliferation ability. Transwell assay and wound-healing assay were used to evaluate cell metastasis potential. Results Our result showed that the lncRNA LINC01614 was highly expressed in bladder cancer tissue and cell lines. Meanwhile, patients with high LINC01614 expression level tend to have poor clinical features and shorter survival time. Further experiments demonstrated that the inhibition of LINC01614 could significantly hamper the proliferation and invasion of bladder cancer cells. Then, we found that the LINC01614 could regulate RUNX2 expression through miR-137. GSEA analysis indicated that the Wnt/β-catenin signaling pathway might be the downstream pathway of LINC01614. Further experiments showed that the LINC01614 act as an oncogene in bladder cancer partly depending on the RUNX2/Wnt/β-catenin axis, making it an underlying therapeutic target. Conclusion In all, LINC01614 facilitates bladder cancer cells proliferation, migration and invasion through the miR-217/RUNX2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Huilin Yan
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Dingcai Cheng
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Lei Xu
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Tianming Shen
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Yi Chen
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Rongbo Han
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| | - Yanshi Xue
- Department of Urology, Taixing People's Hospital, Taixing City, 225400, Jiangsu Province, People's Republic of China
| |
Collapse
|
11
|
Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Mol Biol Cell 2021; 32:ar26. [PMID: 34432496 PMCID: PMC8693977 DOI: 10.1091/mbc.e20-08-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work investigates the role of DNA binding by Runt in regulating the sloppy paired 1 (slp1) gene and in particular two distinct cis-regulatory elements that mediate regulation by Runt and other pair-rule transcription factors during Drosophila segmentation. We find that a DNA-binding-defective form of Runt is ineffective at repressing both the distal (DESE) and proximal (PESE) early stripe elements of slp1 and is also compromised for DESE-dependent activation. The function of Runt-binding sites in DESE is further investigated using site-specific transgenesis and quantitative imaging techniques. When DESE is tested as an autonomous enhancer, mutagenesis of the Runt sites results in a clear loss of Runt-dependent repression but has little to no effect on Runt-dependent activation. Notably, mutagenesis of these same sites in the context of a reporter gene construct that also contains the PESE enhancer results in a significant reduction of DESE-dependent activation as well as the loss of repression observed for the autonomous mutant DESE enhancer. These results provide strong evidence that DNA binding by Runt directly contributes to the regulatory interplay of interactions between these two enhancers in the early embryo.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021.,Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| | - Ah-Ram Kim
- Graduate Program in Biochemistry and Structural Biology, and
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnical University, St. Petersburg, Russia 195251
| | - Kevin King
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| |
Collapse
|
12
|
Wang C, Shi Z, Zhang Y, Li M, Zhu J, Huang Z, Zhang J, Chen J. CBFβ promotes colorectal cancer progression through transcriptionally activating OPN, FAM129A, and UPP1 in a RUNX2-dependent manner. Cell Death Differ 2021; 28:3176-3192. [PMID: 34050318 PMCID: PMC8563980 DOI: 10.1038/s41418-021-00810-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is commonly associated with aberrant transcription regulation, but characteristics of the dysregulated transcription factors in CRC pathogenesis remain to be elucidated. In the present study, core-binding factor β (CBFβ) is found to be significantly upregulated in human CRC tissues and correlates with poor survival rate of CRC patients. Mechanistically, CBFβ is found to promote CRC cell proliferation, migration, invasion, and inhibit cell apoptosis in a RUNX2-dependent way. Transcriptome studies reveal that CBFβ and RUNX2 form a transcriptional complex that activates gene expression of OPN, FAM129A, and UPP1. Furthermore, CBFβ significantly promotes CRC tumor growth and live metastasis in a mouse xenograft model and a mouse liver metastasis model. In addition, tumor-suppressive miR-143/145 are found to inhibit CBFβ expression by specifically targeting its 3'-UTR region. Consistently, an inverse correlation between miR-143/miR-145 and CBFβ expression levels is present in CRC patients. Taken together, this study uncovers a novel regulatory role of CBFβ-RUNX2 complex in the transcriptional activation of OPN, FAM129A, and UPP1 during CRC development, and may provide important insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Chen Wang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ziyu Shi
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuqian Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Mingyue Li
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jie Zhu
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhen Huang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Junfeng Zhang
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jiangning Chen
- grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Analytical Chemistry for Life Sciences, Nanjing University, Nanjing, PR China
| |
Collapse
|
13
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
14
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Chhatriya B, Sarkar P, Nath D, Ray S, Das K, Mohapatra SK, Goswami S. Pilot study identifying circulating miRNA signature specific to alcoholic chronic pancreatitis and its implication on alcohol-mediated pancreatic tissue injury. JGH OPEN 2020; 4:1079-1087. [PMID: 33319040 PMCID: PMC7731805 DOI: 10.1002/jgh3.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 11/12/2022]
Abstract
Background and Aim Alcohol exerts its effects on organs in multiple ways. Alcoholic chronic pancreatitis (ACP) is a disease in which alcohol triggers the pathological changes in pancreas, leading to chronic inflammation and fibrosis. The molecular mechanism behind these changes is not clear. Identification of key circulating miRNA changes in ACP patients and determination of the fraction that is secreted from diseased pancreas not only could serve as potential biomarker for assessing disease severity, but also could help identifying the molecular alterations prevailing in the organ precipitating the disease, to some extent. Methods We performed microRNA microarray using the Affymetrix miRNA 4.0 platform to identify differentially expressed miRNAs in serum of ACP patients as compared to alcoholic control individuals and then found out how many of them could be pancreas-specific and exosomally secreted. We further analyzed a pancreatitis-specific gene expression data set to find out the differentially expressed genes in diseased pancreas and explored the possible role of those selected miRNAs in regulation of gene expression in ACP. Results We identified 14 miRNAs differentially expressed in both serum and pancreas and also identified their experimentally validated targets. Transcription factors modulating the miRNA expression in an alcohol-dependent manner were also identified and characterized to derive the miRNA-gene-TF interaction network responsible for progression of the disease. Conclusions Differentially expressed miRNA signature demonstrated significant changes in both pro- and anti-inflammatory pathways probably balancing the chronic inflammation in the pancreas. Our findings also suggested possible involvement of pancreatic stellate cells in disease progression.
