1
|
Agafonova A, Cosentino A, Musso N, Prinzi C, Russo C, Pellitteri R, Anfuso CD, Lupo G. Hypoxia-Induced Inflammation in In Vitro Model of Human Blood-Brain Barrier: Modulatory Effects of the Olfactory Ensheathing Cell-Conditioned Medium. Mol Neurobiol 2025; 62:4008-4022. [PMID: 39370481 PMCID: PMC11880059 DOI: 10.1007/s12035-024-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Hypoxia compromises the integrity of the blood-brain barrier (BBB) and increases its permeability, thereby inducing inflammation. Olfactory ensheathing cells (OECs) garnered considerable interest due to their neuroregenerative and anti-inflammatory properties. Here, we aimed to investigate the potential modulatory effects of OEC-conditioned medium (OEC-CM) on the response of human brain microvascular endothelial cells (HBMECs), constituting the BBB, when exposed to hypoxia. HBMECs were utilized to establish the in vitro BBB model. OECs were isolated from mouse olfactory bulbs, and OEC-CM was collected after 48 h of culture. The effect of OEC-CM treatment on the HBMEC viability was evaluated under both normoxic and hypoxic conditions at 6 h, 24 h, and 30 h. Western blot and immunostaining techniques were employed to assess NF-κB/phospho-NF-κB expression. HIF-1α, VEGF-A, and cPLA2 mRNA expression levels were quantified using digital PCR. ELISA assays were performed to measure PGE2, VEGF-A, IL-8 secretion, and cPLA2 specific activity. The in vitro formation of HBMEC capillary-like structures was examined using a three-dimensional matrix system. OEC-CM attenuated pro-inflammatory responses and mitigated the HIF-1α/VEGFA signaling pathway activation in HBMECs under hypoxic condition. Hypoxia-induced damage of the BBB can be mitigated by novel therapeutic strategies harnessing OEC potential.
Collapse
Affiliation(s)
- Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- CNR-IRIB: Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy.
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123, Catania, Italy
| |
Collapse
|
2
|
Lu J, Liu X, Cen A, Hong Y, Wang Y. HYPOXIA induces lncRNA HOTAIR for recruiting RELA in papillary thyroid cancer cells to upregulate miR-181a and promote angiogenesis. J Endocrinol Invest 2024; 47:2873-2884. [PMID: 38748197 DOI: 10.1007/s40618-024-02388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Transcription Factor RelA/metabolism
- Transcription Factor RelA/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Up-Regulation
- Cell Movement/genetics
- Cell Line, Tumor
- Hypoxia/metabolism
- Hypoxia/genetics
- Angiogenesis
Collapse
Affiliation(s)
- J Lu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - X Liu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - A Cen
- Department of Endocrinology, the People's Hospital of Jiangmen, Jiangmen, Guangdong, China
| | - Y Hong
- Department of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Y Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China.
| |
Collapse
|
3
|
Wang T, Li X, Ma R, Sun J, Huang S, Sun Z, Wang M. Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). Int J Oncol 2024; 64:39. [PMID: 38391033 PMCID: PMC10919758 DOI: 10.3892/ijo.2024.5627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Neddylation, akin to ubiquitination, represents a post‑translational modification of proteins wherein neural precursor cell‑expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8‑mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti‑CRC target.
Collapse
Affiliation(s)
- Tianyu Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Xiaobing Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Ruijie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jian Sun
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
- Science and Technology Innovation Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250117, P.R. China
| | - Zhigang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Meng Wang
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
4
|
Liao Y, Gui Y, Li Q, An J, Wang D. The signaling pathways and targets of natural products from traditional Chinese medicine treating gastric cancer provide new candidate therapeutic strategies. Biochim Biophys Acta Rev Cancer 2023; 1878:188998. [PMID: 37858623 DOI: 10.1016/j.bbcan.2023.188998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Gastric cancer (GC) is one of the severe malignancies with high incidence and mortality, especially in Eastern Asian countries. Significant advancements have been made in diagnosing and treating GC over the past few decades, resulting in tremendous improvements in patient survival. In recent years, traditional Chinese medicine (TCM) has garnered considerable attention as an alternative therapeutic approach for GC due to its multicomponent and multitarget characteristics. Consequently, natural products found in TCM have attracted researchers' attention, as growing evidence suggests that these natural products can impede GC progression by regulating various biological processes. Nevertheless, their molecular mechanisms are not systematically uncovered. Here, we review the major signaling pathways involved in GC development. Additionally, clinical GC samples were analyzed. Moreover, the anti-GC effects of natural products, their underlying mechanisms and potential targets were summarized. These summaries are intended to facilitate further relevant research, and accelerate the clinical applications of natural products in GC treatment.
Collapse
Affiliation(s)
- Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Yuan M, Feng Y, Zhao M, Xu T, Li L, Guo K, Hou D. Identification and verification of genes associated with hypoxia microenvironment in Alzheimer's disease. Sci Rep 2023; 13:16252. [PMID: 37759083 PMCID: PMC10533856 DOI: 10.1038/s41598-023-43595-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
As the incidence of Alzheimer's disease (AD) increases year by year, more people begin to study this disease. In recent years, many studies on reactive oxygen species (ROS), neuroinflammation, autophagy, and other fields have confirmed that hypoxia is closely related to AD. However, no researchers have used bioinformatics methods to study the relationship between AD and hypoxia. Therefore, our study aimed to screen the role of hypoxia-related genes in AD and clarify their diagnostic significance. A total of 7681 differentially expressed genes (DEGs) were identified in GSE33000 by differential expression analysis and cluster analysis. Weighted gene co-expression network analysis (WGCNA) was used to detect 9 modules and 205 hub genes with high correlation coefficients. Next, machine learning algorithms were applied to 205 hub genes and four key genes were selected. Through the verification of external dataset and quantitative real-time PCR (qRT-PCR), the AD diagnostic model was established by ANTXR2, BDNF and NFKBIA. The bioinformatics analysis results suggest that hypoxia-related genes may increase the risk of AD. However, more in-depth studies are still needed to investigate their association, this article would guide the insights and directions for further research.
Collapse
Affiliation(s)
- Mingyang Yuan
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Yanjin Feng
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Mingri Zhao
- School of Life Sciences, Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410000, China
| | - Ting Xu
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Liuhong Li
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Ke Guo
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China
| | - Deren Hou
- The Third Xiangya Hospital, Department of Neurology, Central South University, Changsha, 410000, China.
| |
Collapse
|
6
|
Miura T, Kouno T, Takano M, Kuroda T, Yamamoto Y, Kusakawa S, Morioka MS, Sugawara T, Hirai T, Yasuda S, Sawada R, Matsuyama S, Kawaji H, Kasukawa T, Itoh M, Matsuyama A, Shin JW, Umezawa A, Kawai J, Sato Y. Single-Cell RNA-Seq Reveals LRRC75A-Expressing Cell Population Involved in VEGF Secretion of Multipotent Mesenchymal Stromal/Stem Cells Under Ischemia. Stem Cells Transl Med 2023; 12:379-390. [PMID: 37263619 PMCID: PMC10267575 DOI: 10.1093/stcltm/szad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/15/2023] [Indexed: 06/03/2023] Open
Abstract
Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.
