1
|
Parducci NS, Garnique ADMB, de Almeida BO, Machado-Neto JA. Exploring the dual role of SIVA1 in cancer biology. Gene 2025; 950:149365. [PMID: 40024298 DOI: 10.1016/j.gene.2025.149365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/08/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The intricate molecular mechanisms associated with cancer development continue to engage researchers due to the significant impact of the disease on global mortality. This review delves into the role of the apoptosis regulatory protein SIVA1, which has emerged as a significant player in cellular homeostasis. SIVA1, initially characterized as a pro-apoptotic protein interacting with the TNF receptor CD27, has since been implicated in various cellular contexts, revealing its complex functional dynamics. The SIVA1 gene, located on chromosome 14, encodes a protein containing distinctive structural features, including an amphipathic helix and a death domain homology region. Localization studies show that SIVA1 is present in both the cytoplasm and nucleus, with its expression linked to tumor differentiation. Investigations into SIVA1's interactions have uncovered its pro-apoptotic mechanisms, such as binding to anti-apoptotic proteins from the BCL2 family, thus promoting apoptosis under stress conditions. Interestingly, SIVA1 also exhibits tumor-promoting properties in specific cancer types, suggesting a dual role in apoptosis induction and tumor progression. As research progresses, understanding the regulatory mechanisms governing SIVA1's multifaceted functions could pave the way for novel therapeutic strategies aimed at manipulating its activity for improved cancer treatment outcomes. Future studies are warranted to clarify SIVA1's contextual roles and explore its potential clinical implications.
Collapse
Affiliation(s)
- Natália Sudan Parducci
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | | | - Bruna Oliveira de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
2
|
Vermehren-Schmaedick A, Peto M, Wagoner W, Chiotti KE, Ramsey E, Wang X, Rakshe S, Minnier J, Sears R, Spellman P, Luoh SW. Mutation of SIVA, a candidate metastasis gene identified from clonally related bilateral breast cancers, promotes breast cancer cell spread in vitro and in vivo. PLoS One 2024; 19:e0302856. [PMID: 38722955 PMCID: PMC11081324 DOI: 10.1371/journal.pone.0302856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Metastasis is the most dreaded outcome after a breast cancer diagnosis, and little is known regarding what triggers or promotes breast cancer to spread distally, or how to prevent or eradicate metastasis effectively. Bilateral breast cancers are an uncommon form of breast cancers. In our study, a percentage of bilateral breast cancers were clonally related based on copy number variation profiling. Whole exome sequencing and comparative sequence analysis revealed that a limited number of somatic mutations were acquired in this "breast-to-breast" metastasis that might promote breast cancer distant spread. One somatic mutation acquired was SIVA-D160N that displayed pro-metastatic phenotypes in vivo and in vitro. Over-expression of SIVA-D160N promoted migration and invasion of human MB-MDA-231 breast cancer cells in vitro, consistent with a dominant negative interfering function. When introduced via tail vein injection, 231 cells over-expressing SIVA-D160N displayed enhanced distant spread on IVIS imaging. Over-expression of SIVA-D160N promoted invasion and anchorage independent growth of mouse 4T1 breast cancer cells in vitro. When introduced orthotopically via mammary fat pad injection in syngeneic Balb/c mice, over-expression of SIVA-D160N in 4T1 cells increased orthotopically implanted mammary gland tumor growth as well as liver metastasis. Clonally related bilateral breast cancers represented a novel system to investigate metastasis and revealed a role of SIVA-D160N in breast cancer metastasis. Further characterization and understanding of SIVA function, and that of its interacting proteins, may elucidate mechanisms of breast cancer metastasis, providing clinically useful biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Myron Peto
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wendy Wagoner
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kami E. Chiotti
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Elizabeth Ramsey
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaoyan Wang
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Shauna Rakshe
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jessica Minnier
- Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rosalie Sears
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- Brenden-Colson Center for Pancreatic Care, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Paul Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Shiuh-Wen Luoh
- Veterans Administration Portland Health Care System, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
3
|
Coccia E, Solé M, Comella JX. FAIM-L - SIVA-1: Two Modulators of XIAP in Non-Apoptotic Caspase Function. Front Cell Dev Biol 2022; 9:826037. [PMID: 35083225 PMCID: PMC8784879 DOI: 10.3389/fcell.2021.826037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is crucial for the correct development of the nervous system. In adulthood, the same protein machinery involved in programmed cell death can control neuronal adaptiveness through modulation of synaptic pruning and synaptic plasticity processes. Caspases are the main executioners in these molecular pathways, and their strict regulation is essential to perform neuronal remodeling preserving cell survival. FAIM-L and SIVA-1 are regulators of caspase activation. In this review we will focus on FAIM-L and SIVA-1 as two functional antagonists that modulate non-apoptotic caspase activity in neurons. Their participation in long-term depression and neurite pruning will be described in base of the latest studies performed. In addition, the association of FAIM-L non-apoptotic functions with the neurodegeneration process will be reviewed.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
4
|
Gopalan L, Sebastian A, Praul CA, Albert I, Ramachandran R. Metformin Affects the Transcriptomic Profile of Chicken Ovarian Cancer Cells. Genes (Basel) 2021; 13:30. [PMID: 35052372 PMCID: PMC8774788 DOI: 10.3390/genes13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in women. Metformin intake is associated with a reduced incidence of ovarian cancer and increased overall survival rate. We determined the effect of metformin on sphere formation, extracellular matrix invasion, and transcriptome profile of ovarian cancer cells (COVCAR) isolated from ascites of chickens that naturally developed ovarian cancer. We found that metformin treatment significantly decreased sphere formation and invasiveness of COVCAR cells. RNA-Seq data analysis revealed 0, 4, 365 differentially expressed genes in cells treated with 0.5, 1, 2 mM metformin, respectively compared to controls. Transcriptomic and ingenuity pathway analysis (IPA) revealed significant downregulation of MMP7, AICDA, GDPD2, APOC3, APOA1 and predicted inhibition of upstream regulators NFKB, STAT3, TP53 that are involved in epithelial-mesenchymal transition, DNA repair, and lipid metabolism. The analysis revealed significant upregulation of RASD2, IHH, CRABP-1 and predicted activation of upstream regulators VEGF and E2F1 that are associated with angiogenesis and cell cycle. Causal network analysis revealed novel pathways suggesting predicted inhibition of ovarian cancer through master regulator ASCL1 and dataset genes DCX, SEMA6B, HEY2, and KCNIP2. In summary, advanced pathway analysis in IPA revealed novel target genes, upstream regulators, and pathways affected by metformin treatment of COVCAR cells.
Collapse
Affiliation(s)
- Lalitha Gopalan
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
| | - Craig A. Praul
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ramesh Ramachandran
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA;
- Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Xiong Y, Zhong Q, Palmer T, Benner A, Wang L, Suresh K, Damico R, D’Alessio FR. Estradiol resolves pneumonia via ERβ in regulatory T cells. JCI Insight 2021; 6:133251. [PMID: 33290273 PMCID: PMC7934849 DOI: 10.1172/jci.insight.133251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Current treatments for pneumonia (PNA) are focused on the pathogens. Mortality from PNA-induced acute lung injury (PNA-ALI) remains high, underscoring the need for additional therapeutic targets. Clinical and experimental evidence exists for potential sex differences in PNA survival, with males having higher mortality. In a model of severe pneumococcal PNA, when compared with male mice, age-matched female mice exhibited enhanced resolution characterized by decreased alveolar and lung inflammation and increased numbers of Tregs. Recognizing the critical role of Tregs in lung injury resolution, we evaluated whether improved outcomes in female mice were due to estradiol (E2) effects on Treg biology. E2 promoted a Treg-suppressive phenotype in vitro and resolution of PNA in vivo. Systemic rescue administration of E2 promoted resolution of PNA in male mice independent of lung bacterial clearance. E2 augmented Treg expression of Foxp3, CD25, and GATA3, an effect that required ERβ, and not ERα, signaling. Importantly, the in vivo therapeutic effects of E2 were lost in Treg-depleted mice (Foxp3DTR mice). Adoptive transfer of ex vivo E2-treated Tregs rescued Streptococcuspneumoniae–induce PNA-ALI, a salutary effect that required Treg ERβ expression. E2/ERβ was required for Tregs to control macrophage proinflammatory responses. Our findings support the therapeutic role for E2 in promoting resolution of lung inflammation after PNA via ERβ Tregs.
