1
|
Liu H, Chen S, Xiang H, Xiao J, Zhao S, Zhang X, Shu Z, Zhang J, Ouyang J, Liu Q, Quan Q, Fan J, Gao P, Zheng X, Chen AF, Lu H. S1PR3 in hippocampal neurons improves synaptic plasticity and decreases depressive behavior via downregulation of RhoA/ROCK1. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111256. [PMID: 39828081 DOI: 10.1016/j.pnpbp.2025.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The study investigates how Sphingosine-1-phosphate receptor 3 (S1PR3) and the Chronic Unpredictable Mild Stress (CUMS) affects depression-like behaviors. The S1P/S1PR3 signaling pathway is known to play a role in mood regulation, but it is not yet fully understood how it is connected to depression. This study looks to further explore this topic. To investigate the effect of CUMS on S1PR3 expression in hippocampus neurons and the synaptic plasticity, we observed animals' behavior with Sucrose Preference Test (SPT), Forced Swim Test (FST) and Open Field Test (OFT). Combining molecular and histological analysis, we investigated the S1PR3 expression, the change in synapse density, and synaptic structure change in the hippocampus. The CUMS caused a significant decrease in the S1PR3 expression, the density of the synaptic spine and synaptic ultrastructure change in mice. On the other hand, over-expression of S1PR3 by adeno-associated virus (AAV) in hippocampal neurons alleviated the depressive-like behaviors and synaptic deficits observed in stress-susceptible animals. Furthermore, the depressive-like phenotype and synaptic impairments were normalized by the expression of RhoA, implicating the RhoA/ROCK1 pathway in S1PR3 actions. Collectively, our findings provide strong evidence that S1PR3 plays a key role in hippocampal synaptic plasticity and depression and that modulation of S1PR3/RhoA/ROCK1 signaling may offer a novel therapeutic strategy for MDD. This study not only underscores the therapeutic potential of S1PR3 but also provides novel insights into the molecular mechanisms underlying depression.
Collapse
Affiliation(s)
- Huiqin Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shaoli Zhao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Zhang
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Zhihao Shu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Quanjun Liu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Quan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianing Fan
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Peng Gao
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinru Zheng
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F Chen
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Li N, Li G. Sphingolipid signaling in kidney diseases. Am J Physiol Renal Physiol 2025; 328:F431-F443. [PMID: 39933715 DOI: 10.1152/ajprenal.00193.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Sphingolipids are a family of bioactive lipids. The key components include ceramides, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate. Sphingolipids were originally considered to be primarily structural elements of cell membranes but were later recognized as bioactive signaling molecules that play diverse roles in cellular behaviors such as cell differentiation, migration, proliferation, and death. Studies have demonstrated changes in key components of sphingolipids in the kidneys under different conditions and their important roles in the renal function and the pathogenesis of various kidney diseases. This review summarizes the most recent advances in the role of sphingolipid signaling in kidney diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Kumar S, Singh A, Pandey P, Khopade A, Sawant KK. Application of sphingolipid-based nanocarriers in drug delivery: an overview. Ther Deliv 2024; 15:619-637. [PMID: 39072358 PMCID: PMC11412150 DOI: 10.1080/20415990.2024.2377066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sphingolipids (SL) are well recognized for their cell signaling through extracellular and intracellular pathways. Based on chemistry different types of SL are biosynthesized in mammalian cells and have specific function in cellular activity. SL has an ampiphilic structure with have hydrophobic body attached to the polar head enables their use as a drug delivery agent in the form of nanocarriers. SL-based liposomes can improve the solubility of lipophilic drugs through host and drug complexes and are more stable than conventional liposomal formulations. Preclinical studies of SL nanocarriers are reported on topical delivery, oral delivery, ocular delivery, chemotherapeutic delivery, cardiovascular delivery and Alzheimer's disease. The commercial challenges and patents related to SL nanoformulations are highlighted in this article.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ajit Singh
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, 391243, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| |
Collapse
|
4
|
Ashraf MU, De A, Rose S. Fingolimod, a sphingosine-1-phosphate agonist for the treatment of hepatopulmonary syndrome: Queries and concerns. J Hepatol 2023; 79:e193-e194. [PMID: 37146887 DOI: 10.1016/j.jhep.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Affiliation(s)
| | - Arka De
- Department of Hepatology, PGIMER, Chandigarh, India.
| | - Sweta Rose
- Department of Hepatology, PGIMER, Chandigarh, India
| |
Collapse
|
5
|
Parra-Martínez C, Selma-Royo M, Callejón-Leblic B, Collado MC, Abril N, García-Barrera T. Mice brain metabolomics after the exposure to a "chemical cocktail" and selenium supplementation through the gut-brain axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129443. [PMID: 35816792 DOI: 10.1016/j.jhazmat.2022.129443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Several environmental pollutants have been shown to damage brain and affect gut microbiota. Limited evidence is available about the impact of "chemical cocktails" (CC) of xenobiotics on brain metabolome and their possible influence in the gut-brain crosstalk. To this end, BALB/c mice were exposed to heavy metals (As, Hg, Cd) and pharmaceuticals (diclofenac and flumequine) under regular rodent diet or supplemented with selenium (Se). Selenium, an antioxidant well-known for its antagonism against the neurotoxicity of several pollutants, modulated several brain metabolic impairments caused by CC (e.g., brain levels of the excitatory amino acid N-acetyl aspartic acid) by influencing mainly the metabolisms of purine, glycosylate and dicarboxylate, glutamate, glycerophospholipid, alanine and aspartate. Numerous associations were obtained between brain metabolites and gut microbes and they changed after Se-supplementation (e.g., Lactobacillus was positively associated with a brain ceramide, phosphoserine, phosphocholine, vitamin D3 derivative, fatty acids, malic acid, amino acids, and urea after the exposure, but not after Se-supplementation). Our results showed numerous evidences about the impact of CC on brain metabolome, the potential role of Se as an antagonist and their impact on the gut-brain axis. Further research is needed to understand the complex mechanism of action implied on CC-brain-microbiota interactions.
Collapse
Affiliation(s)
- C Parra-Martínez
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - M Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - B Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - M C Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - N Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - T García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain.
| |
Collapse
|
6
|
Zhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol 2022; 13:967371. [PMID: 36059469 PMCID: PMC9437530 DOI: 10.3389/fimmu.2022.967371] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) occurs in 50% of patients with systemic lupus erythematosus (SLE), causing considerable morbidity and even mortality. Previous studies had shown the potential of metabolic profiling in the diagnosis of SLE or LN. However, few metabonomics studies have attempted to distinguish SLE from LN based on metabolic changes. The current study was designed to find new candidate serum signatures that could differentiate LN from SLE patients using a non-targeted metabonomics method based on ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).MethodMetabolic profiling of sera obtained from 21 healthy controls, 52 SLE patients and 43 LN patients. We used SPSS 25.0 for statistical analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and metabolic pathway analysis were used to analyze the metabolic data.ResultsUpon comparison of SLE and LN groups, 28 differential metabolites were detected, the majority of which were lipids and amino acids. Glycerolphospholipid metabolism, pentose and glucuronate interconversions and porphyrin and chlorophyll metabolism were obviously enriched in LN patients versus those with SLE. Among the 28 characteristic metabolites, five key serum metabolites including SM d34:2, DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), nervonic acid, Cer-NS d27:4, and PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z) performed higher diagnostic performance in discriminating LN from SLE (all AUC > 0.75). Moreover, combined analysis of neuritic acid, C1q, and CysC (AUC = 0.916) produced the best combined diagnosis.ConclusionThis study identified five serum metabolites that are potential indicators for the differential diagnosis of SLE and LN. Glycerolphospholipid metabolism may play an important role in the development of SLE to LN. The metabolites we screened can provide more references for the diagnosis of LN and more support for the pathophysiological study of SLE progressed to LN.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Liu
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Gang Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Gang Chen, ; Bei Xu,
| |
Collapse
|
7
|
Metabolomics Signature of Plasma Renin Activity and Linkage with Blood Pressure Response to Beta Blockers and Thiazide Diuretics in Hypertensive European American Patients. Metabolites 2021; 11:metabo11090645. [PMID: 34564461 PMCID: PMC8466669 DOI: 10.3390/metabo11090645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
Plasma renin activity (PRA) is a predictive biomarker of blood pressure (BP) response to antihypertensives in European–American hypertensive patients. We aimed to identify the metabolic signatures of baseline PRA and the linkages with BP response to β-blockers and thiazides. Using data from the Pharmacogenomic Evaluation of Antihypertensive Responses-2 (PEAR-2) trial, multivariable linear regression adjusting for age, sex and baseline systolic-BP (SBP) was performed on European–American individuals treated with metoprolol (n = 198) and chlorthalidone (n = 181), to test associations between 856 metabolites and baseline PRA. Metabolites with a false discovery rate (FDR) < 0.05 or p < 0.01 were tested for replication in 463 European–American individuals treated with atenolol or hydrochlorothiazide. Replicated metabolites were then tested for validation based on the directionality of association with BP response. Sixty-three metabolites were associated with baseline PRA, of which nine, including six lipids, were replicated. Of those replicated, two metabolites associated with higher baseline PRA were validated: caprate was associated with greater metoprolol SBP response (β = −1.7 ± 0.6, p = 0.006) and sphingosine-1-phosphate was associated with reduced hydrochlorothiazide SBP response (β = 7.6 ± 2.8, p = 0.007). These metabolites are clustered with metabolites involved in sphingolipid, phospholipid, and purine metabolic pathways. The identified metabolic signatures provide insights into the mechanisms underlying BP response.