Collapse
Affiliation(s)
| | - Piyali Sarkar
- Department of Cytogenetics Tata Medical Centre Kolkata India
| | - Debashis Nath
- Department of Medicine Indira Gandhi Memorial Hospital Agartala India
| | - Sukanta Ray
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | - Kshaunish Das
- School of Digestive and Liver Diseases Institute of Post Graduate Medical Education and Research Kolkata India
| | | | | |
Collapse
|
16
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
17
|
Han C, Jin L, Ma X, Hao Q, Lin H, Zhang Z. Identification of the hub genes RUNX2 and FN1 in gastric cancer. Open Med (Wars) 2020; 15:403-412. [PMID: 33313404 PMCID: PMC7706133 DOI: 10.1515/med-2020-0405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study identified key genes in gastric cancer (GC) based on the mRNA microarray GSE19826 from the Gene Expression Omnibus (GEO) database and preliminarily explored the relationships among the key genes. Methods Differentially expressed genes (DEGs) were obtained using the GEO2R tool. The functions and pathway enrichment of the DEGs were analyzed using the Enrichr database. Protein–protein interactions (PPIs) were established by STRING. A lentiviral vector was constructed to silence RUNX2 expression in MGC-803 cells. The expression levels of RUNX2 and FN1 were measured. The influences of RUNX2 and FN1 on overall survival (OS) were determined using the Kaplan–Meier plotter online tool. Results In total, 69 upregulated and 65 downregulated genes were identified. Based on the PPI network of the DEGs, 20 genes were considered hub genes. RUNX2 silencing significantly downregulated the FN1 expression in MGC-803 cells. High expression of RUNX2 and low expression of FN1 were associated with long survival time in diffuse, poorly differentiated, and lymph node-positive GC. Conclusion High RUNX2 and FN1 expression were associated with poor OS in patients with GC. RUNX2 can negatively regulate the secretion of FN1, and both genes may serve as promising targets for GC treatment.
Collapse
Affiliation(s)
- Chao Han
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Jin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuemei Ma
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qin Hao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huajun Lin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
18
|
Valenti MT, Marchetto G, Perduca M, Tiso N, Mottes M, Dalle Carbonare L. BEL β-Trefoil Reduces the Migration Ability of RUNX2 Expressing Melanoma Cells in Xenotransplanted Zebrafish. Molecules 2020; 25:molecules25061270. [PMID: 32168858 PMCID: PMC7143993 DOI: 10.3390/molecules25061270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023] Open
Abstract
RUNX2, a master osteogenic transcript ion factor, is overexpressed in several cancer cells; in melanoma it promotes cells migration and invasion as well as neoangiogenesis. The annual mortality rates related to metastatic melanoma are high and novel agents are needed to improve melanoma patients’ survival. It has been shown that lectins specifically target malignant cells since they present the Thomsen–Friedenreich antigen. This disaccharide is hidden in normal cells, while it allows selective lectins binding in transformed cells. Recently, an edible lectin named BEL β-trefoil has been obtained from the wild mushroom Boletus edulis. Our previous study showed BEL β-trefoil effects on transcription factor RUNX2 downregulation as well as on the migration ability in melanoma cells treated in vitro. Therefore, to better understand the role of this lectin, we investigated the BEL β-trefoil effects in a zebrafish in vivo model, transplanted with human melanoma cells expressing RUNX2. Our data showed that BEL β-trefoil is able to spread in the tissues and to reduce the formation of metastases in melanoma xenotransplanted zebrafish. In conclusion, BEL β-trefoil can be considered an effective biomolecule to counteract melanoma disease.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
- Correspondence: ; Tel.:+390-458-128-450
| | - Giulia Marchetto
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131 Padova, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100 Verona, Italy;
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, University of Verona, Ple Scuro, 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| |
Collapse
|
19
|
Andrade F, Nakata A, Gotoh N, Fujita A. Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet Mol Biol 2020; 43:e20180269. [PMID: 31487369 PMCID: PMC7198019 DOI: 10.1590/1678-4685-gmb-2018-0269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Triple negative breast cancer (TNBC) is currently the only major breast tumor subtype without effective targeted therapy and, as a consequence, usually presents a poor outcome. Due to its more aggressive phenotype, there is an urgent clinical need to identify novel biomarkers that discriminate individuals with poor prognosis. We hypothesize that miRNAs can be used to this end because they are involved in the initiation and progression of tumors by altering the expression of their target genes. To identify a prognostic biomarker in TNBC, we analyzed the miRNA expression of a cohort composed of 185 patients diagnosed with TNBC using penalized Cox regression models. We identified a four-biomarker signature based on miR-221, miR-1305, miR-4708, and RMDN2 expression levels that allowed for the subdivision of TNBC into high- or low-risk groups (Hazard Ratio – HR = 0.32; 95% Confidence Interval - CI = 0.11–0.91; p = 0.03) and are also statistically associated with survival outcome in subgroups of postmenopausal status (HR = 0.19; 95% CI = 0.04–0.90; p= 0.016), node negative status (HR = 0.12; 95% CI = 0.01–1.04; p = 0.026), and tumors larger than 2cm (HR = 0.21; 95% CI = 0.05–0.81; p = 0.021). This four-biomarker signature was significantly associated with TNBC as an independent prognostic factor for survival.
Collapse
Affiliation(s)
- Fernando Andrade
- Universidade de São Paulo, Programa Internunidades de Pós-Graduação em Bioinformática, São Paulo, SP, Brazil
| | - Asuka Nakata
- Kanazawa University, Cancer Research Institute, Division of Cancer Cell Biology, Kanazawa, Ishikawa, Japan.,Universidade de São Paulo, Faculdade de Medicina, Departamento de Pediatria, São Paulo, SP, Brazil
| | - Noriko Gotoh
- Kanazawa University, Cancer Research Institute, Division of Cancer Cell Biology, Kanazawa, Ishikawa, Japan
| | - André Fujita
- Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Ciência de Computação, São Paulo, SP, Brazil
| |
Collapse
|
20
|
He C, Bai X, Li Y, Sun H, Kong X, Fu B, Chen L, Zhu K, Li P, Xu S. Runt-related transcription factor 1 contributes to lung cancer development by binding to tartrate-resistant acid phosphatase 5. Cell Cycle 2019; 18:3404-3419. [PMID: 31650885 DOI: 10.1080/15384101.2019.1678966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the malignant tumors with growing morbidity and mortality. The involvement of runt-related transcription factor 1 (RUNX1) in LC patients has been elucidated. We intended to research mechanisms of RUNX1 and tartrate-resistant acid phosphatase 5 (ACP5) in LC. Firstly, ACP5 levels in LC tissues, paracancerous tissues, LC cells and tracheal epithelial cells were detected. RUNX1 overexpression plasmid and interference plasmid were constructed and transfected into 95C cells and A549 cells, respectively. The binding of RUNX1 to ACP5 promoter was tested. Additionally, the gain- and loss-of-function were performed to explore the effects of ACP5 and RUNX1 on LC biological process. The xenograft tumor in nude mice was constructed in vivo to verify in vitro results. Functional rescue experiment was performed by adding MAPK-specific activator P79350 to A549 cells with si-ACP5 to measure the effects of ERK/MAPK axis on LC progression. Consequently, we found ACP5 expression was higher in LC tissues and cells, and ACP5 silencing suppressed LC cell growth. Overexpression of ACP5 promoted malignant biological behavior of LC cells. RUNX1 could bind to ACP5 promoter, and overexpressed RUNX1 promoted ACP5 expression and LC cell growth. Moreover, ACP5 upregulated the ERK/MAPK axis and thus promoted LC progression. The results of xenograft tumor in nude mice showed that silencing ACP5 could inhibit the growth of LC cells in vivo. To conclude, silenced RUNX1 inhibits LC progression through the ERK/MAPK axis by binding to ACP5. This study may provide new approaches for LC treatment.
