1
|
Shi X, Liu C, Chen J, Zhou S, Li Y, Zhao X, Xing J, Xue J, Liu F, Li F. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc Diabetol 2023; 22:216. [PMID: 37592255 PMCID: PMC10436431 DOI: 10.1186/s12933-023-01941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Myocardial microvascular injury is the key event in early diabetic heart disease. The injury of myocardial microvascular endothelial cells (CMECs) is the main cause and trigger of myocardial microvascular disease. Mitochondrial calcium homeostasis plays an important role in maintaining the normal function, survival and death of endothelial cells. Considering that mitochondrial calcium uptake 1 (MICU1) is a key molecule in mitochondrial calcium regulation, this study aimed to investigate the role of MICU1 in CMECs and explore its underlying mechanisms. METHODS To examine the role of endothelial MICU1 in diabetic cardiomyopathy (DCM), we used endothelial-specific MICU1ecKO mice to establish a diabetic mouse model and evaluate the cardiac function. In addition, MICU1 overexpression was conducted by injecting adeno-associated virus 9 carrying MICU1 (AAV9-MICU1). Transcriptome sequencing technology was used to explore underlying molecular mechanisms. RESULTS Here, we found that MICU1 expression is decreased in CMECs of diabetic mice. Moreover, we demonstrated that endothelial cell MICU1 knockout exacerbated the levels of cardiac hypertrophy and interstitial myocardial fibrosis and led to a further reduction in left ventricular function in diabetic mice. Notably, we found that AAV9-MICU1 specifically upregulated the expression of MICU1 in CMECs of diabetic mice, which inhibited nitrification stress, inflammatory reaction, and apoptosis of the CMECs, ameliorated myocardial hypertrophy and fibrosis, and promoted cardiac function. Further mechanistic analysis suggested that MICU1 deficiency result in excessive mitochondrial calcium uptake and homeostasis imbalance which caused nitrification stress-induced endothelial damage and inflammation that disrupted myocardial microvascular endothelial barrier function and ultimately promoted DCM progression. CONCLUSIONS Our findings demonstrate that MICU1 expression was downregulated in the CMECs of diabetic mice. Overexpression of endothelial MICU1 reduced nitrification stress induced apoptosis and inflammation by inhibiting mitochondrial calcium uptake, which improved myocardial microvascular function and inhibited DCM progression. Our findings suggest that endothelial MICU1 is a molecular intervention target for the potential treatment of DCM.
Collapse
Affiliation(s)
- Xide Shi
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiangwei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Medical Rehabilitation, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Zhou
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yajuan Li
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Xingcheng Zhao
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Jinliang Xing
- Department of Physiology and Pathophysiology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Junhui Xue
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Fengzhou Liu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Fei Li
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
- Department of Aviation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation. Life (Basel) 2021; 11:life11090986. [PMID: 34575135 PMCID: PMC8472034 DOI: 10.3390/life11090986] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Hypertension (HTN) is one of the most prevalent diseases worldwide and is among the most important risk factors for cardiovascular and cerebrovascular complications. It is currently thought to be the result of disturbances in a number of neural, renal, hormonal, and vascular mechanisms regulating blood pressure (BP), so crucial importance is given to the imbalance of a number of vasoactive factors produced by the endothelium. Decreased nitric oxide production and increased production of endothelin-1 (ET-1) in the vascular wall may promote oxidative stress and low-grade inflammation, with the development of endothelial dysfunction (ED) and increased vasoconstrictor activity. Increased ET-1 production can contribute to arterial aging and the development of atherosclerotic changes, which are associated with increased arterial stiffness and manifestation of isolated systolic HTN. In addition, ET-1 is involved in the complex regulation of BP through synergistic interactions with angiotensin II, regulates the production of catecholamines and sympathetic activity, affects renal hemodynamics and water–salt balance, and regulates baroreceptor activity and myocardial contractility. This review focuses on the relationship between ET-1 and HTN and in particular on the key role of ET-1 in the pathogenesis of ED, arterial structural changes, and impaired vascular regulation of BP. The information presented includes basic concepts on the role of ET-1 in the pathogenesis of HTN without going into detailed analyses, which allows it to be used by a wide range of specialists. Also, the main pathological processes and mechanisms are richly illustrated for better understanding.
Collapse
|
3
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Idris-Khodja N, Ouerd S, Mian MOR, Gornitsky J, Barhoumi T, Paradis P, Schiffrin EL. Endothelin-1 Overexpression Exaggerates Diabetes-Induced Endothelial Dysfunction by Altering Oxidative Stress. Am J Hypertens 2016; 29:1245-1251. [PMID: 27465439 DOI: 10.1093/ajh/hpw078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Increased endothelin (ET)-1 expression causes endothelial dysfunction and oxidative stress. Plasma ET-1 is increased in patients with diabetes mellitus. Since endothelial dysfunction often precedes vascular complications in diabetes, we hypothesized that overexpression of ET-1 in the endothelium would exaggerate diabetes-induced endothelial dysfunction. METHODS Diabetes was induced by streptozotocin treatment (55mg/kg/day, i.p.) for 5 days in 6-week-old male wild type (WT) mice and in mice overexpressing human ET-1 restricted to the endothelium (eET-1). Mice were studied 14 weeks later. Small mesenteric artery (MA) endothelial function and vascular remodeling by pressurized myography, reactive oxygen species (ROS) production by dihydroethidium staining and mRNA expression by reverse transcription/quantitative PCR were determined. RESULTS Endothelium-dependent vasodilatory responses to acetylcholine of MA were reduced 24% by diabetes in WT ( P < 0.05), and further decreased by 12% in eET-1 ( P < 0.05). Diabetes decreased MA media/lumen in WT and eET-1 ( P < 0.05), whereas ET-1 overexpression increased MA media/lumen similarly in diabetic and nondiabetic WT mice ( P < 0.05). Vascular ROS production was increased 2-fold by diabetes in WT ( P < 0.05) and further augmented 1.7-fold in eET-1 ( P < 0.05). Diabetes reduced endothelial nitric oxide synthase (eNOS, Nos3 ) expression in eET-1 by 31% ( P < 0.05) but not in WT. Induction of diabetes caused a 52% ( P < 0.05) increase in superoxide dismutase 1 ( Sod1 ) and a 32% ( P < 0.05) increase in Sod2 expression in WT but not in eET-1. CONCLUSIONS Increased expression of ET-1 exaggerates diabetes-induced endothelial dysfunction. This may be caused by decrease in eNOS expression, increase in vascular oxidative stress, and decrease in antioxidant capacity.
Collapse
Affiliation(s)
- Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Muhammad Oneeb Rehman Mian
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Jordan Gornitsky
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Tlili Barhoumi
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research , Montréal, Québec , Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Kostov K, Blazhev A, Atanasova M, Dimitrova A. Serum Concentrations of Endothelin-1 and Matrix Metalloproteinases-2, -9 in Pre-Hypertensive and Hypertensive Patients with Type 2 Diabetes. Int J Mol Sci 2016; 17:ijms17081182. [PMID: 27490532 PMCID: PMC5000590 DOI: 10.3390/ijms17081182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Alexander Blazhev
- Division of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Milena Atanasova
- Division of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| | - Anelia Dimitrova
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria.
| |
Collapse
|
6
|
Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Rajput SK. Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro- (renal) and macro-vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Adv 2016. [DOI: 10.1039/c6ra03890e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Current study synthesized and investigated the effect of low-dose copper nanoparticles (CuNPs) against diabetes mellitus and -induced experimental micro- (nephropathy) and macro-vascular (cardio and endothelium) complications.
