1
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification. J Physiol Sci 2024; 74:3. [PMID: 38238667 PMCID: PMC10795261 DOI: 10.1186/s12576-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
2
|
Figueroa EE, Denton JS. A SWELL time to develop the molecular pharmacology of the volume-regulated anion channel (VRAC). Channels (Austin) 2022; 16:27-36. [PMID: 35114895 PMCID: PMC8820792 DOI: 10.1080/19336950.2022.2033511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Newly emerging roles of LRRC8 volume-regulated anion channels (VRAC) raise important questions about the therapeutic potential of VRAC in the treatment of epilepsy, type 2 diabetes, and other human diseases. A critical barrier to evaluating whether VRAC represents a viable drug target is the lack of potent and specific small-molecule inhibitors and activators of the channel. Here we review recent progress in developing the molecular pharmacology of VRAC made by screening a library of FDA-approved drugs for novel channel modulators. We discuss the discovery and characterization of cysteinyl leukotriene receptor antagonists Pranlukast and Zafirlukast as novel VRAC inhibitors, and zinc pyrithione (ZPT), which apparently activates VRAC through a reactive oxygen species (ROS)-dependent mechanism. These ongoing efforts set the stage for developing a pharmacological toolkit for probing the integrative physiology, molecular pharmacology, and therapeutic potential of VRAC.
Collapse
Affiliation(s)
- Eric E. Figueroa
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Effect of AQP Inhibition on Boar Sperm Cryotolerance Depends on the Intrinsic Freezability of the Ejaculate. Int J Mol Sci 2019; 20:ijms20246255. [PMID: 31835821 PMCID: PMC6940875 DOI: 10.3390/ijms20246255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 01/30/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane channels with permeability to water and small solutes that can be classified according to their structure and permeability into orthodox AQPs, aquaglyceroporins (GLPs), and superAQPs. In boar spermatozoa, AQPs are related to osmoregulation and play a critical role in maturation and motility activation. In addition, their levels differ between ejaculates with good and poor cryotolerance (GFE and PFE, respectively). The aim of this work was to elucidate whether the involvement of AQPs in the sperm response to cryopreservation relies on the intrinsic freezability of the ejaculate. With this purpose, two different molecules: phloretin (PHL) and 1,3-propanediol (PDO), were used to inhibit sperm AQPs in GFE and PFE. Boar sperm samples were treated with three different concentrations of each inhibitor prior to cryopreservation, and sperm quality and functionality parameters were evaluated in fresh samples and after 30 and 240 min of thawing. Ejaculates were classified as GFE or PFE, according to their post-thaw sperm viability and motility. While the presence of PHL caused a decrease in sperm quality and function compared to the control, samples treated with PDO exhibited better quality and function parameters than the control. In addition, the effects of both inhibitors were more apparent in GFE than in PFE. In conclusion, AQP inhibition has more notable consequences in GFE than in PFE, which can be related to the difference in relative levels of AQPs between these two groups of samples.
Collapse
|
4
|
Delgado-Bermúdez A, Llavanera M, Fernández-Bastit L, Recuero S, Mateo-Otero Y, Bonet S, Barranco I, Fernández-Fuertes B, Yeste M. Aquaglyceroporins but not orthodox aquaporins are involved in the cryotolerance of pig spermatozoa. J Anim Sci Biotechnol 2019; 10:77. [PMID: 31636902 PMCID: PMC6791021 DOI: 10.1186/s40104-019-0388-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Aquaporins (AQPs) are a family of transmembrane water channels that includes orthodox AQPs, aquaglyceroporins (GLPs) and superAQPs. AQP3, AQP7, AQP9 and AQP11 have been identified in boar sperm, and they are crucial for sperm maturation and osmoregulation. Water exchange is an important event in cryopreservation, which is the most efficient method for long-term storage of sperm. However, the freeze-thaw process leads to sperm damage and a loss of fertilizing potential. Assuming that the quality of frozen-thawed sperm partially depends on the regulation of osmolality variations during this process, AQPs might play a crucial role in boar semen freezability. In this context, the aim of this study was to unravel the functional relevance of the different groups of AQPs for boar sperm cryotolerance through three different inhibitors. Results Inhibition of different groups of AQPs was found to have different effects on boar sperm cryotolerance. Whereas the use of 1,3-propanediol (PDO), an inhibitor of orthodox AQPs and GLPs, decreased total motility (P < 0.05), it increased post-thaw sperm viability, lowered membrane lipid disorder and increased mitochondrial membrane potential (MMP) (P < 0.05). When acetazolamide (AC) was used as an inhibitor of orthodox AQPs, the effects on post-thaw sperm quality were restricted to a mild increase in MMP in the presence of the intermediate concentration at 30 min post-thaw and an increase in superoxide levels (P < 0.05). Finally, the addition of phloretin (PHL), a GLP inhibitor, had detrimental effects on post-thaw total and progressive sperm motilities, viability and lipid membrane disorder (P < 0.05). Conclusions The effects of the different inhibitors suggest that GLPs rather than orthodox AQPs are relevant for boar sperm freezability. Moreover, the positive effect of PDO on sperm quality suggests a cryoprotective role for this molecule.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Leira Fernández-Bastit
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Beatriz Fernández-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, E-17003 Girona, Spain
| |
Collapse
|
5
|
Apigenin relaxes rat intrarenal arteries, depresses Ca2+-activated Cl− currents and augments voltage-dependent K+ currents of the arterial smooth muscle cells. Biomed Pharmacother 2019; 115:108926. [PMID: 31079004 DOI: 10.1016/j.biopha.2019.108926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
|
6
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
7
|
Wang YZ, Xu Q, Wu W, Liu Y, Jiang Y, Cai QQ, Lv QZ, Li XY. Brain Transport Profiles of Ginsenoside Rb 1 by Glucose Transporter 1: In Vitro and in Vivo. Front Pharmacol 2018; 9:398. [PMID: 29725302 PMCID: PMC5917093 DOI: 10.3389/fphar.2018.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Ginsenoside Rb1 (Rb1) has been demonstrated its protection for central nervous system and is apparently highly distributed to the brain. The objective of this study was to characterize Rb1 transport at the blood–brain barrier (BBB) using primary cultured rat brain microvascular endothelial cells (rBMEC), an in vitro BBB model. The initial uptake velocity of Rb1 in rBMEC was temperature- and concentration-dependent, and was significantly reduced by phloretin, an inhibitor of GLUT1 transporter, but was independent of metabolic inhibitor. Furthermore, the transport of Rb1 into rBMEC was significantly diminished in the presence of natural substrate α-D-glucose, suggesting a facilitated transport of Rb1 via GLUT1 transporter. The impact of GLUT1 on the distribution of Rb1 between brain and plasma was studied experimentally in rats. Administration of phloretin (5 mg/kg, i.v.) to normal rats for consecutive 1 week before Rb1 (10 mg/kg, i.v.) at 0.5, 2, and 6 h did not alter Rb1 concentrations in plasma, but resulted in significant decreased brain concentrations of Rb1 compared to in the phloretin-untreated normal rats (489.6 ± 58.3 versus 105.1 ± 15.1 ng/g, 193.8 ± 11.1 versus 84.8 ± 4.1 ng/g, and 114.2 ± 24.0 versus 39.9 ± 4.9 ng/g, respectively). The expression of GLUT1 in the phloretin-treated group by western blotting analysis in vitro and in vivo experiments was significantly decreased, indicating that the decreased transport of Rb1 in brain was well related to the down-regulated function and level of GLUT1. Therefore, our in vitro and in vivo results indicate that the transport of Rb1 at the BBB is at least partly mediated by GLUT1 transporter.