Collapse
Affiliation(s)
- Changjun He
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Xue Bai
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Yingbin Li
- Department of Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R.China
| | - Haobo Sun
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Xianglong Kong
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Lantao Chen
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Pengju Li
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
21
|
Manzotti G, Torricelli F, Donati B, Sancisi V, Gugnoni M, Ciarrocchi A. HDACs control RUNX2 expression in cancer cells through redundant and cell context-dependent mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:346. [PMID: 31395086 PMCID: PMC6686443 DOI: 10.1186/s13046-019-1350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Background RUNX2 is a Runt-related transcription factor required during embryogenesis for skeletal development and morphogenesis of other organs including thyroid and breast gland. Consistent evidence indicates that RUNX2 expression is aberrantly reactivated in cancer and supports tumor progression. The mechanisms leading to RUNX2 expression in cancer has only recently began to emerge. Previously, we showed that suppressing the activity of the epigenetic regulators HDACs significantly represses RUNX2 expression highlighting a role for these enzymes in RUNX2 reactivation in cancer. However, the molecular mechanisms by which HDACs control RUNX2 are still largely unexplored. Here, to fill this gap, we investigated the role of different HDACs in RUNX2 expression regulation in breast and thyroid cancer, tumors that majorly rely on RUNX2 for their development and progression. Methods Proliferation assays and evaluation of RUNX2 mRNA levels by qRT-PCR were used to evaluate the effect of several HDACi and specific siRNAs on a panel of cancer cell lines. Moreover, ChIP and co-IP assays were performed to elucidate the molecular mechanism underneath the RUNX2 transcriptional regulation. Finally, RNA-sequencing unveiled a new subset of genes whose transcription is regulated by the complex RUNX2-HDAC6. Results In this study, we showed that Class I HDACs and in particular HDAC1 are required for RUNX2 efficient transcription in cancer. Furthermore, we found an additional and cell-specific function of HDAC6 in driving RUNX2 expression in thyroid cancer cells. In this model, HDAC6 likely stabilizes the assembly of the transcriptional complex, which includes HDAC1, on the RUNX2 P2 promoter potentiating its transcription. Since a functional interplay between RUNX2 and HDAC6 has been suggested, we used RNA-Seq profiling to consolidate this evidence in thyroid cancer and to extend the knowledge on this cooperation in a setting in which HDAC6 also controls RUNX2 expression. Conclusions Overall, our data provide new insights into the molecular mechanisms controlling RUNX2 in cancer and consolidate the rationale for the use of HDACi as potential pharmacological strategy to counteract the pro-oncogenic program controlled by RUNX2 in cancer cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
22
|
Wessely A, Waltera A, Reichert TE, Stöckl S, Grässel S, Bauer RJ. Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D spheroids. FASEB J 2019; 33:11884-11893. [PMID: 31366234 DOI: 10.1096/fj.201900925r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells capable of differentiating into adipocytic, osteogenic, chondrogenic, and myogenic lineages. There is growing evidence that MSCs home into the tumor microenvironment attracted by a variety of signals such as chemokines, growth factors, and cytokines. Tumor-homing stem cells may originate from bone marrow-derived MSCs (BMSCs) or adipose tissue-derived MSCs. Recent scientific data suggest that MSCs in combination with tumor cells can either promote or inhibit tumorigenic behavior. In head and neck squamous cell carcinoma (HNSCC), BMSCs are reported to be enriched with a potential negative role. Here, we evaluated the effect of BMSCs from 4 different donors in combination with 4 HNSCC cell lines in a 3-dimensional multicellular spheroid model. Heterogeneous combinations revealed an up-regulation of gene and protein expression of osteogenic markers runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP) together with a substantial secretion of matrix metalloproteinase 9. Moreover, heterogenous BMSC/tumor spheroids showed increased invasion compared with homogenous spheroids in a Boyden chamber invasion assay. Furthermore, inhibition of ALP resulted in a substantially decreased spreading of heterogeneous spheroids on laminin-rich matrix. In summary, our data suggest a prometastatic effect of BMSCs combined with HNSCC.-Wessely, A., Waltera, A., Reichert, T. E., Stöckl, S., Grässel, S., Bauer, R. J. Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D-spheroids.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Anna Waltera
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sabine Stöckl
- Department of Orthopedic Surgery, Experimental Orthopedics, Center of Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Center of Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - Richard J Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany.,Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Zhu X, Niu X, Ge C. Inhibition of LINC00994 represses malignant behaviors of pancreatic cancer cells: interacting with miR-765-3p/RUNX2 axis. Cancer Biol Ther 2019; 20:799-811. [PMID: 30739523 DOI: 10.1080/15384047.2018.1564566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer exhibits one of the worst prognosis of all human cancers, and it is associated with gene dysregulation. Our microarray results first indicated long intergenic non-protein coding RNA 994 (LINC00994) as an upregulated long non-coding RNA (lncRNA) and miR-765-3p as a downregulated microRNA (miRNA) in pancreatic cancer tissues (Fold change ≥ 2 and P < 0.05; three paired samples). To investigate the role of LINC00994 in pancreatic carcinogenesis, a pair of short hairpin RNA (shRNA) was used to stably knock down the endogenous expression of LINC00994 in Panc-1 and AsPC-1 pancreatic cancer cells in vitro. We found that LINC00994 silencing inhibited the growth, migration and invasion, and promoted the G1 cell cycle arrest and apoptosis in Panc-1 and AsPC-1 cells. Furthermore, the expression of LINC00994 was negatively correlated with that of miR-765-3p in 10 pancreatic cancer specimens. Runt-related transcription factor 2 (RUNX2), a molecule that contributes to the aggressive behaviors of pancreatic cancer, was herein verified as a novel target for miR-765-3p. Like LINC00994, its expression was elevated in pancreatic cancers. Silencing of LINC00994 and RUNX2 reduced each other's expression in both Panc-1 and AsPC-1 cells. RUNX2 3'UTR and LINC00994 competed to bind miR-765-3p. Additionally, LINC00994-silenced cells regained their aggressive behaviors when miR-765-3p was antagonized, which was accompanied with RUNX2 re-expression. Collectively, our study reveals that LINC00994 contributes to the malignant behaviors of pancreatic cancer cells by preventing miR-765-3p from targeting RUNX2. LINC00994 can be considered as a novel therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Xuan Zhu
- a Department of Pancreatic and Biliary Surgery , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China.,b Department of General Surgery, Anshan Hospital , The First Affiliated Hospital of China Medical University , Anshan , Liaoning , China
| | - Xing Niu
- c The Second Clinical Medical School , China Medical University , Shenyang , Liaoning , China
| | - Chunlin Ge
- a Department of Pancreatic and Biliary Surgery , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
24
|
Zhuang L, Guo J, Yao Y, Li Z. miR-205 targets runt-related transcription factor 2 to inhibit human pancreatic cancer progression. Oncol Lett 2019; 17:843-848. [PMID: 30655837 PMCID: PMC6313060 DOI: 10.3892/ol.2018.9689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRs) serve important roles in the progression of human cancer types, including pancreatic cancer (PC), a highly lethal malignancy. In the past few decades, several miRs have been identified to be associated with the overall survival of patients with PC and have been demonstrated to be potential therapeutic targets. However, to the best of our knowledge, the association between miR-205 expression and the progression of PC has rarely been investigated. In the current study, low miR-205 expression was revealed in PC tumor tissues and indicated poor prognosis in patients with PC. In addition, miR-205 overexpression reduced and miR-205 depletion enhanced PC cell proliferation and migration in vitro. Using bioinformatics, a luciferase reporter assay and western blot analyses, the current study identified that runt-related transcription factor 2 (RUNX2) was a target of miR-205 in PC and overexpression of miR-205 suppressed the expression of RUNX2. Notably, overexpression of RUNX2 partially reversed the inhibitory effect of miR-205 on PC cell proliferation and migration in vitro. Therefore, the results of the present study revealed that miR-205 functions as a tumor suppressor in PC by targeting RUNX2.