Collapse
Affiliation(s)
- Arun K. Sharma
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| | - Ashish Kumar
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Gaurav Taneja
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| | - Upendra Nagaich
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Aakash Deep
- Department of Pharmaceutical Chemistry
- Chaudhary Bansi Lal University
- Bhiwani 127021
- India
| | - Satyendra K. Rajput
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| |
Collapse
|
7
|
Bhardwaj P, Khanna D, Balakumar P. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardiovasc Toxicol 2014; 14:41-51. [PMID: 24048981 DOI: 10.1007/s12012-013-9226-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- Cardiovascular Pharmacology Division, Department of Pharmacology, Institute of Pharmacy, Rajendra Institute of Technology and Sciences (RITS), Sirsa, 125 055, Haryana, India
| | | | | |
Collapse
|
8
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
9
|
Taneja G, Mahadevan N, Balakumar P. Fish oil blunted nicotine-induced vascular endothelial abnormalities possibly via activation of PPARγ-eNOS-NO signals. Cardiovasc Toxicol 2013. [PMID: 23208382 DOI: 10.1007/s12012-012-9190-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotine exposure is associated with an induction of vascular endothelial dysfunction (VED), a hallmark of various cardiovascular disorders. The present study investigated the effect of fish oil in nicotine-induced experimental VED. VED was assessed by employing isolated aortic ring preparation, estimating aortic and serum nitrite/nitrate, aortic superoxide anion generation, and serum TBARS, and carrying out electron microscopic and histological studies of thoracic aorta. Nicotine (2 mg/kg/day, i.p., 4 weeks) administration produced VED in rats by attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentration, impairing endothelial integrity, and inducing vascular oxidative stress. Treatment with fish oil (2 mL/kg/day p.o., 4 weeks) markedly prevented nicotine-induced endothelial functional and structural abnormalities and oxidative stress. However, administration of GW9662, a selective inhibitor of PPARγ, to a significant degree attenuated fish oil-associated anti-oxidant action and vascular endothelial functional and structural improvements. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), markedly attenuated fish oil-induced improvement in endothelium-dependent relaxation in the aorta of nicotine-administered rats. Nicotine administration altered the lipid profile by increasing serum total cholesterol, which was significantly prevented by fish oil treatment. The vascular protective potential of fish oil in preventing nicotine-induced VED may pertain to its additional properties (besides its lipid-lowering effect) such as activation of PPARγ and subsequent possible activation of endothelial NOS and generation of nitric oxide, and consequent reduction in oxidative stress.
Collapse
Affiliation(s)
- Gaurav Taneja
- Cardiovascular Pharmacology Division, Department of Pharmacology, Rajendra Institute of Technology and Sciences, Sirsa 125 055, India
| | | | | |
Collapse
|
10
|
|
11
|
Kathuria S, Mahadevan N, Balakumar P. Possible involvement of PPARγ-associated eNOS signaling activation in rosuvastatin-mediated prevention of nicotine-induced experimental vascular endothelial abnormalities. Mol Cell Biochem 2013; 374:61-72. [PMID: 23149826 DOI: 10.1007/s11010-012-1505-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022]
Abstract
Nicotine exposure via cigarette smoking and tobacco chewing is associated with vascular complications. The present study investigated the effect of rosuvastatin in nicotine (2 mg/kg/day, i.p., 4 weeks)-induced vascular endothelial dysfunction (VED) in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating aortic and serum nitrite/nitrate concentration. Further, scanning electron microscopy and hematoxylin-eosin staining of thoracic aorta were performed to assess the vascular endothelial integrity. Moreover, oxidative stress was assessed by estimating aortic superoxide anion generation and serum thiobarbituric acid-reactive substances. The nicotine administration produced VED by markedly reducing acetylcholine-induced endothelium-dependent relaxation, impairing the integrity of vascular endothelium, decreasing aortic and serum nitrite/nitrate concentration, increasing oxidative stress, and inducing lipid alteration. However, treatment with rosuvastatin (10 mg/kg/day, i.p., 4 weeks) markedly attenuated nicotine-induced vascular endothelial abnormalities, oxidative stress, and lipid alteration. Interestingly, the co-administration of peroxisome proliferator-activated receptor γ (PPARγ) antagonist, GW9662 (1 mg/kg/day, i.p., 2 weeks) submaximally, significantly prevented rosuvastatin-induced improvement in vascular endothelial integrity, endothelium-dependent relaxation, and nitrite/nitrate concentration in rats administered nicotine. However, GW9662 co-administration did not affect rosuvastatin-associated vascular anti-oxidant and lipid-lowering effects. The incubation of aortic ring, isolated from rosuvastatin-treated nicotine-administered rats, with L-NAME (100 μM), an inhibitor of nitric oxide synthase (NOS), significantly attenuated rosuvastatin-induced improvement in acetylcholine-induced endothelium-dependent relaxation. Rosuvastatin prevents nicotine-induced vascular endothelial abnormalities by activating PPARγ and endothelial NOS signaling pathways. Moreover, the PPARγ-independent anti-oxidant and lipid-lowering effects of rosuvastatin might additionally play a role in the improvement of vascular endothelial function.
Collapse
Affiliation(s)
- Sonam Kathuria
- Cardiovascular Pharmacology Division, Department of Pharmacology, Rajendra Institute of Technology and Sciences, Sirsa, 125 055, India
| | | | | |
Collapse
|
12
|
Quintela AM, Jiménez R, Gómez-Guzmán M, Zarzuelo MJ, Galindo P, Sánchez M, Vargas F, Cogolludo A, Tamargo J, Pérez-Vizcaíno F, Duarte J. Activation of peroxisome proliferator-activated receptor-β/-δ (PPARβ/δ) prevents endothelial dysfunction in type 1 diabetic rats. Free Radic Biol Med 2012; 53:730-41. [PMID: 22683600 DOI: 10.1016/j.freeradbiomed.2012.05.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/27/2023]
Abstract
Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease. Herein, we have analyzed if the peroxisome proliferator-activated receptor-β/-δ (PPARβ/δ) agonist GW0742 exerts protective effects on endothelial function in type 1 diabetic rats. The rats were divided into 4 groups: control, control-treated (GW0742, 5 mg kg(-1)day(-1) for 5 weeks), diabetic (streptozotocin injection), and diabetic-treated. GW0742 administration in diabetic rats did not alter plasma glucose, systolic blood pressure, or heart rate, but reduced plasma triglyceride levels. The vasodilatation induced by acetylcholine was decreased in aortas from diabetic rats. GW0742 restored endothelial function, increasing eNOS phosphorylation. Superoxide production, NADPH oxidase activity, and mRNA expression of prepro endothelin-1, p22(phox), p47(phox), and NOX-1 were significantly higher in diabetic aortas, and GW0742 treatment prevented these changes. In addition, GW0742 prevented the endothelial dysfunction and the upregulation of prepro endothelin-1 and p47(phox) after the in vitro incubation of aortic rings with high glucose and these effects were prevented by the PPARβ/δ antagonist GSK0660. PPARβ/δ activation restores endothelial function in type 1 diabetic rats. This effect seems to be related to an increase in nitric oxide bioavailability as a result of reduced NADPH oxidase-driven superoxide production and downregulation of prepro endothelin-1.