Collapse
|
8
|
Zheng H, Jin S, Li T, Ying W, Ying B, Chen D, Ning J, Zheng C, Li Y, Li C, Chen C, Li X, Gao H. Metabolomics reveals sex-specific metabolic shifts and predicts the duration from positive to negative in non-severe COVID-19 patients during recovery process. Comput Struct Biotechnol J 2021; 19:1863-1873. [PMID: 33841749 PMCID: PMC8021501 DOI: 10.1016/j.csbj.2021.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Metabolic profiling in COVID-19 patients has been associated with disease severity, but there is no report on sex-specific metabolic changes in discharged survivors. Herein we used an integrated approach of LC-MS-and GC-MS-based untargeted metabolomics to analyze plasma metabolic characteristics in men and women with non-severe COVID-19 at both acute period and 30 days after discharge. The results demonstrate that metabolic alterations in plasma of COVID-19 patients during the recovery and rehabilitation process were presented in a sex specific manner. Overall, the levels of most metabolites were increased in COVID-19 patients after the cure relative to acute period. The major plasma metabolic changes were identified including fatty acids in men and glycerophosphocholines and carbohydrates in women. In addition, we found that women had shorter length of hospitalization than men and metabolic characteristics may contribute to predict the duration from positive to negative in non-severe COVID-19 patients. Collectively, this study shed light on sex-specific metabolic shifts in non-severe COVID-19 patients during the recovery process, suggesting a sex bias in prognostic and therapeutic evaluations based on metabolic profiling.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AP, Acute period (AP)
- APTT, Activated partial thromboplastin time
- BCAAs, Branched‐chain amino acids
- BP, Blood platelet
- CA, Carbamide
- COVID-19
- COVID-19, Novel coronavirus disease 2019
- CRP, C-reactive protein
- DAA, Dehydroascorbic acid
- DD, D-dimer
- DP, Diastolic pressure
- FIB, Fibrinogen
- FP, Follow-up period
- Fatty acid
- GPCs, Glycerophosphocholines
- HGB, Hemoglobin
- LY, Lymphocyte
- Metabolism
- NG, Neutrophilic granulocyte
- NK, Natural killer
- PCT, Procalcitonin
- PLS-DA, Partial least squares-discriminant analysis
- PLSR, Partial least squares regression
- PT, Prothrombin time
- PTC, Phosphatidylcholine
- RDW, Red cell distribution width
- RR, Respiratory rate
- S1P, Sphingosine-1-phosphate
- SARS-CoV
- Sex difference
- TBL, Total B lymphocyte
- TTL, Total T lymphocyte
- WBC, White blood cell
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ting Li
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Weiyang Ying
- Department of Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Binyu Ying
- Department of Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Dong Chen
- Wenzhou Central Hospital, Wenzhou 325015, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chanfan Zheng
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
9
|
Li C, Wen R, Liu DW, Liu Q, Yan LP, Wu JX, Guo YJ, Li SY, Gong QF, Yu H. Diuretic Effect and Metabolomics Analysis of Crude and Salt-Processed Plantaginis Semen. Front Pharmacol 2021; 11:563157. [PMID: 33390941 PMCID: PMC7774519 DOI: 10.3389/fphar.2020.563157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Plantaginis Semen (PS) is well recognized in traditional Chinese medicine (TCM) and health products. Crude PS (CPS) and salt-processed CPS (SPS) are the two most commonly used decoction pieces of PS, and are included in the 2020 edition of Chinese Pharmacopoeia. Although they all have multiple effects, the mechanisms for treating diseases are different and remain unclear, the processing mechanism of SPS is also indeterminate, which hinders their clinical application to a certain extent. In order to solve these problems and further develop PS in the clinical application. Here, we used saline-loaded model rats for experiments, and utilized an integrated approach consisting of pharmacological methods and metabolomics, which could assess the diuretic impact of CPS and SPS ethanol extracts on saline-loaded rats and elucidate the underlying mechanism. The results showed that CPS and SPS both produced increased urine volume excretion and urine electrolyte excretion, but the levels of aldosterone (ALD) and aquaporin 2 (AQP2) were decreased. And 30 differential metabolites such as linoleic acid, lysoPC(O-18:0), sphingosine-1-phosphate, lysoPC(18:0) were found, mainly involving three metabolic pathways. In conclusion, CPS and SPS both have a diuretic effect, and that of SPS is better. This work investigated the possible diuretic mechanisms of CPS and SPS which may also be the mechanism of PS for anti-hypertension. In addition, a holistic approach provided novel and helpful insights into the underlying processing mechanisms of TCM.
Collapse
Affiliation(s)
- Chao Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rou Wen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - De Wen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiang Liu
- Department of Chemistry, Stanford University, CA, United States
| | - Li Ping Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jian Xiong Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yi Jing Guo
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Su Yun Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qian Feng Gong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huan Yu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
10
|
Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, Kerék M, Proia RL, Offermanns S, Tigyi GJ, Benyó Z. Sphingosine-1-Phosphate Enhances α 1-Adrenergic Vasoconstriction via S1P2-G 12/13-ROCK Mediated Signaling. Int J Mol Sci 2019; 20:ijms20246361. [PMID: 31861195 PMCID: PMC6941080 DOI: 10.3390/ijms20246361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P–S1P2–G12/13–ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Cecília R. Panta
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Dorottya Móré
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Péter T. Dancs
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD 20892, USA;
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| |
Collapse
|
11
|
Chen G, Zhang Q, Ai C, Huang S, Zhang H, Guo X, Wang W, Hua W, Bi H, Wang H. Serum metabolic profile characteristics of offspring rats before and after birth caused by prenatal caffeine exposure. Toxicology 2019; 427:152302. [PMID: 31568846 DOI: 10.1016/j.tox.2019.152302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/27/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Epidemiological investigations have confirmed that prenatal caffeine intake could increase the incidence rate of intrauterine growth retardation (IUGR) and multiple diseases after birth. Based on liquid chromatography-mass spectrometry, we analyzed serum metabolic profiles of offspring rats before and after birth in IUGR model induced by prenatal caffeine exposure (PCE). We discovered that differential metabolites in PCE fetuses mainly manifested as amino acids and lipid metabolism. In adulthood, PCE offspring showed less and inconsistent types of differential metabolites compared to those in utero, which still exhibited gender differences. The main differential metabolites induced by PCE, including phospholipids, platelet-activating factor, arachidonic acid, bile acid, sphingosine-1-phosphoric acid, indoxyl sulfuric acid, and cortexolone, may participate in the pathological and physiological processes of organ toxicities. This study demonstrated the short- and long-term developmental toxicity and gender differences of caffeine, providing new ideas for exploring the early warning and drug intervention targets of IUGR offspring.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Can Ai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Huizhen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132# Waihuandong Road, Guangzhou University City, Guangzhou, 510006, China
| | - Xiaoyu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Wenju Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Weiying Hua
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132# Waihuandong Road, Guangzhou University City, Guangzhou, 510006, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China.