Collapse
Affiliation(s)
- Lu Zhuang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Yao Yao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
25
|
Li N, Wang WB, Bao H, Shi Q, Jiang ZL, Qi YX, Han Y. MicroRNA-129-1-3p regulates cyclic stretch-induced endothelial progenitor cell differentiation by targeting Runx2. J Cell Biochem 2018; 120:5256-5267. [PMID: 30320897 DOI: 10.1002/jcb.27800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are vital to the recovery of endothelial function and maintenance of vascular homeostasis. EPCs mobilize to sites of vessel injury and differentiate into mature endothelial cells (ECs). Locally mobilized EPCs are exposed to cyclic stretch caused by blood flow, which is important for EPC differentiation. MicroRNAs (miRNAs) have emerged as key regulators of several cellular processes. However, the role of miRNAs in cyclic stretch-induced EPC differentiation remains unclear. Here, we investigate the effects of microRNA-129-1-3p (miR-129-1-3p) and its novel target Runt-related transcription factor 2 (Runx2) on EPC differentiation induced by cyclic stretch. Bone marrow-derived EPCs were exposed to cyclic stretch with a magnitude of 5% (which mimics physiological mechanical stress) at a constant frequency of 1.25 Hz for 24 hours. The results from a miRNA array revealed that cyclic stretch significantly decreased miR-129-1-3p expression. Furthermore, we found that downregulation of miR-129-1-3p during cyclic stretch-induced EPC differentiation toward ECs. Meanwhile, expression of Runx2, a putative target gene of miR-129-1-3p, was increased as a result of cyclic stretch. A 3'UTR reporter assay validated Runx2 as a direct target of miR-129-1-3p. Furthermore, small interfering RNA (siRNA)-mediated knockdown of Runx2 inhibited EPC differentiation into ECs and attenuated EPC tube formation via modulation of vascular endothelial growth factor (VEGF) secretion from EPCs in vitro. Our findings demonstrated that cyclic stretch suppresses miR-129-1-3p expression, which in turn activates Runx2 and VEGF to promote endothelial differentiation of EPCs and angiogenesis. Therefore, targeting miR-129-1-3p and Runx2 may be a potential therapeutic strategy for treating vessel injury.
Collapse
Affiliation(s)
- Na Li
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bin Wang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Screening Method for Anti-Colon Cancer Drugs Using Two Sensor Cell Lines with Human β4-Galactosyltransferase 4 Gene Promoters. SENSORS 2018; 18:s18082573. [PMID: 30082623 PMCID: PMC6111286 DOI: 10.3390/s18082573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/29/2022]
Abstract
The increased expression of β4-galactosyltransferase (β4GalT) 4 is closely associated with poor prognosis of colon cancer. Recently, we showed that the expression of the β4GalT4 gene is regulated by the 0.17 kb core promoter region containing one binding site for Specificity protein 1 (Sp1). To develop a screening method for anti-colon cancer drugs, two sensor cell lines having the luciferase gene under the control of two β4GalT4 gene promoters that differed in length were established from SW480 human colon cancer cells. The hGT4-0.17-sensor cells possessed the luciferase reporter driven by the 0.17 kb promoter, while the hGT4-0.3-sensor cells possessed the luciferase reporter driven by the 0.3 kb promoter containing one binding site each for colon cancer-related transcription factors including activator protein 2, E2F, caudal-related homeobox transcription factors, and Runt-related transcription factors besides Sp1. Upon treatment with mitogen-activated protein kinase signaling inhibitor U0126, the promoter activities of the hGT4-0.3-sensor cells decreased significantly, while those of the hGT4-0.17-sensor cells remained unchanged. These results suggest that the responsiveness to U0126 differs between two sensor cell lines due to the different regulation of the luciferase reporters. This study provides the screening method for anti-colon cancer drugs by the combination of two sensor cell lines.