Collapse
Affiliation(s)
- Yu-Zhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Jiang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing-Qing Cai
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Zhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Yu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Kalra S, Jacob J, Baruah MP. Metformin + Sodium-glucose Co-transporter-2 Inhibitor: Salutogenic Lifestyle Mimetics in a Tablet? Indian J Endocrinol Metab 2018; 22:164-166. [PMID: 29535955 PMCID: PMC5838898 DOI: 10.4103/ijem.ijem_266_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Salutogenesis is an accepted approach for chronic disease management. Calorie restriction and exercise are two evidence based salutogenic interventions in diabetes treatment. Calorie restriction mimetics and exercise mimetics may be used as pharmacological tools to help manage diabetes in a sulutogenic manner. This article discusses the biochemical basis and pharmacology of metformin and sodium glucose cotransporter 2 inhibitors. It describes how a combination of these drugs can be used as a calories restriction and exercise mimetic, to help improve diabetes control.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | - Jubbin Jacob
- Department of Endocrinology, Christian Medical College, Ludhiana, Punjab, India
| | - Manash P. Baruah
- Department of Endocrinology, Excel Hospitals, Guwahati, Assam, India
| |
Collapse
|
9
|
Sato-Numata K, Numata T, Inoue R, Okada Y. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel. Pflugers Arch 2016; 468:795-803. [DOI: 10.1007/s00424-015-1786-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022]
|
10
|
Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch 2016; 468:371-83. [DOI: 10.1007/s00424-015-1781-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023]
|
11
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
12
|
Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 2014; 275:211-31. [DOI: 10.1016/j.neuroscience.2014.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/05/2023]
|
13
|
Abstract
Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of ligand-bound proteins, molecular dynamics simulations, and functional data on permeation and inhibition by a broad range of urea analogs and other small molecules, provides insight into the structural basis of urea permeation and selectivity.
Collapse
Affiliation(s)
- Elena J. Levin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
14
|
Kurlbaum M, Mülek M, Högger P. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes. PLoS One 2013; 8:e63197. [PMID: 23646194 PMCID: PMC3639945 DOI: 10.1371/journal.pone.0063197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 04/02/2013] [Indexed: 02/05/2023] Open
Abstract
Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated.
Collapse
Affiliation(s)
- Max Kurlbaum
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
| | - Melanie Mülek
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
| | - Petra Högger
- Universität Würzburg, Institut für Pharmazie und Lebensmittelchemie, Würzburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS One 2013; 8:e56744. [PMID: 23457608 PMCID: PMC3574084 DOI: 10.1371/journal.pone.0056744] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/14/2013] [Indexed: 01/17/2023] Open
Abstract
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
Collapse
Affiliation(s)
- Travis P. Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | - Phillip J. Albrecht
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Quanzhi Hou
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Alexander A. Mongin
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Gary R. Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank L. Rice
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| |
Collapse
|
16
|
Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One 2013; 8:e55646. [PMID: 23383255 PMCID: PMC3559474 DOI: 10.1371/journal.pone.0055646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
Glutathione (GSH) is a negatively charged tripeptide, which is a major determinant of the cellular redox state and defense against oxidative stress. It is assembled inside and degraded outside the cells and is released under various physiological and pathophysiological conditions. The GSH release mechanism is poorly understood at present. In our experiments, freshly isolated rat thymocytes were found to release GSH under normal isotonic conditions at a low rate of 0.82±0.07 attomol/cell/min and that was greatly enhanced under hypoosomotic stimulation to reach a level of 6.1±0.4 attomol/cell/min. The swelling-induced GSH release was proportional to the cell density in the suspension and was temperature-dependent with relatively low activation energy of 5.4±0.6 kcal/mol indicating a predominant diffusion mechanism of GSH translocation. The osmosensitive release of GSH was significantly inhibited by blockers of volume-sensitive outwardly rectifying (VSOR) anion channel, DCPIB and phloretin. In patch-clamp experiments, osmotic swelling activated large anionic conductance with the VSOR channel phenotype. Anion replacement studies suggested that the thymic VSOR anion channel is permeable to GSH(-) with the permeability ratio P(GSH)/P(Cl) of 0.32 for influx and 0.10 for efflux of GSH. The osmosensitive GSH release was trans-stimulated by SLCO/OATP substrates, probenecid, taurocholic acid and estrone sulfate, and inhibited by an SLC22A/OAT blocker, p-aminohippuric acid (PAH). The inhibition by PAH was additive to the effect of DCPIB or phloretin implying that PAH and DCPIB/phloretin affected separate pathways. We suggest that the VSOR anion channel constitutes a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells.
Collapse
|
17
|
Dezaki K, Maeno E, Sato K, Akita T, Okada Y. Early-phase occurrence of K+ and Cl- efflux in addition to Ca 2+ mobilization is a prerequisite to apoptosis in HeLa cells. Apoptosis 2012; 17:821-31. [PMID: 22460504 DOI: 10.1007/s10495-012-0716-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.
Collapse
Affiliation(s)
- Katsuya Dezaki
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
18
|
The apoptotic volume decrease is an upstream event of MAP kinase activation during Staurosporine-induced apoptosis in HeLa cells. Int J Mol Sci 2012; 13:9363-9379. [PMID: 22942770 PMCID: PMC3430301 DOI: 10.3390/ijms13079363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/15/2022] Open
Abstract
Persistent cell shrinkage, called apoptotic volume decrease (AVD), is a pivotal event of apoptosis. Activation of the volume-sensitive outwardly rectifying Cl− channel (VSOR) is involved in the AVD induction. On the other hand, activation of the MAP kinase (MAPK) cascade is also known to play a critical role in apoptosis. In the present study, we investigated the relationship between the AVD induction and the stress-responsive MAPK cascade activation during the apoptosis process induced by staurosporine (STS) in HeLa cells. STS was found to induce AVD within 2–5 min and phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK after over 20–30 min. VSOR blockers suppressed not only STS-induced AVD but also phosphorylation of JNK and p38 as well as activation of caspase-3/7. Moreover, a p38 inhibitor, SB203580, and a JNK inhibitor, SP600125, failed to affect STS-induced AVD, whereas these compounds reduced STS-induced activation of caspase-3/7. Also, treatment with ASK1-specific siRNA suppressed STS-induced caspase-3/7 activation without affecting the AVD induction. Furthermore, sustained osmotic cell shrinkage per se was found to trigger phosphorylation of JNK and p38, caspase activation, and cell death. Thus, it is suggested that activation of p38 and JNK is a downstream event of AVD for the STS-induced apoptosis of HeLa cells.