| |
Collapse
|
12
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
13
|
Sphingosine-1-phosphate receptor 3 in the medial prefrontal cortex promotes stress resilience by reducing inflammatory processes. Nat Commun 2019; 10:3146. [PMID: 31316053 PMCID: PMC6637233 DOI: 10.1038/s41467-019-10904-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
Stress can promote the development of psychiatric disorders, though some individuals are more vulnerable to stress compared to others who are more resilient. Here we show that the sphingosine-1-phosphate receptor 3 (S1PR3) in the medial prefrontal cortex (mPFC) of rats regulates resilience to chronic social defeat stress. S1PR3 expression is elevated in the mPFC of resilient compared to vulnerable and control rats. Virally-mediated over-expression of S1PR3 in the mPFC produces a resilient phenotype whereas its knock-down produces a vulnerable phenotype, characterized by increased anxiety- and depressive-like behaviors, and these effects are mediated by TNFα. Furthermore, we show that S1PR3 mRNA in blood is reduced in veterans with PTSD compared to combat-exposed control subjects and its expression negatively correlates with symptom severity. Together, these data identify S1PR3 as a regulator of stress resilience and reveal sphingolipid receptors as important substrates of relevance to stress-related psychiatric disorders.
Collapse
|
14
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
15
|
Greig FH, Nather K, Ballantyne MD, Kazi ZH, Alganga H, Ewart MA, Zaborska KE, Fertig B, Pyne NJ, Pyne S, Kennedy S. Requirement for sphingosine kinase 1 in mediating phase 1 of the hypotensive response to anandamide in the anaesthetised mouse. Eur J Pharmacol 2018; 842:1-9. [PMID: 30359564 PMCID: PMC6318480 DOI: 10.1016/j.ejphar.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023]
Abstract
In the isolated rat carotid artery, the endocannabinoid anandamide induces endothelium-dependent relaxation via activation of the enzyme sphingosine kinase (SK). This generates sphingosine-1-phosphate (S1P) which can be released from the cell and activates S1P receptors on the endothelium. In anaesthetised mice, anandamide has a well-characterised triphasic effect on blood pressure but the contribution of SK and S1P receptors in mediating changes in blood pressure has never been studied. Therefore, we assessed this in the current study. The peak hypotensive response to 1 and 10 mg/kg anandamide was measured in control C57BL/6 mice and in mice pretreated with selective inhibitors of SK1 (BML-258, also known as SK1-I) or SK2 ((R)-FTY720 methylether (ROMe), a dual SK1/2 inhibitor (SKi) or an S1P1 receptor antagonist (W146). Vasodilator responses to S1P were also studied in isolated mouse aortic rings. The hypotensive response to anandamide was significantly attenuated by BML-258 but not by ROMe. Antagonising S1P1 receptors with W146 completely blocked the fall in systolic but not diastolic blood pressure in response to anandamide. S1P induced vasodilation in denuded aortic rings was blocked by W146 but caused no vasodilation in endothelium-intact rings. This study provides evidence that the SK1/S1P regulatory-axis is necessary for the rapid hypotension induced by anandamide. Generation of S1P in response to anandamide likely activates S1P1 to reduce total peripheral resistance and lower mean arterial pressure. These findings have important implications in our understanding of the hypotensive and cardiovascular actions of cannabinoids.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Margaret D Ballantyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Zeshan H Kazi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Husam Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Marie-Ann Ewart
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Karolina E Zaborska
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Bracy Fertig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Shahin MH, Gong Y, Frye RF, Rotroff DM, Beitelshees AL, Baillie RA, Chapman AB, Gums JG, Turner ST, Boerwinkle E, Motsinger-Reif A, Fiehn O, Cooper-DeHoff RM, Han X, Kaddurah-Daouk R, Johnson JA. Sphingolipid Metabolic Pathway Impacts Thiazide Diuretics Blood Pressure Response: Insights From Genomics, Metabolomics, and Lipidomics. J Am Heart Assoc 2017; 7:e006656. [PMID: 29288159 PMCID: PMC5778957 DOI: 10.1161/jaha.117.006656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although hydrochlorothiazide (HCTZ) is a well-established first-line antihypertensive in the United States, <50% of HCTZ treated patients achieve blood pressure (BP) control. Thus, identifying biomarkers that could predict the BP response to HCTZ is critically important. In this study, we utilized metabolomics, genomics, and lipidomics to identify novel pathways and biomarkers associated with HCTZ BP response. METHODS AND RESULTS First, we conducted a pathway analysis for 13 metabolites we recently identified to be significantly associated with HCTZ BP response. From this analysis, we found the sphingolipid metabolic pathway as the most significant pathway (P=5.8E-05). Testing 78 variants, within 14 genes involved in the sphingolipid metabolic canonical pathway, with the BP response to HCTZ identified variant rs6078905, within the SPTLC3 gene, as a novel biomarker significantly associated with the BP response to HCTZ in whites (n=228). We found that rs6078905 C-allele carriers had a better BP response to HCTZ versus noncarriers (∆SBP/∆DBP: -11.4/-6.9 versus -6.8/-3.5 mm Hg; ∆SBP P=6.7E-04; ∆DBP P=4.8E-04). Additionally, in blacks (n=148), we found genetic signals in the SPTLC3 genomic region significantly associated with the BP response to HCTZ (P<0.05). Last, we observed that rs6078905 significantly affects the baseline level of 4 sphingomyelins (N24:2, N24:3, N16:1, and N22:1; false discovery rate <0.05), from which N24:2 sphingomyelin has a significant correlation with both HCTZ DBP-response (r=-0.42; P=7E-03) and SBP-response (r=-0.36; P=2E-02). CONCLUSIONS This study provides insight into potential pharmacometabolomic and genetic mechanisms underlying HCTZ BP response and suggests that SPTLC3 is a potential determinant of the BP response to HCTZ. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00246519.
Collapse
Affiliation(s)
- Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Daniel M Rotroff
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | | | | | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | | | - Eric Boerwinkle
- Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | | | - Oliver Fiehn
- Genome Center, University of California at Davis, CA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences and Department of Medicine, Duke University, Durham, NC
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| |
Collapse
|
17
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
18
|
Cantalupo A, Di Lorenzo A. S1P Signaling and De Novo Biosynthesis in Blood Pressure Homeostasis. J Pharmacol Exp Ther 2016; 358:359-70. [PMID: 27317800 PMCID: PMC4959106 DOI: 10.1124/jpet.116.233205] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023] Open
Abstract
Initially discovered as abundant components of eukaryotic cell membranes, sphingolipids are now recognized as important bioactive signaling molecules that modulate a variety of cellular functions, including those relevant to cancer and immunologic, inflammatory, and cardiovascular disorders. In this review, we discuss recent advances in our understanding of the role of sphingosine-1-phosphate (S1P) receptors in the regulation of vascular function, and focus on how de novo biosynthesized sphingolipids play a role in blood pressure homeostasis. The therapeutic potential of new drugs that target S1P signaling is also discussed.
Collapse
Affiliation(s)
- Anna Cantalupo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
19
|
Li N, Zhang F. Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed) 2016; 21:1296-313. [PMID: 27100508 DOI: 10.2741/4458] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite generated by phosphorylation of sphingosine catalyzed by sphingosine kinase. S1P acts mainly through its high affinity G-protein-coupled receptors and participates in the regulation of multiple systems, including cardiovascular system. It has been shown that S1P signaling is involved in the regulation of cardiac chronotropy and inotropy and contributes to cardioprotection as well as cardiac remodeling; S1P signaling regulates vascular function, such as vascular tone and endothelial barrier, and possesses an anti-atherosclerotic effect; S1P signaling is also implicated in the regulation of blood pressure. Therefore, manipulation of S1P signaling may offer novel therapeutic approaches to cardiovascular diseases. As several S1P receptor modulators and sphingosine kinase inhibitors have been approved or under clinical trials for the treatment of other diseases, it may expedite the test and implementation of these S1P-based drugs in cardiovascular diseases.