Collapse
|
6
|
Wang XT, Li L, Kong FB, Zhong XG, Mai W. Lentivirus-Mediated Overexpression of SIVA-1 Reverses Cisplatin Resistance in Gastric Cancer in vitro. Cell Biochem Biophys 2020; 78:455-463. [PMID: 32648086 DOI: 10.1007/s12013-020-00929-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 11/26/2022]
Abstract
SIVA-1 plays a critical role in the induction of apoptosis in a number of different cell lines and participates in the mechanism of cisplatin (DDP)-mediated antitumor effects. However, the involvement of SIVA-1 in cisplatin resistance in gastric carcinoma has not been revealed. To explore the effect of SIVA-1 on DDP resistance, a recombinant pGV358-GFP-SIVA-1 lentiviral vector was constructed and transfected into human cisplatin-resistant MKN45/DDP gastric cancer cells. Subsequently, stable SIVA-1 overexpression was established in MKN45/DDP cells, which resulted in increased DDP sensitivity in MKN45/DDP cells in vitro. Flow cytometry demonstrated that SIVA-1 overexpression increased the percentage of apoptotic cells compared to that in the control. The colony formation assay clearly revealed that cell growth and proliferation were significantly suppressed following SIVA-1 overexpression. In addition, overexpression of SIVA-1 inhibited the migratory and invasive potential of MKN45/DDP cells in vitro. Western blot analysis indicated that SIVA-1 increased the expression levels of p53, p73, and p14ARF, whereas it reduced Bcl-2, MDM2, and Bcl-xL expression. In short, SIVA-1 upregulated the protein expression of p53, p73, and p14ARF and decreased that of Bcl-2, MDM2, and Bcl-xL in vitro and subsequently reversed cisplatin resistance in gastric cancer cells, suggesting that SIVA-1 serves as a valuable potential target for attenuating chemotherapy resistance.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Li
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan-Biao Kong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Xiao-Gang Zhong
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Wei Mai
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Yimpring N, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Krobthong S, Suriyaphol G. Proteomic profiles of unilateral cryptorchidism in pigs at different ages using MALDI-TOF mass spectrometry and in-gel digestion coupled with mass spectrometry (GeLC-MS/MS) approaches. BMC Vet Res 2020; 16:373. [PMID: 33008399 PMCID: PMC7532586 DOI: 10.1186/s12917-020-02591-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Background Cryptorchidism is a condition that occurs when one or both testes fail to descend into the scrotum. It is a common congenital disorder, causing economic loss in pig production. However, there have been only limited studies of differential protein expression profiles in undescended testes (UDTs) in the abdomen and descended testes (DTs) in cryptorchid pigs, especially at the peptidome and proteome levels. The present study aimed to analyze the peptidome of UDTs and DTs in unilateral cryptorchid pigs aged 1–2, 6, 15 and 20 weeks and in normal testes of healthy pigs aged 1–2 and 12 weeks, using peptide mass fingerprinting and three-dimensional principal component analysis (3D-PCA) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and to identify potential protein candidates, using in-gel digestion coupled with mass spectrometry (GeLC-MS/MS). Western blot analysis was used to verify protein expression. Protein sequence was affirmed by liquid chromatography–tandem mass spectrometry. Results A PCA plot showed a discrete cluster for each sample group. Peptide mass fingerprints (PMFs) demonstrated unique peptide fragments in UDTs at different ages. A number of markedly expressed proteins from GeLC-MS/MS were identified, including the multifunctional tumor necrosis factor receptor superfamily member 18 (TNFRSF18), in DTs at 1–2 and 6 weeks and in UDTs at 15 and 20 weeks of age. Using western blot analysis, high expression of TNFRSF18 was observed in the UDTs at 15 weeks. Using the STITCH database, this protein was found to be related to apoptosis, corresponding to the previous report in the UDTs at the same age. Conclusions The present study revealed the specific PMFs and clusters for porcine cryptorchidism, and a novel protein, TNFRSF18, associated with the disease mechanism. These results could provide further insights into the pathogenesis of the disease.
Collapse
Affiliation(s)
- Nathamon Yimpring
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Coccia E, Planells-Ferrer L, Badillos-Rodríguez R, Pascual M, Segura MF, Fernández-Hernández R, López-Soriano J, Garí E, Soriano E, Barneda-Zahonero B, Moubarak RS, Pérez-García MJ, Comella JX. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis 2020; 11:82. [PMID: 32015347 PMCID: PMC6997380 DOI: 10.1038/s41419-020-2282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Raquel Badillos-Rodríguez
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Marta Pascual
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, 08035, Barcelona, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Joaquin López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Eloi Garí
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Rana S Moubarak
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.,Department of Pathology, NYU Langone Health, New York, 10016, NY, USA
| | - M Jose Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| |
Collapse
|
9
|
Liu T, Ma Y, Wang Z, Zhang W, Yang X. Siva 1 Inhibits Cervical Cancer Progression and Its Clinical Prognosis Significance. Cancer Manag Res 2020; 12:303-311. [PMID: 32021444 PMCID: PMC6970243 DOI: 10.2147/cmar.s232994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 01/20/2023] Open
Abstract
Background Cervical cancer is the second most common female malignancies. But the exact etiology of cervical cancer is still under investigation. Recent observations revealed that the loss expression of Siva 1 was related to several different types of tumors. It could play an indispensable role in both exogenous and endogenous apoptotic signaling pathways. Nevertheless, the relationship between Siva 1 expression and cervical cancer progression has not yet been fully clarified. This study aimed to explore the functional role of Siva1 in cervical cancer. Materials and Methods In this present experiment, expression of Siva 1 was detected in 87 cervical cancer, 34 CIN and 20 normal samples by immunohistochemistry. The correlation of Siva 1 expression and overall survival times (OS) was analyzed by Kaplan–Meier analysis. We up-regulated the expression of Siva 1 by plasmid pCMV3-Siva 1 in C33A cells. CCK8, flow cytometry, wound-healing, and transwell assays were performed to examine the influences of Siva 1 expression on cell proliferation, apoptosis, migration and invasion. Results The expression of Siva 1 was decreased in cervical cancer tissues compared with CIN and normal tissues. In addition, the Siva 1 immunoreactivity was significantly associated with tumor differentiation. Patients with Siva 1 negative staining exhibited a significantly decreased overall survival. Then, we established stable Siva 1 ectopic expression cells, and we found that elevated expression of Siva 1 promoted apoptosis, inhibited proliferation, and suppressed migration and invasion of cervical cancer cells. Conclusion The present study revealed a crucial role of Siva 1 in tumor progression and it may be a valuable prognostic indicator of cervical cancer.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yifei Ma
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Zhiling Wang
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Wenjing Zhang
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xingsheng Yang
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
10
|
Siva plays a critical role in mouse embryonic development. Cell Death Differ 2019; 27:297-309. [PMID: 31164717 DOI: 10.1038/s41418-019-0358-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
The Siva protein, named after the Hindu God of Destruction, plays important roles in apoptosis in various contexts, including downstream of death receptor activation or p53 tumor suppressor engagement. The function of Siva in organismal development and homeostasis, however, has remained uncharacterized. Here, we generate Siva knockout mice to characterize the physiological function of Siva in vivo. Interestingly, we find that Siva deficiency causes early embryonic lethality accompanied by multiple phenotypes, including developmental delay, abnormal neural tube closure, and defective placenta and yolk sac formation. Examination of Siva expression during embryogenesis shows that Siva is expressed in both embryonic and extra-embryonic tissues, including within the mesoderm, which may explain the vascular defects observed in the placenta and yolk sac. The embryonic phenotypes caused by Siva loss are not rescued by p53 deficiency, nor do they resemble those of p53 null embryos, suggesting that the embryonic function of Siva is not related to the p53 pathway. Moreover, loss of the Ripk3 necroptosis protein does not rescue the observed lethality or developmental defects, suggesting that Siva may play a non-apoptotic role in development. Collectively, these studies reveal a key role for Siva in proper embryonic development.