Collapse
|
19
|
Uhlenhut K, Högger P. Facilitated cellular uptake and suppression of inducible nitric oxide synthase by a metabolite of maritime pine bark extract (Pycnogenol). Free Radic Biol Med 2012; 53:305-13. [PMID: 22569413 DOI: 10.1016/j.freeradbiomed.2012.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/01/2012] [Accepted: 04/13/2012] [Indexed: 01/07/2023]
Abstract
Many natural products exhibit anti-inflammatory activity by suppressing excessive nitric oxide (NO) production by inducible NO synthase (iNOS). The maritime pine bark extract Pycnogenol has been formerly shown to decrease nitrite generation, taken as an index for NO, but so far it was not clear which constituent of the complex flavonoid mixture mediated this effect. The purpose of this study was to elucidate whether the in vivo generated Pycnogenol metabolite M1 (δ-(3,4-dihydroxyphenyl)-γ-valerolactone) displayed any activity in the context of induction of iNOS expression and excessive NO production. For the first time we show that M1 inhibited nitrite production (IC(50) 1.3 μg/ml, 95% CI 0.96-1.70) and iNOS expression (IC(50) 3.8 μg/ml, 95% CI 0.99-14.35) in a concentration-dependent fashion. This exemplifies bioactivation by metabolism because the M1 precursor molecule catechin is only weakly active. However, these effects required application of M1 in the low-micromolar range, which was not consistent with concentrations previously detected in human plasma samples after ingestion of maritime pine bark extract. Thus, we investigated a possible accumulation of M1 in cells and indeed observed high-capacity binding of this flavonoid metabolite to macrophages, monocytes, and endothelial cells. This binding was distinctly decreased in the presence of the influx inhibitor phloretin, suggesting the contribution of a facilitated M1 transport into cells. In fact, intracellular accumulation of M1 could explain why in vivo bioactivity can be observed with nanomolar plasma concentrations that typically fail to exhibit measurable activity in vitro.
Collapse
Affiliation(s)
- Klaus Uhlenhut
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, 97074 Würzburg, Germany
| | | |
Collapse
|
20
|
Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J, Ruff D, Shadoan M, Banks P, Mseeh F, Rawlins DB, Goodwin NC, Mabon R, Harrison BA, Wilson A, Sands A, Powell DR. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther 2012; 92:158-69. [PMID: 22739142 PMCID: PMC3400893 DOI: 10.1038/clpt.2012.58] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thirty-six patients with type 2 diabetes mellitus (T2DM) were randomized 1:1:1 to receive a once-daily oral dose of placebo or 150 or 300 mg of the dual SGLT1/SGLT2 inhibitor LX4211 for 28 days. Relative to placebo, LX4211 enhanced urinary glucose excretion by inhibiting SGLT2-mediated renal glucose reabsorption; markedly and significantly improved multiple measures of glycemic control, including fasting plasma glucose, oral glucose tolerance, and HbA(1c); and significantly lowered serum triglycerides. LX4211 also mediated trends for lower weight, lower blood pressure, and higher glucagon-like peptide-1 levels. In a follow-up single-dose study in 12 patients with T2DM, LX4211 (300 mg) significantly increased glucagon-like peptide-1 and peptide YY levels relative to pretreatment values, probably by delaying SGLT1-mediated intestinal glucose absorption. In both studies, LX4211 was well tolerated without evidence of increased gastrointestinal side effects. These data support further study of LX4211-mediated dual SGLT1/SGLT2 inhibition as a novel mechanism of action in the treatment of T2DM.
Collapse
Affiliation(s)
- B Zambrowicz
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antczak C, Bermingham A, Calder P, Malkov D, Song K, Fetter J, Djaballah H. Domain-based biosensor assay to screen for epidermal growth factor receptor modulators in live cells. Assay Drug Dev Technol 2012; 10:24-36. [PMID: 22280060 DOI: 10.1089/adt.2011.423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Traditional drug discovery efforts have resulted in the approval of a handful of receptor tyrosine kinase (RTK) inhibitors; however, their discovery relied solely on screening recombinant kinases, often with poor cellular activity outcome. The ability to screen RTKs in their natural environment is sought as an alternative approach. We have adapted a novel strategy utilizing a green fluorescent protein-labeled SRC homology 2 domain-based biosensor as a surrogate reporter of endogenous epidermal growth factor receptor (EGFR) activity in A549 cells. Upon activation of the receptor, EGFR function in live cells is measured by the number of green granules that form. Here we describe assay miniaturization and demonstrate specificity for EGFR through its chemical inhibition and RNAi-dependent knockdown resulting in complete abrogation of granule formation. Gefitinib and PD 153035 were identified as hits in a pilot screen. This approach allows for the identification of novel EGFR modulators in high-throughput formats for screening chemical and RNAi libraries.