Collapse
Affiliation(s)
- Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA,
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
20
|
Tang H, Zhao D, Chen S, Fang M, Wang F, Cui Y, Tang N, Chen Q. Expression of Sphingosine-1-phosphate (S1P) on the cerebral vasospasm after subarachnoid hemorrhage in rabbits. Acta Cir Bras 2016; 30:654-9. [PMID: 26560422 DOI: 10.1590/s0102-865020150100000001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To demonstrate the relationship between of sphingosine-1-phosphate (S1P) expression and subarachnoid hemorrhage (SAH). METHODS The basilar arteries from a "double-hemorrhage" rabbit model of SAH were used to investigate the relation between S1P expression and SAH. Various symptoms, including blood clots, basilar artery cross-sectional area, and S1P phosphatase expression were measured at day 3, 5, 7, 9. RESULTS The expression of S1P was enhanced in the cerebral vasospasm after subarachnoid hemorrhage in the rabbits. And S1P expression was consistent with the basilar artery cross-sectional area changes at day 3, 5, 7, 9. CONCLUSION Sphingosine-1-phosphate expression in the cerebral arterial may be a new indicator in the development of cerebral vasospasm after subarachnoid hemorrhage and provide a new therapeutic method for SAH.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurosurgery, Wuhan University, Hubei Province, P.R.C, China
| | - Donggang Zhao
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Shaojun Chen
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Ming Fang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Feifan Wang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Ying Cui
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Na Tang
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital, Three Gorges University, Hubei Province, P.R.C., China
| |
Collapse
|
21
|
Winkler MS, Nierhaus A, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Geffken M, Peine S, Schwedhelm E, Daum G, Kluge S, Zoellner C. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:372. [PMID: 26498205 PMCID: PMC4620595 DOI: 10.1186/s13054-015-1089-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022]
Abstract
Introduction Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates pathophysiological processes involved in sepsis progression, including endothelial permeability, cytokine release, and vascular tone. The aim of this study was to investigate whether serum-S1P concentrations are associated with disease severity in patients with sepsis. Methods This single-center prospective-observational study includes 100 patients with systemic inflammatory response syndrome (SIRS) plus infection (n = 40), severe sepsis (n = 30), or septic shock (n = 30) and 214 healthy blood donors as controls. Serum-S1P was measured by mass spectrometry. Blood parameters, including C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), lactate, and white blood cells (WBCs), were determined by routine assays. The Sequential Organ Failure Assessment (SOFA) score was generated and used to evaluate disease severity. Results Serum-S1P concentrations were lower in patients than in controls (P < 0.01), and the greatest difference was between the control and the septic shock groups (P < 0.01). Serum-S1P levels were inversely correlated with disease severity as determined by the SOFA score (P < 0.01) as well as with IL-6, PCT, CRP, creatinine, lactate, and fluid balance. A receiver operating characteristic analysis for the presence or absence of septic shock revealed equally high sensitivity and specificity for S1P compared with the SOFA score. In a multivariate logistic regression model calculated for prediction of septic shock, S1P emerged as the strongest predictor (P < 0.001). Conclusions In patients with sepsis, serum-S1P levels are dramatically decreased and are inversely associated with disease severity. Since S1P is a potent regulator of endothelial integrity, low S1P levels may contribute to capillary leakage, impaired tissue perfusion, and organ failure in sepsis.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maximilian Holzmann
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Eileen Mudersbach
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Antonia Bauer
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Linda Robbe
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Corinne Zahrte
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guenter Daum
- Clinic and Polyclinic for Vascular Medicine, University Heart Center, Martinistr. 52, 20246, Hamburg, Germany.
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Christian Zoellner
- Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
22
|
Chaurasia B, Summers SA. Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab 2015; 26:538-550. [PMID: 26412155 DOI: 10.1016/j.tem.2015.07.006] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/19/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023]
Abstract
In obesity and dyslipidemia, the oversupply of fat to tissues not suited for lipid storage induces cellular dysfunction that underlies diabetes and cardiovascular disease (i.e., lipotoxicity). Of the myriad lipids that accrue under these conditions, sphingolipids such as ceramide or its metabolites are amongst the most deleterious because they disrupt insulin sensitivity, pancreatic β cell function, vascular reactivity, and mitochondrial metabolism. Remarkably, inhibiting ceramide biosynthesis or catalyzing ceramide degradation in rodents ameliorates many metabolic disorders including diabetes, cardiomyopathy, insulin resistance, atherosclerosis, and steatohepatitis. Herein we discuss and critically assess studies that identify sphingolipids as major contributors to the tissue dysfunction underlying metabolic pathologies, highlighting the need to further decipher the full array of benefits elicited by ceramide depletion.
Collapse
Affiliation(s)
| | - Scott A Summers
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
23
|
Wilson PC, Fitzgibbon WR, Garrett SM, Jaffa AA, Luttrell LM, Brands MW, El-Shewy HM. Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. Mol Endocrinol 2015; 29:896-908. [PMID: 25871850 DOI: 10.1210/me.2014-1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (AngII) plays a critical role in the regulation of vascular tone and blood pressure mainly via regulation of Ca(2+) mobilization. Several reports have implicated sphingosine kinase 1 (SK1)/sphingosine 1-phosphate (S1P) in the mobilization of intracellular Ca(2+) through a yet-undefined mechanism. Here we demonstrate that AngII-induces biphasic calcium entry in vascular smooth muscle cells, consisting of an immediate peak due to inositol tris-phosphate-dependent release of intracellular calcium, followed by a sustained transmembrane Ca(2+) influx through store-operated calcium channels (SOCs). Inhibition of SK1 attenuates the second phase of transmembrane Ca(2+) influx, suggesting a role for SK1 in AngII-dependent activation of SOC. Intracellular S1P triggers SOC-dependent Ca(2+) influx independent of S1P receptors, whereas external application of S1P stimulated S1P receptor-dependent Ca(2+) influx that is insensitive to inhibitors of SOCs, suggesting that the SK1/S1P axis regulates store-operated calcium entry via intracellular rather than extracellular actions. Genetic deletion of SK1 significantly inhibits both the acute hypertensive response to AngII in anaesthetized SK1 knockout mice and the sustained hypertensive response to continuous infusion of AngII in conscious animals. Collectively these data implicate SK1 as the missing link that connects the angiotensin AT1A receptor to transmembrane Ca(2+) influx and identify SOCs as a potential intracellular target for SK1.
Collapse
Affiliation(s)
- Parker C Wilson
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Wayne R Fitzgibbon
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Sara M Garrett
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Ayad A Jaffa
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Louis M Luttrell
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Michael W Brands
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| | - Hesham M El-Shewy
- Department of Pathology (P.C.W.), Yale-New Haven Hospital, New Haven, Connecticut 06510; Departments of Medicine (W.R.F., S.M.G., A.A.J., L.M.L., H.M.E.) and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina 29425; Department of Research Service (L.M.L.), Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401; Department of Physiology (M.W.B.), Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912; and Department of Biochemistry and Molecular Genetics (A.A.J.), Faculty of Medicine, American University of Beirut, Beirut, Lebanon 113-6044
| |
Collapse
|
24
|
Kamiya T, Nagaoka T, Omae T, Yoshioka T, Ono S, Tanano I, Yoshida A. Role of Ca2+-dependent and Ca2+-sensitive mechanisms in sphingosine 1-phosphate-induced constriction of isolated porcine retinal arterioles in vitro. Exp Eye Res 2014; 121:94-101. [DOI: 10.1016/j.exer.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/15/2023]
|
25
|
Guan Z, Singletary ST, Cook AK, Hobbs JL, Pollock JS, Inscho EW. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol 2014; 25:1774-85. [PMID: 24578134 DOI: 10.1681/asn.2013060656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001-10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions.