Collapse
|
27
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
28
|
Ozaki T, Nakamura M, Ogata T, Sang M, Yoda H, Hiraoka K, Sang M, Shimozato O. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63. Oncotarget 2018; 7:71937-71950. [PMID: 27713122 PMCID: PMC5342134 DOI: 10.18632/oncotarget.12433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Mizuyo Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takehiro Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meijie Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Regenerative Medicine, Graduate School of Medicine and Pharmatheutical Science, University of Toyama, Toyama, Japan
| | - Hiroyuki Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiriko Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meixiang Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
29
|
Cheng Y, Yang H, Sun Y, Zhang H, Yu S, Lu Z, Chen J. RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget 2017; 8:99567-99579. [PMID: 29245924 PMCID: PMC5725115 DOI: 10.18632/oncotarget.20433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
Runt-related transcription factor 1(RUNX1), a key factor in hematopoiesis that mediates specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs), is also overexpressed in several solid human cancers, and correlated with tumor progression. However, the expression and function of RUNX1 in pancreatic ductal adenocarcinoma were still unclear. Here, we show that RUNX1 is highly expressed in pancreatic adenocarcinoma tissues and knocking down of RUNX1 attenuated aggressiveness in pancreatic cell lines. Moreover, we found that RUNX1 could negatively regulate the expression of miR-93. Bioinformatics method showed that there are two binding sites in the the promotor region of miR-93 precursor and through ChIP-qPCR and firefly luciferase reporter assay, we vertified that these two binding sites each have transcriptive activity in one pancreatic cell lines. This result supported our presumption that RUNX1 regulate miR-93 through binding to the promotor region of miR-93. Besides, the expression and function of miR-93 is quite the opposite, miR-93 overexpression suppresses migration and invasiveness in pancreatic cell lines supporting that RUNX1 negatively regulated miR-93. Our findings provided evidence regarding the role of RUNX1 as an oncogene through the inhibition of miR-93. Targeting RUNX1 can be a potential therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongkai Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Ogata T, Nakamura M, Sang M, Yoda H, Hiraoka K, Yin D, Sang M, Shimozato O, Ozaki T. Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS One 2017; 12:e0179884. [PMID: 28671946 PMCID: PMC5495219 DOI: 10.1371/journal.pone.0179884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 01/19/2023] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) represents one of the new class of anti-cancer drugs. However, multiple lines of clinical evidence indicate that SAHA might be sometimes ineffective on certain solid tumors including pancreatic cancer. In this study, we have found for the first time that RUNX2/mutant p53/TAp63-regulatory axis has a pivotal role in the determination of SAHA sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells. According to our present results, MiaPaCa-2 cells responded poorly to SAHA. Forced depletion of mutant p53 stimulated SAHA-mediated cell death of MiaPaCa-2 cells, which was accomapanied by a further accumulation of γH2AX and cleaved PARP. Under these experimental conditions, pro-oncogenic RUNX2 was strongly down-regulated in mutant p53-depleted MiaPaCa-2 cells. Surprisingly, RUNX2 silencing augmented SAHA-dependent cell death of MiaPaCa-2 cells and caused a significant reduction of mutant p53. Consistent with these observations, overexpression of RUNX2 in MiaPaCa-2 cells restored SAHA-mediated decrease in cell viability and increased the amount of mutant p53. Thus, it is suggestive that there exists a positive auto-regulatory loop between RUNX2 and mutant p53, which might amplify their pro-oncogenic signals. Intriguingly, knockdown of mutant p53 or RUNX2 potentiated SAHA-induced up-regulation of TAp63. Indeed, SAHA-stimulated cell death of MiaPaCa-2 cells was partially attenuated by p63 depletion. Collectively, our present observations strongly suggest that RUNX2/mutant p53/TAp63-regulatory axis is one of the key determinants of SAHA sensitivity of p53-mutated pancreatic cancer cells.
Collapse
Affiliation(s)
- Takehiro Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Mizuyo Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meijie Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiriko Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mexiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- * E-mail:
| |
Collapse
|
31
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Lee SH, Manandhar S, Lee YM. Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:449-469. [PMID: 28299673 DOI: 10.1007/978-981-10-3233-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, Runt domain transcription factors (RUNX1, 2, and 3) have been investigated in regard to their function, structural elements, genetic variants, and roles in normal development and pathological conditions. The Runt family proteins are evolutionarily conserved from Drosophila to mammals, emphasizing their physiological importance. A hypoxic microenvironment caused by insufficient blood supply is frequently observed in developing organs, growing tumors, and tissues that become ischemic due to impairment or blockage of blood vessels. During embryonic development and tumor growth, hypoxia triggers a stress response that overcomes low-oxygen conditions by increasing erythropoiesis and angiogenesis and triggering metabolic changes. This review briefly introduces hypoxic conditions and cellular responses, as well as angiogenesis and its related signaling pathways, and then describes our current knowledge on the functions and molecular mechanisms of Runx family proteins in hypoxic responses, especially in angiogenesis.
Collapse
Affiliation(s)
- Sun Hee Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Sarala Manandhar
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - You Mie Lee
- National Basic Research Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
33
|
Valenti MT, Serafini P, Innamorati G, Gili A, Cheri S, Bassi C, Dalle Carbonare L. Runx2 expression: A mesenchymal stem marker for cancer. Oncol Lett 2016; 12:4167-4172. [PMID: 27895787 DOI: 10.3892/ol.2016.5182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
The transcription factor runt-related transcription factor 2 (Runx2) is a master gene implicated in the osteogenic differentiation of mesenchymal stem cells, and thus serves a determinant function in bone remodelling and skeletal integrity. Various signalling pathways regulate Runx2 abundance, which requires a number of molecules to finely modulate its expression. Furthermore, this gene may be ectopically-expressed in cancer cells. Recent studies have reported the involvement of Runx2 in cell proliferation, epithelial-mesenchymal transition, apoptosis and metastatic processes, suggesting it may represent a useful therapeutic target in cancer treatment. However, studies evaluating this gene as a cancer marker are lacking. In the present study, Runx2 expression was analysed in 11 different cancer cell lines not derived from bone tumour. In addition, the presence of Runx2-related cell-free RNA was examined in the peripheral blood of 41 patients affected by different forms of tumours. The results demonstrated high expression levels of Runx2 in the cancer cell lines and identified the presence of Runx2-related cell-free RNA in the peripheral blood of patients with cancer. As compared with normal individuals, the expression level was increased by 14.2-fold in patients with bone metastases and by 4.01-fold in patients without metastases. The results of the present study therefore opens up the possibility to exploit Runx2 expression as a cancer biomarker allowing the use of minimally invasive approaches for diagnosis and follow-up.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Section of Internal Medicine D, University of Verona, I-37134 Verona, Italy; University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy
| | - Paola Serafini
- Department of Medicine, Section of Internal Medicine D, University of Verona, I-37134 Verona, Italy; University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy
| | - Giulio Innamorati
- University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy; Department of Surgery, Section of General Surgery B, University of Verona, I-37134 Verona, Italy
| | - Anna Gili
- University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy
| | - Samuele Cheri
- University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy
| | - Claudio Bassi
- Department of Surgery, Section of General Surgery B, University of Verona, I-37134 Verona, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, Section of Internal Medicine D, University of Verona, I-37134 Verona, Italy; University Laboratory of Medical Research, University of Verona, I-37134 Verona, Italy
| |
Collapse
|
34
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
35
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
36
|
Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Discov 2015; 1:15010. [PMID: 27551445 PMCID: PMC4981025 DOI: 10.1038/cddiscovery.2015.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) has been considered to be one of master regulators for osteoblast differentiation and bone formation. Recently, we have described that RUNX2 attenuates p53/TAp73-dependent cell death of human osteosarcoma U2OS cells bearing wild-type p53 in response to adriamycin. In this study, we have asked whether RUNX2 silencing could enhance gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells. Under our experimental conditions, GEM treatment increased the expression level of p53 family TAp63, whereas RUNX2 was reduced following GEM exposure, indicating that there exists an inverse relationship between the expression level of TAp63 and RUNX2 following GEM exposure. To assess whether TAp63 could be involved in the regulation of GEM sensitivity of AsPC-1 cells, small interfering RNA-mediated knockdown of TAp63 was performed. As expected, silencing of TAp63 significantly prohibited GEM-dependent cell death as compared with GEM-treated non-silencing cells. As TAp63 was negatively regulated by RUNX2, we sought to examine whether RUNX2 knockdown could enhance the sensitivity to GEM. Expression analysis demonstrated that depletion of RUNX2 apparently stimulates the expression of TAp63, as well as proteolytic cleavage of poly ADP ribose polymerase (PARP) after GEM exposure, and further augmented GEM-mediated induction of p53/TAp63-target genes, such as p21WAF1, PUMA and NOXA, relative to GEM-treated control-transfected cells, implying that RUNX2 has a critical role in the regulation of GEM resistance through the downregulation of TAp63. Notably, ablation of TAp63 gave a decrease in number of γH2AX-positive cells in response to GEM relative to control-transfected cells following GEM exposure. Consistently, GEM-dependent phosphorylation of ataxia telangiectasia-mutated protein was remarkably impaired in TAp63 knockdown cells. Collectively, our present findings strongly suggest that RUNX2-mediated repression of TAp63 contributes at least in part to GEM resistance of AsPC-1 cells, and thus silencing of RUNX2 may be a novel strategy to enhance the efficacy of GEM in p53-deficient pancreatic cancer cells.