Collapse
|
11
|
Wing JB, Tay C, Sakaguchi S. Control of Regulatory T Cells by Co-signal Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:179-210. [DOI: 10.1007/978-981-32-9717-3_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
13
|
Yin Z, Zhang K, Peng X, Jiang Z, Yuan W, Wang Y, Li Y, Ye X, Dong Y, Wan Y, Ni B, Zhu P, Fan X, Wu X, Mo X. SIVA1 Regulates the Stability of Single-Stranded DNA-Binding Protein 3 Isoforms. Mol Biol 2018. [DOI: 10.1134/s0026893318050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Vachtenheim J, Lischke R, Vachtenheim J. Siva-1 emerges as a tissue-specific oncogene beyond its classic role of a proapoptotic gene. Onco Targets Ther 2018; 11:6361-6367. [PMID: 30319276 PMCID: PMC6171514 DOI: 10.2147/ott.s173001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Siva-1 is a typical apoptotic protein commonly activated by the p53 tumor suppressor protein and should therefore participate in a barrier against the development of cancer. It has proapoptotic activities in various cell systems. Recent findings suggest that Siva-1 possesses several other apoptosis-independent functions and interacts with many other proteins not directly involved in apoptosis. It harbors the ARF E3 ubiquitin protein ligase activity, a property that is clearly prooncogenic and leads to p53 degradation through the upregulation of the Hdm2 protein level. Surprisingly, recent evidence shows that Siva-1 absence prevents the development of non-small cell lung carcinomas in a mouse model and reveals the oncogenic roles in the same types of human cells, indicating its unique function as an oncogene in the cell context-dependent manner. Herein, we review reported activities of Siva-1 in various experimental settings and comment on its ambiguous function in tumor biology.
Collapse
Affiliation(s)
- Jiri Vachtenheim
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, First Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Jiri Vachtenheim
- Department of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University Prague, Czech Republic,
| |
Collapse
|
15
|
Riccardi C, Ronchetti S, Nocentini G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic target for immunotherapy. Expert Opin Ther Targets 2018; 22:783-797. [DOI: 10.1080/14728222.2018.1512588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
16
|
Kopru CZ, Cagnan I, Akar I, Esendagli G, Korkusuz P, Gunel-Ozcan A. Dual Effect of Glucocorticoid-Induced Tumor Necrosis Factor-Related Receptor Ligand Carrying Mesenchymal Stromal Cells on Small Cell Lung Cancer: A Preliminary in vitro Study. Cytotherapy 2018; 20:930-940. [PMID: 30180943 DOI: 10.1016/j.jcyt.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS TNFR family member glucocorticoid-induced tumor necrosis factor-related receptor (GITR/TNFRSF18) activation by its ligand glucocorticoid-induced TNF-related receptor ligand (GITRL) have important roles in proliferation, death and differentiation of cells. Some types of small cell lung cancers (SCLCs) express GITR. Because mesenchymal stromal cells (MSCs) may target tumor cells, we aimed to investigate the effect of MSCs carrying GITRL overexpressing plasmid on the proliferation and viability of a GITR+ SCLC cell line (SCLC-21H) compared with a GITR- SCLC cell line (NCI-H82). METHODS Electroporation was used to transfer pGITRL (GITRL gene carrying plasmid) or pCR3 (mock plasmid) into MSCs. Flow cytometry and semi-quantitative polymerase chain reaction were used to characterize the transfected MSCs. Following SCLC-21H or NCI-H82 cell lines were co-cultured with pGITRL-MSCs. RESULTS Proliferation of NCI-H82 was increased in all types of co-cultures while SCLC-21H cells did not. GITRL expressing MSCs were able to induce cell death of SCLC-21H through the upregulation of SIVA1 apoptosis inducing factor. CONCLUSIONS The influence of MSCs on SCLC cells can vary according to the cancer cell subtypes as obtained in SCLC-21H and NCI-H82 and enabling GITR-GITRL interaction can induce cell death of SCLC cell lines.
Collapse
Affiliation(s)
- Cagla Zubeyde Kopru
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Ilgin Cagnan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Irem Akar
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Gunes Esendagli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
17
|
Leigh ND, O'Neill RE, Du W, Chen C, Qiu J, Ashwell JD, McCarthy PL, Chen GL, Cao X. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:336-347. [PMID: 28550198 DOI: 10.4049/jimmunol.1502181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70-/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70-/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4+ and CD8+ effector T cells is increased in CD70-/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Philip L McCarthy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - George L Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
18
|
Waight JD, Gombos RB, Wilson NS. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities. Hum Antibodies 2017; 25:87-109. [PMID: 28085016 DOI: 10.3233/hab-160308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Co-stimulatory tumor necrosis factor receptors (TNFRs) can sculpt the responsiveness of T cells recognizing tumor-associated antigens. For this reason, agonist antibodies targeting CD137, CD357, CD134 and CD27 have received considerable attention for their therapeutic utility in enhancing anti-tumor immune responses, particularly in combination with other immuno-modulatory antibodies targeting co-inhibitory pathways in T cells. The design of therapeutic antibodies that optimally engage and activate co-stimulatory TNFRs presents an important challenge of how to promote effective anti-tumor immunity while avoiding serious immune-related adverse events. Here we review our current understanding of the expression, signaling and structural features of CD137, CD357, CD134 and CD27, and how this may inform the design of pharmacologically active immuno-modulatory antibodies targeting these receptors. This includes the integration of our emerging knowledge of the role of Fcγ receptors (FcγRs) in facilitating antibody-mediated receptor clustering and forward signaling, as well as promoting immune effector cell-mediated activities. Finally, we bring our current preclinical and clinical knowledge of co-stimulatory TNFR antibodies into the context of opportunities for next generation molecules with improved pharmacologic properties.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Gene Expression Regulation
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Receptors, IgG/agonists
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
|
19
|
Blockade of Glucocorticoid-Induced Tumor Necrosis Factor–Receptor-Related Protein Signaling Ameliorates Murine Collagen-Induced Arthritis by Modulating Follicular Helper T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1559-67. [DOI: 10.1016/j.ajpath.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 01/04/2023]
|
20
|
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Van Nostrand JL, Brisac A, Mello SS, Jacobs SBR, Luong R, Attardi LD. The p53 Target Gene SIVA Enables Non-Small Cell Lung Cancer Development. Cancer Discov 2015; 5:622-35. [PMID: 25813352 DOI: 10.1158/2159-8290.cd-14-0921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/23/2015] [Indexed: 01/28/2023]
Abstract
UNLABELLED Although p53 transcriptional activation potential is critical for its ability to suppress cancer, the specific target genes involved in tumor suppression remain unclear. SIVA is a p53 target gene essential for p53-dependent apoptosis, although it can also promote proliferation through inhibition of p53 in some settings. Thus, the role of SIVA in tumorigenesis remains unclear. Here, we seek to define the contribution of SIVA to tumorigenesis by generating Siva conditional knockout mice. Surprisingly, we find that SIVA loss inhibits non-small cell lung cancer (NSCLC) development, suggesting that SIVA facilitates tumorigenesis. Similarly, SIVA knockdown in mouse and human NSCLC cell lines decreases proliferation and transformation. Consistent with this protumorigenic role for SIVA, high-level SIVA expression correlates with reduced NSCLC patient survival. SIVA acts independently of p53 and, instead, stimulates mTOR signaling and metabolism in NSCLC cells. Thus, SIVA enables tumorigenesis in a p53-independent manner, revealing a potential new cancer therapy target. SIGNIFICANCE These findings collectively reveal a novel role for the p53 target gene SIVA both in regulating metabolism and in enabling tumorigenesis, independently of p53. Importantly, these studies further identify SIVA as a new prognostic marker and as a potential target for NSCLC cancer therapy.