Collapse
Affiliation(s)
| | | | | | - Janet L Hobbs
- Experimental Medicine, Georgia Regents University, Augusta, Georgia
| | | | | |
Collapse
|
26
|
Sphingosine-1-phosphate induces differentiation of cultured renal tubular epithelial cells under Rho kinase activation via the S1P2 receptor. Clin Exp Nephrol 2014; 18:844-52. [PMID: 24463961 DOI: 10.1007/s10157-014-0933-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is reportedly involved in the pathogenesis of kidney disease; however, the precise role played by S1P in renal disorders still remains controversial. Rho kinase plays an important role in the development of diabetic nephropathy by inducing glomerular and tubulointerstitial fibrosis. Rho kinase is known to be stimulated by S1P through its specific receptor, S1P2 receptor (S1P2). Hence, we investigated whether S1P-S1P2 signaling plays a role in the epithelial-mesenchymal transition (EMT) through Rho kinase activation in renal tubules. METHOD To characterize the distribution of the S1P2, an immunohistochemical examination of the receptor was performed in the kidney of the non-diabetic and diabetic mice. Next, we examined Rho kinase activity as well as E-cadherin and alpha-smooth muscle actin (α-SMA) expression by real-time RT-PCR and western blotting in cultured rat tubular epithelial cells under S1P stimulation with and without a Rho kinase inhibitor and an S1P2 blocker. In addition, the distribution of E-cadherin and α-SMA was examined by immunocytochemistry. RESULT S1P2 was expressed mainly in the renal tubules; expression was intense in collecting ducts and distal tubules compared to other segments. S1P induced activation of Rho kinase through the S1P2, which changed the distribution of E-cadherin and increased the expression of α-SMA. CONCLUSION Rho kinase activation by S1P via S1P2 initiated EMT changes in cultured renal tubular cells. Our results suggest that excessive stimulation of S1P might facilitate renal fibrosis via activation of Rho kinase through S1P2.
Collapse
|
27
|
Aberrant Sphingolipid Metabolism in the Human Fallopian Tube with Ectopic Pregnancy. Lipids 2013; 48:989-95. [DOI: 10.1007/s11745-013-3818-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
28
|
Hankins JL, Doshi UA, Haakenson JK, Young MM, Barth BM, Kester M. The therapeutic potential of nanoscale sphingolipid technologies. Handb Exp Pharmacol 2013:197-210. [PMID: 23579457 DOI: 10.1007/978-3-7091-1368-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanotechnologies, while small in size, widen the scope of drug delivery options for compounds with problematic pharmacokinetics, such as bioactive sphingolipids. We describe the development of historical sphingolipid nanotechnologies, such as nanoliposomes, and project future uses for a broad repertoire of nanoscale sphingolipid therapy formulations. In particular, we describe sphingo-nanotherapies for treatment of cancer, inflammatory disease, and cardiovascular disease. We conclude with a discussion of the challenges associated with regulatory approval, scale-up, and development of these nanotechnology therapies for clinical applications.
Collapse
Affiliation(s)
- Jody L Hankins
- Department of Pharmacology, R130, Penn State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
29
|
Makino Y, Kume H, Oguma T, Sugishita M, Shiraki A, Hasegawa Y, Honjo H, Kamiya K. Role of sphingosine-1-phosphate inβ-adrenoceptor desensitization via Ca(2+) sensitization in airway smooth muscle. Allergol Int 2012; 61:311-22. [PMID: 22441633 DOI: 10.2332/allergolint.11-oa-0350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/08/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The correlation between inflammatory cells and airway smooth muscle plays fundamental roles in the pathophysiology of asthma. This study was designed to determine whether pre-exposure of airway smooth muscle to sphingosine-1-phosphate (S1P), which is released from mast cells by allergic reactions, causes a deterioration of β-adrenoceptor function. METHODS Isometric tension and the ratio of fluorescence intensities at 340 and 380 nm (F(340)/F(380)), an indicator of intracellular Ca2+ levels, were simultaneously measured using fura-2 loaded guinea-pig tracheal tissues. Intracellular cAMP levels were also measured. RESULTS Pre-exposure to S1P caused a reduction in the inhibitory effects of 0.3μM isoprenaline, a β-adrenoceptor agonist, and 10μM forskolin, a direct activator of adenylyl cyclase, against 1μM methacholine-induced contraction in concentration- and time- dependent manners. In contrast, the values of F(340)/F(380) were not augmented under this experimental condition. After incubation with S1P in the presence of 0.001-1μM Y-27632, a Rho-kinase inhibitor, the reduced responsiveness to forskolin induced by S1P was reversed in a concentration-dependent manner. Moreover, pre-treatment with pertussis toxin (PTX), an inhibitor of G(i), suppressed the loss of forskolin-induced relaxation induced by S1P. Pre-exposure to S1P markedly inhibited the augmentation of cAMP accumulation induced by forskolin. However, addition of Y-27632 and pre-exposure to PTX returned forsokin-induced cAMP accumulation to the control level. CONCLUSIONS Pre-exposure to S1P causes heterologus desensitization of β-adrenoceptors by increasing the sensitivity of airway smooth muscle to intracellular Ca2+. Ca2+ sensitization regulated by G(i) and Rho-kinase is involved in this phenomenon.
Collapse
Affiliation(s)
- Yasushi Makino
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schuchardt M, Tölle M, Prüfer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 2011; 163:1140-62. [PMID: 21309759 DOI: 10.1111/j.1476-5381.2011.01260.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was identified as a crucial molecule for regulating immune responses, inflammatory processes as well as influencing the cardiovascular system. S1P mediates differentiation, proliferation and migration during vascular development and homoeostasis. S1P is a naturally occurring lipid metabolite and is present in human blood in nanomolar concentrations. S1P is not only involved in physiological but also in pathophysiological processes. Therefore, this complex signalling system is potentially interesting for pharmacological intervention. Modulation of the system might influence inflammatory, angiogenic or vasoregulatory processes. S1P activates G-protein coupled receptors, namely S1P(1-5) , whereas only S1P(1-3) is present in vascular cells. S1P can also act as an intracellular signalling molecule. This review highlights the pharmacological potential of S1P signalling in the vascular system by giving an overview of S1P-mediated processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). After a short summary of S1P metabolism and signalling pathways, the role of S1P in EC and VSMC proliferation and migration, the cause of relaxation and constriction of arterial blood vessels, the protective functions on endothelial apoptosis, as well as the regulatory function in leukocyte adhesion and inflammatory responses are summarized. This is followed by a detailed description of currently known pharmacological agonists and antagonists as new tools for mediating S1P signalling in the vasculature. The variety of effects influenced by S1P provides plenty of therapeutic targets currently under investigation for potential pharmacological intervention.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité- Universitätsmedizin Berlin, CharitéCentrum 10, Department of Nephrology, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | |
Collapse
|
31
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
32
|
Bautista-Pérez R, Arellano A, Franco M, Osorio H, Coronel I. Sphingosine-1-phosphate induced vasoconstriction is increased in the isolated perfused kidneys of diabetic rats. Diabetes Res Clin Pract 2011; 94:e8-11. [PMID: 21775010 DOI: 10.1016/j.diabres.2011.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/09/2011] [Accepted: 06/26/2011] [Indexed: 11/18/2022]
Abstract
We observed that in isolated perfused rat kidneys, sphingosine-1-phosphate produces S1P(2) receptor-mediated vasoconstriction, and this response increased in kidneys of diabetic rats. These results suggest that the antagonists of S1P(2) receptor may have potential as drugs to control diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Rocio Bautista-Pérez
- Department of Nephrology, Instituto Nacional de Cardiologia Ignacio Chavez, México City, Mexico.
| | | | | | | | | |
Collapse
|
33
|
Jackson EK. Role of sphingosine-1-phosphate in the renal medulla. Am J Physiol Renal Physiol 2011; 301:F33-4. [PMID: 21511695 DOI: 10.1152/ajprenal.00207.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Szczepaniak WS, Pitt BR, McVerry BJ. S1P2 receptor-dependent Rho-kinase activation mediates vasoconstriction in the murine pulmonary circulation induced by sphingosine 1-phosphate. Am J Physiol Lung Cell Mol Physiol 2010; 299:L137-45. [PMID: 20435688 DOI: 10.1152/ajplung.00233.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoactive properties of sphingosine 1-phosphate (S1P) have been demonstrated by many investigators to vary in systemic vascular beds. These variations appear to reflect differential S1P receptor expression in the vasculature of these tissues. Although S1P has been demonstrated to enhance endothelial barrier function, induce airway hyperresponsiveness, and modulate immune responses in the lung, the pulmonary vasomotor effects of S1P remain poorly defined. In the present study, we sought to define the vasoregulatory effects of S1P in the pulmonary vasculature and to elucidate the underlying mechanisms operative in effecting the response in the intact lung. S1P (10 microM) increased pulmonary vascular resistance (PVR) by 36% in the isolated perfused mouse lung. S1P-induced vasoconstriction was reduced by 64% by concomitant administration of the Rho-kinase inhibitor Y27632 (10 microM). Similarly, the S1P response was attenuated by >50% after S1P(2) receptor antagonism (JTE-013; 10 microM) and in S1P(2) receptor null mice. In contrast, S1P(3) receptor antagonism (VPC23019; 10 microM) had no effect on the contractile response to S1P. Furthermore, we confirmed the role of Rho-kinase as an important regulator of basal vasomotor tone in the isolated perfused mouse lung. These results suggest that S1P is capable of altering pulmonary vascular tone in vivo and may play an important role in the modulation of pulmonary vascular tone both in the normal lung and under pathological conditions.