Collapse
Affiliation(s)
- Ana María Quintela
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Arrick DM, Mayhan WG. Inhibition of endothelin-1 receptors improves impaired nitric oxide synthase-dependent dilation of cerebral arterioles in type-1 diabetic rats. Microcirculation 2010; 17:439-46. [PMID: 20690982 DOI: 10.1111/j.1549-8719.2010.00042.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Endothelin-1 has been implicated in the pathogenesis of many cardiovascular-related diseases, including diabetes. The goal of this study was to examine the influence of endothelin-1 receptors (ET(A)) in impaired responses of cerebral (pial) arterioles in type-1 diabetic rats. METHODS We measured responses of cerebral arterioles in non-diabetic rats to endothelial nitric oxide synthase (eNOS)-dependent (ADP), neuronal nitric oxide synthase (nNOS)-dependent (N-methyl-d-aspartic acid [NMDA]) and NOS-independent (nitroglycerin) agonists before and during application of BQ-123, an ET(A) receptor antagonist. In addition, we harvested brain tissue from non-diabetic and diabetic rats to measure the production of superoxide anion under basal conditions and during inhibition of ET(A) receptors. RESULTS We found that diabetes specifically impaired eNOS- and nNOS-dependent reactivity of cerebral arterioles, but did not alter NOS-independent vasodilation. In addition, while BQ-123 did not alter responses in non-diabetic rats, BQ-123 restored impaired eNOS- and nNOS-dependent vasodilation in diabetic rats. Further, superoxide production was higher in brain tissue from diabetic rats compared with non-diabetic rats under basal conditions and BQ-123 decreased basal production of superoxide in diabetic rats. CONCLUSION We suggest that activation of ET(A) receptors during type-1 diabetes mellitus plays an important role in impaired eNOS- and nNOS-dependent dilation of cerebral arterioles.
Collapse
Affiliation(s)
- Denise M Arrick
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5850, USA
| | | |
Collapse
|
15
|
Kaur J, Reddy K, Balakumar P. The Novel Role of Fenofibrate in Preventing Nicotine- and Sodium Arsenite-Induced Vascular Endothelial Dysfunction in the Rat. Cardiovasc Toxicol 2010; 10:227-38. [DOI: 10.1007/s12012-010-9086-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Piechota A, Polańczyk A, Goraca A. Role of endothelin-1 receptor blockers on hemodynamic parameters and oxidative stress. Pharmacol Rep 2010; 62:28-34. [PMID: 20360613 DOI: 10.1016/s1734-1140(10)70240-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 01/20/2010] [Indexed: 12/17/2022]
Abstract
Endothelin (ET) was first isolated and described by Yanagisawa et al. and has since been described as one of the most potent known vasoconstrictor compounds. ET-1 mediates its effects via two types of receptors, ETA and ETB, which are expressed in the vascular smooth muscle cells, endothelial cells, intestines and brain. Secretion of ET-1 results in long-lasting vasoconstriction, increased blood pressure and, in turn, overproduction of free radicals. As dysregulation of the endothelin system is an important factor in the pathogenesis of several diseases including atherosclerosis, hypertension and endotoxic shock, the ETA and ETB receptors are attractive therapeutic targets for treatment of these disorders. The biosynthesis and release of ET-1 are regulated at the transcriptional level. Studies have shown that p38MAP kinase, nuclear factor kappaB (NF-kappaB), PKC/ERK and JNK/c-Jun all take part in the ROS-activated production of ET-1. Furthermore, administration of ET(A) significantly reduces the generation of free radicals. However, treatment with ETB receptor blockers does not elicit the same effect. Therefore, the effects of endothelin receptor blockers on blood pressure and the generation of free radicals remain debatable. This review summarizes recent investigations into the role of endothelin receptor blockers with respect to the modulation of hemodynamic parameters and the generation of free radicals.
Collapse
Affiliation(s)
- Aleksandra Piechota
- Chair of Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Łódź, Mazowiecka 6/8, PL 92-215 Łódź, Poland.
| | | | | |
Collapse
|
17
|
Abstract
Vascular complications are an important pathological issue in diabetes that lead to the further functional deterioration of several organs. The balance between endothelium-dependent relaxing factors and endothelium-dependent contracting factors (EDCFs) is crucial in controlling local vascular tone and function under normal conditions. Diabetic endothelial dysfunction is characterized by reduced endothelium-dependent relaxations and/or enhanced endothelium-dependent contractions. Elevated levels of oxygen-derived free radicals are the initial source of endothelial dysfunction in diabetes. Oxygen-derived free radicals not only reduce nitric oxide bioavailability, but also facilitate the production and/or action of EDCFs. Thus, the endothelial balance tips towards vasoconstrictor responses over the course of diabetes.
Collapse
Affiliation(s)
- Yi Shi
- Institute of Physiology, University of Zurich, Switzerland
| | | |
Collapse
|
18
|
Yang XQ, Chen AF. High-cholesterol diet augments endothelial dysfunction via elevated oxidative stress and reduced tetrahydrobiopterin in Ins2(Akita) mice, an autosomal dominant mutant type 1 diabetic model. Clin Exp Pharmacol Physiol 2009; 36:764-9. [PMID: 19207718 DOI: 10.1111/j.1440-1681.2009.05145.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Oxidative stress contributes to endothelial dysfunction and atherogenesis in diabetes. The present study tested the hypothesis that a high-cholesterol diet accelerates endothelial dysfunction in Ins2(Akita) mice, a Type 1 diabetic model with a spontaneous autosomal preproinsulin gene (Ins2 gene) mutation, through further increase of superoxide production. 2. The Ins2(Akita) diabetic mice were fed a high-cholesterol diet (1.25% cholesterol) for 4 months. Some Ins2(Akita) mice were also treated for 4 months with the selective NADPH oxidase inhibitor apocynin (4 mg/kg per day in drinking water). Oxidative stress markers, tetrahydrobiopterin (BH4) levels, GTP cyclohydrolase I activity and endothelial function were determined in serum or arteries afterwards. 3. Serum lipid peroxidation and arterial superoxide levels were increased, whereas arterial BH(4) levels and GTP cyclohydrolase I activity were decreased, in Ins2(Akita) mice on a high-cholesterol diet, resulting in impaired endothelium-dependent nitric oxide-mediated relaxation in response to acetylcholine. 4. In vivo treatment with apocynin not only blunted serum lipid peroxidation and arterial superoxide levels, but also increased BH4 levels and GTP cyclohydrolase I activity, resulting in improved endothelium-dependent relaxation. 5. These results suggest that NADPH oxidase may play a potential role in oxidative stress-induced arterial BH4 and GTP cyclohydrolase I deficiency, resulting in endothelial dysfunction in Ins2(Akita) Type 1 diabetic mice fed a high-cholesterol diet.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Biopterins/analogs & derivatives
- Biopterins/metabolism
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/adverse effects
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Genes, Dominant
- Insulin/genetics
- Lipid Peroxides/blood
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mutation
- NADPH Oxidases/antagonists & inhibitors
- Oxidative Stress/drug effects
- Protein Precursors/genetics
- Superoxides/blood
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Xiang-Qun Yang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
19
|
Matsumoto T, Ishida K, Nakayama N, Kobayashi T, Kamata K. Involvement of NO and MEK/ERK pathway in enhancement of endothelin-1-induced mesenteric artery contraction in later-stage type 2 diabetic Goto-Kakizaki rat. Am J Physiol Heart Circ Physiol 2009; 296:H1388-97. [DOI: 10.1152/ajpheart.00043.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelin (ET)-1 is a likely candidate for a key role in diabetic vascular complications. However, no abnormalities in the vascular responsiveness to ET-1 have been identified in the chronic stage of type 2 diabetes. Our goal was to look for abnormalities in the roles played by ET receptors (ETA and ETB) in the mesenteric artery of the type 2 diabetic Goto-Kakizaki (GK) rat and to identify the molecular mechanisms involved. Using mesenteric arteries from later-stage (32–38 wk old) individuals, we compared the ET-1-induced contraction and the relaxation induced by the selective ETB receptor agonist IRL1620 between GK rats and control Wistar rats. Mesenteric artery ERK activity and the protein expressions for ET receptors and MEK were also measured. In GK rats (vs. age-matched Wistar rats), we found as follows. 1) The ET-1-induced contraction was greater and was attenuated by BQ-123 (ETA antagonist) but not by BQ-788 (ETB antagonist). In the controls, BQ-788 augmented this contraction. 2) Both the relaxation and nitric oxide (NO) production induced by IRL1620 were reduced. 3) ET-1-induced contraction was enhanced by NG-nitro-l-arginine (l-NNA; NO synthase inhibitor) but suppressed by sodium nitroprusside (NO donor). 4) The enhanced ET-1-induced contraction was reduced by MEK/ERK pathway inhibitors (PD-98059 or U0126). 5) ET-1-stimulated ERK activation was increased, as were the ETA and MEK1/2 protein expressions. 6) Mesenteric ET-1 content was increased. These results suggest that upregulation of ETA, a defect in ETB-mediated NO signaling, and activation of the MEK/ERK pathway together represent a likely mechanism mediating the hyperreactivity to ET-1 examined in this study.