Collapse
|
37
|
Myeloma cell-derived Runx2 promotes myeloma progression in bone. Blood 2015; 125:3598-608. [PMID: 25862559 DOI: 10.1182/blood-2014-12-613968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
The progression of multiple myeloma (MM) is governed by a network of molecular signals, the majority of which remain to be identified. Recent studies suggest that Runt-related transcription factor 2 (Runx2), a well-known bone-specific transcription factor, is also expressed in solid tumors, where expression promotes both bone metastasis and osteolysis. However, the function of Runx2 in MM remains unknown. The current study demonstrated that (1) Runx2 expression in primary human MM cells is significantly greater than in plasma cells from healthy donors and patients with monoclonal gammopathy of undetermined significance; (2) high levels of Runx2 expression in MM cells are associated with a high-risk population of MM patients; and (3) overexpression of Runx2 in MM cells enhanced tumor growth and disease progression in vivo. Additional studies demonstrated that MM cell-derived Runx2 promotes tumor progression through a mechanism involving the upregulation of Akt/β-catenin/Survivin signaling and enhanced expression of multiple metastatic genes/proteins, as well as the induction of a bone-resident cell-like phenotype in MM cells. Thus, Runx2 expression supports the aggressive phenotype of MM and is correlated with poor prognosis. These data implicate Runx2 expression as a major regulator of MM progression in bone and myeloma bone disease.
Collapse
|
38
|
Wen C, Liu X, Ma H, Zhang W, Li H. miR‑338‑3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. Int J Oncol 2015; 46:2277-85. [PMID: 25776272 DOI: 10.3892/ijo.2015.2929] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
miR‑338‑3p, a recently discovered miRNA, has been shown to play important roles in tumorigenesis and metastasis in various cancers. However, the exact roles and mechanisms of miR‑338‑3p remain unknown in human ovarian epithelial carcinoma (EOC). The relationship between miR‑338‑3p expression pattern and clinicopathological features of patients with EOC were determined by real-time quantitative RT-PCR. Furthermore, the role of miR‑338‑3p and possible molecular mechanisms in EOC was investigated by several in vitro approaches and in a nude mouse model. We first showed that the expression of miR‑338‑3p was significantly downregulated in EOC tissues compared to those in adjacent normal tissues, and the value was negatively related to advanced FIGO stage, high histological grading and lymph node metastasis (P<0.01). An in vitro analysis revealed that the overexpression of miR‑338‑3p in EOC cells significantly inhibited cell proliferation, colony formation, migration and invasion, inducing cell apoptosis and enhancing caspase-3, -8, and -9 activities. Bioinformatic analysis and dual luciferase assays identified Runx2 as a direct target of miR‑338‑3p. We also found that enforced expression of miR‑338‑3p markedly inhibited the in vivo tumorigenicity in a nude mouse xenograft model system. Furthermore, overexpression of miR‑338‑3p inhibited phosphorylation of PI3K and AKT, which contributed to suppression of ovarian cancer cell growth. These findings revealed that miR‑338‑3p may act as a tumor suppressor that blocks the growth of human ovarian epithelial carcinoma through PI3K/AKT signaling pathways by targeting Runx2.
Collapse
Affiliation(s)
- Chunyan Wen
- Department of Pathology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun 13033, P.R. China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun 13033, P.R. China
| | - Hongxi Ma
- Department of Pathology, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Wenjie Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun 13033, P.R. China
| | - Haifeng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
39
|
Sun SS, Zhang L, Yang J, Zhou X. Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 2015; 361:1-7. [PMID: 25727319 DOI: 10.1016/j.canlet.2015.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is a member of the polyomavirus enhancer-binding protein 2/core-binding factor superfamily. RUNX2 is known for its contribution to osteoblast phenotype and bone formation. In recent years, increasing attention has been focused on the relationship of Runx2 with tumorigenesis. In different types of tumor cells, RUNX2 cooperates with its co-activators or co-inhibitors, and mediates the responses of cells to various signaling pathways that are hyperactive in tumors. Thus, several downstream target genes of RUNX2 are activated when RUNX2 interacts with its co-factors, leading to a variety of effects on tumor cells (epithelial-mesenchymal transition, metastasis, proliferation, and osteolytic lesion). This review focuses on the involvement of RUNX2 in tumor cells in the crosstalk of diverse signaling pathways and its multiple functions to develop optimal and feasible approaches for clinical treatment based on the functions of RUNX2.
Collapse
Affiliation(s)
- Shan-Shan Sun
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Lun Zhang
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Science Center, Stanton L. Young Biomedical, Research Center, BRC I264, Oklahoma City, OK 73 104, USA
| | - Xuan Zhou
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
40
|
Ozaki T, Sugimoto H, Nakamura M, Hiraoka K, Yoda H, Sang M, Fujiwara K, Nagase H. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J 2014; 282:114-28. [PMID: 25331851 PMCID: PMC4368372 DOI: 10.1111/febs.13108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
Although runt-related transcription factor 2 (RUNX2) is known to be an essential key transcription factor for osteoblast differentiation and bone formation, RUNX2 also plays a pivotal role in the regulation of p53-dependent DNA damage response. In the present study, we report that, in addition to p53, RUNX2 downregulates pro-apoptotic TAp73 during DNA damage-dependent cell death. Upon adriamycin (ADR) exposure, human osteosarcoma-derived U2OS cells underwent cell death in association with an upregulation of TAp73 and various p53/TAp73-target gene products together with RUNX2. Small interfering RNA-mediated silencing of p73 resulted in a marked reduction in ADR-induced p53/TAp73-target gene expression, suggesting that TAp73 is responsible for the ADR-dependent DNA damage response. Immunoprecipitation and transient transfection experiments demonstrated that RUNX2 forms a complex with TAp73 and impairs its transcriptional activity. Notably, knockdown of RUNX2 stimulated ADR-induced cell death accompanied by a massive induction of TAp73 expression, indicating that RUNX2 downregulates TAp73 expression. Consistent with this notion, the overexpression of RUNX2 suppressed ADR-dependent cell death, which was associated with a remarkable downregulation of TAp73 and p53/TAp73-target gene expression. Collectively, our present findings strongly suggest that RUNX2 attenuates the transcriptional activity and ADR-mediated induction of TAp73, and may provide novel insights into understanding the molecular basis behind the development and/or maintenance of chemoresistance. Thus, we propose that the silencing of RUNX2 might be an attractive strategy for improving the chemosensitivity of malignant cancers.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kaleağasıoğlu F, Berger MR. SIBLINGs and SPARC families: Their emerging roles in pancreatic cancer. World J Gastroenterol 2014; 20:14747-14759. [PMID: 25356037 PMCID: PMC4209540 DOI: 10.3748/wjg.v20.i40.14747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a considerably poor prognosis with a 5-year survival probability of less than 5% when all stages are combined. Pancreatic cancer is characterized by its dense stroma, which is involved in the critical interplay with the tumor cells throughout tumor progression and furthermore, creates a barrier restricting efficient penetration of therapeutics. Alterations in a large number of genes are reflected by a limited number of signaling pathways, which are potential targets. Understanding more about the molecular basis of this devastating cancer type regarding tumor microenvironment, distinct subpopulations of cells, epithelial-to-mesenchymal transition and inflammation will lead to the development of various targeted therapies for controlling tumor growth and metastasis. In this complex scenario of pancreatic cancer, especially members of the “small integrin binding ligand N-linked glycoproteins” (SIBLINGs) and “secreted protein acidic and rich in cysteine” (SPARC) families have emerged due to their prominent roles in properties including proliferation, differentiation, apoptosis, adhesion, migration, angiogenesis, wound repair and regulation of extracellular matrix remodeling. SIBLINGs consist of five members, which include osteopontin (OPN), bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. The SPARC family of modular extracellular proteins is comprised of SPARC/osteonectin (ON) and SPARC-like 1 (hevin); secreted modular calcium binding proteins; testicans and follistatin-like protein. In this review, we especially focus on OPN and ON, elaborating on their special and growing importance in pancreatic cancer diagnosis and prognosis.