Collapse
Affiliation(s)
- William S Szczepaniak
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
35
|
Alewijnse AE, Peters SLM. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 2008; 585:292-302. [PMID: 18420192 DOI: 10.1016/j.ejphar.2008.02.089] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 12/25/2022]
Abstract
Sphingolipids are biologically active lipids that play important roles in various cellular processes and the sphingomyelin metabolites ceramide, sphingosine and sphingosine-1-phosphate can act as signalling molecules in most cell types. With the recent development of the immunosuppressant drug FTY720 (Fingolimod) which after phosphorylation in vivo acts as a sphingosine-1-phosphate receptor agonist, research on the role of sphingolipids in the immune and other organ systems was triggered enormously. Since it was reported that FTY720 induced a modest, but significant transient decrease in heart rate in animals and humans, the question was raised which pharmacological properties of drugs targeting sphingolipid signalling will affect cardiovascular function in vivo. The answer to this question will most likely also indicate what type of drug could be used to treat cardiovascular disease. The latter is becoming increasingly important because of the increasing population carrying characteristics of the metabolic syndrome. This syndrome is, amongst others, characterized by obesity, hypertension, atherosclerosis and diabetes. As such, individuals with this syndrome are at increased risk of heart disease. Now numerous studies have investigated sphingolipid effects in the cardiovascular system, can we speculate whether certain sphingolipids under specific conditions are good, bad or maybe both? In this review we will give a brief overview of the pathophysiological role of sphingolipids in cardiovascular disease. In addition, we will try to answer how drugs that target sphingolipid signalling will potentially influence cardiovascular function and whether these drugs would be useful to treat cardiovascular disease.
Collapse
Affiliation(s)
- Astrid E Alewijnse
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Nixon GF, Mathieson FA, Hunter I. The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 2008; 47:62-75. [DOI: 10.1016/j.plipres.2007.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/23/2007] [Accepted: 11/01/2007] [Indexed: 02/02/2023]
|
37
|
Tanaka R, Muraki K, Ohya S, Itoh Y, Hatano N, Imaizumi Y. Cell-Culture–Dependent Change of Ca2+ Response of Rat Aortic Myocytes to Sphingosine-1-Phosphate. J Pharmacol Sci 2008; 107:434-42. [DOI: 10.1254/jphs.08029fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
38
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Salomone S, Potts EM, Tyndall S, Ip PC, Chun J, Brinkmann V, Waeber C. Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br J Pharmacol 2007; 153:140-7. [PMID: 18026125 DOI: 10.1038/sj.bjp.0707581] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine 1-phosphate (S1P) selectively and potently constricts isolated cerebral arteries, but this response has not been pharmacologically characterized. EXPERIMENTAL APPROACH The receptor subtype(s) involved in S1P-induced cerebrovascular constriction were characterized using genetic (S1P(2) and S1P(3) receptor null mice) and pharmacological tools (phospho-FTY720, a S1P(1/3/4/5) receptor agonist; SEW2871, a S1P(1) receptor agonist, JTE-013, a S1P(2) receptor antagonist, VPC23019, a S1P(1/3) receptor antagonist). Isolated basilar or peripheral (femoral, mesenteric resistance) arteries, from either rat or mouse, were studied in a wire myograph. KEY RESULTS S1P concentration-dependently constricted basilar artery in rat, wild-type (WT) and S1P(2) null mice, but barely affected vascular tone in S1P(3) null mice. Vasoconstriction to U46619 (a thromboxane analogue) or to endothelin-1 did not differ between WT, S1P(2) and S1P(3) null mice. JTE-013 inhibited not only S1P-induced vasoconstriction, but also KCl-, U46619- and endothelin-1-induced constriction. This effect was observed in WT as well as in S1P(2) null mice. VPC23019 increased the concentration-dependent vasoconstriction to S1P in both rat and mouse basilar arteries with intact endothelium, but not in rat basilar artery without endothelium. Phospho-FTY720 concentration-dependently constricted rat basilar arteries, but not femoral or mesenteric resistance arteries, while SEW2871 did not induce any response in the same arteries. CONCLUSIONS AND IMPLICATIONS S1P constricts cerebral arteries through S1P(3) receptors. The purported S1P(2) receptor antagonist JTE-013 does not appear to be selective, at least in rodents. Enhancement of S1P-induced contraction by VPC23019 might be related to blockade of S1P(1) receptors and NO generation.
Collapse
Affiliation(s)
- S Salomone
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Donati C, Cencetti F, Nincheri P, Bernacchioni C, Brunelli S, Clementi E, Cossu G, Bruni P. Sphingosine 1-Phosphate Mediates Proliferation and Survival of Mesoangioblasts. Stem Cells 2007; 25:1713-9. [PMID: 17464089 DOI: 10.1634/stemcells.2006-0725] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesoangioblasts are stem cells capable of differentiating in various mesodermal tissues and are presently regarded as suitable candidates for cell therapy of muscle degenerative diseases, as well as myocardial infarction. The enhancement of their proliferation and survival after injection in vivo could greatly improve their ability to repopulate damaged tissues. In this study, we show that the bioactive sphingolipid sphingosine 1-phosphate (S1P) regulates critical functions of mesoangioblast cell biology. S1P evoked a full mitogenic response in mesoangioblasts, measured by labeled thymidine incorporation and cell counting. Moreover, S1P strongly counteracted the apoptotic process triggered by stimuli as diverse as serum deprivation, C2-ceramide treatment, or staurosporine treatment, as assessed by cell counting, as well as histone-associated fragments and caspase-3 activity determinations. S1P acts both as an intracellular messenger and through specific membrane receptors. Real-time polymerase chain reaction analysis revealed that mesoangioblasts express the S1P-specific receptor S1P3 and, to a minor extent, S1P1 and S1P2. By using S1P receptor subtype-specific agonists and antagonists, we found that the proliferative response to S1P was mediated mainly by S1P2. By contrast, the antiapoptotic effect did not implicate S1P receptors. These findings demonstrate an important role of S1P in mesoangioblast proliferation and survival and indicate that targeting modulation of S1P-dependent signaling pathways may be used to improve the efficiency of muscle repair by these cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche and Instituto Interuniversitario di Miotogia, Università di Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
UNLABELLED The sphingomyelin metabolites ceramide, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) are emerging modulators of vascular tone. While ceramide appears to act primarily intracellularly, S1P and SPC appear to mainly work via specific receptors, although those for SPC have not yet been defined unequivocally. Each of the sphingomyelin metabolites can induce both vasoconstriction and vasodilatation and, in some cases--ceramide on the one hand, and S1P and SPC on the other hand--have opposite effects on vascular tone. The differences in effects between vessels may relate to the relative roles of endothelial and smooth muscle cells in mediating them, as well as to the distinct expression patterns of S1P receptors among vascular beds and among endothelial and smooth muscle cells. Recent evidence suggests that vascular tone is not only modulated by sphingomyelin metabolites which are exogenously added or reach the vessel wall via the bloodstream but also by those formed locally by cells in the vessel wall. Such local formation can be induced by known vasoactive agents such as angiotensin II and may serve a signalling function. CONCLUSION We conclude that sphingomyelin metabolites are important endogenous modulators of vascular function, which may contribute to the pathophysiology of some diseases and be targets for therapeutic interventions.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology & Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Tölle M, Levkau B, Kleuser B, van der Giet M. Sphingosine-1-phosphate and FTY720 as anti-atherosclerotic lipid compounds. Eur J Clin Invest 2007; 37:171-9. [PMID: 17359484 DOI: 10.1111/j.1365-2362.2007.01776.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All stages of atherosclerosis have been identified as a chronic vascular inflammatory disease. In the last few years there is increasing evidence that endogenous lysophospholipids such as sphingosine-1-phosphate (S1P) have potent anti-inflammatory properties. The S1P analogue FTY720 that has been developed as a potent, orally active, immunosuppressant in the field of transplantation and autoimmune disease has interesting effects on inflammatory processes in the arterial vessel wall. S1P targets five specific S1P receptors (S1P(1-5)), which are ubiquitously expressed. S1P(1-3) receptor expression is identified in arterial vessels. S1P and FTY720 show potent silencing effects on some vascular proinflammatory mechanisms in endothelial and vascular smooth muscle cells. In addition, the interaction of monocytes with the vessel wall is inhibited. As shown recently, FTY720 can effectively reduce the progression of atherosclerosis in apolipoprotein E-deficient mice having a high-cholesterol diet. It is not entirely clear which S1P receptor subtype is mainly involved in this process. However, it is currently speculated that the S1P(3) and probably the S1P(1) is involved in the anti-atherosclerotic effects of FTY720. This review summarizes the current knowledge about S1P- and FTY720-effects on mechanisms of vascular inflammatory disease. In addition S1P receptor subtypes are identified which might be interesting for molecular drug targeting.