Collapse
Affiliation(s)
- Takumi Miura
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Megumi Takano
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Yumiko Yamamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | | | - Tohru Sugawara
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takamasa Hirai
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akifumi Matsuyama
- Center for Reverse TR, Osaka Habikino Medical Center, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Genomic Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Kawai
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
- Life Science Technology Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Abdelzaher WY, Ibrahim MA, Hassan M, El-Tahawy NFG, Fawzy MA, Hafez HM. Protective effect of eicosapentaenoic acid against estradiol valerate-induced endometrial hyperplasia via modulation of NF-κB/HIF-1α/VEGF signaling pathway in rats. Chem Biol Interact 2023; 373:110399. [PMID: 36774993 DOI: 10.1016/j.cbi.2023.110399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Early diagnosis and treatment of endometrial hyperplasia (EH) remains mandatory for endometrial cancer (EC) prevention. OBJECTIVE To study the possible protective effect of eicosapentaenoic acid (EPA) in EH - induced by estradiol valerate (EV) in rats. METHODS/MATERIALS Adult female Wistar rats were given EV with or without EPA for 10 days. The uterine changes were evaluated by both physical (weight index) and histopathological methods. The markers of oxidative stress (Uterine malondialdehyde (MDA) and serum total antioxidant capacity (TAC) as well as serum estradiol and progesterone levels, and apoptosis (uterine caspase-3) were determined. Immunohistochemical estimations of nuclear factor kappa B (NF-κB) and vascular endothelial growth factor (VEGF) in addition to hypoxia-inducible factor 1 alpha (HIF-1α) immunoblotting were measured in uterine tissue. KEY FINDINGS EV showed significant increase in uterine weight index that is accompanied with histopatholigical evidences of EH. Such changes were associated with significant alterations in oxidative stress markers, modulation of estradiol and progesterone serum levels, an increase in HIF-1α, NF-κB and VEGF immuno-expressions and a significant decrease in caspase-3. EPA, in either dose, showed significant amelioration in uterine weight index as well as in histopathological changes. Such effect was accompanied with significant improvement in the measured hormonal levels, oxidative stress, apoptosis, and inflammatory parameters. CONCLUSIONS EPA in the used doses provided biochemical and histopathological improvement in EV-induced EH via modulation of NF-κB/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Marwa Hassan
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
8
|
Hu L, Hu J, Huang Y, Zheng S, Yin J, Li X, Li D, Lv C, Li S, Hu W. Hypoxia-mediated activation of hypoxia-inducible factor-1α in head and neck squamous cell carcinoma: A review. Medicine (Baltimore) 2023; 102:e32533. [PMID: 36607847 PMCID: PMC9829281 DOI: 10.1097/md.0000000000032533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Since the 1950s, hypoxia has been recognized as a crucial characteristic of cancer cells and their microenvironment. Indeed, hypoxia promotes the growth, survival, and metastasis of cancer cells. In the early 1990s, we found that as many phenomena in hypoxia can occur through hypoxia-inducible factor-1α (HIF1α). HIF1α is known as an angiogenesis converter in hypoxia, which promotes tumorigenesis, development, immune escape, recurrence, etc; This page goes into great detail on how HIF1α is activated during hypoxia and how the 2 signaling channels interact. It specifically emphasizes the significance of reactive oxygen species, the function of the PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade, and outlines the similarities between the 2 important factors (reactive oxygen species and PI3K/the serine/threonine kinase Akt/mammalian target of rapamycin cascade), nuclear factor κB, for HIF1α Important implications, in an effort to offer fresh views for the treatment of head and neck squamous cell carcinoma and HIF1α research.
Collapse
Affiliation(s)
- Lanxin Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Hu
- Clinical Medicine, Nanchang University Queen Mary School, Nanchang, China
| | - Yanlin Huang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sihan Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ji Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Daiying Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Caifeng Lv
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenjian Hu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- * Correspondence: Wenjian Hu, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, O.182 Chunhui Road Longmatan District Luzhou Sichuan 646000, China (e-mail: )
| |
Collapse
|
9
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
11
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Molecular effects of genistein, as a potential anticancer agent, on CXCR-4 and VEGF pathway in acute lymphoblastic leukemia. Mol Biol Rep 2022; 49:4161-4170. [PMID: 35608747 DOI: 10.1007/s11033-022-07163-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is one of the angiogenic mediators that can be secreted by leukemic cells and plays an important role in tumor invasion and metastasis. Another important agent contributing to the relapse of ALL is C-X-C chemokine receptor type-4 (CXCR-4), expression of this receptor in cancer cells has been related to metastasis. It has been identified that genistein-a soy-derived isoflavonoid-has anti-angiogenesis functions. We aimed to show the effects of this compound on VEGF and CXCR-4 in Acute lymphoblastic leukemia (ALL) cell models. METHODS AND RESULTS The cytotoxicity of Genistein was measured using the MTS colorimetric assay. After being treated with Genistein, the expression of VEGF in mRNA and protein levels was measured in MOLT-4 and Jurkat cells. We also used flow cytometry assay to determine the expression of CXCR-4 in cell surfaces. We found that Genistein decreased cell viability in two cell models while was more effective on MOLT-4 cells. After Genistein-treatment, surface expression levels of CXCR-4 were decreased, while VEGF secretion and mRNA expression levels were increased in MOLT-4 and Jurkat cells. CONCLUSIONS The results suggest that Genistein may not be a reliable choice for the treatment of ALL; however, this different identified pattern can be useful for the recognition of VEGF and CXCR-4 modulators and thus for planning new treatments for leukemia and other VEGF related disorders.
Collapse
|
13
|
Danesh Pouya F, Rasmi Y, Nemati M. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer. Cancer Invest 2022; 40:516-543. [PMID: 35320055 DOI: 10.1080/07357907.2022.2055050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anti-metabolite drugs prevent the synthesis of essential cell growth compounds. 5-fluorouracil is used as an anti-metabolic drug in various cancers in the first stage of treatment. Unfortunately, in some cancers, 5-fluorouracil has low effectiveness because of its drug resistance. Studies have shown that drug resistance to 5-fluorouracil is due to the activation of specific signaling pathways and increased expressions of enzymes involved in drug metabolites. However, when 5-fluorouracil is used in combination with other drugs, the sensitivity of cancer cells to 5-fluorouracil increases, and the effect of drug resistance is reversed. This study discusses how the function of 5-fluorouracil in JAK/STAT, Wnt, Notch, NF-κB, and hedgehogs in some cancers.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Peng KY, Chou TC. Osthole Exerts Inhibitory Effects on Hypoxic Colon Cancer Cells via EIF2[Formula: see text] Phosphorylation-mediated Apoptosis and Regulation of HIF-1[Formula: see text]. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:621-637. [PMID: 35114913 DOI: 10.1142/s0192415x22500240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hypoxic microenvironment and dysregulated endoplasmic reticulum stress/unfolded protein response (UPR) system are considered important factors that promote cancer progression. Although osthole extracted from Cnidium monnieri(Fructus Cnidii) has been confirmed to exhibit an anticancer activity in various cancers, the effects of osthole in hypoxic colon cancer cells have not been explored. Therefore, the aim of this study was to examine whether osthole has an inhibitory effect on hypoxic colon cancer HCT116 cells and further investigate the underlying molecular mechanisms. Treatment with osthole significantly attenuated the cell viability, proliferation, and migration in hypoxic HCT116 cells. Osthole also activated UPR signaling such as phospho-eukaryotic initiation factor 2 alpha (EIF2[Formula: see text]/ATF4/CHOP/DR5 cascade accompanied by upregulation of pro-apoptotic proteins. Moreover, the tubule-like formation of human umbilical vein endothelial cells, the secretion of vascular endothelial growth factor A, and the expression and activity of hypoxia-inducible factor-1[Formula: see text] (HIF-1[Formula: see text] in hypoxic HCT116 cells were markedly suppressed by osthole. However, suppressing EIF2[Formula: see text] phosphorylation with salubrinal or ISRIB markedly reversed the effects of osthole on the expressions of pro-apoptotic proteins and HIF-1[Formula: see text]. Co-treatment of hypoxic HCT116 cells with osthole greatly increased the sensitivity to cisplatin and the expressions of phospho-EIF2[Formula: see text] and cleaved caspase 3. Collectively, the inhibitory effect of osthole in hypoxic HCT116 cells may be associated with EIF2[Formula: see text] phosphorylation-mediated apoptosis and translational repression of HIF-1[Formula: see text]. Taken together, osthole may be a potential agent in the treatment of colon cancer.