Collapse
|
42
|
Haqq J, Howells LM, Garcea G, Metcalfe MS, Steward WP, Dennison AR. Pancreatic stellate cells and pancreas cancer: current perspectives and future strategies. Eur J Cancer 2014; 50:2570-82. [PMID: 25091797 DOI: 10.1016/j.ejca.2014.06.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis. To date patient outcomes have not improved principally due to the limited number of patients suitable for surgical resections and the radiation and chemotherapy resistance of these tumours. In the last decade, a failure of conventional therapies has forced researchers to re-examine the environment of PDAC. The tumour environment has been demonstrated to consist of an abundance of stroma containing many cells but predominantly pancreatic stellate cells (PSCs). Recent research has focused on understanding the interaction between PSCs and PDAC cells in vitro and in vivo. It is believed that the interaction between these cells is responsible for supporting tumour growth, invasion and metastasis and creating the barrier to delivery of chemotherapeutics. Novel approaches which focus on the interactions between PDAC and PSCs which sustain the tumour microenvironment may achieve significant patient benefits. This manuscript reviews the current evidence regarding PSCs, their interaction with PDAC cells and the potential implication this may have for future therapies. METHODS A PubMed search was carried out for the terms 'pancreas cancer' OR 'pancreatic cancer', AND 'pancreatic stellate cells', NOT 'hepatic stellate cells'. All studies were screened and assessed for their eligibility and manuscripts exploring the relationship between PSCs and PDAC were included. The studies were subdivided into in vitro and in vivo groups. RESULTS One hundred and sixty-six manuscripts were identified and reduced to seventy-three in vitro and in vivo studies for review. The manuscripts showed that PDAC cells and PSCs interact with each other to enhance proliferation, reduce apoptosis and increase migration and invasion of cancer cells. The pathways through which they facilitate these actions provide potential targets for future novel therapies. CONCLUSION There is accumulating evidence supporting the multiple roles of PSCs in establishing the tumour microenvironment and supporting the survival of PDAC. To further validate these findings there is a need for greater use of physiologically relevant models of pancreatic cancer in vitro such as three dimensional co-cultures and the use of orthotopic and genetically engineered murine (GEM) models in vivo.
Collapse
Affiliation(s)
- Jonathan Haqq
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom.
| | - Lynne M Howells
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Matthew S Metcalfe
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Will P Steward
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery & Cancer Studies and Molecular Medicine Group, University Hospitals of Leicester & University of Leicester, Leicester LE5 4PW, United Kingdom
| |
Collapse
|
43
|
Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS One 2013; 8:e74384. [PMID: 24124450 PMCID: PMC3790792 DOI: 10.1371/journal.pone.0074384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/31/2013] [Indexed: 01/19/2023] Open
Abstract
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Mamadou Keita
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Magdalena Bachvarova
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Stephane Gobeil
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, CHUL, Québec (Québec), Canada
| | - Chantale Morin
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
| | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Obstetrics and Gynecology, Laval University, Québec (Québec), Canada
| | - Xuan Bich Trinh
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- Department of Gynecological Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec (Québec), Canada
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec (Québec), Canada
- * E-mail:
| |
Collapse
|
44
|
RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013; 2013:271347. [PMID: 24078903 PMCID: PMC3775453 DOI: 10.1155/2013/271347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/01/2013] [Indexed: 11/24/2022] Open
Abstract
A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor
initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated
and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as
p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53
is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic
response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a
variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between
p53 and RUNX family in response to DNA damage.
Collapse
|
45
|
Tahara H, Sato K, Yamazaki Y, Ohyama T, Horiguchi N, Hashizume H, Kakizaki S, Takagi H, Ozaki I, Arai H, Hirato J, Jesenofsky R, Masamune A, Mori M. Transforming growth factor-α activates pancreatic stellate cells and may be involved in matrix metalloproteinase-1 upregulation. J Transl Med 2013; 93:720-732. [PMID: 23608755 DOI: 10.1038/labinvest.2013.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role that transforming growth factor-α (TGF-α) has in chronic pancreatitis and pancreatic cancer has not been fully elucidated. We evaluated the effects of TGF-α on the human pancreatic stellate cell (PSC) line RLT-PSC and primary human PSCs, and the expression levels of TGF-α and metalloproteinase-1 (MMP-1) in human chronic pancreatitis and pancreatic cancer tissues. TGF-α stimulated the proliferation and migration of PSCs. Although the mRNA expression levels of tissue inhibitor of metalloproteinase-1 and α1(I) collagen were unchanged, the mRNA expression levels of MMP-1 increased concomitant with increases in MMP-1 protein levels and collagenase activity. TGF-α-stimulated migration of RLT-PSC cells was partially blocked by tissue inhibitor of metalloproteinase-1 protein and MMP-1 small interfering RNA. MMP-1 was also observed to stimulate the migration of PSCs. TGF-α-induced MMP-1 expression was completely blocked by gefitinib in PSCs. The Ras-ERK and PI3/Akt pathways appear to be involved in the activation of MMP-1 in PSCs. Immunohistochemical analyses showed that MMP-1 expression was significantly increased in the pancreatic interstitial tissues in case of chronic pancreatitis or pancreatic cancer compared with those in case of normal pancreas. In conclusion, TGF-α increased proliferation and migration of PSCs. TGF-α-induced migration of cells may be partly due to upregulation of MMP-1. TGF-α and MMP-1 upregulation may contribute to the pathogenesis of chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Hiroki Tahara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32:2121-30. [PMID: 23045283 PMCID: PMC5770236 DOI: 10.1038/onc.2012.328] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The three RUNX family members are lineage specific master regulators, which also have important, context-dependent roles in carcinogenesis as either tumor suppressors or oncogenes. Here we review evidence for such roles in breast cancer (BCa). RUNX1, the predominant RUNX family member in breast epithelial cells, has a tumor suppressor role reflected by many somatic mutations found in primary tumor biopsies. The classical tumor suppressor gene RUNX3 does not consist of such a mutation hot spot, but it too seems to inhibit BCa; it is often inactivated in human BCa tumors and its haploinsufficiency in mice leads to spontaneous BCa development. The tumor suppressor activities of RUNX1 and RUNX3 are mediated in part by antagonism of estrogen signaling, a feature recently attributed to RUNX2 as well. Paradoxically, however RUNX2, a master osteoblast regulator, has been implicated in various aspects of metastasis in general and bone metastasis in particular. Reciprocating the anti-estrogenic tumor suppressor activity of RUNX proteins, inhibition of RUNX2 by estrogens may help explain their context-dependent anti-metastatic roles. Such roles are reserved to non-osseous metastasis, because ERα is associated with increased, not decreased skeletal dissemination of BCa cells. Finally, based on diverse expression patterns in BCa subtypes, the successful use of future RUNX-based therapies will most likely require careful patient selection.
