1
|
Matsukuma H, Kobayashi Y, Oka S, Higashijima F, Kimura K, Yoshihara E, Sasai N, Shiraishi K. Prominin-1 deletion results in spermatogenic impairment, sperm morphological defects, and infertility in mice. Reprod Med Biol 2023; 22:e12514. [PMID: 37292088 PMCID: PMC10244806 DOI: 10.1002/rmb2.12514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Spermatogenesis is a complex process orchestrated by several essential genes. Prominin-1 (Prom1/PROM1) is a gene that is expressed in the testis but with a poorly understood role in spermatogenesis. Methods We used Prom1 knockout (Prom1 KO) mice to assess the role of Prom1 in spermatogenesis. To this end, we performed immunohistochemistry, immunofluorescence, western blotting, β-galactosidase staining, and apoptosis assay. Additionally, we analyzed the morphology of sperm and assessed litter sizes. Results We observed that PROM1 is localized to the dividing spermatocytes in seminiferous epithelial cells, sperm, and columnar epithelium in the epididymis. In the Prom1 KO testis, an aberrant increase in apoptotic cells and a decrease in proliferating seminiferous epithelial cells were observed. Cellular FLICE-like inhibitory protein (c-FLIP) and extracellular signal-regulated kinase 1/2 (ERK1/2) expression were also significantly decreased in Prom1 KO testis. In addition, a significantly increased number of epididymal spermatozoa with abnormal morphology and less motility was found in Prom1 KO mice. Conclusions PROM1 maintains spermatogenic cell proliferation and survival via c-FLIP expression in the testis. It is also involved in sperm motility and fertilization potential. The mechanism underlying the effect of Prom1 on sperm morphology and motility remains to be identified.
Collapse
Affiliation(s)
- Haruka Matsukuma
- Department of Urology, School of MedicineYamaguchi UniversityUbeJapan
| | - Yuka Kobayashi
- Department of Ophthalmology, School of MedicineYamaguchi UniversityUbeJapan
| | - Shintaro Oka
- Department of Urology, School of MedicineYamaguchi UniversityUbeJapan
| | | | - Kazuhiro Kimura
- Department of Ophthalmology, School of MedicineYamaguchi UniversityUbeJapan
| | - Erika Yoshihara
- Developmental Biomedical Science, Division of Biological SciencesNara Institute of Science and Technology IkomaNaraJapan
| | - Noriaki Sasai
- Developmental Biomedical Science, Division of Biological SciencesNara Institute of Science and Technology IkomaNaraJapan
| | - Koji Shiraishi
- Department of Urology, School of MedicineYamaguchi UniversityUbeJapan
| |
Collapse
|
2
|
SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis. Mol Cell Biol 2017; 37:MCB.00254-16. [PMID: 27799292 DOI: 10.1128/mcb.00254-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury.
Collapse
|
3
|
Conti S, Petrungaro S, Marini ES, Masciarelli S, Tomaipitinca L, Filippini A, Giampietri C, Ziparo E. A novel role of c-FLIP protein in regulation of ER stress response. Cell Signal 2016; 28:1262-1269. [PMID: 27267061 DOI: 10.1016/j.cellsig.2016.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
Cellular-Flice-like inhibitory protein (c-FLIP) is an apoptosis modulator known to inhibit the extrinsic apoptotic pathway thus blocking Caspase-8 processing in the Death Inducing Signalling Complex (DISC). We previously demonstrated that c-FLIP localizes at the endoplasmic reticulum (ER) and that c-FLIP-deficient mouse embryonic fibroblasts (MEFs) display an enlarged ER morphology. In the present study, we have addressed the consequences of c-FLIP ablation in the ER stress response by investigating the effects of pharmacologically-induced ER stress in Wild Type (WT) and c-FLIP-/- MEFs. Surprisingly, c-FLIP-/- MEFs were found to be strikingly more resistant than WT MEFs to ER stress-mediated apoptosis. Analysis of Unfolded Protein Response (UPR) pathways revealed that Pancreatic ER Kinase (PERK) and Inositol-Requiring Enzyme 1 (IRE1) branch signalling is compromised in c-FLIP-/- cells when compared with WT cells. We found that c-FLIP modulates the PERK pathway by interfering with the activity of the serine threonine kinase AKT. Indeed, c-FLIP-/- MEFs display higher levels of active AKT than WT MEFs upon ER stress, while treatment with a specific AKT inhibitor of c-FLIP-/- MEFs subjected to ER stress restores the PERK but not the IRE1 pathway. Importantly, the AKT inhibitor or dominant negative AKT transfection sensitizes c-FLIP-/- cells to ER stress-induced cell death while the expression of a constitutively active AKT reduces WT cells sensitivity to ER stress-induced death. Thus, our results demonstrate that c-FLIP modulation of AKT activity is crucial in controlling PERK signalling and sensitivity to ER stress, and highlight c-FLIP as a novel molecular player in PERK and IRE1-mediated ER stress response.