Collapse
Affiliation(s)
- M Tölle
- Charite - Universitätsmedizin Berlin, Campus Benjamin Franklin, Med. Klinik mit Schwerpunkt Nephrologie, Berlin, Germany
| | | | | | | |
Collapse
|
43
|
Kume H, Takeda N, Oguma T, Ito S, Kondo M, Ito Y, Shimokata K. Sphingosine 1-phosphate causes airway hyper-reactivity by rho-mediated myosin phosphatase inactivation. J Pharmacol Exp Ther 2007; 320:766-73. [PMID: 17105828 DOI: 10.1124/jpet.106.110718] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated whether extracellular sphingosine 1-phosphate (S1P) is involved in airway hyper-reactivity in bronchial asthma. The effects of S1P on the response to methacholine was examined in the fura-2-loaded strips of guinea pig tracheal smooth muscle using simultaneous recording of the isometric tension and the ratio of fluorescence intensities at 340 and 380 nm (F(340)/F(380)). A 15-min pretreatment with S1P (>100 nM) markedly enhanced methacholine-induced contraction without elevating F(340)/F(380). This effect of S1P was suppressed in the presence of Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexane-carboxamide], a selective inhibitor of Rho-kinase, in a concentration-dependent manner. Moreover, pretreatment with pertussis toxin caused an inhibition in S1P-induced hyper-reactivity to methacholine in a time- and concentration-dependent manner. In contrast, although S1P-induced Ca(2+) mobilization was attenuated by SKF96365 and verapamil, the subsequent response to methacholine was unaffected. A 15-min pretreatment with lower concentrations of S1P (<100 nM), which is clinically attainable, did not increase methacholine-induced contraction. However, when the incubation was lengthened to 6 h, S1P (<100 nM) enhanced the subsequent response to methacholine. Next, application of S1P to cultured human bronchial smooth muscle cells increased the proportion of active RhoA (GTP-RhoA) and phosphorylation of myosin phosphatase target subunit 1 (MYPT1). This phosphorylation of MYPT1 was significantly inhibited by application of Y-27632 and by pretreatment with pertussis toxin. Our findings demonstrate that exposure of airway smooth muscle to S1P results in airway hyper-reactivity mediated by Ca(2+) sensitization via inactivation of myosin phosphatase, which links G(i) and RhoA/Rho-kinase processes.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsrumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ. Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2006; 292:R440-6. [PMID: 16990495 DOI: 10.1152/ajpregu.00085.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P(1-5)) to cardiovascular homeostasis. We used S1P(2) receptor knockout mice (S1P(2)(-/-)) to evaluate the role of S1P(2) in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P(2)(-/-) mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P(2)(-/-) mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P(2)(-/-) mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P(2)(-/-) mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P(2)(-/-) aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P(2) receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Cardiotonic Agents/pharmacology
- Dobutamine/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Mice
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Tonus/drug effects
- Muscle Tonus/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Potassium Chloride/pharmacology
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/physiology
- Regional Blood Flow/physiology
- Renal Circulation/drug effects
- Splanchnic Circulation/drug effects
- Vascular Diseases/physiopathology
- Vascular Resistance/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- John N Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA.
| | | | | | | | | |
Collapse
|
45
|
Donati C, Bruni P. Sphingosine 1-phosphate regulates cytoskeleton dynamics: implications in its biological response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2037-48. [PMID: 16890187 DOI: 10.1016/j.bbamem.2006.06.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 06/14/2006] [Accepted: 06/19/2006] [Indexed: 01/06/2023]
Abstract
The bioactive sphingolipid sphingosine 1-phosphate (S1P) elicits robust cytoskeletal rearrangement in a large variety of cell systems, mainly acting through a panel of specific cell surface receptors, named S1P receptors. Recent studies have begun to delineate the molecular mechanisms involved in the complex process responsible for cytoskeletal rearrangement following S1P ligation to its receptors. Notably, changes of cell shape and/or motility induced by S1P via cytoskeletal remodelling are functional to the biological action exerted by S1P which appears to be highly cell-specific. This review focuses on the current knowledge of the regulatory mechanisms of cytoskeleton dynamics elicited by S1P, with special emphasis on the relationship between cytoskeletal remodelling and the biological effects evoked by the sphingolipid in various cell types.
Collapse
Affiliation(s)
- Chiara Donati
- Dipartimento di Scienze Biochimiche, Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | | |
Collapse
|
46
|
Riley RT, Voss KA. Differential sensitivity of rat kidney and liver to fumonisin toxicity: organ-specific differences in toxin accumulation and sphingoid base metabolism. Toxicol Sci 2006; 92:335-45. [PMID: 16613836 DOI: 10.1093/toxsci/kfj198] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fumonisins (FBs) are mycotoxins in maize and are inhibitors of ceramide synthase (CS), the most likely proximate cause of FB toxicity. In liver and kidney, the primary target organs in FB-fed rats, inhibition of CS results in a marked increase in the ceramide precursor sphinganine (Sa). This study was conducted to investigate the differential time- and dose-dependent changes in Sa, sphingosine (So), sphinganine 1-phosphate (Sa-1-P), and sphingosine 1-phosphate (So-1-P) in kidney, liver, serum, and heart of male Sprague-Dawley rats (3-4 weeks old) fed diets containing 1.1, 13.5, and 88.6 mug/g of total FB for 10 days. The tissues were microscopically examined for the presence and severity of lesions consistent with FB exposure. There was a time- and dose-dependent increase in Sa in both liver and kidney, which was closely correlated with the tissue concentration of fumonisin B(1) (FB(1)) and histopathologic findings. However, the Sa alone greatly underestimated the degree of disruption of sphingolipid metabolism since accumulated Sa and So were quickly metabolized to Sa-1-P and So-1-P as evidenced by large increases in these metabolites in kidney but not in liver. The concentration of FB(1) in liver and kidney that first elicited an increase in Sa was similar in both tissues, however, over time, the kidney accumulated significantly more FB(1) (10x) and total Sa (Sa plus Sa-1-P) compared to liver. Thus, the relative sensitivity of male Sprague-Dawley rat kidney and liver is most likely a consequence of differences in the mechanisms responsible for both FB(1) uptake/clearance and Sa metabolism.