Collapse
Affiliation(s)
- Kui-Yuan Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan, ROC
| | - Tz-Chong Chou
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan, ROC.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, ROC.,Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan, ROC.,China Medical University Hospital, China Medical University, Taichung 404332, Taiwan, ROC.,Department of Biotechnology, Asia University, Taichung 41354, Taiwan, ROC.,Cathay Medical Research Institute, Cathay General Hospital, New Taipei City 22174, Taiwan, ROC
| |
Collapse
|
15
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
16
|
Effect of Regorafenib on P2X7 Receptor Expression and Different Oncogenic Signaling Pathways in a Human Breast Cancer Cell Line: A Potential of New Insight of the Antitumor Effects of Regorafenib. Curr Issues Mol Biol 2021; 43:2199-2209. [PMID: 34940128 PMCID: PMC8929109 DOI: 10.3390/cimb43030154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. P2X7 is a transmembrane receptor expressed in breast cancer and activated by the ATP tumor microenvironment, driving cell proliferation, angiogenesis, and metastasis via different signaling pathways. The role of the P2X7 receptor, hypoxia, and autophagy in regulating tumor progression is controversial. The multikinase inhibitor regorafenib prevents the activation of numerous kinases involved in angiogenesis, proliferation, and metastasis. The present study aimed to evaluate the modulatory effect of regorafenib on the hypoxia/angiogenesis/P2X7R/autophagy axis on the MCF7 breast cancer cell line and its impact on different signaling pathways involved in breast cancer pathogenesis. METHODS The levels of VEGF, VEGFR, PI3K, NF-κB, HIF-1α, and LC3-II were analyzed using ELISA, and caspase-3 activity was also assessed colorimetrically. Phosphorylated (p)-p38 MAPK and purinergic ligand-gated ion channel 7 (P2X7) receptor protein expression levels were analyzed via Western blotting. Reverse transcription-quantitative PCR was used to determine the mRNA expression levels of Beclin 1 (BECN1), LC3-II, and sequestosome 1 (p62). RESULTS Regorafenib reduced MCF7 cell viability in a dose-dependent manner. Furthermore, regorafenib significantly reduced levels of PI3K, NF-κB, VEGF, VEGFR, P2X7 receptor, and p-p38 MAPK protein expression, and markedly reduced p62 mRNA expression levels. However, regorafenib significantly increased caspase-3 activity, as well as BECN1 and LC3-II mRNA expression levels. CONCLUSIONS Regorafenib was demonstrated to possibly exhibit antitumor activity on the breast cancer cell line via modulation of the P2X7/HIF-1α/VEGF, P2X7/P38, P2X7/ERK/NF-κB, and P2X7/beclin 1 pathways.
Collapse
|
17
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
18
|
Li Z, Fan H, Cao J, Sun G, Sen Wang, Lv J, Xuan Z, Xia Y, Wang L, Zhang D, Xu H, Xu Z. Natriuretic peptide receptor a promotes gastric malignancy through angiogenesis process. Cell Death Dis 2021; 12:968. [PMID: 34671022 PMCID: PMC8528824 DOI: 10.1038/s41419-021-04266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) ranks the third among global cancer-related mortality, especially in East Asia. Angiogenesis plays an important role in promoting tumor progression, and clinical trials have demonstrated that anti-angiogenesis therapy is effective in GC management. Natriuretic peptide receptor A (NPRA) functions significantly in promoting GC development and progression. Whether NPRA can promote angiogenesis of GC remains unclear. Tumor samples collection and immunohistochemical experiment showed that the expression of NPRA was positively correlated with the expression of CD31 and vessel density. In vivo and in vitro analysis showed that NPRA could promote GC-associated angiogenesis and tumor metastasis. Results of Co-IP/MS showed that NPRA could prevent HIF-1α from being degraded by binding to HIF-1α. Protection of HIF-1α improved VEGF levels and thus promoted angiogenesis. In summary, NPRA protected HIF-1α from proteolysis by binding to HIF-1α, increased the expression of HIF-1α, and promoted GC angiogenesis. This study has discovered a new mechanism for NPRA to promote gastric cancer development and a new regulatory mechanism for HIF-1α.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice, Nude
- Models, Biological
- Neoplasm Staging
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prognosis
- Proteolysis
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
- Stomach Neoplasms/blood supply
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Up-Regulation/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Grants
- Youth Fund of Jiangsu Natural Science Foundation (BK20181081), Youth Program of National Natural Science Foundation of China (82002562), National Natural Science Foundation of China (81871946, 81902515, 81802917), Support Program for Young and Middle-aged Teachers of Nanjing Medical University, the Primary Research & Development Plan of Jiangsu Province (BE2016786), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801), Jiangsu Key Medical Discipline (General Surgery) (ZDXKA2016005), 511 Project of the First Affiliated Hospital of Nanjing Medical University.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
19
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
20
|
Wen JX, Tong YL, Ma X, Wang RL, Li RS, Song HT, Zhao YL. Therapeutic effects and potential mechanism of dehydroevodiamine on N-methyl-N'-nitro-N-nitrosoguanidine-induced chronic atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153619. [PMID: 34320422 DOI: 10.1016/j.phymed.2021.153619] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUNDS Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from a Chinese herbal medicine, named Euodiae Fructus (Wu-Zhu-Yu in Chinese). This study aimed to investigate the therapeutic effects and potential mechanism of DHE on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced chronic atrophic gastritis (CAG) based on integrated approaches. METHODS Therapeutic effects of DHE on serum biochemical indices and histopathology of gastric tissue in MNNG-induced CAG rats were analyzed. MNNG-induced GES-1 human gastric epithelial cell injury model was established. Cell viability and proliferation was quantified by a cell counting kit-8 assay. Cell morphology and mitochondrial membrane potential (MMP) were detected by a high content screening (HCS) assay. Cell migration and invasion were detected by a Transwell chamber. Moreover, UHPLC-Q-TOF/MS was performed to investigate the potential metabolites and signaling pathway affecting the protective effects of DHE on MNNG-induced cell migration and invasion of GES-1. Furthermore, in view of the key role of angiogenesis in the transformation of inflammation and cancer, this study explored relative mRNA and protein expression levels of HIF-1α-mediated VEGF pathway in vivo and in vitro by RT-PCR and Western Blotting, respectively. RESULTS The results showed that the therapeutic effects of DHE on CAG rats were presented in down-regulation serum biochemical indices and alleviating histological damage of gastric tissue. Besides, DHE has an effect on increasing cell proliferation of GES-1 cells, ameliorating MNNG-induced gastric epithelial cell damage and mitochondrial dysfunction. In addition, DHE could inhibit MNNG induced migration and invasion of GES-1 cells. Cell metabolomics analyses showed that the protective effect of DHE on GES-1 cells is mainly associated with the regulation of inflammation metabolites and energy metabolism related pathways. It was found that DHE has a regulating effect on tumor angiogenesis and can inhibit the relative gene and protein expression of HIF-1α-mediated VEGF signaling pathway. CONCLUSIONS The present work highlighted the role of DHE ameliorated gastric injury in MNNG-induced CAG rats in vivo and GES-1 cell migration in vitro by inhibiting HIF-1α/VEGF angiogenesis pathway. These results suggest that DHE may be the effective components of Euodiae Fructus, which provides a new agent for the treatment of CAG.
Collapse
Affiliation(s)
- Jian-Xia Wen
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Yu-Ling Tong
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui-Lin Wang
- Department of Integrative Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Song
- Department of Pharmacy, 900 Hospital of the Joint Logistics Team, Fuzhou, China.