Collapse
Affiliation(s)
- Silvia Conti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Simonetta Petrungaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Elettra Sara Marini
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien, 0371 Oslo, Norway
| | - Silvia Masciarelli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Luana Tomaipitinca
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Elio Ziparo
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
4
|
Giampietri C, Petrungaro S, Conti S, Facchiano A, Filippini A, Ziparo E. c-Flip KO fibroblasts display lipid accumulation associated with endoplasmic reticulum stress. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:929-36. [PMID: 25746012 DOI: 10.1016/j.bbalip.2015.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/01/2022]
Abstract
c-Flip proteins are well-known apoptosis modulators. They generally contribute to tissue homeostasis maintenance by inhibiting death-receptor-mediated cell death. In the present manuscript, we show that c-Flip knock-out (KO) mouse embryonic fibroblasts (MEFs) kept in culture under starvation conditions gradually modify their phenotype and accumulate vacuoles, becoming progressively larger according to the duration of starvation. Large vacuoles are present in KO MEFs though not in WT MEFs, and are Oil Red-O positive, which indicates that they represent lipid droplets. Western blot experiments reveal that, unlike WT MEFs, KO MEFs express high levels of the lipogenic transcription factor PPAR-γ. Lipid droplet accumulation was found to be associated with endoplasmic reticulum (ER) stress activation and autophagic modulation valuated by means of BIP increase, LC3 lipidation and AMP-activated protein kinase (AMPK) phosphorylation, and p62 accumulation. Interestingly, XBP-1, an ER stress-induced lipogenic transcription factor, was found to preferentially localize in the nucleus rather than in the cytoplasm of KO MEFs. These data demonstrate that, upon starvation, c-Flip affects lipid accumulation, ER stress and autophagy, thereby pointing to an important role of c-Flip in the adaptive response and ER stress response programs under both normal and pathological conditions.
Collapse
Affiliation(s)
- Claudia Giampietri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Simonetta Petrungaro
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Conti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Filippini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Elio Ziparo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Zhang LT, Kim HK, Choi BR, Zhao C, Lee SW, Jang KY, Park JK. Analysis of testicular-internal spermatic vein variation and the recreation of varicocoele in a Sprague-Dawley rat model. Andrology 2014; 2:466-73. [PMID: 24659569 DOI: 10.1111/j.2047-2927.2014.00201.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/22/2013] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Many laboratories tried to recreate the varicocoele model have met with varied success. To recreate a consistent varicocoele model by exploring the anatomic variability of the testicular-spermatic venous system in Sprague-Dawley (SD) rats. Seventy-two sexually mature SD male rats were randomly divided into three groups containing 24 rats per group. Partial ligation of the left renal vein and internal spermatic vein (ISV) communicating branches to common iliac vein and ISV communicating branches ligation (RVISVCBCIV) or partial ligation of the left renal vein and ISV communicating branches ligation (RVISVCB). The results showed that the mean diameter of the left ISV was significantly increased in the RVISVCBCIV group compared with the control and RVISVCB groups (p < 0.001). Using ISV as the reference, the sensitivity of varicocoele was 71.43%, and the specificity was 80%. In addition, the positive predictive value was 83.33%, and the negative predictive value was 66.67%. Sperm count, motility, Johnsen score and the spermatogenic cell density were lower in the RVISVCBCIV group compared with the control (p < 0.01). The apoptotic index was higher in the RVISVCBCIV group compared with control groups (p < 0.01). The RVISVCBCIV provides a more effective method for establishing a varicocoele-induced model.