Collapse
Affiliation(s)
- Jeanine L Van Nostrand
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Alice Brisac
- Department of Biology, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stephano S Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suzanne B R Jacobs
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California. Department of Genetics, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
22
|
Petrillo MG, Ronchetti S, Ricci E, Alunno A, Gerli R, Nocentini G, Riccardi C. GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmun Rev 2014; 14:117-26. [PMID: 25449679 DOI: 10.1016/j.autrev.2014.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/28/2014] [Indexed: 01/07/2023]
Abstract
Autoimmune diseases decrease life expectancy and quality of life for millions of women and men. Although treatments can slow disease progression and improve quality of life, all currently available drugs have adverse effects and none of them are curative; therefore, requiring patients to take immunosuppressive drugs for the remainder of their lives. A curative therapy that is safe and effective is urgently needed. We believe that therapies promoting the in vivo expansion of regulatory T cells (Tregs) or injection of in vitro expanded autologous/heterologous Tregs (cellular therapy) can alter the natural history of autoimmune diseases. In this review, we present data from murine and human studies suggesting that 1) glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) plays a crucial role in thymic Treg (tTreg) differentiation and expansion; 2) GITR plays a crucial role in peripheral Treg (pTreg) expansion; 3) in patients with Sjögren syndrome and systemic lupus erythematosus, CD4(+)GITR(+) pTregs are expanded in patients with milder forms of the disease; and 4) GITR is superior to other cell surface markers to differentiate Tregs from other CD4(+) T cells. In this context, we consider two potential new approaches for treating autoimmune diseases consisting of the in vivo expansion of GITR(+) Tregs by GITR-triggering drugs and in vitro expansion of autologous or heterologous GITR(+) Tregs to be infused in patients. Advantages of such an approach, technical problems, and safety issues are discussed.
Collapse
Affiliation(s)
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| | - Alessia Alunno
- Department of Medicine, Rheumatology Unit, University of Perugia, Italy
| | - Roberto Gerli
- Department of Medicine, Rheumatology Unit, University of Perugia, Italy
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy.
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Italy
| |
Collapse
|
23
|
Petrillo MG, Fettucciari K, Montuschi P, Ronchetti S, Cari L, Migliorati G, Mazzon E, Bereshchenko O, Bruscoli S, Nocentini G, Riccardi C. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacol Toxicol 2014; 15:35. [PMID: 24993777 PMCID: PMC4105561 DOI: 10.1186/2050-6511-15-35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glucocorticoids affect peripheral immune responses, including modulation of T-cell activation, differentiation, and apoptosis. The quantity and quality of T-cell receptor (TCR)-triggered intracellular signals modulate T-cell function. Thus, glucocorticoids may affect T cells by interfering with the TCR signaling cascade. The purpose of the study was to search for glucocorticoid-modulated kinases downstream of the TCR. METHODS Gene modulation in lymphoid cells either treated with glucocorticoids or from glucocorticoid-treated mice was studied using a RNase protection assay, real-time PCR, and western blotting. The sensitivity of genetically modified thymocytes to glucocorticoid-induced apoptosis was studied by performing hypotonic propidium iodide staining and flow cytometry. The Student's t-test was employed for statistical evaluation. RESULTS We found that transcription of Itk, a non-receptor tyrosine kinase of the Tec family, was up-regulated in a mouse T-cell hybridoma by the synthetic glucocorticoid dexamethasone. In contrast, dexamethasone down-regulated the expression of Txk, a Tec kinase that functions redundantly with Itk, and Lck, the Src kinase immediately downstream of the TCR. We investigated the expression of Itk, Txk, and Lck in thymocytes and mature lymphocytes following in vitro and in vivo dexamethasone treatment at different time points and doses. Kinase expression was differentially modulated and followed distinct kinetics. Itk was up-regulated in all cell types and conditions tested. Txk was strongly up-regulated in mature lymphocytes but only weakly up-regulated or non-modulated in thymocytes in vitro or in vivo, respectively. Conversely, Lck was down-regulated in thymocytes, but not modulated or up-regulated in mature lymphocytes in the different experimental conditions. This complex behaviour correlates with the presence of both positive and negative glucocorticoid responsive elements (GRE and nGRE, respectively) in the Itk, Txk and Lck genes. To investigate the function associated with Itk up-regulation, dexamethasone-induced apoptosis of thymocytes from Itk-deficient mice was evaluated. Our results demonstrated that Itk deficiency causes increased sensitivity to dexamethasone but not to other pro-apoptotic stimuli. CONCLUSIONS Modulation of Itk, Txk, and Lck in thymocytes and mature lymphocytes is another mechanism by which glucocorticoids modulate T-cell activation and differentiation. Itk up-regulation plays a protective role in dexamethasone-treated thymocytes.