| | - Yan-Ling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Zhao H, Hu H, Chen B, Xu W, Zhao J, Huang C, Xing Y, Lv H, Nie C, Wang J, He Y, Wang SQ, Chen XB. Overview on the Role of E-Cadherin in Gastric Cancer: Dysregulation and Clinical Implications. Front Mol Biosci 2021; 8:689139. [PMID: 34422902 PMCID: PMC8371966 DOI: 10.3389/fmolb.2021.689139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death all over the world. E-cadherin encoded by human CDH1 gene plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. Full-length E-cadhrin tethered on the cell membrane mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. After proteolysis, the extracellular fragment of the full-length E-cadhein is released into the extracellular environment and the blood, which is called soluble E-cadherin (sE-cadherin). sE-cadherin promots invasion and metastasis as a paracrine/autocrine signaling molecule in the progression of various types of cancer including gastric cancer. This review mainly summarizes the dysregulation of E-cadherin and the regulatory roles in the progression, invasion, metastasis, and drug-resistance, as well as its clinical applications in diagnosis, prognosis, and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Huang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yishu Xing
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Hu J, Li P, Shi B, Tie J. Effects and Mechanisms of Saikosaponin D Improving the Sensitivity of Human Gastric Cancer Cells to Cisplatin. ACS OMEGA 2021; 6:18745-18755. [PMID: 34337214 PMCID: PMC8319933 DOI: 10.1021/acsomega.1c01795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/25/2021] [Indexed: 05/13/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer deaths around the world. Chemoresistance is an important reason for poor prognosis of GC. Saikosaponin D (SSD) is a natural constituent from Radix Bupleuri and exhibits various activities including antitumors. This study investigated the effects and the mechanisms of SSD on cisplatin (cis-diamminedichloroplatinum, DDP) sensitivity of GC cells. Findings suggested that SSD could promote the inhibitory effect of DDP on proliferation and invasion and increase DDP-induced apoptosis in SGC-7901 and DDP-resistant cell line SGC-7901/DDP. We further identified that SSD increased levels of LC3 B and cleaved caspase 3 and decreased levels of p62, IKK β, p-IκB α, and NF-κB p65, suggesting that SSD might inhibit the IKK β/NF-κB pathway and induce both cell autophagy and apoptosis in SGC-7901 and SGC-7901/DDP. A further study indicated that SSD enhanced the effect of DDP-induced cleaved caspase 3 level rise and NF-κB pathway suppression, especially in SGC-7901/DDP cells. Conclusively, SSD enhanced DDP sensitivity of GC cells; the potential molecular mechanisms were that SSD-induced apoptosis and autophagy and inhibited the IKK β/NF-κB pathway in GC cells. These findings suggested that SSD might contribute to overcoming DDP resistance in GC treatment.
Collapse
Affiliation(s)
- Jianran Hu
- Department
of Biological Science and Technology, Jinzhong
University, Jinzhong 030619, China
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Ping Li
- Department
of Biological Science and Technology, Jinzhong
University, Jinzhong 030619, China
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Baozhong Shi
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| | - Jun Tie
- Department
of Biological Science and Technology, Changzhi
University, Changzhi 046011, China
| |
Collapse
|
23
|
NF-κB in Gastric Cancer Development and Therapy. Biomedicines 2021; 9:biomedicines9080870. [PMID: 34440074 PMCID: PMC8389569 DOI: 10.3390/biomedicines9080870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is considered one of the most common causes of cancer-related death worldwide and, thus, a major health problem. A variety of environmental factors including physical and chemical noxae, as well as pathogen infections could contribute to the development of gastric cancer. The transcription factor nuclear factor kappa B (NF-κB) and its dysregulation has a major impact on gastric carcinogenesis due to the regulation of cytokines/chemokines, growth factors, anti-apoptotic factors, cell cycle regulators, and metalloproteinases. Changes in NF-κB signaling are directed by genetic alterations in the transcription factors themselves, but also in NF-κB signaling molecules. NF-κB actively participates in the crosstalk of the cells in the tumor micromilieu with divergent effects on the heterogeneous tumor cell and immune cell populations. Thus, the benefits/consequences of therapeutic targeting of NF-κB have to be carefully evaluated. In this review, we address recent knowledge about the mechanisms and consequences of NF-κB dysregulation in gastric cancer development and therapy.
Collapse
|
24
|
Wang Y, Li Z, Teng M, Liu J. Dihydroartemisinin inhibits activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by inducing autophagy in A431 human cutaneous squamous cell carcinoma cells. Int J Med Sci 2021; 18:2705-2715. [PMID: 34104103 PMCID: PMC8176175 DOI: 10.7150/ijms.57167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, Guangdong, China
| | - Zhijia Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Muzhou Teng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Junlin Liu
- Department of Dermatology, the Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
25
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
27
|
Fan S, Wu K, Zhao M, Yuan J, Ma S, Zhu E, Chen Y, Ding H, Yi L, Chen J. LDHB inhibition induces mitophagy and facilitates the progression of CSFV infection. Autophagy 2020; 17:2305-2324. [PMID: 32924761 DOI: 10.1080/15548627.2020.1823123] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular metabolism caters to the energy and metabolite needs of cells. Although the role of the terminal metabolic enzyme LDHB (lactate dehydrogenase B) in the glycolysis pathway has been widely studied in cancer cells, its role in viral infection is relatively unknown. In this study, we found that CSFV (classical swine fever virus) infection reduces pyruvate levels while promotes lactate release in pigs and in PK-15 cells. Moreover, using a yeast two-hybrid screening system, we identified LDHB as a novel interacting partner of CSFV non-structural protein NS3. These results were confirmed via co-immunoprecipitation, glutathione S-transferase and confocal assays. Furthermore, knockdown of LDHB via interfering RNA induced mitochondrial fission and mitophagy, as detected reduced mitochondrial mass. Upon inhibition of LDHB, expression of the mitophagy proteins TOMM20 and VDAC1 decreased and the ubiquitination of MFN2, a mitochondrial fusion mediator, was promoted. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of autophagosomes to lysosomes in LDHB inhibition cells. Furthermore, LDHB inhibition promoted NFKB signaling, which was regulated by mitophagy; meanwhile, infection with CSFV negated these NFKB anti-viral responses. Inhibition of LDHB also inhibited apoptosis, providing an environment conducive to persistent viral infection. Finally, we demonstrated that LDHB inhibition promoted CSFV growth via mitophagy, whereas its overexpression decreased CSFV replication. Our data revealed a novel mechanism through which LDHB, a metabolic enzyme, mediates CSFV infection, and provides new avenues for the development of anti-viral strategies.Abbreviations: 3-MA:3-methyladenine; CCCP:carbonyl cyanide 3-chlorophenylhydrazone; CCK-8:cell counting kit-8; CSFV:classical swine fever virus; DAPI:4',6-diamidino-2-phenylindole; DMSO:dimethyl sulfoxide; EGFP:enhanced green fluorescent protein; FBS:fetal bovine serum; FITC:fluorescein isothiocyanate; GST:glutathione-S-transferase; HCV:hepatitis C virus; IFN:interferon; LDH:lactate dehydrogenase; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MFN2:mitofusin 2; MOI:multiplicity of infection; NFKB:nuclear factor kappa B subunit 1; NFKBIA:nuclear factor inhibitor alpha; NS3:nonstructural protein 3; NKIRAS2:NFKB inhibitor interacting Ras like 2; PRKN:parkin E3 ubiquitin protein ligase; PBS:phosphate-buffered saline; qRT-PCR:real-time quantitative reverse transcriptase polymerase chain reaction; RELA:RELA proto-oncogene, NF-kB subunit; shRNA: short hairpin RNA; siRNA: small interfering RNA; TCID50:50% tissue culture infectious doses; TEM:transmission electron microscopy; TNF:tumor necrosis factor; TOMM20:translocase of outer mitochondrial membrane 20; VDAC1:voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jin Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yuming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Korbecki J, Kojder K, Barczak K, Simińska D, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Hypoxia Alters the Expression of CC Chemokines and CC Chemokine Receptors in a Tumor-A Literature Review. Int J Mol Sci 2020; 21:ijms21165647. [PMID: 32781743 PMCID: PMC7460668 DOI: 10.3390/ijms21165647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on β chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (J.K.); (D.S.); (D.C.)