Collapse
Affiliation(s)
- L T Zhang
- Department of Urology, Chonbuk National University Medical School and Institute for Medical Sciences, Chonbuk National University and Biomedical Research Institute and Clinical Trial Center for Medical Devices of Chonbuk National University Hospital, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Giampietri C, Petrungaro S, Padula F, D'Alessio A, Marini ES, Facchiano A, Filippini A, Ziparo E. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis. Apoptosis 2014; 17:1210-22. [PMID: 22923157 DOI: 10.1007/s10495-012-0752-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via A. Scarpa, 14, 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This study shows that forcing c-Flip overexpression in undifferentiated skeletal myogenic cells in vivo results in early aging muscle phenotype. In the transgenic mice, adult muscle histology, histochemistry and biochemistry show strong alterations: reduction of fibers size and muscle mass, mitochondrial abnormalities, increase in protein oxidation and apoptosis markers and reduced AKT/GSK3β phosphorylation. In the infant, higher levels of Pax-7, PCNA, P-ERK and active-caspase-3 were observed, indicating enhanced proliferation and concomitant apoptosis of myogenic precursors. Increased proliferation correlated with NF-κB activation, detected as p65 phosphorylation, and with high levels of embryonic myosin heavy chain. Reduced regenerative potential after muscle damage in the adult and impaired fiber growth associated with reduced NFATc2 activation in the infant were also observed, indicating that the satellite cell pool is prematurely compromised. Altogether, these data show a role for c-Flip in modulating skeletal muscle phenotype by affecting the proliferative potential of undifferentiated cells. This finding indicates a novel additional mechanism through which c-Flip might possibly control tissue remodeling.
Collapse
|
8
|
Positive selection on apoptosis related genes. FEBS Lett 2009; 584:469-76. [PMID: 20026333 DOI: 10.1016/j.febslet.2009.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/15/2009] [Accepted: 12/15/2009] [Indexed: 12/23/2022]
Abstract
Apoptosis is a form of programmed cell death crucial for development, homeostasis, immunity, spermatogenesis, and prevention of cancer. Positive selection acting on mammalian apoptosis related genes targets protein interfaces that interact with pathogens and also elements of signaling complexes. Selection appears primarily to be driven by the immune/defense related function of these genes. Moreover, competitive interactions could be driving positive selection among sperm cells, as well as the need for protection against female anti-sperm immune responses. Trade-offs in fitness are expected out of these selective pressures, which could explain the involvement of these genes in various diseases, including cancer.
Collapse
|
9
|
Li S, Qiao Y, Di Q, Le X, Zhang L, Zhang X, Zhang C, Cheng J, Zong S, Koide SS, Miao S, Wang L. Interaction of SH3P13 and DYDC1 protein: a germ cell component that regulates acrosome biogenesis during spermiogenesis. Eur J Cell Biol 2009; 88:509-20. [PMID: 19545932 DOI: 10.1016/j.ejcb.2009.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/19/2009] [Accepted: 05/05/2009] [Indexed: 01/15/2023] Open
Abstract
The N-terminal BAR domain of endophilin has unique functions, such as affecting the curvature of the lipid membrane through its lysophosphatidic acid acyltransferase activity, binding of ATP and GTP and participating in tubulating activity. We recently demonstrated that SH3P13, a BAR domain-containing protein, assists in regulating clathrin-coated vesicle traffic that is crucial for acrosome biogenesis during spermatogenesis. DYDC1 was identified in a yeast two-hybrid screen from a human testis library by using the SH3P13 BAR domain as the bait. Consistent with the expression pattern of SH3P13, DYDC1 is exclusively expressed in the brain and testis and accumulates in the acrosome area during late stage of spermiogenesis. Here, we report that DYDC1 plays a crucial role during acrosome biogenesis. This relationship has been verified by a novel approach that involves germ cell transplantation and RNA interference. We found that knockdown of endogenous Dydc1 interfered with the formation of acrosomes, and thus spermatid differentiation during mouse spermiogenesis. These data provide important insight into the crucial process of acrosome biogenesis. In addition, our approach can also be applied to study functions of other genes related to spermatogenesis in vivo.