Collapse
Affiliation(s)
- Christophe Antczak
- HTS Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center , New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Carvalho ESM, Fuentes J, Power DM. Integument structure and function in juvenile Xenopus laevis with disrupted thyroid balance. Gen Comp Endocrinol 2011; 174:301-8. [PMID: 21963960 DOI: 10.1016/j.ygcen.2011.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
The skin is the largest organ in the body and is a barrier between the internal and external environment. The present study evaluates how PTU, a goitrogen, that is used to treat hyperthyroidism affects the structure and electrical properties of the frog (Xenopus laevis) skin. The results are considered in the context of the two-membrane model established in the seminal work of Ussing and collegues in the 1940s and 1950s. In vitro experiments with skin from Xenopus adults revealed that PTU can act directly on skin and causes a significant increase (p<0.05, One-way ANOVA) in short circuit current (Isc) via an amiloride-insensitive mechanism. Juvenile Xenopus exposed to waterborne PTU (5 mg/L) had a significantly bigger and more active thyroid gland (p<0.01, Student's t-test) than control Xenopus. The bioelectric properties of skin taken from Xenopus juveniles treated with PTU in vivo had a lower Isc, (3.05±0.4, n=13) and Rt (288.2±39.5) than skin from control Xenopus (Isc, 4.19±1.14, n=14; Rt, 343.3±43.3). A histological assessment of skin from PTU treated Xenopus juveniles revealed the epidermis was significantly thicker (p<0.01, Student's t-test) and had a greater number of modified exocrine glands (p<0.01, Student's t-test) in the dermis compared to control skin. Modifications in skin structure are presumably the basis for its changed bioelectric properties and the study highlights a site of action for environmental chemicals which has been largely neglected.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
23
|
Zelenina M. Regulation of brain aquaporins. Neurochem Int 2010; 57:468-88. [DOI: 10.1016/j.neuint.2010.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 01/27/2023]
|
24
|
Abstract
The release of neuronal messengers outside synapses has broad biological implications, particularly with regard to communication between axons and glia. We identify a mechanism for nonsynaptic, nonvesicular release of adenosine triphosphate (ATP) from axons through volume-activated anion channels (VAACs) activated by microscopic axon swelling during action potential firing. We used a combination of single-photon imaging of ATP release, together with imaging for intrinsic optical signals, intracellular calcium ions (Ca(2+)), time-lapse video, and confocal microscopy, to investigate action potential-induced nonsynaptic release of this neurotransmitter. ATP release from cultured embryonic dorsal root ganglion axons persisted when bafilomycin or botulinum toxin was used to block vesicular release, whereas pharmacological inhibition of VAACs or prevention of action potential-induced axon swelling inhibited ATP release and disrupted activity-dependent signaling between axons and astrocytes. This nonvesicular, nonsynaptic communication could mediate various activity-dependent interactions between axons and nervous system cells in normal conditions, development, and disease.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous Systems Development and Plasticity Section, National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Barbara B. Aquaporin biology and nervous system. Curr Neuropharmacol 2010; 8:97-104. [PMID: 21119880 PMCID: PMC2923373 DOI: 10.2174/157015910791233204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 04/07/2010] [Indexed: 12/21/2022] Open
Abstract
Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis.Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing.Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Buffoli Barbara
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy
| |
Collapse
|
26
|
Harron SA, Clarke CM, Jones CL, Babin-Muise D, Cowley EA. Volume regulation in the human airway epithelial cell line Calu-3. Can J Physiol Pharmacol 2009; 87:337-46. [PMID: 19448731 DOI: 10.1139/y09-009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells regulate their volume in response to changes in the osmolarity of both their extracellular and their intracellular environments. We investigated the ability of the human airway epithelial cell line Calu-3 to respond to changes in extracellular osmolarity. Although switching Calu-3 cells from an isosmotic to a hyperosmotic environment resulted in cell shrinkage, there was no compensatory mechanism for the cells to return to their original volume. In contrast, switching to a hyposmotic environment resulted in an initial cell swelling response, followed by a regulatory volume decrease (RVD). Pharmacologic studies demonstrate that the voltage-activated K+ channels Kv4.1 and (or) Kv4.3 play a crucial role in mediating this RVD response, and we demonstrated expression of these channel types at the mRNA and protein levels. Furthermore, inhibition of the large- and intermediate-conductance Ca2+-activated K+ channels KCa1.1 (maxi-K) and KCa3.1 (hIK) also implicated these channels as playing a role in volume recovery in Calu-3 cells. This report describes the nature of volume regulation in the widely used model cell line Calu-3.
Collapse
Affiliation(s)
- Scott A Harron
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, NS B3H 1X5, Canada
| | | | | | | | | |
Collapse
|
27
|
Liu Y, Song L, Wang Y, Rojek A, Nielsen S, Agre P, Carbrey JM. Osteoclast differentiation and function in aquaglyceroporin AQP9-null mice. Biol Cell 2009; 101:133-40. [PMID: 18666888 PMCID: PMC4283492 DOI: 10.1042/bc20080083] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Osteoclasts are cells specialized for bone resorption and play important roles in bone growth and calcium homoeostasis. Differentiation of osteoclasts involves fusion of bone marrow macrophage mononuclear precursors in response to extracellular signals. A dramatic increase in osteoclast cell volume occurs during osteoclast biogenesis and is believed to be mediated by AQP9 (aquaporin 9), a membrane protein that can rapidly transport water and other small neutral solutes across cell membranes. RESULTS In the present study we report an increase in expression of AQP9 during differentiation of a mouse macrophage cell line into osteoclasts. Bone marrow macrophages from wild-type and AQP9-null mice differentiate into osteoclasts that have similar morphology, contain comparable numbers of nuclei, and digest synthetic bone to the same extent. Bones from wild-type and AQP9-null mice contain similar numbers of osteoclasts and have comparable density and structure as measured by X-ray absorptiometry and microcomputed tomography. CONCLUSIONS Our results confirm that AQP9 expression rises during osteoclast biogenesis, but indicate that AQP9 is not essential for osteoclast function or differentiation under normal physiological conditions.
Collapse
Affiliation(s)
- Yangjian Liu
- From Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Linhua Song
- From Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiding Wang
- From Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aleksandra Rojek
- Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Søren Nielsen
- Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Peter Agre
- From Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jennifer M. Carbrey
- From Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
28
|
Liu HT, Akita T, Shimizu T, Sabirov RZ, Okada Y. Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 2009; 587:2197-209. [PMID: 19188250 DOI: 10.1113/jphysiol.2008.165084] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glial cells release gliotransmitters which signal to adjacent neurons and glial cells. Previous studies showed that in response to stimulation with bradykinin, glutamate is released from rat astrocytes and causes NMDA receptor-mediated elevation of intracellular Ca(2+) in adjacent neurons. Here, we investigate how bradykinin-induced glutamate release from mouse astrocytes signals to neighbouring neurons in co-cultures. Astrocyte-to-neuron signalling and bradykinin-induced glutamate release from mouse astrocytes were both inhibited by the anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and phloretin. Glutamate release was also sensitive to 4-(2-Butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB), a specific blocker of the volume-sensitive outwardly rectifying anion channel (VSOR). Astrocytes, but not neurons, responded to bradykinin with activation of whole-cell Cl- currents. Although astrocytes stimulated with bradykinin did not undergo cell swelling, the bradykinin-activated current exhibited properties typical of VSOR: outward rectification, inhibition by osmotic shrinkage, sensitivity to DIDS, phloretin and DCPIB, dependence on intracellular ATP, and permeability to glutamate. Bradykinin increased intracellular reactive oxygen species (ROS) in mouse astrocytes. Pretreatment of mouse astrocytes with either a ROS scavenger or an NAD(P)H oxidase inhibitor blocked bradykinin-induced activation of VSOR, glutamate release and astrocyte-to-neuron signalling. By contrast, pretreatment with BAPTA-AM or tetanus neurotoxin A failed to suppress bradykinin-induced glutamate release. Thus, VSOR activated by ROS in mouse astrocytes in response to stimulation with bradykinin, serves as the pathway for glutamate release to mediate astrocyte-to-neuron signalling. Since bradykinin is an initial mediator of inflammation, VSOR might play a role in glia-neuron communication in the brain during inflammation.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | |
Collapse
|
29
|
Sabirov RZ, Okada Y. The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 2009; 59:3-21. [PMID: 19340557 PMCID: PMC10717152 DOI: 10.1007/s12576-008-0008-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/05/2008] [Indexed: 10/20/2022]
Abstract
The maxi-anion channel is widely expressed and found in almost every part of the body. The channel is activated in response to osmotic cell swelling, to excision of the membrane patch, and also to some other physiologically and pathophysiologically relevant stimuli, such as salt stress in kidney macula densa as well as ischemia/hypoxia in heart and brain. Biophysically, the maxi-anion channel is characterized by a large single-channel conductance of 300-400 pS, which saturates at 580-640 pS with increasing the Cl(-) concentration. The channel discriminates well between Na(+) and Cl(-), but is poorly selective to other halides exhibiting weak electric-field selectivity with an Eisenman's selectivity sequence I. The maxi-anion channel has a wide pore with an effective radius of approximately 1.3 nm and permits passage not only of Cl(-) but also of some intracellular large organic anions, thereby releasing major extracellular signals and gliotransmitters such as glutamate(-) and ATP(4-). The channel-mediated efflux of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression, well-defined properties and physiological/pathophysiological significance of this classical channel, the molecular entity has not been identified. Molecular identification of the maxi-anion channel is an urgent task that would greatly promote investigation in the fields not only of anion channel but also of physiological/pathophysiological signaling in the brain, heart and kidney.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, Tashkent, 100095 Uzbekistan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (Sokendai), Okazaki, 444-8585 Japan
| |
Collapse
|
30
|
Jacobsen Ø, Klaveness J, Petter Ottersen O, Reza Amiry-Moghaddam M, Rongved P. Synthesis of cyclic peptide analogues of the 310 helical Pro138-Gly144 segment of human aquaporin-4 by olefin metathesis. Org Biomol Chem 2009; 7:1599-611. [DOI: 10.1039/b823559g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Liu HT, Toychiev AH, Takahashi N, Sabirov RZ, Okada Y. Maxi-anion channel as a candidate pathway for osmosensitive ATP release from mouse astrocytes in primary culture. Cell Res 2008; 18:558-65. [DOI: 10.1038/cr.2008.49] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
32
|
Lauf PK, Misri S, Chimote AA, Adragna NC. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells. Am J Physiol Cell Physiol 2008; 294:C820-32. [PMID: 18184876 DOI: 10.1152/ajpcell.00375.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.