- Correspondence: ; Tel.: +48-914661515; Fax: +48-914661516
| |
Collapse
|
29
|
Liu Y, Wu J, Huang W, Weng S, Wang B, Chen Y, Wang H. Development and validation of a hypoxia-immune-based microenvironment gene signature for risk stratification in gastric cancer. J Transl Med 2020; 18:201. [PMID: 32410620 PMCID: PMC7226948 DOI: 10.1186/s12967-020-02366-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background Increasing evidences have found that the clinical importance of the interaction between hypoxia and immune status in gastric cancer microenvironment. However, reliable prognostic signatures based on combination of hypoxia and immune status have not been well-established. This study aimed to develop a hypoxia-immune-based gene signature for risk stratification in gastric cancer. Methods Hypoxia and immune status was estimated with transcriptomic profiles for a discovery cohort from GEO database using the t-SNE and ESTIMATE algorithms, respectively. The Cox regression model with the LASSO method was applied to identify prognostic genes and to develop a hypoxia-immune-based gene signature. The TCGA cohort and two independent cohorts from GEO database were used for external validation. Results Low hypoxia status (p < 0.001) and high immune status (p = 0.005) were identified as favorable factors for patients’ overall survival. By using the LASSO model, four genes, including CXCR6, PPP1R14A and TAGLN, were identified to construct a gene signature for risk stratification. In the discovery cohort (n = 357), patients with low risk yielded better outcomes than those with high risk regarding overall survival across and within TNM stage subgroups. Multivariate analysis identified the hypoxia-immune-based gene signature as an independent prognostic factor (p < 0.001). A nomogram integrating the gene signature and known risk factors yielded better performance and net benefits in calibration and decision curve analyses. Similar results were validated in the TCGA (n = 321) and two independent GEO (n = 300 and n = 136, respectively) cohorts. Conclusions The hypoxia-immune-based gene signature represents a promising tool for risk stratification tool in gastric cancer. It might serve as a prognostic classifier for clinical decision-making regarding individualized prognostication and treatment, and follow-up scheduling.
Collapse
Affiliation(s)
- Yifan Liu
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Huang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shaowen Weng
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yiming Chen
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hao Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
30
|
Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L, Xian CJ. Hydrocortisone Suppresses Early Paraneoplastic Inflammation And Angiogenesis To Attenuate Early Hepatocellular Carcinoma Progression In Rats. Onco Targets Ther 2019; 12:9481-9493. [PMID: 31807025 PMCID: PMC6850701 DOI: 10.2147/ott.s224618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inflammation is implicated in both hepatic cirrhosis development and hepatocellular carcinogenesis, and treatment with long-acting glucocorticoid dexamethasone prevented liver carcinogenesis in mice. However, it is unclear whether glucocorticoids have anti-inflammatory effect on hepatocellular carcinoma (HCC) and if short-acting glucocorticoids (with fewer adverse effects) inhibit paraneoplastic inflammation and HCC progression. Methods To investigate whether different types of anti-inflammatory agents attenuate HCC progression, the current study compared effects of treatments with hydrocortisone (a short-acting glucocorticoid) or aspirin on HCC progression. HCC was induced in diethylnitrosamine-treated rats which were randomly divided into 4 groups (n=8), respectively receiving orally once daily vehicle, glucuronolactone, glucuronolactone+hydrocortisone, and glucuronolactone+aspirin. Diethylnitrosamine (DEN) was given to rats in drinking water (100mg/L) to induce HCC. At weeks 12 and 16 post-induction, effects were compared on HCC nodule formation, microvessel density, and macrophage infiltration, and levels of paraneoplastic protein expression of tumor necrosis factor (TNF)-α, p38 mitogen-activated protein kinase (p38), phosphorylated p38 (p-p38), nuclear factor (NF)-κB, interleukin (IL)-10, hepatocyte growth factor (HGF), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF). Results Compared to the model and glucuronolactone alone groups, HCC nodule number and microvessel density in the glucuronolactone+hydrocortisone group were significantly lower at week 12. At week 12 but not week 16, significantly lower levels of macrophages, TNF-α, p-p38, NF-κB, IL-10, HGF, TGF-β1 and VEGF were observed in the paraneoplastic tissue of the glucuronolactone+hydrocortisone group when compared with the control and glucuronolactone groups. Conclusion The results suggest that hydrocortisone treatment reduces macrophage polarization, expression of inflammatory and anti-inflammatory cytokines, and angiogenesis in paraneoplastic tissue, and attenuates early HCC progression. Although hydrocortisone did not have attenuation effect on advanced solid tumor, the current study shows the potential benefits and supports potential clinical use of hydrocortisone in attenuating early progression of HCC, which is through suppressing paraneoplastic inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Haiyan Cui
- Department of Internal Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Hongling Niu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiangzhi Li
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jianghui Dong
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
31
|
Pyo JS, Kim EK. Clinicopathological significance and prognostic implication of nuclear factor-κB activation in colorectal cancer. Pathol Res Pract 2019; 215:152469. [PMID: 31201065 DOI: 10.1016/j.prp.2019.152469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the clinicopathological significance of phosphorylated nuclear factor-κB (pNF-κB) expression, and its impact on epithelial-mesenchymal transition and angiogenesis in colorectal cancer (CRC). METHODS We carried out immunohistochemistry of pNF-κB on 261 human CRC tissues, and evaluated nuclear expression, regardless of cytoplasmic expression. We also investigated the correlation between pNF-κB expression and clinicopathological characteristics, survival, and epithelial-mesenchymal transition and angiogenesis-related markers in CRC. RESULTS pNF-κB was expressed in the nuclei of 164 of the 261 CRC tissues (62.8%). Furthermore, pNF-κB was significantly correlated with frequent perineural invasion, lymph node metastasis, and higher pTNM stage. However, there was no significant correlation between pNF-κB expression and other clinicopathological parameters. Among the epithelial-mesenchymal transition markers examined, SNAIL expression was significantly correlated with pNF-κB expression (P = 0.001) but E-cadherin expression was not. CRC with pNF-κB expression had significantly higher SIRT1 expression levels and hypoxia-inducible factor-1α expression levels than CRC without pNF-κB expression (P < 0.001 and P < 0.001, respectively). However, there was no correlation between the expression levels of pNF-κB and VEGF. pNF-κB expression was significantly correlated with worse overall and recurrence-free survival rates (P < 0.001 and P < 0.001, respectively). CONCLUSION pNF-κB expression was significantly correlated with aggressive tumor behaviors and worse survival rates. Furthermore, pNF-κB expression may affect tumor invasion and progression through SNAIL-related epithelial-mesenchymal transition and SIRT1- and hypoxia-inducible factor-1α-induced angiogenesis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Al-Akra L, Bae DH, Leck LYW, Richardson DR, Jansson PJ. The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance. Biochim Biophys Acta Gen Subj 2019; 1863:1390-1397. [PMID: 31202693 DOI: 10.1016/j.bbagen.2019.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Multi-drug resistance (MDR) is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Moreover, the tumor micro-environment is essential to the formation of drug resistant cancers. Recent evidence indicates that the tumor micro-environment is a critical regulator of cancer progression, distant metastasis and acquired resistance of tumors to various therapies. Despite significant advances in chemotherapy and radiotherapy, the development of therapeutic resistance leads to reduced drug efficacy. SCOPE OF REVIEW This review highlights mechanistic aspects of the biochemistry of the tumor micro-enviroment, such as the hypoglycaemia, reactive oxygen species (ROS), hypoxia and their effects in propagating MDR. This is achieved through: (A) increased survival via autophagy and failure of apoptosis; (B) altered metabolic processing; and (C) reduction in drug delivery and uptake or increased drug efflux. MAJOR CONCLUSIONS The development of MDR in cancer has been demonstrated to be majorly influenced by naturally occurring stressors within the tumor micro-environment, as well as chemotherapeutics. Thus, the tumor micro-environment is currently emerging as a major focus of research which needs to be carefully addressed before cancer can be successfully treated. GENERAL SIGNIFICANCE Elucidating the biochemical mechanisms which promote MDR is essential in development of effective therapeutics that can overcome these acquired defences in cancer cells.
Collapse
Affiliation(s)
- Lina Al-Akra
- Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Lionel Y W Leck
- Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
33
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
34
|
Clinical and Pre-clinical Methods for Quantifying Tumor Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:19-41. [PMID: 31201714 DOI: 10.1007/978-3-030-12734-3_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia, a prevalent characteristic of most solid malignant tumors, contributes to diminished therapeutic responses and more aggressive phenotypes. The term hypoxia has two definitions. One definition would be a physiologic state where the oxygen partial pressure is below the normal physiologic range. For most normal tissues, the normal physiologic range is between 10 and 20 mmHg. Hypoxic regions develop when there is an imbalance between oxygen supply and demand. The impact of hypoxia on cancer therapeutics is significant: hypoxic tissue is 3× less radiosensitive than normoxic tissue, the impaired blood flow found in hypoxic tumor regions influences chemotherapy delivery, and the immune system is dependent on oxygen for functionality. Despite the clinical implications of hypoxia, there is not a universal, ideal method for quantifying hypoxia, particularly cycling hypoxia because of its complexity and heterogeneity across tumor types and individuals. Most standard imaging techniques can be modified and applied to measuring hypoxia and quantifying its effects; however, the benefits and challenges of each imaging modality makes imaging hypoxia case-dependent. In this chapter, a comprehensive overview of the preclinical and clinical methods for quantifying hypoxia is presented along with the advantages and disadvantages of each.