Collapse
Affiliation(s)
- Shuchun Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Antonangeli F, Petrungaro S, Coluccia P, Filippini A, Ziparo E, Giampietri C. Testis atrophy and reduced sperm motility in transgenic mice overexpressing c-FLIP(L). Fertil Steril 2009; 93:1407-14. [PMID: 19285665 DOI: 10.1016/j.fertnstert.2009.01.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/28/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To study the effect of c-FLIP overexpression in testicular germ cells. DESIGN A novel transgenic mouse model overexpressing the apoptotic modulator c-FLIP in the testis was generated. SETTING Animal facility and university research laboratory. ANIMAL(S) Transgenic mice overexpressing the long isoform of c-FLIP (c-FLIP(L)) under the transcriptional control of a 400 bp long regulatory region of the Stra8 promoter. INTERVENTION(S) Spermatozoa motility and testis histological, immunohistochemical, and Western blot analyses were carried out in transgenic and control derived specimens. MAIN OUTCOME MEASURE(S) Testis morphology, sperm motility, and germ cell apoptosis were assayed. RESULTS Stra8 promoter was found to activate the ectopic overexpression of c-FLIP(L) in round and elongated spermatids. As a consequence of such overexpression, a dramatic loss of germ cells was observed, resulting in testicular atrophy associated with reduced sperm motility. CONCLUSION(S) The data show that c-FLIP(L) forced expression in haploid male germ cells has detrimental effects on spermatogenesis and sperm quality and reveal a possible mechanism underlying the onset of testicular atrophy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Department of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Codelia VA, Cisternas P, Moreno RD. Relevance of caspase activity during apoptosis in pubertal rat spermatogenesis. Mol Reprod Dev 2008; 75:881-9. [PMID: 17926353 DOI: 10.1002/mrd.20822] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Caspases are a family of cysteine-proteases, activated upon several different stimuli, which execute apoptosis in many cell death models. Previous work of our group has shown rats have the highest rate of apoptosis during the first wave of spermatogenesis (between 20 and 25 days after birth), as evaluated by TUNEL and caspase activity. However, the hierarchical order of caspase activation and the relevance of each caspase during germ cell apoptosis are not clear. Thus, the goal of this work is to take a pharmacological approach to dissect the apoptosis pathway of caspase activation. Results showed that intratesticular injection of a caspase-8 inhibitor (z-IETD-fmk), or a pan-caspase inhibitor (z-VAD- fmk), significantly decreased the cleavage of p115 and PARP, two endogenous substrates of caspases, in 22-day-old rats. Additionally, these inhibitors promoted a significant reduction in the number of apoptotic germ cells. On the other hand, intratesticular injection of two different inhibitors of the intrinsic pathway (z-LEHD-fmk and minocycline) did not have any effect upon caspase substrates cleavage (p115 and PARP) or the number of apoptotic germ cells. Therefore, we conclude that the extrinsic pathway of apoptosis plays an important role in physiological germ cell apoptosis during the first round of spermatogenesis in the rat.
Collapse
Affiliation(s)
- Veronica A Codelia
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Millennium Nucleus for Developmental Biology, Santiago, Chile
| | | | | |
Collapse
|
12
|
El-Domyati MM, Al-Din ABM, Barakat MT, El-Fakahany HM, Xu J, Sakkas D. Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate-ribosyl)ation pathway. Fertil Steril 2008; 91:2221-9. [PMID: 18440520 DOI: 10.1016/j.fertnstert.2008.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/09/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To explore the relationship between men's age and DNA damage repair proteins related to apoptosis in human testicular germ cells. DESIGN Retrospective case-control study. SETTING Academic institutions. PATIENT(S) Testicular specimens were obtained from 22 fertile volunteers aged 20-82 years. INTERVENTION(S) Deoxyribonucleic acid repair markers were assessed using immunohistochemical staining for the cell proliferation marker [proliferating cell nuclear antigen (PCNA)]; DNA repair markers [poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1), poly(adenosine diphosphate-ribose) (PAR), X-ray repair cross-complementing1(XRCC1), and apurinic/apyrimidinic endonuclease 1 (APE1)]; and apoptosis-associated markers (caspase 9, active caspase 3, and cleaved PARP-1). MAIN OUTCOME MEASURE(S) The prevalence and cellular localization of the above markers in testicular tissues of young, middle aged, and old men. RESULT(S) Statistically significant differences in DNA damage repair-associated proteins (PARP-1, PAR, XRCC1, and APE1), and apoptosis markers (caspase 9, active caspase 3, and cleaved PARP-1) were observed in testicular samples from older men. These differences were most marked in spermatocytes. CONCLUSION(S) The study demonstrates that there is an age-related increase in human testicular germ cell DNA break repair and apoptosis with age.