Collapse
|
20
|
Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK. Br J Pharmacol 2008; 155:974-83. [PMID: 19029977 DOI: 10.1038/bjp.2008.327] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. EXPERIMENTAL APPROACH Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ET(A) receptors and ERK/MEK expression were measured by western blotting. KEY RESULTS Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ET(A) and ET(B) receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. CONCLUSIONS AND IMPLICATIONS These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ET(A) receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes-related abnormalities and the diabetic hypertension.
Collapse
|
21
|
Abstract
There is now increasing evidence that endothelial dysfunction is an early event in the pathophysiology of cardiovascular diseases and can be corrected with certain therapies such as angiotensin converting enzyme inhibitors angiotensin type I receptor antagonists and stains independently of blood pressure lowering effects. Restoring endothelial function appears to be a crucial target since endothelial dysfunction predicts cardiovascular events in various situations such as coronary artery disease peripheral artery disease, or hypertension and in patients undergoing vascular surgery. Preclinical and clinical data strongly support that endothelin receptor antagonists belong to this restricted class of pharmacological agents able to act on the endothelium, and offer a potential therapeutic approach for numerous diseases associated with endothelial dysfunction. The purpose of this review will be therefore, 1) to propose mechanisms by which ET-1 can cause endothelial dysfunction; 2) to provide an overview of pathological situations associated with endothelial dysfunction related to ET-1; and 3) to assemble evidence on efficacy of endothelin receptor antagonists for improvement of endothelial function.
Collapse
|
22
|
Matsumoto T, Kobayashi T, Kamata K. Relationships among ET-1, PPAR.GAMMA., oxidative stress and endothelial dysfunction in diabetic animals. J Smooth Muscle Res 2008; 44:41-55. [DOI: 10.1540/jsmr.44.41] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
23
|
Kamata K, Ozawa Y, Kobayashi T, Matsumoto T. Effect of long-term streptozotocin-induced diabetes on coronary vasoconstriction in isolated perfused rat heart. J Smooth Muscle Res 2008; 44:177-88. [DOI: 10.1540/jsmr.44.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Yuta Ozawa
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University
| |
Collapse
|
24
|
Wölkart G, Pang X, Stessel H, Kirchengast M, Brunner F. Chronic endothelin-A receptor antagonism is as protective as angiotensin converting enzyme inhibition against cardiac dysfunction in diabetic rats. Br J Pharmacol 2007; 151:1187-97. [PMID: 17572700 PMCID: PMC2189828 DOI: 10.1038/sj.bjp.0707325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/23/2007] [Accepted: 05/02/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus is associated with a specific cardiomyopathy. We compared the cardioprotective effects of an endothelin-A receptor blocker (ET(A)-RB) with those of an angiotensin-converting enzyme inhibitor (ACE-I) in rats with streptozotocin (STZ)-induced diabetes. EXPERIMENTAL APPROACH Diabetic rats were left untreated or received either the ET(A)-RB atrasentan or the ACE-I ramipril (each 3 mg kg(-1) per day) orally for 8 weeks. Isolated isovolumic heart function was studied during normoxia and in response to ischaemia-reperfusion. Cardiac fibrosis, tissue oxidative stress and tissue nitric oxide synthase (NOS) activity were determined. KEY RESULTS Basal left ventricular systolic contractility was lower in diabetic compared to nondiabetic hearts and ET(A)-RB or ACE-I treatment significantly antagonised the decline. Following 15 min of no-flow ischaemia, reperfusion systolic function was depressed and left-ventricular end-diastolic pressure (LVEDP) was elevated in diabetic hearts. ET(A)-RB or ACE-I treatment significantly improved recovery of reperfusion systolic and diastolic function, without differences between groups. Hydroxyproline (an index of tissue fibrosis) and malondialdehyde (a measure of tissue oxidative stress) were elevated at the end of reperfusion in diabetic, compared to nondiabetic hearts. Either treatment reduced hydroxyproline and malondialdehyde to control level. Constitutive NOS activity was similar in nondiabetic and diabetic hearts and unaffected by ET(A)-RB or ACE-I treatment. CONCLUSIONS AND IMPLICATIONS These results suggest that in experimental type 1 diabetes ET(A)-RB is as effective as an ACE-I in ameliorating myocardial functions during normoxia and ischaemia-reperfusion. Combining the two treatments neither afforded additive effects, nor diminished any protection effect seen with either drug.
Collapse
Affiliation(s)
- G Wölkart
- Department of Pharmacology and Toxicology, University of Graz Graz, Austria
| | - X Pang
- Department of Pharmacology and Toxicology, University of Graz Graz, Austria
| | - H Stessel
- Department of Pharmacology and Toxicology, University of Graz Graz, Austria
| | - M Kirchengast
- PRA International Mannheim, Germany
- Faculty of Clinical Medicine, Department of Pharmacology and Toxicology, Mannheim Ruprecht-Karls-University Heidelberg Mannheim, Germany
| | - F Brunner
- Department of Pharmacology and Toxicology, University of Graz Graz, Austria
| |
Collapse
|
25
|
Matsumoto T, Noguchi E, Kobayashi T, Kamata K. Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radic Biol Med 2007; 42:993-1007. [PMID: 17349927 DOI: 10.1016/j.freeradbiomed.2006.12.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/20/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Traupe T, Nett PC, Frank B, Tornillo L, Hofmann-Lehmann R, Terracciano LM, Barton M. Impaired vascular function in normoglycemic mice prone to autoimmune diabetes: Role of nitric oxide. Eur J Pharmacol 2007; 557:161-7. [PMID: 17182032 DOI: 10.1016/j.ejphar.2006.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.