Collapse
Affiliation(s)
- Peter K Lauf
- Cell Biophysics Group, 054 Biological Sciences Bldg., Wright State Univ. Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | | | | | | |
Collapse
|
33
|
Matsuda JJ, Filali MS, Volk KA, Collins MM, Moreland JG, Lamb FS. Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent. Am J Physiol Cell Physiol 2008; 294:C251-62. [DOI: 10.1152/ajpcell.00338.2007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ClC-3 is a member of the ClC family of anion channels/transporters. Recently, the closely related proteins ClC-4 and ClC-5 were shown to be Cl−/H+antiporters ( 39 , 44 ). The function of ClC-3 has been controversial. We studied anion currents in HEK293T cells expressing wild-type or mutant ClC-3. The basic biophysical properties of ClC-3 currents were very similar to those of ClC-4 and ClC-5, and distinct from those of the swelling-activated anion channel. ClC-3 expression induced currents with time-dependent activation that rectified sharply in the outward direction. The reversal potential of the current shifted by −48.3 ± 2.5 mV per 10-fold (decade) change in extracellular Cl−concentration, which did not conform to the behavior of an anion-selective channel based upon the Nernst equation, which predicts a −58.4 mV/decade shift at 22°C. Manipulation of extracellular pH (6.35–8.2) altered reversal potential by 10.2 ± 3.0 mV/decade, suggesting that ClC-3 currents were coupled to proton movement. Mutation of a specific glutamate residue (E224A) changed voltage dependence in a manner similar to that observed in other ClC Cl−/H+antiporters. Mutant currents exhibited Nernstian changes in reversal potential in response to altered extracellular Cl−concentration that averaged −60 ± 3.4 mV/decade and were pH independent. Thus ClC-3 overexpression induced a pH-sensitive conductance in HEK293T cells that is biophysically similar to ClC-4 and ClC-5.
Collapse
|
34
|
Huber VJ, Tsujita M, Yamazaki M, Sakimura K, Nakada T. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett 2007; 17:1270-3. [PMID: 17178220 DOI: 10.1016/j.bmcl.2006.12.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/04/2006] [Indexed: 11/21/2022]
Abstract
Carbonic anhydrase inhibitors AZA, EZA, and 4-acetamidobenzsulfonamide were found to inhibit human AQP4-M23 mediated water transport by 80%, 68%, and 23%, respectively, at 20 microM in an in vitro functional assay. AZA was found to have an IC50 against AQP4 of 0.9 microM. Phloretin was inactive under the same conditions.
Collapse
Affiliation(s)
- Vincent J Huber
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, 1-757 Asahi Machi Dori, Niigata 951-8585, Japan.
| | | | | | | | | |
Collapse
|
35
|
Lee EL, Shimizu T, Ise T, Numata T, Kohno K, Okada Y. Impaired activity of volume-sensitive Cl− channel is involved in cisplatin resistance of cancer cells. J Cell Physiol 2007; 211:513-21. [PMID: 17186499 DOI: 10.1002/jcp.20961] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The platinum-based drug cisplatin is a widely used anticancer drug which acts by causing the induction of apoptosis. However, resistance to the drug is a major problem. In this study we show that the KCP-4 human epidermoid cancer cell line, which serves as a model of acquired resistance to cisplatin, has virtually no volume-sensitive, outwardly rectifying (VSOR) chloride channel activity. The VSOR chloride channel's molecular identity has not yet been determined, and semi-quantitative RT-PCR experiments in this study suggested that the channel corresponds to none of three candidate genes. However, because it is known that the channel current plays an essential role in apoptosis, we hypothesized that lack of the current contributes to cisplatin resistance in these cells and that its restoration would reduce resistance. To test this hypothesis, we attempted to restore VSOR chloride current in KCP-4 cells. It was found that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, caused VSOR chloride channel function to be partially restored. Treatment of the cells with both TSA and cisplatin resulted in an increase in caspase-3 activity at 24 h and a decrease in cell viability at 48 h. These effects were blocked by simultaneous treatment of the cells with a VSOR chloride channel blocker. These results indicate that restoration of the channel's functional expression by TSA treatment leads to a decrease in the cisplatin resistance of KCP-4 cells. We thus conclude that impaired activity of the VSOR chloride channel is involved in the cisplatin resistance of KCP-4 cancer cells.