Collapse
Affiliation(s)
- Moetaz M El-Domyati
- Department of Dermatology, Sexually Transmitted Diseases and Andrology, Al-Minya Faculty of Medicine, Al-Minya, Egypt
| | | | | | | | | | | |
Collapse
|
13
|
Giampietri C, Petrungaro S, Coluccia P, Antonangeli F, Paone A, Padula F, De Cesaris P, Ziparo E, Filippini A. c-Flip(L) is expressed in undifferentiated mouse male germ cells. FEBS Lett 2006; 580:6109-14. [PMID: 17056040 DOI: 10.1016/j.febslet.2006.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/22/2006] [Accepted: 10/09/2006] [Indexed: 11/16/2022]
Abstract
Apoptosis represents a fundamental process during fetal/post-natal testis development. Therefore pro- and anti-apoptotic proteins are essential to regulate testis physiology. c-Flip(L) is a known inhibitor of caspase 8/10 activity; in this study its perinatal expression in mouse male germ cells was investigated. In testis sections and seminiferous tubule whole mount c-Flip(L) was found to be expressed in undifferentiated spermatogonia and to co-localize with germ stem cells markers. In vivo investigations in the vitamin-A deficient mouse, lacking differentiated germ cells, confirmed c-Flip(L) expression in undifferentiated spermatogonia. Further analyses showed Fas expression but no significant caspase 8/10 activity when c-Flip(L) was highly expressed. Altogether these data suggest that c-Flip may control the survival rate of undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Claudia Giampietri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Histology and Medical Embryology, University of Rome "La Sapienza", 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
van der Weyden L, Arends MJ, Chausiaux OE, Ellis PJ, Lange UC, Surani MA, Affara N, Murakami Y, Adams DJ, Bradley A. Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 2006; 26:3595-3609. [PMID: 16611999 PMCID: PMC1447413 DOI: 10.1128/mcb.26.9.3595-3609.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/01/2005] [Accepted: 01/30/2006] [Indexed: 12/22/2022] Open
Abstract
Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cellular caspase-8 (FLICE)-like inhibitory protein (cFLIP) was originally identified as an inhibitor of death-receptor signalling through competition with caspase-8 for recruitment to FAS-associated via death domain (FADD). More recently, it has been determined that both cFLIP and caspase-8 are required for the survival and proliferation of T cells following T-cell-receptor stimulation. This paradoxical finding launched new investigations of how these molecules might connect with signalling pathways that link to cell survival and growth following antigen-receptor activation. As discussed in this Review, insight gained from these studies indicates that cFLIP and caspase-8 form a heterodimer that ultimately links T-cell-receptor signalling to activation of nuclear factor-kappaB through a complex that includes B-cell lymphoma 10 (BCL-10), mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1) and receptor-interacting protein 1 (RIP1).
Collapse
Affiliation(s)
- Ralph C Budd
- Immunobiology Program, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vermont 50405, USA
| | | | | |
Collapse
|
17
|
Coureuil M, Fouchet P, Prat M, Letallec B, Barroca V, Dos Santos C, Racine C, Allemand I. Caspase-independent death of meiotic and postmeiotic cells overexpressing p53: calpain involvement. Cell Death Differ 2006; 13:1927-37. [PMID: 16528385 DOI: 10.1038/sj.cdd.4401887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In a model of male sterility (MTp53) owing to enforced p53 expression in spermatocytes II and spermatids of transgenic mice, we focused on the role of caspases. Most of them are expressed in all differentiation stages, but only the transcriptional levels of caspase-2 and caspase-3 are modified in MTp53 germ cells. In normal testis, cleaved caspase-3 and caspase-9 are detected during the elongation of spermatids. Despite this constitutive presence of caspases during terminal differentiation, calpains are the main effectors of germ cell loss in MTp53 testes: calpain 1 RNA levels are increased, caspase-3-like activity is markedly decreased while calpain activity is higher and the calpain inhibitor E64d ((2S, 3S)-trans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester) reduces TUNEL labeling in MTp53 testis, whereas pancaspase inhibitor zVADfmk (N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone) has no effect. Our work suggests that despite the presence, and potent involvement, of caspases in male haploid cell maturation, calpains are the executioners of the death of terminally differentiating germ cells.