Collapse
Affiliation(s)
- Tobias Traupe
- Department of Medicine, Internal Medicine I, Medical Policlinic, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Taguchi K, Kobayashi T, Hayashi Y, Matsumoto T, Kamata K. Enalapril improves impairment of SERCA-derived relaxation and enhancement of tyrosine nitration in diabetic rat aorta. Eur J Pharmacol 2006; 556:121-8. [PMID: 17196960 DOI: 10.1016/j.ejphar.2006.11.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/01/2006] [Accepted: 11/06/2006] [Indexed: 02/07/2023]
Abstract
We investigated the involvement of angiotensin II and vascular smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) function in the impaired NO-induced relaxation seen in established streptozotocin-induced diabetes. Plasma angiotensin II levels, which were elevated in untreated diabetic rats (vs age-matched controls), were improved by treatment with the angiotensin-converting enzyme inhibitor enalapril. Systolic blood pressure was significantly decreased in chronic enalapril-treated diabetics (vs the other two groups). Intact aortae from diabetic rats and chronic angiotensin II-infused control rats, but not those from diabetic rats treated with enalapril, showed impaired endothelium-dependent relaxations to acetylcholine (vs controls). The relaxation induced by Angeli's Salt (a NO donor) was significantly impaired in endothelium-denuded aortae from diabetic rats (vs controls) but it was normalised by enalapril treatment. After preincubation with the irreversible SERCA inhibitor, thapsigargin, the relaxation induced by Angeli's Salt was significantly impaired in endothelium-denuded aortae from the controls, but not from the diabetics, and there was no significant difference between the thapsigargin-treated groups. Nitrotyrosine, an indirect marker of peroxynitrite, was markedly increased in aortic smooth muscle from diabetic rats, while chronic enalapril administration reduced this increase. These results suggest that in streptozotocin-induced diabetic rats, excessive angiotensin II production may lead to the generation of peroxynitrite and that this may in turn trigger a dysfunction of vascular smooth muscle SERCA. Enalapril improved the diabetes-related impairments.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Matsumoto T, Miyamori K, Kobayashi T, Kamata K. Apocynin normalizes hyperreactivity to phenylephrine in mesenteric arteries from cholesterol-fed mice by improving endothelium-derived hyperpolarizing factor response. Free Radic Biol Med 2006; 41:1289-303. [PMID: 17015176 DOI: 10.1016/j.freeradbiomed.2006.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 12/29/2022]
Abstract
We studied the relationship among endothelial function, oxidative stress, and phenylephrine (PE; alpha(1)-adrenoceptor agonist)-induced contraction in mesenteric arteries from high-cholesterol (HC)-diet-fed mice. In HC mice (vs age-matched normal-diet-fed mice): (1) PE-induced contraction in endothelium-intact rings was enhanced (endothelial denudation increased contraction in "normal-diet" rings, but did not enhance it further in "HC" rings); (2) the enhanced PE-induced contraction was further enhanced in the presence of N(G)-nitro-L-arginine (L-NNA; nitric oxide synthase inhibitor) or L-NNA plus indomethacin (cyclooxygenase inhibitor) [to preserve endothelium-derived hyperpolarizing factor (EDHF)], but unchanged in the presence of charybdotoxin plus apamin (to block EDHF); (3) ACh-induced EDHF-type relaxation was reduced; and (4) oxidative stress [indicated by the plasma 8-isoprostane level (reliable systemic marker) and aortic superoxide production] was greater. In HC mice, PE-induced contraction was normalized by apocynin [NAD(P)H oxidase inhibitor] or tempol (superoxide dismutase mimetic), but enhanced by NADH [NAD(P)H oxidase substrate]. Oral dietary supplementation with apocynin (30 mg/kg/day for 4 weeks) corrected the above abnormalities. Hence: (1) PE-induced contraction is modulated by the endothelium, and the enhanced contractility in HC mice results from defective EDHF signaling and elevated oxidative stress, and (2) apocynin normalizes PE-induced contraction in HC mice by improving EDHF signaling.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
29
|
Matsumoto T, Miyamori K, Kobayashi T, Kamata K. Specific impairment of endothelium-derived hyperpolarizing factor-type relaxation in mesenteric arteries from streptozotocin-induced diabetic mice. Vascul Pharmacol 2006; 44:450-60. [PMID: 16624628 DOI: 10.1016/j.vph.2006.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 11/28/2022]
Abstract
We hypothesized that the contribution made by endothelium-derived hyperpolarizing factor (EDHF) to acetylcholine (ACh)-induced endothelium-dependent relaxation (EDR) might be altered in mesenteric arteries from streptozotocin (STZ)-induced diabetic mice. In endothelium-intact preparations, the ACh-induced EDR (but not the sodium nitroprusside-induced relaxation) was weaker in the STZ group than in age-matched controls. Indomethacin (10 muM) had no significant effect on EDR in either group, indicating that cyclooxygenase products, including prostacyclin, are not involved. This indomethacin-resistant EDR was weaker in the STZ group than in the controls. To isolate the EDHF-resistant component of EDR, charybdotoxin (100 nM) and apamin (100 nM) were present in the bath solution throughout the next experiment. This EDHF-resistant relaxation did not differ significantly between the two groups. On the other hand, the EDHF-mediated relaxation was significantly weaker in the STZ group than in the controls, and it was completely blocked by lysophosphatidylcholine (LPC, 10 microM) in each group. The eNOS protein expression was similar between the two groups. These results suggest that (a) the endothelial dysfunction present in mesenteric arteries from type 1 diabetic mice is largely attributable to reduced EDHF signaling, and (b) LPC may be involved in this attenuation of EDHF-mediated relaxation.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
30
|
Wölkart G, Stessel H, Saad Z, Kirchengast M, Brunner F. Cardioprotective effects of atrasentan, an endothelin-A receptor antagonist, but not of nitric oxide in diabetic mice with myocyte-specific overexpression of endothelial nitric oxide synthase. Br J Pharmacol 2006; 148:671-81. [PMID: 16702986 PMCID: PMC1751871 DOI: 10.1038/sj.bjp.0706772] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We investigated the roles of nitric oxide (NO) and endothelin-1 (ET-1) in organ dysfunction in diabetic mice with normal genotype (wild-type, WT) or myocyte-specific overexpression of endothelial NO synthase (eNOS) (transgenic, TG) after chronic oral treatment with the endothelin-A (ETA) receptor antagonist atrasentan. 2. Mice were rendered diabetic by injection of 200 mg kg-1 streptozotocin (STZ). Experimental groups were: untreated WT diabetic (n=9), untreated TG diabetic (n=9), atrasentan-treated WT diabetic (n=9), atrasentan-treated TG diabetic (n=8) and the four corresponding nondiabetic groups (n=5). Atrasentan was administered orally via drinking water at 3 mg kg-1 per day over 28 days. All diabetic mice developed similar hyperglycaemia (27-30 mmol l-1). 3. Atrasentan treatment significantly improved left ventricular systolic and diastolic function in response to exogenous norepinephrine, but there were no differences between genotypes. 4. Atrasentan antagonized the diabetic impairments in endothelium-dependent coronary relaxation and thromboxane-receptor mediated aortic constriction. Further, it improved cardiac and renal oxidant status as evident from reduced tissue malondialdehyde levels. 5. Atrasentan reduced diabetic urine flow, proteinuria and plasma creatinine levels, but creatinine clearance was not significantly altered. 6. These results suggest that in experimental type 1 diabetes, blocking ETA receptors ameliorates myocardial, coronary and renal function and improves tissue oxidant status, whereas raising myocardial NO levels has neither beneficial nor deleterious effects on diabetic cardiomyopathy in this transgenic model.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Zora Saad
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Michael Kirchengast
- PRA International, Dynamostrasse 13-15, Mannheim D-681161 Germany
- Institute of Pharmacology and Toxicology, Faculty of Clinical Medicine, Mannheim Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Friedrich Brunner
- Department of Pharmacology and Toxicology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
- Author for correspondence:
| |
Collapse
|
31
|
Ortmann J, Nett PC, Celeiro J, Traupe T, Tornillo L, Hofmann-Lehmann R, Haas E, Frank B, Terraciano LM, Barton M. Endothelin inhibition delays onset of hyperglycemia and associated vascular injury in type I diabetes: evidence for endothelin release by pancreatic islet beta-cells. Biochem Biophys Res Commun 2005; 334:689-95. [PMID: 16009335 DOI: 10.1016/j.bbrc.2005.06.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/20/2005] [Indexed: 02/02/2023]
Abstract
This study investigated the role of endothelin-1 for hyperglycemia, vascular, and pancreatic injury in early type I diabetes in non-obese-diabetic (NOD) mice. Endothelium dependent relaxation to acetylcholine and vascular gene expression of endothelin converting enzyme (ECE) isoforms 1 and 2 were studied as indicators of vascular injury. Endothelial NO bioactivity in the aorta was reduced in diabetic NOD mice while vascular expression of ECE-1 and ECE-2 mRNA was increased compared with controls (all p<0.05). Vascular histology was normal in all animals. Unexpectedly, treatment of prediabetic NOD mice for 6 weeks with the orally active ET(A) receptor antagonist BSF461314 prevented onset of diabetes without affecting insulitis severity. ET(A) receptor blockade also restored abnormal endothelial NO bioactivity and reduced ECE-1 and ECE-2 gene expression in NOD mice to levels comparable with healthy controls (p<0.05). Moreover, secretion of endothelin-1 in a time-dependent fashion was observed by pancreatic islet beta-cells cultured in vitro. These data suggest a critical role for ET(A) receptor signaling in the development of autoimmune forms of diabetes and the early vascular injury associated with it.