Collapse
|
35
|
Han T, Yan J, Chen H, Ji Y, Chen J, Cui J, Shen W, Zou J. HIF-1α contributes to tube malformation of human lymphatic endothelial cells by upregulating VEGFR-3. Int J Oncol 2018; 54:139-151. [PMID: 30431105 PMCID: PMC6254933 DOI: 10.3892/ijo.2018.4623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is upregulated in various tumors and associated with lymphangiogenesis and angiogenesis during tumor development and metastasis. However, the role of HIF-1α in cystic lymphatic malformations (cLM) remains unclear. In the present study, expression of HIF-1α and vascular endothelial growth factor receptor 3 (VEGFR-3) was evaluated in 20 pairs of cLM specimens from patients who accepted curative surgery at Children’s Hospital of Nanjing Medical University (Nanjing, China). Additionally, a stable HIF-1α-overexpressing human lymphatic endothelial cell (HLEC) line was established. Overexpression and silencing of HIF-1α were used to investigate the biological role in colony formation, migration and lymphatic tube formation. HIF-1α and VEGFR-3 were upregulated in cLM specimens compared with adjacent normal tissues. In addition, HIF-1α effectively induced HLEC colony formation and migration. Furthermore, lymphatic malformation of HLECs was promoted in vitro by overexpression of HIF-1α. HIF-1α overexpression upregulated VEGFR-3 during lymphangiogenesis. Additionally, expression of lymphatic endothelial markers prospero homeobox protein 1 and lymphatic vessel endothelial hyaluronan receptor 1 increased significantly during lymphatic tube malformation. The presented data demonstrated that HIF-1α overexpression in HLECs promoted colony formation, migration and tube malformation via upregulation of VEGFR-3. These findings may assist in the development of HIF-1α-targeted cLM therapeutics in the future.
Collapse
Affiliation(s)
- Tao Han
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Haini Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yi Ji
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jianbing Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Cui
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jijun Zou
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
36
|
Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS–HIF-1α–AQP3–ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene 2018; 37:3549-3561. [DOI: 10.1038/s41388-018-0208-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
|
37
|
The prognostic role of perioperative allogeneic blood transfusions in gastric cancer patients undergoing curative resection: A systematic review and meta-analysis of non-randomized, adjusted studies. Eur J Surg Oncol 2018; 44:404-419. [PMID: 29398320 DOI: 10.1016/j.ejso.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/25/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
The impact of allogeneic perioperative blood transfusions (APTs) on the prognosis of gastric cancer patients undergoing curative-intent gastrectomy is still a highly debated topic. Two meta-analyses were published in 2015, and new studies report conflicting results. A literature review was conducted using PubMed, Scopus, the Cochrane Central Register of Controlled Trials and the Cochrane Database of Systematic Reviews, updated to March 1, 2016. Thirty-eight non-randomized studies reporting data on overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS) and postoperative complications (PCs) were included. An inverse variance random-effects meta-analysis was conducted. APTs showed an association with worse OS, DFS, DSS and an increased number of PCs. The hazard ratio (HR) for OS was 1.49, with a 95% confidence interval (95% CI) of 1.32-1.69 (p < .00001; Q-test p = .001, I-squared = 56%). After outlier exclusion, the HR for OS was 1.34 (95% CI = 1.23-1.45, p < .00001; Q-test p = .64, I-squared = 0%). The HR for DFS was 1.48 (95% CI = 1.18-1.86, p = .0007; Q-test p = .31, I-squared = 16%), and the HR for DSS was 1.66 (95% CI = 1.5-2.19, p = .0004; Q-test p = .96, I-squared = 0%). The odds ratio for PCs was 3.33 (95% CI = 2.10-5.29, p < .00001; Q-test p = .14, I-squared = 42%). This meta-analysis showed a significant association between transfusions and OS, DFS, DSS and PCs. The quality of the evidence was low. Aggregation, selection and selective reporting bias were detected. The biases shifted the results towards significance. Further studies using accurate adjustment methods are needed. Until such additional studies are performed, caution in administering transfusions and optimization of cancer patient blood management are warranted.
Collapse
|
38
|
Kim SL, Park YR, Lee ST, Kim SW. Parthenolide suppresses hypoxia-inducible factor-1α signaling and hypoxia induced epithelial-mesenchymal transition in colorectal cancer. Int J Oncol 2017; 51:1809-1820. [PMID: 29075793 DOI: 10.3892/ijo.2017.4166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 11/06/2022] Open
Abstract
Activation of hypoxia-inducible factor 1α (HIF‑1α) is frequently observed in solid tumors and it has been associated with various pathophysiological processes, including epithelial‑mesenchymal transition (EMT). Previously, we reported that parthenolide (PT), an inhibitor of nuclear factor-κB (NF-κB), is a promising anticancer agent because it promotes apoptosis of human colorectal cancer (CRC). Here, we investigated a new molecular mechanism by which PT acts on HIF‑1α and hypoxia contributing to EMT by NF‑κB inhibition. Cell viability, DNA binding activity, vascular cell tube formation and cell motility were studied after treatment of PT in hypoxic or normoxic condition. Moreover, effects of PT on hypoxia signaling and hypoxia-induced EMT signaling were investigated. We also examined the inhibitory effect of PT on CRC progression in xenografts. We demonstrated that PT markedly inhibits hypoxia dependent HIF‑1α activity and angiogenesis by preventing NF-κB activation. We also report that PT decreases the level of proteins associated with glucose metabolism, angiogenesis, development and survival that are regulated by HIF‑1α. Furthermore, we verified that PT protects the morphological change from epithelial to mesenchymal state, inhibits matrix metalloproteinase (MMP) enzyme activity and decreases cell motility involved in the -regulation of the hypoxia-induced EMT markers. In addition, PT inhibits growth in CRC xenograft models and regulates NF‑κB, HIF‑1α and EMT specific marker in tissue specimens. Our data demonstrated that PT can inhibit HIF‑1α signaling and hypoxia-induced EMT, suggesting a novel molecular mechanism for HIF‑1α mediated cancer progression and metastasis.
Collapse
Affiliation(s)
- Se Lim Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| | - Young Ran Park
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
39
|
Hu Y, E H, Yu X, Li F, Zeng L, Lu Q, Xi X, Shen L. Correlation of quantitative parameters of magnetic resonance perfusion-weighted imaging with vascular endothelial growth factor, microvessel density and hypoxia-inducible factor-1α in nasopharyngeal carcinoma: Evaluation on radiosensitivity study. Clin Otolaryngol 2017; 43:425-433. [PMID: 28892580 DOI: 10.1111/coa.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate the correlation of parameters of magnetic resonance perfusion-weighted imaging (MR-PWI) with the expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α) and microvessel density (MVD) in nasopharyngeal carcinoma (NPC) so as to explore the value of predicting radiosensitivity. DESIGN A prospective study. SETTING Department of Head-and-neck radiotherapy in Hunan Cancer Hospital. PARTICIPANTS Ninety-four patients of NPC were included between December 2013 and December 2014. MAIN OUTCOME MEASURES The expression of VEGF, MVD and HIF-1α was studied by immunohistochemistry, and magnetic resonance perfusion-weighted imaging (MR-PWI) was performed before and after undergoing radiotherapy (20 Gy dose). Parameters of MR-PWI, volume of primary tumour and rate of tumour remission were measured and calculated. Patients with primary local tumour were then divided into completely response group (CR group) and partially response group (non-CR group) according to tumour regression condition. Relevant parameters were analysed by Spearman, and diagnostic efficiency of radiosensitivity was analysed by receiver operating characteristic curve (ROC). RESULTS The expression of VEGF was positively correlated with MVD (r = .322,P < .05), but the expression of HIF-1α was no significant correlations with VEGF and MVD. The expression VEGF was in positive correlation with fractional plasma volume (fpv) (r = .339, P = .05) before radiotherapy. There was a significant difference in the quantitative parameters of MR-PWI between CR group and non-CR group during the course of radiotherapy and at the end of radiotherapy treatment. The change of blood reflux constant (Δkep20) and extravascular extracellular space volume fraction (ΔVe20) before and after treatment was positively correlated with primary local tumour remission condition after 3 month treatment; Δkep and ΔVe were negatively correlated with primary local tumour remission condition after 3 months. Tumour regression rate was only positively correlated with Ve and the average volume of primary tumour after 2 week treatment (V1). ROC curve showed that R20 ≥ 65.69%, and was considered as a threshold to predict primary local tumour remission, with a sensitivity of 0.84 and specificity of 0.69, and area under the curve was 0.819 (P = .000). CONCLUSIONS The parameters of MR-PWI with the expression of VEGF, HIF-1α and MVD could be guidance for predicting radiosensitivity in NPC.