Collapse
Affiliation(s)
- M Coureuil
- Département de Radiobiologie et Radiopathologie (DRR), CEA/Institut Nationale de la Santé et de la Recherche Médicale Unité 566/Université Paris VII, 60 avenue du général Leclerc, BP6, Fontenay aux Roses Cedex 92265, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Giampietri C, Petrungaro S, Coluccia P, D'Alessio A, Starace D, Riccioli A, Padula F, Palombi F, Ziparo E, Filippini A, De Cesaris P. Germ cell apoptosis control during spermatogenesis. Contraception 2006; 72:298-302. [PMID: 16181975 DOI: 10.1016/j.contraception.2005.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/08/2005] [Accepted: 04/10/2005] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the expression and role of c-Flip long isoform (c-FlipL), a known anti-apoptotic protein. No data are currently available on c-FlipL in male gonad before puberty; therefore, this study was carried out in prepuberal mouse testis. We investigated pachytene spermatocytes and spermatogonia by immunostaining of testis sections and found a strong and specific expression of c-FlipL in pachytene spermatocytes, while spermatogonia expressed very low levels of c-FlipL. This finding inversely correlated with the caspases activity, which was higher in spermatogonia as compared to pachytene spermatocytes. Other experiments carried out in an organ-culture model revealed that Fas-induced apoptosis was higher in spermatogonia as compared to pachytene spermatocytes. These data suggest that c-FlipL may play a role as an anti-apoptotic molecule in the prepuberal mouse testis and open new perspectives in the comprehension of the mechanisms controlling germ cells apoptosis.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Histology and Medical Embryology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Giampietri C, Petrungaro S, Klinger FG, Coluccia P, Paone A, Vivarelli E, Filippini A, De Cesaris P, De Felici M, Ziparo E. c-Flip expression and function in fetal mouse gonocytes. FASEB J 2005; 20:124-6. [PMID: 16263940 DOI: 10.1096/fj.05-4626fje] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptosis is a key mechanism in spermatogenesis, and in testis, most gonocytes degenerate at fetal and postnatal ages to select a cell subset committed to become germ stem cells. The aim of the present study is to investigate mechanisms controlling the massive apoptosis of fetal gonocytes. We evaluated the expression and function of c-Flip, an apoptosis inhibitor known to interfere with the proapoptotic Fas-signaling pathway in a variety of cell types, but never investigated in fetal testis. Expression of c-Flip long isoform (c-FlipL) within fetal testis was localized in gonocytes at 16.5 and 18.5 days post coitum (dpc), both at the mRNA and protein level, while it was weakly expressed or undetectable at earlier stages. Moreover, Fas protein was found in fetal testes at 13.5, 16.5, and 18.5 dpc. Testes at 18.5 dpc, expressing high levels of c-FlipL, were resistant to Fas-induced apoptosis while they became highly sensitive when c-FlipL was inhibited by antisense c-Flip oligos. In addition, there was an inverse relation between gonocyte spontaneous apoptosis sensitivity and c-FlipL levels. Furthermore, caspase-10 activity was inversely related with c-FlipL expression, suggesting that caspase-10 might be a target of c-FlipL. These data represent the first evidence demonstrating c-Flip expression in fetal testes and its role in protecting gonocytes from Fas-dependent apoptosis.
Collapse
Affiliation(s)
- Claudia Giampietri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Histology and Medical Embryology, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
In many organisms, programmed cell death of germ cells is required for normal development. This often occurs through highly conserved events including the transfer of vital cellular material to the growing gametes following death of neighboring cells. Germline cell death also plays a role in such diverse processes as removal of abnormal or superfluous cells at certain checkpoints, establishment of caste differentiation, and individualization of gametes. This review focuses on the cell death events that occur during gametogenesis in both vertebrates and invertebrates. It also examines the signals and machinery that initiate and carry out these germ cell deaths.