Collapse
Affiliation(s)
- Jana Ortmann
- Medical Policlinic, University Hospital Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goirand F, Ovide-Bordeaux S, Renaud JF, Grynberg A, Lacour B. Effect of dietary docosahexaenoic acid on the endothelium-dependent vasorelaxation in diabetic rats. Clin Exp Pharmacol Physiol 2005; 32:184-90. [PMID: 15743401 DOI: 10.1111/j.1440-1681.2005.04169.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The aim of the present study was to investigate the responses to acetylcholine (ACh; 3 nmol/L-30 micromol/L) and sodium nitroprusside (SNP; 3 nmol/L-30 micromol/L) of precontracted aortic rings from diabetic rats supplemented with docosahexaenoic acid (DHA). 2. Diabetes was induced by streptozotocin (STZ; 55 mg/kg). Diabetic and sham rats were fed, over a period of 8 weeks, either control diet or a DHA-supplemented diet. Aortic endothelial fatty acid composition was analysed by gas chromatography. The involvement of endothelial-derived nitric oxide (NO) and cyclo-oxygenase (COX) metabolites in response to ACh was assessed using the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (100 micromol/L) and the COX inhibitor indomethacin (1 micromol/L), respectively. 3. The DHA-supplemented diet induced a small increase in n-3 polyunsaturated fatty acids (PUFA; P < 0.001) owing to the incorporation of DHA in the endothelial cells of sham animals (1.6 +/- 0.2% in the DHA group compared with traces in the control group; P < 0.001) and diabetic animals (1.3 +/- 0.2% in the DHA group compared with traces in control group; P < 0.001), without a decrease in n-6 PUFA, despite a small decrease in arachidonic acid content (P < 0.05). Diabetes did not modify the incorporation of DHA in endothelial cells, but did significantly increase the arachidonic acid content (0.6 +/- 0.0 vs 0.4 +/- 0.1% in control group in the STZ and sham groups, respectively; P < 0.001). Acetylcholine-induced relaxation was significantly reduced in STZ groups compared with the sham groups (P < 0.001) and the DHA-supplemented diet did not modify these effects. In contrast, neither the DHA-supplemented diet nor diabetes affected the aortic relaxation induced by SNP. N(G)-Nitro-L-arginine methyl ester strongly inhibited the relaxant effects of ACh in the sham groups (P < 0.001) and abolished ACh-induced relaxation in the STZ groups (P < 0.001). The diet did not modify these effects. In the presence of indomethacin, the relaxation induced by ACh was decreased in the sham groups (P < 0.01), but not in the STZ groups. The DHA-supplemented diet did not have any effect on these responses. 4. In conclusion, these results suggest that, in the present study, the endothelial dysfunction occurring in the rat model of STZ-induced diabetes is associated with modifications of both the synthesis of COX derivatives and NO metabolism and is not affected by dietary supplementation with DHA.
Collapse
Affiliation(s)
- Françoise Goirand
- UMR1154, INRA-Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
33
|
Barton M. Ageing as a determinant of renal and vascular disease: role of endothelial factors. Nephrol Dial Transplant 2005; 20:485-90. [PMID: 15701673 DOI: 10.1093/ndt/gfh689] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Endo K, Matsumoto T, Kobayashi T, Kasuya Y, Kamata K. Diabetes-related changes in contractile responses of stomach fundus to endothelin-1 in streptozotocin-induced diabetic rats. J Smooth Muscle Res 2005; 41:35-47. [PMID: 15855738 DOI: 10.1540/jsmr.41.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contractile response of the stomach fundus to endothelin-1 (ET-1) was examined in streptozotocin (STZ)-induced diabetic rats. In STZ-diabetic rats (versus age-matched control rats) (a) ET-1 caused a longer-lasting contraction of stomach fundus strips, and (b) in the dose-response curve, the ET-1-induced contraction was significantly greater for a given concentration (3 x 10(-7) to 10(-7) M). Although repeated application of ET-1 led to desensitization, the desensitization was less pronounced in STZ-diabetic rats than in the controls. The density of the binding sites for [(125)I]-ET-1 was increased in the diabetic stomach fundus (versus the controls), but Kd values were similar between the two groups. The ET(B) receptor mRNA expression level was significantly increased in the diabetic stomach fundus. These results suggest that the diabetes-related enhancement of the ET-1-induced contraction of the stomach fundus may be due to an increase in the ET(B) receptor population.
Collapse
Affiliation(s)
- Kazuki Endo
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Kamata K, Kobayashi T, Matsumoto T, Kanie N, Oda SI, Kaneda A, Sugiura M. Effects of Chronic Administration of Fruit Extract (Citrus unshiu MARC) on Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2005; 28:267-70. [PMID: 15684481 DOI: 10.1248/bpb.28.267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of chronic administration of fruit extract (Citrus unshiu MARC) on the endothelial dysfunction seen in aortae from streptozotocin (STZ)-induced diabetic rats. A ten-week administration of this fruit extract preserved acetylcholine (ACh)-induced endothelium-dependent relaxation, but not sodium nitroprusside (SNP)-induced endothelium-independent relaxation, in the diabetic aorta. In age-matched control rats, chronic administration of the fruit extract had no influence on the ACh- or SNP-induced aortic relaxation. The increased total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride levels seen in STZ-induced diabetic rats were not normalized by fruit-extract treatment. These results suggest that Citrus unshiu MARC extract preserves endothelial function in the aorta in STZ-induced diabetic rats without lowering plasma cholesterol. This beneficial effect may be due to this extract protecting of nitric oxide against inactivation by oxygen free radicals.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi T, Matsumoto T, Kamata K. The PI3-K/Akt pathway: roles related to alterations in vasomotor responses in diabetic models. J Smooth Muscle Res 2005; 41:283-302. [PMID: 16557003 DOI: 10.1540/jsmr.41.283] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macro- and microvascular disease states currently represent the principal causes of morbidity and mortality in patients with type I or type II diabetes mellitus. Abnormal vasomotor responses and impaired endothelium-dependent vasodilation have been demonstrated in various beds in different animal models of diabetes and in humans with type I or type II diabetes. Several mechanisms leading to endothelial dysfunction have been reported, including changes in substrate avail ability, impaired release of NO, and increased destruction of NO. The principal mediators of diabetes-associated endothelial dysfunction are (a) increases in oxidized low density lipoprotein, endothelin-1, angiotensin II, oxidative stress, and (b) decreases in the actions of insulin or growth factors in endothelial cells. An accumulating body of evidence indicates that abnormal regulation of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway may be one of several factors contributing to vascular dysfunction in diabetes. The PI3-K pathway, which activates serine/threonine protein kinase Akt, enhances NO synthase phosphorylation and NO production. Several studies suggest that in diabetes the relative ineffectiveness of insulin and the hyperglycemia act together to reduce activity in the insulin-receptor substrates (IRS)/PI3-K/Akt pathway, resulting in impairments of both IRS/PI3-K/Akt-mediated endothelial function and NO production. This article summarizes the PI3-K/Akt pathway-mediated contraction and relaxation responses induced by various agents in the blood vessels of diabetic animals.