Collapse
Affiliation(s)
- Elbert L Lee
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Wang HY, Shimizu T, Numata T, Okada Y. Role of acid-sensitive outwardly rectifying anion channels in acidosis-induced cell death in human epithelial cells. Pflugers Arch 2006; 454:223-33. [PMID: 17186306 DOI: 10.1007/s00424-006-0193-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Recently, a novel type of anion channel activated by extracellular acidification has been found in a variety of mammalian cell types. However, the role of this acid-sensitive outwardly rectifying (ASOR) anion channel is not known. In human epithelial HeLa cells, reduction in extracellular pH below 5 rapidly activated anion-selective whole-cell currents. The currents exhibited strong outward rectification, activation kinetics at positive potentials, low-field anion selectivity, and sensitivity to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and phloretin. When outside-out patches were exposed to acidic bathing solution, single-channel events of the anion channel could be observed. The unitary conductance was 4.8 pS in the voltage range between -80 and +80 mV. The single-channel activity prominently increased with depolarization and was suppressed by DIDS or phloretin. After 1-h incubation in acidic solution (pH 4.5), a significant population of HeLa cells suffered from necrotic cell injury characterized by stainability with propidium iodide and lack of caspase-3 activation. Upon exposure to acidic solution, HeLa cells exhibited immediate, persistent swelling. Both the necrotic volume increase and cell injury induced by extracellular acidification were inhibited by DIDS or phloretin. Therefore, it is concluded that the ASOR anion channel is involved in the genesis of necrotic cell injury induced by acidosis in human epithelial cells.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
37
|
Camacho A, Montiel T, Massieu L. The anion channel blocker, 4,4′-dinitrostilbene-2,2′-disulfonic acid prevents neuronal death and excitatory amino acid release during glycolysis inhibition in the hippocampus in vivo. Neuroscience 2006; 142:1005-17. [PMID: 16920271 DOI: 10.1016/j.neuroscience.2006.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/29/2006] [Accepted: 07/11/2006] [Indexed: 12/14/2022]
Abstract
Neuronal death associated with cerebral ischemia and hypoglycemia is related to increased release of excitatory amino acids (EAA) and energy failure. The intrahippocampal administration of the glycolysis inhibitor, iodoacetate (IOA), induces the accumulation of EAA and neuronal death. We have investigated by microdialysis the role of exocytosis, glutamate transporters and volume-sensitive organic anion channel (VSOAC) on IOA-induced EAA release. Results show that the early component of EAA release is inhibited by riluzole, a voltage-dependent sodium channel blocker, and by the VSOAC blocker, tamoxifen, while the early and late components are blocked by the glutamate transport inhibitors, L-trans-pyrrolidine 2,4-dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA); and by the VSOAC blocker 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Riluzole, DL-TBOA and tamoxifen did not prevent IOA-induced neuronal death, while PDC and DNDS did. The VSOAC blockers 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) and phloretin had no effect either on EAA efflux or neuronal damage. Results suggest that acute inhibition of glycolytic metabolism promotes the accumulation of EAA by exocytosis, impairment or reverse action of glutamate transporters and activation of a DNDS-sensitive mechanism. The latest is substantially involved in the triggering of neuronal death. To our knowledge, this is the first study to show protection of neuronal death by DNDS in an in vivo model of neuronal damage, associated with deficient energy metabolism and EAA release, two conditions involved in some pathological states such as ischemia and hypoglycemia.
Collapse
Affiliation(s)
- A Camacho
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México AP 70-253, México DF CP 04510, Mexico
| | | | | |
Collapse
|
38
|
Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 2006; 572:677-89. [PMID: 16527858 PMCID: PMC1780004 DOI: 10.1113/jphysiol.2005.103820] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are chloride channels which are permeable to a variety of small organic anions, including the excitatory amino acids (EAAs) glutamate and aspartate. Broad spectrum anion channel blockers strongly reduce EAA release in cerebral ischaemia and other pathological states associated with prominent astrocytic swelling. However, it is uncertain whether VRAC serves as a major pathway for EAA release from swollen cells. In the present study, we measured swelling-activated release of EAAs as D-[3H]aspartate efflux, and VRAC-mediated Cl- currents by whole-cell patch clamp in cultured rat astrocytes. We compared the pharmacological profiles of the swelling-activated EAA release pathway and Cl- currents. The expression of candidate Cl- channels was confirmed by RT-PCR. The maxi Cl- channel (p-VDAC) blocker Gd3+, the ClC-2 inhibitor Cd2+, and the MDR-1 blocker verapamil did not affect EAA release or VRAC currents. An antagonist of calcium-sensitive Cl- channels (CaCC), niflumic acid, had little effect on EAA release and only partially inhibited swelling-activated Cl- currents. The phorbol ester PDBu, which blocks ClC-3-mediated Cl- currents, had no effect on VRAC currents and up-regulated EAA release. In contrast, DCPIB, which selectively inhibits VRACs, potently suppressed both EAA release and VRAC currents. Two other relatively selective VRAC inhibitors, tamoxifen and phloretin, also blocked the VRAC currents and strongly reduced EAA release. Taken together, our data suggest that (i) astrocytic volume-dependent EAA release is largely mediated by the VRAC, and (ii) the ClC-2, ClC-3, ClC-4, ClC-5, VDAC, CaCC, MDR-1 and CFTR gene products do not contribute to EAA permeability.
Collapse
|
39
|
Abstract
Aquaporins (water channels) selectively enhance water permeability of membranes. Since osteoclast differentiation includes a dramatic increase in cell volume, we hypothesize that aquaporin(s) is/are critical for the formation of the multinucleated osteoclast from its mononuclear precursor. Our studies employ two cell models, bone marrow macrophages (BMMs) and the murine macrophage-like cell line, RAW264.7, as osteoclast precursors. Receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL) and macrophage-colony-stimulating factor or RANKL alone were used to induce osteoclast differentiation in BMMs or RAW264.7 cells, respectively. We first used qualitative reverse transcription (RT)-PCR to examine which of the aquaporins are expressed in osteoclasts and in their precursor cells. Out of the 10 aquaporins examined, only aquaporin 9 (AQP9) was expressed in osteoclast-lineage cells. AQP9 has unique aqueous pore properties mediating the passage of a wide variety of non-charged solutes in addition to water. Western analyses using specific antibodies revealed a higher AQP9 level in RANKL-treated than in untreated cells. Quantitative real-time RT-PCR analyses also demonstrated higher AQP9 mRNA levels in RANKL-treated cells. Finally, we examined the effect of phloretin, an AQP9 inhibitor, on RANKL-induced osteoclast differentiation. Cells were incubated with RANKL for 5 days, and phloretin was added for the last 2 days, when most fusion occurs. A dramatic reduction in osteoclast size and in the number of nuclei per osteoclast was observed in cultures containing phloretin. The inhibitor did not have a significant effect on the number and size of mononuclear phagocytes in cultures not treated with RANKL. Our results suggest a role for AQP9 in osteoclast differentiation, specifically in the fusion process.