Collapse
Affiliation(s)
- Y Hu
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - H E
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - X Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - F Li
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - L Zeng
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Q Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - X Xi
- Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - L Shen
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Guan XW, Zhao F, Wang JY, Wang HY, Ge SH, Wang X, Zhang L, Liu R, Ba Y, Li HL, Deng T, Zhou LK, Bai M, Ning T, Zhang HY, Huang DZ. Tumor microenvironment interruption: a novel anti-cancer mechanism of Proton-pump inhibitor in gastric cancer by suppressing the release of microRNA-carrying exosomes. Am J Cancer Res 2017; 7:1913-1925. [PMID: 28979813 PMCID: PMC5622225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023] Open
Abstract
Poor prognosis of gastric cancer is related to not only malignancy of gastric cancer cells, but also the tumor microenvironment. Thus drugs, which can inhibit both of them, are urgently needed to be explored. Studies on effect of Proton-pump inhibitors (PPIs) in anti-neoplasms are increasing, but is rare in gastric in gastric cancer. Here we investigated how the gastric cancer microenvironment is regulated by PPIs. The objective response rate of gastric cancer patients in our hospital treated by PPIs is investigated. PPIs' effects were further explored by observing the change of microRNAs, cytokines, cellular apoptosis. Bioinformatic pathway analysis of microarray was used to discover the pathway involved in PPIs' regulation of gastric cancer microenvironments. Immunoblotting assays and qRT-PCR were used to define molecular events with PPIs treatment. We report here that PPIs can improve the prognosis of advanced gastric cancer patients; and inhibit the progress of gastric cancer both in vivo and in vitro. Moreover, high dose of PPIs can regulate the pathway associated with tumor malignancy and microenvironment via inhibiting the release of exosomes, which packed microRNAs. PPIs can inhibit the transformation of CAFs (cancer associated fibroblasts) and cytokines released from CAFs. In addition, PPIs inhibit the malignancy of gastric cancer through regulating HIF-1α-FOXO1 axis. High dose of PPIs can inhibit malignancy of gastric cancer and regulate its surrounding tumor microenvironment. This finding suggests that PPIs maybe of potential value as a therapeutic tool for treatment of gastric cancer.
Collapse
Affiliation(s)
- Xu-Wen Guan
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Fang Zhao
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Jing-Ya Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hai-Yan Wang
- Department of Radiotherapy, Cangzhou Central HospitalHebei, China
| | - Shao-Hua Ge
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Xia Wang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Le Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Yi Ba
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hong-Li Li
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ting Deng
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Li-Kun Zhou
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ming Bai
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Tao Ning
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hai-Yang Zhang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Ding-Zhi Huang
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| |
Collapse
|
41
|
Manresa MC, Taylor CT. Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cell Mol Gastroenterol Hepatol 2017; 3:303-315. [PMID: 28462372 PMCID: PMC5404106 DOI: 10.1016/j.jcmgh.2017.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia). Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs), which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms.
Collapse
Key Words
- CD, Crohn’s disease
- DMOG, dimethyloxalylglycine
- DSS, dextran sodium sulfate
- Epithelial Barrier
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- Hypoxia
- Hypoxia-Inducible Factor (HIF) Hydroxylases
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- NF-κB, nuclear factor-κB
- PHD, hypoxia-inducible factor–prolyl hydroxylases
- TFF, trefoil factor
- TJ, tight junction
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
- Mario C. Manresa
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
42
|
Sokolova O, Naumann M. NF-κB Signaling in Gastric Cancer. Toxins (Basel) 2017; 9:toxins9040119. [PMID: 28350359 PMCID: PMC5408193 DOI: 10.3390/toxins9040119] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Diet, obesity, smoking and chronic infections, especially with Helicobacter pylori, contribute to stomach cancer development. H. pylori possesses a variety of virulence factors including encoded factors from the cytotoxin-associated gene pathogenicity island (cagPAI) or vacuolating cytotoxin A (VacA). Most of the cagPAI-encoded products form a type 4 secretion system (T4SS), a pilus-like macromolecular transporter, which translocates CagA into the cytoplasm of the host cell. Only H. pylori strains carrying the cagPAI induce the transcription factor NF-κB, but CagA and VacA are dispensable for direct NF-κB activation. NF-κB-driven gene products include cytokines/chemokines, growth factors, anti-apoptotic factors, angiogenesis regulators and metalloproteinases. Many of the genes transcribed by NF-κB promote gastric carcinogenesis. Since it has been shown that chemotherapy-caused cellular stress could elicit activation of the survival factor NF-κB, which leads to acquisition of chemoresistance, the NF-κB system is recommended for therapeutic targeting. Research is motivated for further search of predisposing conditions, diagnostic markers and efficient drugs to improve significantly the overall survival of patients. In this review, we provide an overview about mechanisms and consequences of NF-κB activation in gastric mucosa in order to understand the role of NF-κB in gastric carcinogenesis.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany.
| |
Collapse
|
43
|
An J, Kang Q, Pan YM, Sun W, Wang X, Qi YJ. Clinical significance of HIF-1α expression in gastric malignant transformation in people from high altitude area of Qinghai. Shijie Huaren Xiaohua Zazhi 2017; 25:404-411. [DOI: 10.11569/wcjd.v25.i5.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of hypoxia inducible factor-1α (HIF-1α) in gastric malignant transformation in people from high altitude area of Qinghai, China.
METHODS RT-PCR was used to detect the expression of HIF-1α gene in 7 cell lines and 27 pairs of GC and matched tumor adjacent normal gastric mucosa tissues. Using tissue microarray including 57 normal gastric mucosa tissues, 37 chronic atrophic gastritis tissues, 34 intestinal metaplasia tissues, and 146 gastric cancer (GC) tissues, immunohistochemistry (IHC) was performed to detect the level of HIF-1α protein expression.
RESULTS The expression of HIF-1α at the mRNA level was different in GC cell lines. HIF-1αexpression in AGS, SGC7901, and N87 cells was higher than that in MGC803, BGC823, PAMC82 and MKN45 cells. The level of HIF-1α expression was significantly higher in GC tissues (66.6%, 18/27) compared with normal gastric mucosa tissues (26.3%, 15/57; P < 0.001). IHC data showed that the positive rate of HIF-1α was 64.8% (24/37) in chronic atrophic gastritis tissues, 61.7% (21/34) in intestinal metaplasia tissues, and 56.8% (83/146) in GC tissues, all of which were significantly higher than that in normal tissues (26.3%, 15/57). Expression of HIF-1α was positively associated with age in GC (P < 0.05). Kaplan-Meier analysis showed that patients with a low level of HIF-1α had apparently better survival than those with a high level (P < 0.0001). HIF-1α protein (RR = 3.229, 95%CI: 2.024-5.151) was identified to be an independent risk factor for the outcome of GC patients.
CONCLUSION High HIF-1α expression is associated with gastric malignant transformation and poor prognosis in high altitude areas.