Collapse
Affiliation(s)
- Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Matsumoto T, Yoshiyama S, Wakabayashi K, Kobayashi T, Kamata K. Effects of chronic insulin on endothelial dysfunction of basilar arteries from established streptozotocin-diabetic rats. Eur J Pharmacol 2004; 504:119-27. [PMID: 15507228 DOI: 10.1016/j.ejphar.2004.09.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/07/2004] [Accepted: 09/10/2004] [Indexed: 11/23/2022]
Abstract
Our goals were to determine both the effects of chronic insulin treatment on the impaired endothelium-dependent relaxation present in basilar arteries from established diabetic rats and the molecular basis of these effects. Acetylcholine-induced relaxation in basilar artery rings was impaired in the streptozotocin-induced diabetic group, and this impaired response was recovered by insulin treatment. The contraction induced by a nitric oxide synthase inhibitor was decreased in the insulin-untreated diabetic group, but was increased by insulin or NAD(P)H oxidase inhibitor treatment. The manganese-superoxide dismutase (Mn-SOD) mRNA level was significantly lower in basilar arteries from insulin-untreated diabetic rats than in those from the controls, whereas the mRNA for gp91phox, an NAD(P)H oxidase subunit, was increased. In the insulin-treated group, the basilar artery p22phox mRNA level was reduced (vs. insulin-untreated diabetic). These results suggest that the presence of endothelial dysfunction in the diabetic basilar artery is related to increased oxidative stress, and that insulin preserves endothelial function by alleviating oxidative stress. Furthermore, we directly demonstrated that the expression profile for SOD and NAD(P)H oxidase was altered in the streptozotocin-induced diabetic basilar artery.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Matsumoto T, Yoshiyama S, Wakabayashi K, Kobayashi T, Kamata K. Effect of chronic insulin on cromakalim-induced relaxation in established streptozotocin–diabetic rat basilar artery. Eur J Pharmacol 2004; 504:129-37. [PMID: 15507229 DOI: 10.1016/j.ejphar.2004.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 09/10/2004] [Accepted: 09/14/2004] [Indexed: 01/24/2023]
Abstract
Our goals were to determine whether the response of the rat isolated basilar artery to activation of ATP-sensitive potassium (KATP) channels is altered in diabetes mellitus, and to determine the effect of chronic insulin treatment on this response in established diabetic rats. The relaxation induced by cromakalim, an activator of KATP channels, was significantly weaker in insulin-untreated streptozotocin-induced diabetic rats than in the controls. This impairment was significantly improved following chronic administration of insulin. The relaxations induced by two Ca2+-activated K+-channel activators [1-ethyl-2-benzimidazolinone (1-EBIO) or 1, 3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619)] were not significantly different between control and insulin-untreated diabetic rats. The sodium nitroprusside-induced relaxation was similar among the three groups (control, diabetic, and insulin-treated diabetic). These results suggest that: (a) the impaired cromakalim-induced relaxation seen in diabetic rats is not due to a nonspecific effect of diabetes mellitus on vasorelaxation, but at least partly to an effect on KATP channels, and (b) that this impaired relaxation can be restored by chronic insulin treatment.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
39
|
Matsumoto T, Yoshiyama S, Kobayashi T, Kamata K. Mechanisms underlying enhanced contractile response to endothelin-1 in diabetic rat basilar artery. Peptides 2004; 25:1985-94. [PMID: 15501531 DOI: 10.1016/j.peptides.2004.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/06/2004] [Accepted: 07/06/2004] [Indexed: 11/21/2022]
Abstract
We investigated the influence of streptozotocin-induced diabetes on the responsiveness of the rat basilar artery to endothelin-1 (ET-1) and nitric oxide (NO), which is known to counteract ET-1. In basilar arteries isolated from diabetic rats: (a) the ET-1-induced contraction was enhanced, (b) the contraction induced by N(G)-nitro-l-arginine [a nitric oxide synthase (NOS) inhibitor] was weaker, and (c) the levels of the mRNAs for ET(A)/ET(B) receptors and prepro-ET-1, but not for NOS, were significantly elevated (all versus age-matched controls). These data indicate that ET-1-induced vasoconstriction may be increased in the diabetic rat basilar artery, and that this hyper-reactivity to ET-1 may be due to an overproduction of ET-1, an up-regulation of ET(A)/ET(B) receptors, and a defect in the bioavailability of NO.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Matthias Barton
- Medical Policlinic, Department of Internal Medicine, University Hospital, Zürich, Switzerland.
| | | | | |
Collapse
|
41
|
Yao L, Kobori H, Rahman M, Seth DM, Shokoji T, Fan Y, Zhang GX, Kimura S, Abe Y, Nishiyama A. Olmesartan Improves Endothelin-Induced Hypertension and Oxidative Stress in Rats. Hypertens Res 2004; 27:493-500. [PMID: 15302986 PMCID: PMC2574494 DOI: 10.1291/hypres.27.493] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have indicated that both endothelin (ET) and angiotensin (Ang) II stimulate oxidative stress, which contributes to the development of hypertension. Here, we examined the effects of Ang II type 1 (AT1) receptor blockade on reactive oxygen species (ROS) formation in ET-dependent hypertension. Chronic ET-1 infusion (2.5 pmol/kg/min, i.v., n=7) into rats for 14 days increased systolic blood pressure from 113+/-1 to 141+/-2 mmHg. ET-1-infused rats showed greater plasma renin activity (8.1+/-0.8 Ang I/ml/h), and greater Ang I (122+/-28 fmol/ml) and Ang II levels (94+/-13 fmol/ml) than vehicle (0.9% NaCl)-infused rats (3.1+/-0.6 Ang I/ml/h, 45+/-8 and 47+/-7 fmol/ml, respectively, n=6). Angiotensin converting enzyme and AT1 receptor expression in aortic tissues were similar between the vehicle- and ET-1-infused rats. Vascular superoxide anion (O2-) production and plasma thiobarbituric acid-reactive substance (TBARS) levels were greater in ET-1-infused rats (27+/-1 counts per minutes [CPM]/mg dry tissue weight and 8.9+/-0.8 micromol/l, respectively) than vehicle-infused rats (16+/-1 CPM/mg and 5.1+/-0.1 micromol/l, respectively). The ET-1-induced hypertension was prevented by simultaneous treatment with a new AT1 receptor antagonist, olmesartan (0.01% in chow, 117+/-5 mmHg, n =7), or hydralazine (15 mg/kg/day in drinking water, 118+/-4 mmHg, n=6). Olmesartan prevented ET-1-induced increases in vascular O2- production (15+/-1 CPM/mg) and plasma TBARS (5.0+/-0.1 micromol/l). Vascular O2- production and plasma TBARS were also decreased by hydralazine (21+/-1 CPM/mg and 7.0+/-0.3 micromol/l, respectively), but these levels were significantly higher than in vehicle-infused rats. These data suggest that ET-dependent hypertension is associated with augmentation of Ang II levels and ROS formation. The combined effects of the elevations in circulating ET-1 and Ang II, as well as the associated ROS production, may contribute to the development of hypertension induced by chronic ET-1 infusion.