Collapse
Affiliation(s)
- J S Baum
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
21
|
Chandrasekaran Y, Richburg JH. The p53 Protein Influences the Sensitivity of Testicular Germ Cells to Mono-(2-Ethylhexyl) Phthalate-Induced Apoptosis by Increasing the Membrane Levels of Fas and DR5 and Decreasing the Intracellular Amount of c-FLIP1. Biol Reprod 2005; 72:206-13. [PMID: 15371270 DOI: 10.1095/biolreprod.104.030858] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The consequence of mono-(2-ethylhexyl) phthalate (MEHP)-induced injury of testicular Sertoli cells is the Fas-dependent apoptotic elimination of germ cells. In addition to the well-known ability of p53 to regulate the transcription of various apoptosis-associated proteins, p53 also has been implicated in mediating the localization of Fas to the plasma membrane of various cell types in a transcription-independent manner. To resolve the role of p53 in MEHP-mediated testicular toxicity, we used wild-type (p53(+/+)) and p53 knockout (p53(-/-)) mice. A significantly lower incidence of TUNEL-positive germ cells was observed in p53(-/-) mice compared to p53(+/+) mice at 1, 1.5, and 24 h after MEHP exposure. In these same mice, an induction of Fas and death receptor-5 (DR5) in testicular membrane preparations was observed only in p53(+/+) mice. Analyses of mRNA levels in testes of p53(+/+) and p53(-/-) mice by reverse transcription-polymerase chain reaction revealed that increases in membrane levels of Fas occurred in the absence of their transcriptional up-regulation. Processing of procaspase-8 was observed only in MEHP-treated p53(+/+) mice, and this correlated with the observed incidence of germ cell apoptosis. Interestingly, the p53 status of mice also influenced the stability of c-FLIP (L), a caspase-8 inhibitory protein, that was measured at levels approximately two- to fivefold higher in p53(-/-) mice after MEHP-exposure compared to those in p53(+/+) mice. Taken together, these data suggest that MEHP-induced germ cell apoptosis is dependent, in part, on the p53 protein and on its abilities to increase the localization of Fas and DR5 on the germ cell membrane as well as to decrease the cellular levels of c-FLIP (L).
Collapse
Affiliation(s)
- Yamini Chandrasekaran
- Division of Pharmacology and Toxicology, University of Texas at Austin, College of Pharmacy, Austin, Texas 78712-0125, USA
| | | |
Collapse
|
22
|
Uherova P, Olson S, Thompson MA, Juskevicius R, Hamilton KS. Expression of c-FLIP in Classic and Nodular Lymphocyte-Predominant Hodgkin Lymphoma. Appl Immunohistochem Mol Morphol 2004; 12:105-10. [PMID: 15354734 DOI: 10.1097/00129039-200406000-00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Different molecular pathways are believed to be involved in the pathogenesis of classic Hodgkin lymphoma as opposed to non-Hodgkin lymphoma. Antiapoptotic mechanisms have been proposed for classic Hodgkin lymphoma, including expression of the cellular Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (c-FLIP), which plays a critical role in resistance to CD95/Fas-mediated apoptosis. In this study, we compare the expression of c-FLIP in the neoplastic cells of classic Hodgkin lymphoma and nodular lymphocyte-predominant Hodgkin lymphoma cases. Sixteen cases of classic Hodgkin lymphoma and 19 cases of nodular lymphocyte-predominant Hodgkin lymphoma were reviewed. Of 16 classic Hodgkin lymphoma cases, 13 cases (81%) were c-FLIP-positive, compared with 6 of 19 (32%) nodular lymphocyte-predominant Hodgkin lymphoma cases. Strong cytoplasmic staining was seen in 7 of 13 c-FLIP-positive classic Hodgkin lymphoma cases, in contrast with only 2 of 6 c-FLIP-positive nodular lymphocyte-predominant Hodgkin lymphoma cases. The 2 cases of nodular lymphocyte-predominant Hodgkin lymphoma with strong c-FLIP expression were associated with transformation to large B-cell lymphoma. An additional 15 cases of diffuse large B-cell lymphoma were studied for c-FLIP expression. All but 1 were c-FLIP-positive. In conclusion, we detected c-FLIP in a significantly lower proportion of nodular lymphocyte-predominant Hodgkin lymphoma cases compared with classic Hodgkin lymphoma cases. Therefore, c-FLIP expression may not be the major mechanism of pathogenesis in nodular lymphocyte-predominant Hodgkin lymphoma. However, strong c-FLIP expression in nodular lymphocyte-predominant Hodgkin lymphoma was associated with transformation to large B-cell lymphoma in 2 cases. c-FLIP expression is not limited to Hodgkin lymphoma, because the majority of diffuse large B-cell lymphoma cases tested were strongly c-FLIP-positive.