Collapse
Affiliation(s)
- Refael Aharon
- Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | | |
Collapse
|
40
|
Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol 2006; 209:21-9. [PMID: 16685598 DOI: 10.1007/s00232-005-0836-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Indexed: 11/30/2022]
Abstract
Apoptosis is an essential process in organ development, tissue homeostasis, somatic cell turnover, and the pathogenesis of degenerative diseases. Apoptotic cell death occurs in response to a variety of stimuli in physiological and pathological circumstances. Efflux of K(+) and Cl(-) leads to apoptotic volume decrease (AVD) of the cell. Both mitochondrion-mediated intrinsic, and death receptor-mediated extrinsic, apoptotic stimuli have been reported to rapidly activate Cl(-) conductances in a large variety of cell types. In epithelial cells and cardiomyocytes, the AVD-inducing anion channel was recently determined to be the volume-sensitive outwardly rectifying (VSOR) Cl(-) channel which is usually activated by swelling under non-apoptotic conditions. Blocking the VSOR Cl(-) channel prevented cell death in not only epithelial and cardiac cells, but also other cell types, by inhibiting the induction of AVD and subsequent apoptotic events. Ischemia-reperfusion-induced apoptotic death in cardiomyocytes and brain neurons was also prevented by Cl(-) channel blockers. Furthermore, cancer cell apoptosis induced by the anti-cancer drug cisplatin was recently found to be associated with augmented activity of the VSOR Cl(-) channel and to be inhibited by a Cl(-) channel blocker. The apoptosis-inducing VSOR Cl(-) channel is distinct from ClC-3 and its molecular identity remains to be determined.
Collapse
Affiliation(s)
- Y Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Olson ML, Kargacin ME, Honeyman TW, Ward CA, Kargacin GJ. Effects of phytoestrogens on sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and Ca2+ uptake into cardiac sarcoplasmic reticulum. J Pharmacol Exp Ther 2006; 316:628-35. [PMID: 16227472 DOI: 10.1124/jpet.105.092940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phytoestrogens are naturally occurring estrogenic compounds found in plants and plant products. These compounds are also known to exert cellular effects independent of their interactions with estrogen receptors. We studied the effects of the phytoestrogens phloretin, phloridzin, genistein, and biochanin A on Ca(2+) uptake into the cardiac muscle sarcoplasmic reticulum (SR). Genistein and biochanin A did not affect SR Ca(2+) uptake. On the other hand, phloretin and phloridzin decreased the maximum velocity of SR Ca(2+) uptake but did not affect the Hill coefficient or the Ca(2+) sensitivity of uptake. Measurements of the ATPase activity of the cardiac SR Ca(2+) pump (SERCA2a) revealed direct inhibitory effects of phloretin and phloridzin on SERCA2a. Neither compound induced a detectable change in the permeability of the SR membrane to Ca(2+). These results indicate that phloretin and phloridzin inhibit cardiac SR Ca(2+) uptake by directly inhibiting SERCA2a.
Collapse
Affiliation(s)
- Marnie L Olson
- Department of Physiology and Biophysics, University of Calgary, Canada
| | | | | | | | | |
Collapse
|
42
|
Wang X, Takahashi N, Uramoto H, Okada Y. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes. Cell Physiol Biochem 2006; 16:147-54. [PMID: 16301815 DOI: 10.1159/000089840] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2005] [Indexed: 11/19/2022] Open
Abstract
Apoptosis of cardiomyocytes following ischemia and reperfusion is of clinical importance. However, little is known about the mechanism by which it is induced. Recently, essential roles of a Cl- channel whose activity triggers the apoptotic volume decrease and of reactive oxygen species (ROS) in activation of this channel have been identified in mitochondrion-mediated apoptosis. Therefore, in this study, involvement of Cl- channels and ROS in apoptosis was studied in primary mouse cardiomyocyte cultures subjected to ischemia-reperfusion. Apoptotic cell death as measured by caspase-3 activation, chromatin condensation, DNA laddering, and cell viability reduction was observed tens of hours after reperfusion but never immediately after ischemia. A non-selective Cl-channel blocker (DIDS or NPPB) rescued cells from apoptotic death when applied during the reperfusion, but not ischemia, period. Another blocker relatively specific to the volume-sensitive outwardly rectifying (VSOR) Cl-channel (phloretin) was also effective in protecting ischemic cardiomyocytes from apoptosis induced by reperfusion. A profound increase in intracellular ROS was detected in cardiomyocytes during the reperfusion, but not ischemia, period. Scavengers for ROS, H2O2 and superoxide all inhibited apoptosis induced by ischemia-reperfusion. Thus, it is concluded that the mechanism by which cardiomyocyte apoptosis is induced by ischemia-reperfusion involves VSOR Cl- channel activity and intracellular ROS production.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
43
|
Ise T, Shimizu T, Lee EL, Inoue H, Kohno K, Okada Y. Roles of volume-sensitive Cl- channel in cisplatin-induced apoptosis in human epidermoid cancer cells. J Membr Biol 2006; 205:139-45. [PMID: 16362502 DOI: 10.1007/s00232-005-0779-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Indexed: 10/25/2022]
Abstract
The anti-cancer drug cisplatin induces apoptosis by damaging DNA. Since a stilbene-derivative blocker of Cl-/HCO3- exchangers and Cl- channels, SITS, is known to induce cisplatin resistance in a manner independent of intracellular pH and extracellular HCO3-, we investigated the relation between cisplatin-induced apoptosis and Cl- channel activity in human adenocarcinoma KB cells. A stilbene derivative, DIDS, reduced cisplatin-induced caspase-3 activation and cell death, which were detected over 18 h after treatment with cisplatin. DIDS was also found to reduce sensitivity of KB cells to 5-day exposure to cisplatin. Whole-cell patch-clamp recordings showed that KB cells functionally express volume-sensitive outwardly rectifying (VSOR) Cl- channels which are activated by osmotic cell swelling and sensitive to DIDS. Pretreatment of the cells with cisplatin for 12 h augmented the magnitude of VSOR Cl- current. Thus, it is concluded that cisplatin-induced cytotoxicity in KB cells is associated with augmented activity of a DIDS-sensitive VSOR Cl- channel and that blockade of this channel is, at least in part, responsible for cisplatin resistance induced by a stilbene derivative.