Collapse
Affiliation(s)
- Li Yao
- Department of Pharmacology, Kagawa Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Kanie N, Matsumoto T, Kobayashi T, Kamata K. Relationship between peroxisome proliferator-activated receptors (PPAR alpha and PPAR gamma) and endothelium-dependent relaxation in streptozotocin-induced diabetic rats. Br J Pharmacol 2003; 140:23-32. [PMID: 12967931 PMCID: PMC1574012 DOI: 10.1038/sj.bjp.0705414] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
(1) The aim of the present study was to investigate the causal relationship between peroxisome proliferator-activated receptor (PPAR) and endothelium-dependent relaxation in streptozotocin (STZ)-induced diabetic rats. (2) Acetylcholine (ACh)-induced endothelium-dependent relaxation was significantly weaker in diabetic rats than in age-matched controls. The decreased relaxation in diabetes was improved by the chronic administration of bezafibrate (30 mg kg-1, p.o., 4 weeks). (3) The expressions of the mRNAs for PPARalpha and PPARgamma were significantly decreased in STZ-induced diabetic rats (compared with the controls) and this decrease was restored partially, but not completely, by the chronic administration of bezafibrate. (4) Superoxide dismutase activity in the aorta was not significantly different between diabetic rats and bezafibrate-treated diabetic rats. (5) The expression of the mRNA for the p22phox subunit of NAD(P)H oxidase was significantly higher in diabetics than in controls, but it was lower in bezafibrate-treated diabetic rats than in nontreated diabetic rats. Although the expression of the mRNA for prepro ET-1 (ppET-1) was markedly increased in diabetic rats (compared with controls), this increase was prevented to a significant extent by the chronic administration of bezafibrate. (6) These results suggest that downregulations of PPARalpha and PPARgamma may lead to an increased expression of ppET-1 mRNA in diabetic states and this increment may trigger endothelial dysfunction.
Collapse
Affiliation(s)
- Noriyasu Kanie
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
- Author for correspondence:
| |
Collapse
|
44
|
Kobayashi T, Kaneda A, Kamata K. Possible involvement of IGF-1 receptor and IGF-binding protein in insulin-induced enhancement of noradrenaline response in diabetic rat aorta. Br J Pharmacol 2003; 140:285-94. [PMID: 12970107 PMCID: PMC1574034 DOI: 10.1038/sj.bjp.0705438] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We investigated the mechanisms underlying the changes in vascular contractile responsiveness induced by chronic treatment with insulin in controls and established streptozotocin (STZ)-induced diabetic rats. 2. The aortic contractile response to noradrenaline (NA) showed no significant difference between controls and diabetics, but it was significantly greater in insulin-treated diabetic rats than in the other groups. To investigate the mechanism, we examined the changes in NA-induced contractility following treatment with insulin and insulin-like growth factor-1 (IGF-1) in organ-cultured control and diabetic aortas. 3. The contractile response to NA in organ-cultured diabetic rat aortas treated with insulin (500 ng ml-1, 16 h) or IGF-1 (20 ng ml-1, 16 h) was significantly greater than the corresponding values for (a) diabetic rat aortas cultured in serum-free medium, and (b) control aortas incubated with insulin or IGF-1. Incubating control aortas with insulin or IGF-1 had no significant effect on the contraction induced by NA. 4. The expressions of the IGF-1 receptor mRNA and protein were increased in STZ-induced diabetic aortas and further increased in insulin-treated diabetics. The mRNA expressions of IGF-binding protein (IGFBP)-2 and IGFBP-3 were normal in diabetic aortas. In contrast, those of IGFBP-4 and IGFBP-5 were significantly decreased in diabetic aortas, and not restored by insulin treatment. 5. These results suggest that the insulin deficiency and chronic hyperinsulinemia in diabetes upregulate the IGF-1 receptor and downregulate IGFBP-4 and IGFBP-5 in the aorta. This may be a major cause of the increased vascular contractility induced by insulin administration and by hyperinsulinemia in established diabetes, resulting in hypertension.
Collapse
Affiliation(s)
- Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akihito Kaneda
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
- Author for correspondence:
| |
Collapse
|
45
|
|
46
|
Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R277-97. [PMID: 12855411 DOI: 10.1152/ajpregu.00758.2002] [Citation(s) in RCA: 657] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of reactive oxygen species (ROS) in vascular physiology and pathology is becoming increasingly evident. All cell types in the vascular wall produce ROS derived from superoxide-generating protein complexes similar to the leukocyte NADPH oxidase. Specific features of the vascular enzymes include constitutive and inducible activities, substrate specificity, and intracellular superoxide production. Most phagocyte enzyme subunits are found in vascular cells, including the catalytic gp91phox (aka, nox2), which was the earliest member of the newly discovered nox family. However, smooth muscle frequently expresses nox1 rather than gp91phox, and nox4 is additionally present in all cell types. In cell culture, agonists increase ROS production by activating multiple signals, including protein kinase C and Rac, and by upregulating oxidase subunits. The oxidases are also upregulated in vascular disease and are involved in the development of atherosclerosis and a significant part of angiotensin II-induced hypertension, possibly via nox1 and nox4. Likewise, enhanced vascular oxidase activity is associated with diabetes. Therefore, members of this enzyme family appear to be important in vascular biology and disease and constitute promising targets for future therapeutic interventions.
Collapse
|
47
|
Makino A, Kamata K. Effects of chronic administration of L-arginine on vasoactive responses induced by endothelin-1 and its plasma level in streptozotocin-induced diabetic rats. J Smooth Muscle Res 2002; 38:101-15. [PMID: 12596889 DOI: 10.1540/jsmr.38.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the mechanism underlying increased endothelin-1 (ET-1) release in diabetic rats, we administered L-arginine chronically to streptozotocin (STZ)-induced diabetic rats. The plasma concentrations of glucose, ET-1 and NOx (NO2- + NO3-) were all significantly raised at 10 weeks after the STZ injection. Chronic administration of L-arginine resulted in a significantly higher plasma NOx concentration and a significantly lower plasma ET-1 level at 10 weeks compared with the untreated diabetic group. ET-1 induced a biphasic vasodilator/vasoconstrictor response in the perfused isolated mesenteric arterial beds from all groups. The vasodilatation was significantly greater in diabetic rats than in age-matched controls. Chronic oral L-arginine administration had no significant effect on the enhanced ET-1-induced vasodilatation seen in the untreated diabetic rats. The vasoconstrictions induced by ET-1 and methoxamine were significantly attenuated in STZ-diabetic rats. The attenuated vasoconstrictor response to ET-1, but not that to methoxamine, was further attenuated by chronic treatment with L-arginine. We conclude that since chronic L-arginine administration not only reduced the increase in plasma ET-1 levels but also further attenuated the ET-1-induced vasoconstriction without affecting the change in vasodilatation, chronic L-arginine administration could be valuable for the treatment of the symptoms of diabetic mellitus related to ET-1.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | |
Collapse
|