Collapse
|
44
|
Huang DY, Dai ZR, Li WM, Wang RG, Yang SM. Inhibition of EGF expression and NF-κB activity by treatment with quercetin leads to suppression of angiogenesis in nasopharyngeal carcinoma. Saudi J Biol Sci 2016; 25:826-831. [PMID: 29740251 PMCID: PMC5936869 DOI: 10.1016/j.sjbs.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The present study was performed to investigate the effect of quercetin on nasopharyngeal carcinoma (NPC) angiogenesis. The real-time RT-PCR and enzyme-linked immunosorbent assays (ELISA) were performed to analyze the expression levels of vascular endothelial growth factor (VEGF) in nasopharyngeal carcinoma cell lines prior to and after the quercetin treatment. Effect of quercetin on the rate of cell proliferation was measured by MTT assay. It was observed that quercetin treatment at a concentration of 10 mg/mL reduced the rate of NPC039 cell viability to 36% compared to control after 24 h. The expression of VEGF and activity of NF-κB was also markedly reduced. The ability of tube formation in HUVECs was inhibited significantly on exposure to quercetin compared to the untreated cells. Therefore, quercetin plays an important role in the inhibition of NPC039 nasopharyngeal carcinoma and can be of therapeutic importance.
Collapse
Affiliation(s)
- Dong-Yan Huang
- Department of Otolaryngology-Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi-Rao Dai
- Department of Otolaryngology, The First Affiliated Hospital of PLA General Hospital, Beijing 100853, China
| | - Wei-Min Li
- Department of Otolaryngology-Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Rong-Guan Wang
- Department of Otolaryngology-Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Shi-Ming Yang
- Department of Otolaryngology-Head and Neck Surgery, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
45
|
Seebacher N, Lane DJR, Richardson DR, Jansson PJ. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med 2016; 96:432-45. [PMID: 27154979 DOI: 10.1016/j.freeradbiomed.2016.04.201] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within.
Collapse
Affiliation(s)
- Nicole Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
46
|
Ko YS, Cho SJ, Park J, Choi Y, Lee JS, Youn HD, Kim WH, Kim MA, Park JW, Lee BL. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling. APMIS 2016; 124:748-56. [PMID: 27365055 DOI: 10.1111/apm.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/20/2016] [Indexed: 12/01/2022]
Abstract
Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Young San Ko
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Jin Cho
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Jinju Park
- Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yiseul Choi
- Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Hong-Duk Youn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea.,Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
SHIDA MASAAKI, KITAJIMA YOSHIHIKO, NAKAMURA JUN, YANAGIHARA KAZUYOSHI, BABA KOICHI, WAKIYAMA KOTA, NOSHIRO HIROKAZU. Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia. Int J Oncol 2016; 48:1379-90. [DOI: 10.3892/ijo.2016.3359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
|
48
|
Shum LC, White NS, Mills BN, Bentley KLDM, Eliseev RA. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation. Stem Cells Dev 2015; 25:114-22. [PMID: 26487485 DOI: 10.1089/scd.2015.0193] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.
Collapse
Affiliation(s)
- Laura C Shum
- 1 Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Noelle S White
- 1 Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Bradley N Mills
- 2 Department of Neurology, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Karen L de Mesy Bentley
- 1 Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry , Rochester, New York.,3 Department of Pathology, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Roman A Eliseev
- 1 Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry , Rochester, New York.,3 Department of Pathology, University of Rochester School of Medicine and Dentistry , Rochester, New York
| |
Collapse
|
49
|
Miles SL, Fischer AP, Joshi SJ, Niles RM. Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells. BMC Cancer 2015; 15:867. [PMID: 26547841 PMCID: PMC4636772 DOI: 10.1186/s12885-015-1878-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background Hypoxia inducible factor-1 alpha (HIF-1α) is thought to play a role in melanoma carcinogenesis. Posttranslational regulation of HIF-1α is dependent on Prolyl hydroxylase (PHD 1–3) and Factor Inhibiting HIF (FIH) hydroxylase enzymes, which require ascorbic acid as a co-factor for optimal function. Depleted intra-tumoral ascorbic acid may thus play a role in the loss of HIF-1α regulation in melanoma. These studies assess the ability of ascorbic acid to reduce HIF-1α protein and transcriptional activity in metastatic melanoma and reduce its invasive potential. Methods HIF-1α protein was evaluated by western blot, while transcriptional activity was measured by HIF-1 HRE-luciferase reporter gene activity. Melanoma cells were treated with ascorbic acid (AA) and ascorbate 2-phosphate (A2P) to assess their ability to reduce HIF-1α accumulation and activity. siRNA was used to deplete cellular PHD2 in order to evaluate this effect on AA’s ability to lower HIF-1α levels. A2P’s effect on invasive activity was measured by the Matrigel invasion assay. Data was analyzed by One-way ANOVA with Tukey’s multiple comparisons test, or Student-T test as appropriate, with p < .05 considered significant. Results Supplementation with both AA and A2P antagonized normoxic as well as cobalt chloride- and PHD inhibitor ethyl 3, 4-dihydroxybenzoate induced HIF-1α protein stabilization and transcriptional activity. Knockdown of the PHD2 isoform with siRNA did not impede the ability of AA to reduce normoxic HIF-1α protein. Additionally, reducing HIF-1α levels with A2P resulted in a significant reduction in the ability of the melanoma cells to invade through Matrigel. Conclusion These studies suggest a positive role for AA in regulating HIF-1α in melanoma by demonstrating that supplementation with either AA, or its oxidation-resistant analog A2P, effectively reduces HIF-1α protein and transcriptional activity in metastatic melanoma cells. Our data, while supporting the function of AA as a necessary cofactor for PHD and likely FIH activity, also suggests a potential non-PHD/FIH role for AA in HIF-1α regulation by its continued ability to reduce HIF-1α in the presence of PHD inhibition. The use of the oxidation-resistant AA analog, A2P, to reduce the ability of HIF-1α to promote malignant progression in melanoma cells and enhance their response to therapy warrants further investigation.
Collapse
Affiliation(s)
- Sarah L Miles
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| | - Adam P Fischer
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| | - Sandeep J Joshi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Richard M Niles
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
50
|
Ko YS, Cho SJ, Park J, Kim Y, Choi YJ, Pyo JS, Jang BG, Park JW, Kim WH, Lee BL. Loss of FOXO1 promotes gastric tumour growth and metastasis through upregulation of human epidermal growth factor receptor 2/neu expression. Br J Cancer 2015; 113:1186-96. [PMID: 26448177 PMCID: PMC4647872 DOI: 10.1038/bjc.2015.273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/04/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The biological significance of FOXO1, a member of the forkhead box O transcription factor family, in gastric cancer (GC) remains unclear. The present study provides direct evidence of the role of FOXO1 in tumour growth and metastasis of GC in relation to human epidermal growth factor receptor 2 (HER2). METHODS The expressions of FOXO1 and HER2 were modulated in GC cell lines (SNU-638, MKN45, SNU-216 and NCI-N87) by stable transfections. The effects of transfection on GC phenotypes were evaluated in vitro and in animal models. In addition, the relationship between FOXO1 and HER2 was analysed using GC clinical specimens, cell lines and xenografts. RESULTS FOXO1 silencing in GC cells increased colony formation and mesenchymal transition in vitro, as well as tumour growth and metastasis in nude mice, whereas HER2 silencing induced the opposite results.. Furthermore, an inverse relationship between FOXO1 and HER2 was found in clinical specimens of GC, GC cells and GC xenograft tumours. Although a negative crosstalk between these two molecules was shown, double knockdown of both FOXO1 and HER2 in GC cells revealed that HER2 silencing reversed the FOXO1 shRNA-induced migration and invasion even without the FOXO1 restoration. CONCLUSIONS Our results indicate that loss of FOXO1 promotes GC growth and metastasis by upregulating HER2 expression and that the HER2 expression is more critical to the induction of GC cell metastasis. The present study provides evidence that the FOXO1/HER2 pathway may regulate GC progression in a subgroup of GC patients.
Collapse
Affiliation(s)
- Young San Ko
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea
| | - Sung Jin Cho
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea
| | - Jinju Park
- Tumour Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Yong Joon Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jung-Soo Pyo
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju 690-767, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, South Korea.,Tumour Biology (Cancer Research Institute), Seoul National University College of Medicine, Seoul 110-799, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, South Korea
| |
Collapse
|