Collapse
Affiliation(s)
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Luigi Cari
- Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emanuela Mazzon
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | | | - Giuseppe Nocentini
- Department of Medicine, University of Perugia, Perugia, Italy
- Department of Medicine, Section of Pharmacology, Severi Square 1, University of Perugia, I-06132 San Sisto, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
25
|
Yan Y, Li Z, Zhang GX, Williams MS, Carey GB, Zhang J, Rostami A, Xu H. Anti-MS4a4B treatment abrogates MS4a4B-mediated protection in T cells and ameliorates experimental autoimmune encephalomyelitis. Apoptosis 2014; 18:1106-19. [PMID: 23801080 DOI: 10.1007/s10495-013-0870-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent data show that anti-CD20 therapy is effective for some autoimmune diseases, including multiple sclerosis (MS). However, the efficacy of anti-CD20 therapy for MS is largely limited because anti-CD20 antibodies target only B cells. In previous studies, we have investigated the function of MS4a4B, a novel CD20 homologue, in T cell proliferation. Here, we found that MS4a4B regulates not only T cell proliferation but also T cell apoptosis. Knockdown of MS4a4B by MS4a4B-siRNA or MS4a4B-shRNA-expressing vector promoted apoptosis in primary T cells and T32 cell line. In contrast, vector-driven over-expression of MS4a4B reduced apoptosis in EL-4 cells. Machinery analysis showed that MS4a4B-mediated T cell survival was associated with decreased activity of caspases 3, 8 and 9. Interestingly, binding of anti-MS4a4B antibodies to T cells induced activated T cells to undergo apoptosis. To test whether anti-MS4a4B antibody interferes with MS4a4B-mediated protection of T cells, we injected anti-MS4a4B antibodies into mice with experimental autoimmune encephalomyelitis (EAE). The results show that anti-MS4a4B treatment ameliorated the severity of EAE, accompanied by decreased Th1 and Th17 cell responses and reduced levels of pro-inflammatory cytokines in the central nervous system, suggesting that MS4a4B may serve as a target of antibody-based therapy for T cell-mediated diseases.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Neurology, Thomas Jefferson University, 900 Walnut Street, JHN 300, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ephrem A, Epstein AL, Stephens GL, Thornton AM, Glass D, Shevach EM. Modulation of Treg cells/T effector function by GITR signaling is context-dependent. Eur J Immunol 2013; 43:2421-9. [PMID: 23722868 PMCID: PMC11022273 DOI: 10.1002/eji.201343451] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 04/19/2024]
Abstract
Treg cells express high levels of the glucocorticoid-induced tumor necrosis factor-related receptor (GITR), while resting conventional T (Tconv) cells express low levels that are increased upon activation. Manipulation of GITR/GITR-Ligand (GITR-L) interactions results in enhancement of immune responses, but it remains unclear whether this enhancement is secondary to costimulation of Tconv cells or to reversal of Treg-cell-mediated suppression. Here, we used a nondepleting Fc-GITR-L and combinations of WT and GITR KO Treg cells and Tconv cells to reexamine the effects of GITR stimulation on each subpopulation in both unmanipulated mice and mice with inflammatory bowel disease. Treatment of mice with Fc-GITR-L resulted in significant expansion of Treg cells and a modest expansion of Tconv cells. When RAG KO mice were reconstituted with Tconv cells alone, GITR-L resulted in Tconv-cell expansion and severe inflammatory bowel disease. The protective effect of Treg cells was lost in the presence of Fc-GITR-L, secondary to death of the Treg cells. When RAG KO mice were reconstituted with Treg cells alone, the transferred cells expanded normally, and Fc-GITR-L treatment resulted in a loss of Foxp3 expression, but the ex-Treg cells did not cause any pathology. The effects of GITR activation are complex and depend on the host environment and the activation state of the Treg cells and T effector cells.
Collapse
Affiliation(s)
- Amal Ephrem
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan L. Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Geoffrey L. Stephens
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela M. Thornton
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deborah Glass
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
28
|
Xufré C, Costa M, Roura-Mir C, Codina-Busqueta E, Usero L, Pizarro E, Obiols G, Jaraquemada D, Martí M. Low frequency of GITR+ T cells in ex vivo and in vitro expanded Treg cells from type 1 diabetic patients. Int Immunol 2013; 25:563-74. [DOI: 10.1093/intimm/dxt020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Lee EM, Hurh S, Cho B, Oh KH, Kim SU, Surh CD, Sprent J, Yang J, Kim JY, Ahn C. CD70-CD27 ligation between neural stem cells and CD4+ T cells induces Fas-FasL-mediated T-cell death. Stem Cell Res Ther 2013; 4:56. [PMID: 23692980 PMCID: PMC3706991 DOI: 10.1186/scrt206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 05/09/2013] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) are among the most promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. One of the remaining obstacles for NSC therapy is to overcome the alloimmune response on NSCs by the host. METHODS To investigate the mechanisms of immune modulatory function derived from the interaction of human NSCs with allogeneic T cells, we examined the immune regulatory effects of human NSCs on allogeneic T cells in vitro. RESULTS Significantly, NSCs induced apoptosis of allogeneic T cells, in particular CD4+ T cells. Interaction of CD70 on NSCs and CD27 on CD4(+) T cells mediated apoptosis of T cells. Thus, blocking CD70-CD27 interaction prevented NSC-mediated death of CD4(+) T cells. CONCLUSIONS We present a rational explanation of NSC-induced immune escape in two consecutive stages. First, CD70 constitutively expressed on NSCs engaged CD27 on CD4(+) T cells, which induced Fas ligand expression on CD4(+) T cells. Second, CD4(+) T-cell apoptosis was followed by Fas-Fas ligand interaction in the CD4(+) T cells.
Collapse
|
30
|
Nocentini G, Ronchetti S, Petrillo MG, Riccardi C. Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Br J Pharmacol 2012; 165:2089-99. [PMID: 22029729 DOI: 10.1111/j.1476-5381.2011.01753.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid-induced TNFR-related (gitr) is a gene coding for a member of the TNF receptor superfamily. GITR activation by its ligand (GITRL) influences the activity of effector and regulatory T cells, thus participating in the development of immune response against tumours and infectious agents, as well as in autoimmune and inflammatory diseases. Notably, treating animals with GITR-Fc fusion protein ameliorates autoimmune/inflammatory diseases while GITR triggering, by treatment with anti-GITR mAb, is effective in treating viral, bacterial and parasitic infections, as well in boosting immune response against tumours. GITR modulation has been indicated as one of the top 25 most promising research areas by the American National Cancer Institute, and a clinical trial testing the efficacy of an anti-GITR mAb in melanoma patients has been started. In this review, we summarize results regarding: (i) the mechanisms by which GITRL/GITR system modulates immune response; (ii) the structural and functional studies clearly demonstrating differences between GITRL/GITR systems of mice and humans; (iii) the molecules with pharmacological activities including anti-GITR mAbs, GITR-Fc and GITRL-Fc fusion proteins, GITRL in monomer or multimer conformation; and (iv) the possible risks deriving from GITRL/GITR system pharmacological modulation. In conclusion, GITR triggering and inhibition could be useful in treating tumours, infectious diseases, as well as autoimmune and inflammatory diseases. However, differences between mouse and human GITRL/GITR systems suggest that further preclinical studies are needed to better understand how safe therapeutic results can be obtained and to design appropriate clinical trials.
Collapse
Affiliation(s)
- Giuseppe Nocentini
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
31
|
Multifaceted functions of Siva-1: more than an Indian God of Destruction. Protein Cell 2012; 3:117-22. [PMID: 22426980 DOI: 10.1007/s13238-012-2018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022] Open
Abstract
Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.
Collapse
|
32
|
Iorio-Morin C, Germain P, Roy S, Génier S, Labrecque P, Parent JL. Thromboxane A2 modulates cisplatin-induced apoptosis through a Siva1-dependent mechanism. Cell Death Differ 2012; 19:1347-57. [PMID: 22343716 DOI: 10.1038/cdd.2012.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thromboxane A(2) (TXA(2)) is an important lipid mediator whose function in apoptosis is the subject of conflicting reports. Here, a yeast two-hybrid screen for proteins that interact with the C-terminus of the TXA(2) receptor (TP) identified Siva1 as a new TP-interacting protein. Contradictory evidence suggests pro- and anti-apoptotic roles for Siva1. We show that a cisplatin treatment induces TXA(2) synthesis in HeLa cells. We demonstrate that endogenous TP stimulation promotes cisplatin-induced apoptosis of HeLa cells and that such modulation requires the expression of Siva1, as evidenced by inhibiting its endogenous expression using siRNAs. We reveal that, upon stimulation of TP, degradation of Siva1 is impeded, resulting in an accumulation of the protein, which translocates from the nucleus to the cytosol. Translocation of Siva1 correlates with its reduced interaction with Mdm2 (an inhibitor of p53 signalling), as well as with its increased interaction with TRAF2 and XIAP (known to enhance pro-apoptotic signalling). Our data provide a model that reconciles the pro- and anti-apoptotic roles that were reported for Siva1 and identify a new mechanism for promoting apoptosis by G protein-coupled receptors. Our findings may have implications in the use of cyclo-oxygenase inhibitors during cisplatin chemotherapy and might provide a target to reduce cisplatin toxicity on non-cancerous tissues.