Collapse
Affiliation(s)
- Patricia Uherova
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37204, USA
| | | | | | | | | |
Collapse
|
23
|
Aguzzi MS, Giampietri C, De Marchis F, Padula F, Gaeta R, Ragone G, Capogrossi MC, Facchiano A. RGDS peptide induces caspase 8 and caspase 9 activation in human endothelial cells. Blood 2004; 103:4180-7. [PMID: 14982875 DOI: 10.1182/blood-2003-06-2144] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractPeptides containing the Arg-Gly-Asp (RGD) motif inhibit cell adhesion and exhibit a variety of other biologic effects including anticoagulant and antimetastatic activities. The aim of the present study was to examine the anchorage-independent effects of an RGD-containing peptide, Arg-Gly-Asp-Ser (RGDS), on human umbilical vein endothelial cells (HUVECs). Assays were performed on HUVECs seeded onto collagen IV; under these experimental conditions RGDS did not exert antiadhesive effects but significantly reduced FGF-2-dependent chemotaxis after 4 hours of treatment and reduced proliferation after 24 hours of treatment. Experiments carried out with caspase-specific inhibitors indicated that the observed antichemotactic effects required caspase 8 and caspase 9 activation. RGDS activated both caspase 8 and caspase 9 after 4 hours of treatment and caspase 3 after 24 hours of treatment, and markedly enhanced HUVEC apoptosis by transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)/Hoechst staining and fluorescence-activated cell sorting (FACS) analysis. Finally, confocal microscopy showed that RGDS localizes in the cytoplasm of live HUVECs within 4 hours and in vitro experiments showed that RGDS directly interacts with recombinant caspases 8 and 9 in a specific way. In summary, these results indicate that RGDS directly binds and activates caspases 8 and 9, inhibits chemotaxis, and induces apoptosis of HUVECs with a mechanism independent from its antiadhesive effect.
Collapse
Affiliation(s)
- Maria Simona Aguzzi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Green KA, Naylor MJ, Lowe ET, Wang P, Marshman E, Streuli CH. Caspase-mediated Cleavage of Insulin Receptor Substrate. J Biol Chem 2004; 279:25149-56. [PMID: 15069074 DOI: 10.1074/jbc.m402395200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is an important mechanism for maintaining tissue homeostasis. The efficient induction and execution of apoptosis are essential for cell clearance in specific developmental situations. Insulin-like growth factor (IGF)-I is a survival factor for epithelial cells in the mammary gland, and its withdrawal or inhibition leads to apoptosis. In this paper we describe a novel mechanism that may lead to suppression of an IGF-I-mediated signaling pathway through cleavage of insulin receptor substrate (IRS). During the process of forced weaning, when mammary epithelial cells rapidly enter apoptosis in vivo, IRS-1 and IRS-2 disappear. We have used cultured mammary epithelial cells to demonstrate that IRS removal can be mediated through the action of caspase 10. Caspase 10 activation and IRS-1 cleavage are regulated by a MKK1-signaling pathway but not by a phosphatidylinositol-3 kinase pathway nor by the extracellular proapoptotic ligands FasL, tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL), or transforming growth factor-beta3. In addition we show that the loss of IRS-1 after MKK1 inhibition prevents IGF-mediated phosphorylation of FKHRL1.
Collapse
Affiliation(s)
- Kirsty A Green
- School of Biological Sciences, University of Manchester, Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The apoptotic machinery is utilized for a wide variety of tasks during development. Recent work has uncovered a new, non-apoptotic role for these factors during the individualization process of maturing spermatids.
Collapse
Affiliation(s)
- Ross L Cagan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|