Collapse
Affiliation(s)
- N-O Chimge
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - B Frenkel
- Departments of Orthopaedic Surgery and Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Kang JW, Park KD, Choi Y, Baek DH, Cho WS, Choi M, Park JH, Choi KS, Kim HS, Yoo TM. Biodistribution and in vivo efficacy of genetically modified human mesenchymal stem cells systemically transplanted into a mouse bone fracture model. Arch Pharm Res 2013; 36:1013-22. [PMID: 23615814 DOI: 10.1007/s12272-013-0132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical application due to their ability to undergo multi-lineage differentiation. Recently, ex vivo genetic modification of hMSCs was attempted to increase their differentiation potential. The present study was conducted to evaluate the biodistribution and in vivo efficacy of genetically modified hMSCs. To accomplish this, Runx2, which is a key transcription factor associated with osteoblast differentiation, was transduced into hMSCs using lentiviral vectors expressing green fluorescent protein (GFP) or luciferase. Here, we developed an experimental fracture in mice femur to investigate the effects of Runx2-transduced hMSCs on bone healing and migration into injury site. We conducted bio-luminescence imaging (BLI) using luciferase-tagged vector and quantitative real-time PCR using GFP probe to investigate the biodistribution of Runx2-transduced hMSCs in the fracture model. The biodistribution of hMSC cells in the fractured femur was observed at 14 days post-transplantation upon both BLI imaging and real-time PCR. Moreover, the fractured mice transplanted with Runx2-transduced hMSCs showed superior bone healing when compared to mock-transduced hMSC and MRC5 fibroblasts which were used as control. These data suggested that transplanted genetically modified hMSCs systemically migrate to the fractured femur, where they contribute to bone formation in vivo.
Collapse
Affiliation(s)
- Jin Wook Kang
- Biotechnological Development Assistance Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chengwon-gun, Chungcheongbuk-do 363-700, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis 2013; 4:e610. [PMID: 23618908 PMCID: PMC3641350 DOI: 10.1038/cddis.2013.127] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is the best known as an essential protein for osteoblast differentiation. In this study, we have found for the first time that RUNX2 acts as a negative regulator for p53 in response to DNA damage. On DNA damage mediated by adriamycin (ADR) exposure, p53 as well as RUNX2 was induced at protein and mRNA level in human osteosarcoma-derived U2OS cells in association with a significant upregulation of various p53-target genes. Indirect immunostaining and co-immunoprecipitation experiments demonstrated that RUNX2 colocalizes with p53 in cell nucleus and forms a complex with p53 following ADR treatment. Chromatin immunoprecipitation assays revealed that RUNX2/p53 complex is efficiently recruited onto p53-target promoters in response to ADR, suggesting that RUNX2 might be involved in the regulation of transcriptional activation mediated by p53. Indeed, forced expression of RUNX2 resulted in a remarkable downregulation of p53-target genes. Consistent with these observations, knockdown of RUNX2 enhanced ADR-mediated apoptosis and also elevated p53-target gene expression in response to ADR. On the other hand, depletion of RUNX2 in p53-deficient human lung carcinoma-derived H1299 cells had an undetectable effect on p53-target gene expression regardless of ADR treatment, indicating that RUNX2-mediated downregulation of p53-target genes is dependent on p53. Furthermore, RUNX2/p53 complex included histone deacetylase 6 (HDAC6) and HDAC6 was also recruited onto p53-target promoters following ADR exposure. Of note, HDAC6-specific chemical inhibitor tubacin treatment enhanced ADR-mediated upregulation of p53-target gene expression, indicating that deacetylase activity of HDAC6 is required for RUNX2-mediated downregulation of p53-target gene. Taken together, our present findings strongly suggest that RUNX2 inhibits DNA damage-induced transcriptional as well as pro-apoptotic activity of p53 through the functional collaboration with HDAC6 and therefore might be an attractive therapeutic target for cancer treatment.
Collapse
|
49
|
Li H, Zhou RJ, Zhang GQ, Xu JP. Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: a 5-year follow-up study. Tumour Biol 2013; 34:1807-12. [DOI: 10.1007/s13277-013-0720-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023] Open
|
50
|
Tang D, Wang D, Yuan Z, Xue X, Zhang Y, An Y, Chen J, Tu M, Lu Z, Wei J, Jiang K, Miao Y. Persistent activation of pancreatic stellate cells creates a microenvironment favorable for the malignant behavior of pancreatic ductal adenocarcinoma. Int J Cancer 2013; 132:993-1003. [PMID: 22777597 DOI: 10.1002/ijc.27715] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors with poor prognosis due to extremely high malignancy, low rate of eligibility for surgical resection and chemoradiation resistance. Increasing evidence indicate that the interaction between activated pancreatic stellate cells (PSCs) and PDAC cells plays an important role in the development of PDAC. By producing high levels of cytokines, chemotactic factors, growth factors and excessive extracellular matrix (ECM), PSCs create desmoplasia and a hypoxic microenvironment that promote the initiation, development, evasion of immune surveillance, invasion, metastasis and resistance to chemoradiation of PDAC. Therefore, targeting the interaction between PSCs and PDAC cells may represent a novel therapeutic approach to advanced PDAC, especially therapies that target PSCs of the pancreatic tumor microenvironment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Subei People's Hospital of Jiangsu Province (Clinical Medical College of Yangzhou University), Yangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|