Collapse
Affiliation(s)
- C Iorio-Morin
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Snell LM, Lin GHY, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2012; 244:197-217. [PMID: 22017440 DOI: 10.1111/j.1600-065x.2011.01063.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GITR [glucocorticoid inducible tumor necrosis factor receptor (TNFR)-related protein] and 4-1BB are costimulatory TNFR family members that are expressed on regulatory and effector T cells as well as on other cells of the immune system. Here we discuss the role of GITR and 4-1BB on T cells during viral infections and in cancer immunotherapy. Systemic treatment with agonistic anti-4-1BB antibody leads to a number of immune system abnormalities, and clinical trials of anti-4-1BB have been terminated. However, other modes of 4-1BB ligation may be less toxic. To date, similar toxicities have not been reported for anti-GITR treatment of mice, although anti-GITR antibodies can exacerbate mouse autoimmune models. Intrinsic effects of GITR and 4-1BB on effector T cells appear to predominate over their effects on other cell types in some models. Despite their similarities in enhancing T-cell survival, 4-1BB and GITR are clearly not redundant, and both pathways are required for maximal CD8(+) T-cell responses and mouse survival following severe respiratory influenza infection. GITR uses TNFR-associated factor (TRAF) 2 and TRAF5, whereas 4-1BB recruits TRAF1 and TRAF2 to mediate survival signaling in T cells. The differential use of signaling adapters combined with their differential expression may explain the non-redundant roles of GITR and 4-1BB in the immune system.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
34
|
Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells. BMC Immunol 2011; 12:54. [PMID: 21955384 PMCID: PMC3208582 DOI: 10.1186/1471-2172-12-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe autoinflammatory diseases are associated with mutations in the Foxp3 locus in both mice and humans. Foxp3 is required for the development, function, and maintenance of regulatory T cells (Tregs), a subset of CD4 cells that suppress T cell activation and inflammatory processes. Siva is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on Treg cells: CD27, GITR, and OX40. RESULTS Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that Siva repressed IL-2 induction by suppressing IL-2 promoter activity during T cell activation. Siva-1's repressive effect on IL-2 gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity. CONCLUSIONS In summary, our data suggest that both FOXP3 and Siva function as negative regulators of IL-2 gene expression in Treg cells, via suppression of NFAT by FOXP3 and of NFkappaB by both FOXP3 and Siva. Our work contributes evidence for Siva's role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper Treg cell function.
Collapse
|
35
|
Bianchini R, Bistoni O, Alunno A, Petrillo MG, Ronchetti S, Sportoletti P, Bocci EB, Nocentini G, Gerli R, Riccardi C. CD4(+) CD25(low) GITR(+) cells: a novel human CD4(+) T-cell population with regulatory activity. Eur J Immunol 2011; 41:2269-78. [PMID: 21557210 DOI: 10.1002/eji.201040943] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 04/08/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
Treg subsets play a role in sustaining peripheral tolerance, are characterized by markers such as forkhead winged-helix transcription factor (FOXP3) and CD25, and produce suppressive cytokines, such as IL-10 and TGF-β. Glucocorticoid-induced TNF receptor family-related (GITR) protein has been suggested to regulate Treg activity in mice. The aim of our study was to investigate GITR expression in human CD4(+) T lymphocytes and its possible role in Treg function. Results indicate that a subset of CD4(+) T cells in the peripheral blood expresses GITR and low levels of CD25 (CD4(+) CD25(low) GITR(+) ). These cells show Treg features as they express FOXP3, IL-10, TGF-β and are anergic but, as opposed to natural Tregs, express low levels of CTLA-4 and are CD127(high) . CD4(+) CD25(low) GITR(+) cells represent a low percentage of the CD4(+) T-cell population (0.32-1.74%) and are mostly memory cells. Functional experiments demonstrated that CD4(+) CD25(low) GITR(+) cells have relevant suppressive activity that depends on TGF-β. Moreover, an anti-GITR Ab inhibited their suppressive activity, as observed in CD4(+) CD25(+) murine Tregs. Taken together, these data indicate that human CD4(+) CD25(low) GITR(+) cells represent a distinct Treg subpopulation.
Collapse
Affiliation(s)
- Rodolfo Bianchini
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Galuppo M, Nocentini G, Mazzon E, Ronchetti S, Esposito E, Riccardi L, Sportoletti P, Di Paola R, Bruscoli S, Riccardi C, Cuzzocrea S. The glucocorticoid-induced TNF receptor family-related protein (GITR) is critical to the development of acute pancreatitis in mice. Br J Pharmacol 2011; 162:1186-201. [PMID: 21091650 DOI: 10.1111/j.1476-5381.2010.01123.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatitis represents a life-threatening inflammatory condition where leucocytes, cytokines and vascular endothelium contribute to the development of the inflammatory disease. The glucocorticoid-induced tumour necrosis factor (TNF) receptor family-related protein (GITR) is a costimulatory molecule for T lymphocytes, modulates innate and adaptive immune system and has been found to participate in a variety of immune responses and inflammatory processes. Our purpose was to verify whether inhibition of GITR triggering results in a better outcome in experimental pancreatitis. EXPERIMENTAL APPROACH In male GITR knock-out (GITR(-/-)) and GITR(+/+) mice on Sv129 background, acute pancreatitis was induced after i.p. administration of cerulein. Other experimental groups of GITR(+/+) mice were also treated with different doses of Fc-GITR fusion protein (up to 6.25 µg·mouse⁻¹), given by implanted mini-osmotic pump. Clinical score and pro-inflammatory parameters were evaluated. KEY RESULTS A less acute pancreatitis was found in GITR(-/-) mice than in GITR(+/+) mice, with marked differences in oedema, neutrophil infiltration, pancreatic dysfunction and injury. Co-treatment of GITR(+/+) mice with cerulein and Fc-GITR fusion protein (6.25 µg·mouse⁻¹) decreased the inflammatory response and tissue injury, compared with treatment with cerulein alone. Inhibition of GITR triggering was found to modulate activation of nuclear factor κB as well as the production of TNF-α, interleukin-1β, inducible nitric oxide synthase, nitrotyrosine, poly-ADP-ribose, intercellular adhesion molecule-1 and P-selectin. CONCLUSIONS AND IMPLICATIONS The GITR-GITR ligand system is crucial to the development of acute pancreatitis in mice. Our results also suggest that the Fc-GITR fusion protein could be useful in the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- M Galuppo
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Singaravelu K, Padanilam BJ. p53 target Siva regulates apoptosis in ischemic kidneys. Am J Physiol Renal Physiol 2011; 300:F1130-41. [PMID: 21307125 PMCID: PMC3094050 DOI: 10.1152/ajprenal.00591.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/04/2011] [Indexed: 01/07/2023] Open
Abstract
The role of p53 in inducing apoptosis following acute kidney injury is well-established; however, the molecular mechanisms remain largely unknown. We report here that the p53 proapoptotic target Siva and its receptor CD27, a member of the tumor necrosis factor receptor family, are upregulated following renal ischemia-reperfusion injury (IRI). Inhibition of Siva using antisense oligonucleotides conferred functional and morphological protection, and it prevented apoptosis postrenal IRI in mice. Renal IRI in CD27-deficient mice displayed functional protection and partial inhibition of apoptosis, suggesting an incomplete role for CD27 in Siva-mediated apoptosis. To further elucidate mechanisms by which Siva elicits apoptosis, in vitro studies were performed. In Siva-transfected LLC-PK(1)cells, Siva is persistently expressed in the nucleus at 3 h onwards and its translocation to mitochondria and the plasma membrane occurred at 6 h. Moreover, Siva overexpression induced mitochondrial permeability, cytochrome c release, caspase-8 and -9 activation, translocation of apoptosis-inducing factor (AIF) to the nucleus, and apoptosis. Inhibition of Siva in ischemic kidneys prevented mitochondrial release of cytochrome c and AIF. These data indicate that Siva function is pivotal in regulating apoptosis in the pathology of renal IRI. Targeting Siva may offer a potential therapeutic strategy for renal IRI.