Collapse
Affiliation(s)
- T Ise
- Department of Molecular Biology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Liu HT, Tashmukhamedov BA, Inoue H, Okada Y, Sabirov RZ. Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 2006; 54:343-57. [PMID: 16883573 DOI: 10.1002/glia.20400] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrocytes release glutamate upon hyperexcitation in the normal brain, and in response to pathologic insults such as ischemia and trauma. In our experiments, both hypotonic and ischemic stimuli caused the release of glutamate from cultured mouse astrocytes, which occurred with little or no contribution of gap junction hemichannels, vesicle-mediated exocytosis, or reversed operation of the Na-dependent glutamate transporter. Cell swelling and chemical ischemia activated, in cell-attached membrane patches, anionic channels with large unitary conductance (approximately 400 pS) and inactivation kinetics at potentials more positive than +20 mV or more negative than -20 mV. These properties are different from those of volume-sensitive outwardly rectifying (VSOR) Cl- channels, which were also expressed in these cells and exhibited intermediate unitary conductance (approximately 80 pS) and inactivation kinetics at large positive potentials of more than +40 mV. Both maxi-anion channels and VSOR Cl- channels were permeable to glutamate with permeability ratios of glutamate to chloride of 0.21 +/- 0.07 and 0.15 +/- 0.01, respectively. However, the release of glutamate was significantly more sensitive to Gd3+, a blocker of maxi-anion channels, than to phloretin, a blocker of VSOR Cl- channels. We conclude that these two channels jointly represent a major conductive pathway for the release of glutamate from swollen and ischemia-challenged astrocytes, with the contribution of maxi-anion channels being predominant.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | |
Collapse
|
45
|
Jiao JD, Xu CQ, Yue P, Dong DL, Li Z, Du ZM, Yang BF. Volume-sensitive outwardly rectifying chloride channels are involved in oxidative stress-induced apoptosis of mesangial cells. Biochem Biophys Res Commun 2005; 340:277-85. [PMID: 16364252 DOI: 10.1016/j.bbrc.2005.11.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 11/22/2005] [Indexed: 11/23/2022]
Abstract
Volume-sensitive outwardly rectifying (VSOR) Cl- channels have been electrophysiologically identified in human and mouse mesangial cells, but the functional role of VSOR Cl- channels in mesangial cell apoptosis is not clear. The aim of the present study was to demonstrate the role of VSOR Cl- channels in oxidative stress-induced mesangial cell apoptosis. H2O2-induced Cl- currents showed phenotypic properties of VSOR Cl- channels, including outward rectification, voltage-dependent inactivation at more positive potentials, sensitivity to hyperosmolarity, and inhibition by VSOR Cl- channel blockers. Moreover, blockage of VSOR Cl- channels by DIDS (100 microM), NPPB (10 microM) or niflumic acid (10 microM) rescued mesangial cell apoptosis induced by H2O2. Treatment with 150 microM H2O2 for 2h resulted in significant reduction of cell volume, in contrast, nuclear condensation and/or fragmentation were not observed and the caspase-3 activity was also not increased. The early-phase alterations in cell volume were markedly abolished by pretreatment with VSOR Cl- channel blockers. We conclude that VSOR Cl- channels are involved in H2O2-induced apoptosis in cultured mesangial cells and its mechanism is associated with apoptotic volume decrease processes.
Collapse
Affiliation(s)
- Jun-Dong Jiao
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Sabirov RZ, Okada Y. ATP release via anion channels. Purinergic Signal 2005; 1:311-28. [PMID: 18404516 PMCID: PMC2096548 DOI: 10.1007/s11302-005-1557-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/19/2005] [Accepted: 07/26/2005] [Indexed: 11/30/2022] Open
Abstract
ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.
Collapse
Affiliation(s)
- Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
47
|
Inoue H, Mori SI, Morishima S, Okada Y. Volume-sensitive chloride channels in mouse cortical neurons: characterization and role in volume regulation. Eur J Neurosci 2005; 21:1648-58. [PMID: 15845092 DOI: 10.1111/j.1460-9568.2005.04006.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because persistent swelling causes cell damage and often results in cell death, volume regulation is an important physiological function in both neuronal and non-neuronal cells. Brain cell swelling has been observed not only in various pathological conditions but also during physiological synaptic transmissions. Volume-sensitive anion channels have been reported to play an important role in the regulatory volume decrease occurring after osmotic swelling in many cell types. In this study, using a two-photon laser scanning microscope and patch-clamp techniques, we found that mouse cortical neurons in primary culture exhibit regulatory volume decrease after transient swelling and activation of Cl- currents during exposure to a hypotonic solution. The regulatory volume decrease was inhibited by Cl- channel blockers or K+ channel blockers. Swelling-activated Cl- currents exhibited outward rectification, time-dependent inactivation at large positive potentials, a low-field anion permeability sequence, an intermediate unitary conductance and sensitivity to known blockers of volume-sensitive Cl- channels. Thus, it is concluded that the activity of the volume-sensitive outwardly rectifying Cl- channel plays a role in the control of cell volume in cortical neurons.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
48
|
Sabirov RZ, Okada Y. ATP-conducting maxi-anion channel: a new player in stress-sensory transduction. ACTA ACUST UNITED AC 2004; 54:7-14. [PMID: 15040843 DOI: 10.2170/jjphysiol.54.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The regulated release of ATP is a fundamental process in cell-to-cell signaling. The electrogenic translocation of ATP via an anion channel has been suggested as one possible mechanism of the release. In this review, we survey possible candidate channels for this pathway. The maxi-anion channel characterized by an exceedingly large unitary conductance has been a stray channel with regard to its function. A newly discovered property, its ATP conductivity and its activation in response to stress signals, indicates that this channel has a central role in stress-sensory transduction for cell volume regulation and tubuloglomerular feedback.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan.
| | | |
Collapse
|
49
|
Haskew-Layton RE, Mongin AA, Kimelberg HK. Hydrogen peroxide potentiates volume-sensitive excitatory amino acid release via a mechanism involving Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2004; 280:3548-54. [PMID: 15569671 DOI: 10.1074/jbc.m409803200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive excitatory amino acid (EAA) release in cerebral ischemia is a major mechanism responsible for neuronal damage and death. A substantial fraction of ischemic EAA release occurs via volume-regulated anion channels (VRACs). Hydrogen peroxide (H2O2), which is abundantly produced during ischemia and reperfusion, activates a number of protein kinases critical for VRAC functioning and has recently been reported to activate VRACs. In the present study, we explored the effects of H2O2 on volume-dependent EAA release in cultured astrocytes, measured as the release of preloaded D-[3H]aspartate. 100-1,000 microm H2O2 enhanced swelling-induced EAA release by approximately 2.5-3-fold (EC50 approximately 10 microM). The VRAC blockers ATP, phloretin, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) potently inhibited both control swelling-induced and the H2O2-potentiated release, suggesting a role for VRACs. The H2O2-induced component of EAA release was attenuated by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and completely eliminated by the calmodulin antagonists trifluoperazine and W-7 and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93. Inhibitors of tyrosine kinases, protein kinase C, and the myosin light chain kinase were ineffective in blocking the H2O2 response. H2O2 treatment of swollen astrocytes, but not swelling alone, resulted in CaMKII activation that was inhibited by KN-93, as determined by a phospho-Thr286 CaMKII antibody. These data demonstrate that H2O2 strongly up-regulates astrocytic volume-sensitive EAA release via a CaMKII-dependent mechanism and in this way may potently promote pathological EAA release and brain damage in ischemia.
Collapse
Affiliation(s)
- Renée E Haskew-Layton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | |
Collapse
|
50
|
ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am J Physiol Cell Physiol 2004; 288:C204-13. [PMID: 15371260 DOI: 10.1152/ajpcell.00330.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl(-) currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on d-[(3)H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated d-[(3)H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (>or=80% inhibition) by intracellular Ca(2+) chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control d-[(3)H]aspartate release activated by the substantial hyposmotic swelling showed little (<or=25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca(2+)-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca(2+)/calmodulin-independent signaling mechanism. Ca(2+)-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication.
Collapse
|