Collapse
Affiliation(s)
- Ronald T Riley
- Toxicology and Mycotoxin Research Unit, US Department of Agriculture/ARS, Athens, GA 30604-5677, USA.
| | | |
Collapse
|
47
|
Hemmings DG. Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:18-29. [PMID: 16570136 DOI: 10.1007/s00210-006-0046-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two related lysosphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediate diverse cellular responses through signals transduced by either activation of G-protein coupled receptors or possibly by acting intracellularly. Vascular responses to S1P and SPC measured both in vivo and in dissected vessels show predominantly vasoconstriction with some evidence for vasodilation. Although stimulation with S1P or SPC generally leads to similar vascular responses, the signalling pathways stimulated to produce these responses are often distinct. Nevertheless, mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+, which both increase [Ca2+]i, occur in response to S1P and SPC. Both mobilization of Ca2+ from intracellular stores and influx of extracellular Ca2+ occur in response to S1P and SPC. As well, both S1P and SPC induce Ca2+-sensitization in vascular smooth muscle which is mediated through Rho kinase activation. In the endothelium, S1P and SPC stimulate the production of the vasodilator, nitric oxide through activation of endothelial nitric oxide synthase. This activation occurs through phosphorylation by Akt and through binding of Ca2+-calmodulin upon increased [Ca2+]i. These lysosphingolipids also activate cyclooxygenase-2 which produces prostaglandins with both vasoconstrictor and vasodilator properties. A balance between the signals inducing vasodilation versus the signals inducing vasoconstriction will determine the vascular outcome. Thus, perturbations in S1P and SPC concentrations, relative expression of receptors or downstream signalling pathways may provide a mechanism for pathophysiological conditions such as hypertension. Given this background, recent studies examining a potential role for S1P and SPC in hypertension and vascular dysfunction in aging are discussed.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, 227 Heritage Medical Research Center, T6G 2S2, Edmonton, Alberta, Canada.
| |
Collapse
|
48
|
Czyborra C, Bischoff A, Michel MC. Indomethacin differentiates the renal effects of sphingosine-1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:37-44. [PMID: 16521006 DOI: 10.1007/s00210-006-0037-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/10/2006] [Indexed: 12/26/2022]
Abstract
The sphingomyelin breakdown products sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) constrict intrarenal microvessels in vitro in a pertussis toxin (PTX) sensitive manner, and S1P also reduces renal blood flow in vivo. Nevertheless, both S1P and SPC have been reported to enhance diuresis and natriuresis. This pattern is similar to that of neuropeptide Y, which also reduces renal blood flow and enhances diuresis and natriuresis. The latter effects are inhibited by the cyclooxygenase inhibitor indomethacin, and various S1P and SPC responses have also been linked to the cyclooxygenase pathway. Therefore, we have investigated whether indomethacin can alter the renal effects of S1P and SPC in anaesthetised rats in vivo. In line with earlier experiments S1P bolus injections dose-dependently reduced renal blood flow (by up to 4.8 +/- 0.5 ml min(-1)), and this was not significantly affected by indomethacin treatment (5 mg kg(-1) i.p.). Infusion of S1P but not of SPC (30 microg kg(-1) min(-1) each) for 60 min reduced renal blood flow by up to 0.8 +/- 0.2 ml min(-1), and this was not markedly altered by indomethacin. Despite the differential renovascular effect, both S1P and SPC enhanced diuresis by up to 215 +/- 65 and 201 +/- 58 microl 15 min(-1) respectively, and natriuresis by up to 25 +/- 9 and 29 +/- 11 micromol 15 min(-1) respectively. While indomethacin abolished the SPC-induced diuresis and natriuresis, it, if anything, slightly enhanced the diuretic and natriuretic effect of S1P. To determine whether tubular SPC effects are receptor-mediated, PTX experiments were performed. SPC-induced enhancements of diuresis and natriuresis were abolished by PTX. We conclude that S1P, SPC and neuropeptide Y exhibit distinct patterns of modulation of renal function and that indomethacin allows such effects to be differentiated.
Collapse
Affiliation(s)
- Claudia Czyborra
- Department of Medicine, University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
49
|
Hemmings DG, Hudson NK, Halliday D, O'Hara M, Baker PN, Davidge ST, Taggart MJ. Sphingosine-1-Phosphate Acts via Rho-Associated Kinase and Nitric Oxide to Regulate Human Placental Vascular Tone1. Biol Reprod 2006; 74:88-94. [PMID: 16162874 DOI: 10.1095/biolreprod.105.043034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid released from activated platelets, has been demonstrated in animal models to regulate vascular tone through receptor-mediated activation of Rho-associated kinase 1 and nitric oxide synthase 3. The role of S1P in regulation of human vascular tone (particularly during pregnancy, with its unique vascular adaptations and localized platelet activation) is unknown. We hypothesized that S1P would constrict small placental arteries through activation of Rho-associated kinases with modulation by nitric oxide. Reverse transcription-polymerase chain reaction of chorionic plate artery preparations detected mRNAs encoding all five receptors for S1P, and S1P induced dose-dependent vasoconstriction of both chorionic plate and stem villous isobarically mounted arteries, which at 10 micromol/L was 32.9% +/- 3.86% (mean +/- SEM) and 34.6% +/- 7.01%, respectively. In stem villous arteries, S1P-induced vasoconstriction was enhanced significantly following inhibition of nitric oxide synthases with N(G)-nitro-L-arginine methyl ester (100 micromol/L, 52.6% +/- 6.28%, P < 0.05). The S1P-induced vasoconstriction was reversed by Y27632, an inhibitor of Rho-associated kinases (10 micromol/L) in both chorionic plate (to 14.9% +/- 4.95%) and stem villous arteries (to 2.71% +/- 6.13%). The S1P added to alpha-toxin-permeabilized, isometrically mounted chorionic plate arteries bathed in submaximal Ca(2+)-activating solution induced Ca(2+)-sensitization of constriction, which was 47.7% +/- 10.0% of that occurring to maximal Ca(2+)-activating solution. This was reduced by Y27632 to 18.4% +/- 18.4%. Interestingly, S1P-induced vasoconstriction occurred in all isobarically mounted arteries but was inconsistent in isometrically mounted chorionic plate arteries. In summary, S1P-induced vasoconstriction in human placental arteries is mediated by increased Ca(2+)-sensitization through activation of Rho-associated kinases, and this vasoconstriction also is modulated by nitric oxide. Identification of these actions of S1P in the placental vasculature is important for understanding both normal and potentially abnormal vascular adaptations with pregnancy.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
50
|
Nosi D, Vassalli M, Polidori L, Giannini R, Tani A, Chellini F, Paternostro F. Effects of S1P on myoblastic cell contraction: possible involvement of Ca-independent mechanisms. Cells Tissues Organs 2005; 178:129-38. [PMID: 15655330 DOI: 10.1159/000082243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2004] [Indexed: 01/19/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator, which affects many essential processes such as cell proliferation, differentiation and contraction in many cell types. We have previously demonstrated that the lipid mediator elicits Ca(2+) transients in a myoblastic cell line (C2C12) by interacting with its specific receptors (S1PR(s)). In the present study, we wanted to correlate the Ca(2+) response with activation of myoblastic cell contractility. C2C12 cells were first investigated for the expression and cellular organization of cytoskeletal proteins by immunoconfocal microscopy. We found that myoblasts exhibited a quite immature cytoskeleton, with filamentous actin dispersed as a web-like structure within the cytoplasm. To evaluate intracellular Ca(2+) mobilization, the cells were loaded with a fluorescent Ca(2+) indicator (Fluo-3), stimulated with S1P and simultaneously observed with differential interference contrast and fluorescence optics. Exogenous S1P-induced myoblastic cell contraction was temporally unrelated to S1P-induced intracellular Ca(2+) increase; cell contraction occurred within 5-8 s from stimulation, whereas intracellular Ca(2+) increase was evident only after 15-25 s. To support the Ca(2+) independence of myoblastic cell contraction, the cells were pretreated with a Ca(2+) chelator, BAPTA/AM, prior to stimulation with S1P. In these experimental conditions, the myoblasts were still able to contract, whereas the S1P-induced Ca(2+) transients were completely abolished. On the contrary, when C2C12 cells were induced to differentiate into skeletal myotubes, they responded to S1P with a rapid cell contraction concurrent with an increase in the intracellular Ca(2+). These data suggest that Ca(2+)-independent mechanism of cell contraction may be replaced by Ca(2+)-dependent ones during skeletal muscle differentiation.
Collapse
Affiliation(s)
- D Nosi
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Viale Morgagni, 85, IT-50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|