Collapse
Affiliation(s)
- Kurinji Singaravelu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | |
Collapse
|
38
|
The role of the pro-apoptotic protein Siva in the pathogenesis of Familial Mediterranean fever: A structural and functional analysis. Biochem Biophys Res Commun 2010; 402:141-6. [PMID: 20934406 DOI: 10.1016/j.bbrc.2010.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 11/22/2022]
Abstract
Familial Mediterranean fever (FMF) is an autosomal, recessive disease, attributed to mutations in MEFV gene encoding pyrin, which is characterized by recurrent, acute and self-limiting attacks of fever as well as an increased neutrophil and monocyte apoptosis. Most disease-associated mutations in MEFV gene reside on the C-terminal PRYSPRY (B30.2) domain of pyrin, an area found to interact with the pro-apoptotic protein Siva. Because apoptotic events may be contributing to endogenous inflammation we hypothesized that mutations in pyrin may affect Siva-mediated apoptosis. The confirmation of this hypothesis would be of a great biological significance since it would be demonstrated a connection between apoptosis and inflammation. We used homology modeling to construct a 3-D model of Siva protein and the constructed model of Siva defined structural elements with potential of binding other proteins to induce apoptosis. Given that Siva protein binds pyrin as shown by transfection and immunoprecipitation experiments, apoptosis was assessed by FACS and Western blotting. No differences in rates of apoptosis in myeloid cells (THP-1) upon transfection with either wt pyrin or mutant forms of pyrin were found. Patients with FMF did not display any mutations in the Siva-1 (full length) gene. Siva-1 was not linked to pyrin in the major predicted FMF gene network constructed using a literature-curated gene signature for FMF. These results suggest that Siva-mediated unprovoked apoptosis is not likely to be involved in the pathogenesis of FMF.
Collapse
|
39
|
Shimoda HK, Shide K, Kameda T, Matsunaga T, Shimoda K. Tyrosine kinase 2 interacts with the proapoptotic protein Siva-1 and augments its apoptotic functions. Biochem Biophys Res Commun 2010; 400:252-7. [DOI: 10.1016/j.bbrc.2010.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/15/2010] [Indexed: 01/16/2023]
|
40
|
Ponte JF, Ponath P, Gulati R, Slavonic M, Paglia M, O'Shea A, Tone M, Waldmann H, Vaickus L, Rosenzweig M. Enhancement of humoral and cellular immunity with an anti-glucocorticoid-induced tumour necrosis factor receptor monoclonal antibody. Immunology 2010; 130:231-42. [PMID: 20201988 PMCID: PMC2878467 DOI: 10.1111/j.1365-2567.2009.03228.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 11/24/2009] [Accepted: 12/03/2009] [Indexed: 12/21/2022] Open
Abstract
Adjuvants, including antibodies to tumour necrosis factor receptor superfamily members, augment immune responses. One member of this family, glucocorticoid-induced tumour necrosis factor receptor (GITR), is expressed at low levels on naive/resting T cells, B cells and macrophages, but at higher levels on T regulatory cells. The aim of this study was to determine the ability of a rat anti-mouse GITR monoclonal antibody, 2F8, to stimulate murine humoral and cellular immunity in a prime boost model with particular attention to posology and antigen-specific effects. 2F8 enhanced the humoral immune response to ovalbumin and haemagglutinin (HA) compared with controls and this enhancement was equal to or greater than that obtained in mice dosed with standard adjuvants. 2F8 F(ab')(2) fragments were as effective as intact antibody in boosting humoral immunity, indicating that FcR-mediated cross-linking of 2F8 is not required for efficacy. Moreover, the enhanced response was durable and antigen specific. Administration of 2F8 shifted the immune response towards a T helper type 1 response with significant enhancement of immunoglobulin G2a- and G2b-specific anti-HA antibodies, as well as enhanced cellular immunity as measured by ELISPOT. 2F8-treated mice also generated significantly more neutralizing antibodies to HA than control mice. Our findings show that anti-GITR is a robust, versatile adjuvant that, unlike commonly used adjuvants that primarily enhance humoral immunity, enhances both humoral and cellular immunity. These results support the continued development of anti-GITR for such indications as haematological and solid tumours, chronic viral infections, and as a vaccine adjuvant.
Collapse
Affiliation(s)
- Jose F Ponte
- Tolerx, Inc., 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Avogadri F, Yuan J, Yang A, Schaer D, Wolchok JD. Modulation of CTLA-4 and GITR for cancer immunotherapy. Curr Top Microbiol Immunol 2010; 344:211-44. [PMID: 20563707 DOI: 10.1007/82_2010_49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rational manipulation of antigen-specific T cells to reignite a tumor-specific immune response in cancer patients is a challenge for cancer immunotherapy. Targeting coinhibitory and costimulatory T cell receptors with specific antibodies in cancer patients is an emerging approach to T cell manipulation, namely "immune modulation." Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor family receptor (GITR) are potential targets for immune modulation through anti-CTLA-4 blocking antibodies and anti-GITR agonistic antibodies, respectively. In this review, we first discuss preclinical findings key to the understanding of the mechanisms of action of these immunomodulatory antibodies and the preclinical evidence of antitumor activity which preceded translation into the clinic. We next describe the outcomes and immune related adverse effects associated with anti-CTLA-4 based clinical trials with particular emphasis on specific biomarkers used to elucidate the mechanisms of tumor immunity in patients. The experience with anti-CTLA-4 therapy and the durable clinical benefit observed provide proof of principle to effective antitumor immune modulation and the promise of future clinical immune modulatory antibodies.
Collapse
|
42
|
Nolte MA, van Olffen RW, van Gisbergen KPJM, van Lier RAW. Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 2009; 229:216-31. [PMID: 19426224 DOI: 10.1111/j.1600-065x.2009.00774.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARY After binding its natural ligand cluster of differentiation 70 (CD70), CD27, a tumor necrosis factor receptor (TNFR)-associated factor-binding member of the TNFR family, regulates cellular activity in subsets of T, B, and natural killer cells as well as hematopoietic progenitor cells. In normal immune responses, CD27 signaling appears to be limited predominantly by the restricted expression of CD70, which is only transiently expressed by cells of the immune system upon activation. Studies performed in CD27-deficient and CD70-transgenic mice have defined a non-redundant role of this receptor-ligand pair in shaping adaptive T-cell responses. Moreover, adjuvant properties of CD70 have been exploited for the design of anti-cancer vaccines. However, continuous CD27-CD70 interactions may cause immune dysregulation and immunopathology in conditions of chronic immune activation such as during persistent virus infection and autoimmune disease. We conclude that optimal tuning of CD27-CD70 interaction is crucial for the regulation of the cellular immune response. We provide a detailed comparison of costimulation through CD27 with its closely related family members 4-1BB (CD137), CD30, herpes virus entry mediator, OX40 (CD134), and glucocorticoid-induced TNFR family-related gene, and we argue that these receptors do not have a unique function per se but that rather the timing, context, and intensity of these costimulatory signals determine the functional consequence of their activity.
Collapse
Affiliation(s)
- Martijn A Nolte
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Gudi R, Barkinge J, Hawkins S, Prabhakar B, Kanteti P. Siva-1 promotes K-48 polyubiquitination of TRAF2 and inhibits TCR-mediated activation of NF-kappaB. J Environ Pathol Toxicol Oncol 2009; 28:25-38. [PMID: 19392652 DOI: 10.1615/jenvironpatholtoxicoloncol.v28.i1.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proapoptotic protein Siva-1 plays an important role in some of the extrinsic and intrinsic apoptosis signaling pathways in cancer cells. Previously, we showed that Siva-1 inhibited the activity of the prosurvival transcription factor NF-kappaB. In the present study, upon TCR cross-linking of Jurkat T leukemia cells, we demonstrated that the inhibitory target of Siva-1 is upstream of the IKK complex in the NF-kappaB signaling pathway. Additionally, Siva-1 also suppressed the activity of another crucial transcription factor AP-1, and a common mediator of both these pathways is the adaptor protein TRAF2. Further, we observed that Siva-1 indeed interacted with TRAF2 and negatively regulated its activity by promoting K48-hnked polyubiquitination. Siva-1 specifically interacted with the ring finger domain of TRAF2, which is essential for its E3 hgase activity and its ability to subsequently activate NF-kappaB. TCR cross-linking of Jurkat T cells that lacked Siva-1 revealed significantly lowered K48- but elevated K63-ubiquitinated TRAF2 levels upon TCR cross-linking, suggesting that the differential pattern of ubiquitination in these cells essentially contributed to a robust and sustained activation of NF-kappaB. The above results demonstrated an important role for endogenous Siva-1 in negatively regulating NF-kappaB activation by targeting TRAF2.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Apoptosis or programmed cell death plays a central role in regulating not only the development of lymphocytes but also in their homeostasis. A breakdown in apoptosis related signaling mechanisms could result in the development of autoimmune disorders. The past decade has witnessed an explosive increase in knowledge with respect to various apoptotic signaling pathways and their aberrant behavior in autoimmune disorders. Although Fas/FasL mediated signaling appears to be a common paradigm that has emerged from studies in various autoimmune disorders, examples suggesting a role for other cell death pathways have also surfaced. Understanding the definitive role of apoptosis in various autoimmune disorders is likely to define novel targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Kanteti V Prasad
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
45
|
Kamimura Y, Iwai H, Piao J, Hashiguchi M, Azuma M. The glucocorticoid-induced TNF receptor-related protein (GITR)-GITR ligand pathway acts as a mediator of cutaneous dendritic cell migration and promotes T cell-mediated acquired immunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:2708-16. [PMID: 19234165 DOI: 10.4049/jimmunol.0803704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid-induced TNFR-related protein (GITR) has various roles in the activation of T cells and inflammation. In this study, we investigated the roles of the GITR-GITR ligand (GITRL) pathway in contact hypersensitivity (CH). Treatment with anti-GITRL mAb at sensitization inhibited CH responses. Depletion studies using an anti-CD25 or anti-PDCA-1 mAb revealed that regulatory T cells and plasmacytoid dendritic cells (DCs), known to express high levels of GITR and GITRL, respectively, were not apparently involved in GITRL-mediated CH responses. Treatment with/addition of anti-GITRL mAb in the experiments for hapten-specific T cell proliferation and IFN-gamma production showed a minor contribution of the GITRL, which was weakly expressed on DCs in draining lymph nodes (dLNs). Interestingly, anti-GITRL mAb treatment inhibited the migration of cutaneous DCs to the dLNs. Epidermal keratinocytes (KCs) constitutively express GITR, whereas Langerhans cells (LCs) express higher levels of GITRL compared with DCs in dLNs. GITR ligation, by an anti-GITR mAb, in KCs promoted expression of multiple proinflammatory cytokines and blockade of GITRL-inhibited IL-1beta and CCR7 expression in sensitized skin. These results suggest that the GITR-GITRL pathway promotes epidermal inflammatory cytokine production by KCs and LCs, resulting in migration of cutaneous DCs from the skin to the dLNs. This is the first report demonstrating the involvement of the GITR-GTRL pathway in interactions with KCs and LCs and the migration of DCs. Our findings provide important implications for understanding the molecular bases of KC-LC interactions and for developing new therapeutic strategies in skin disease.
Collapse
Affiliation(s)
- Yosuke Kamimura
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Nocentini G, Riccardi C. GITR: a modulator of immune response and inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:156-73. [PMID: 19760073 DOI: 10.1007/978-0-387-89520-8_11] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glucocorticoid-Induced TNFR-Related (GITR) protein belongs to Tumor Necrosis Factor Receptor Superfamily (TNFRSF) and stimulates both the acquired and innate immunity. It is expressed in several cells and tissues, including T and Natural Killer (NK) cells and is activated by its ligand, GITRL, mainly expressed on Antigen Presenting Cells (APCs) and endothelial cells. GITR/GITRL system participates in the development of autoimmune/inflammatory responses and graft vs. host disease and potentiates response to infection and tumors. These effects are due to several concurrent mechanisms including: co-activation of effector T-cells, inhibition of regulatory T (Treg) cells, NK-cell co-activation, activation of macrophages, modulation of DC function and regulation of the extravasation process. In this chapter we describe: 1) the main structural features of GITR and GITRL, 2) the transduction pathways activated by GITR triggering, 3) the effects derived from GITR/GITRL system interaction, considering the interplay between the different cells of the immune system. Moreover, the potential use of GITR/GITRL modulators in disease treatment is discussed.
Collapse
Affiliation(s)
- Giuseppe Nocentini
- Dipartimento di Medicina Clinica e Sperimentale, Sezione di Farmacologia, Università di Perugia, Via del Giochetto, 06100, Perugia, Italy
| | | |
Collapse
|
47
|
Mihatsch K, Nestler M, Saluz HP, Henke A, Munder T. Proapoptotic protein Siva binds to the muscle protein telethonin in cardiomyocytes during coxsackieviral infection. Cardiovasc Res 2008; 81:108-15. [PMID: 18849585 DOI: 10.1093/cvr/cvn276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Coxsackievirus B3 (CVB3) is known to cause a variety of human diseases including acute and chronic myocarditis as well as dilated cardiomyopathy (DCM). However, the mechanisms by which CVB3 causes diseases are not well understood. METHODS AND RESULTS Studies identifying protein-protein interactions during CVB3 infection are useful in delineating the pathogenesis of acute or chronic myocarditis. Screening a human heart cDNA library revealed a yet unknown interaction partner of the proapoptotic protein Siva. We demonstrate that Siva specifically interacts with the heart and skeletal muscle protein telethonin. The expression of Siva is increased in heart tissue of CVB3-infected mice and the proteins colocalize in cardiomyocytes. CONCLUSION telethonin might be involved in CVB3-mediated cell damage and in the resulting cardiac dysfunction due to the interaction with Siva. We suggest a molecular mechanism through which coxsackieviral infection contributes to the pathogenesis of chronic myocarditis and in particular of acquired forms of DCM.
Collapse
Affiliation(s)
- Katharina Mihatsch
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology e. V. - Hans Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
48
|
Balci-Peynircioglu B, Waite AL, Hu C, Richards N, Staubach-Grosse A, Yilmaz E, Gumucio DL. Pyrin, product of the MEFV locus, interacts with the proapoptotic protein, Siva. J Cell Physiol 2008; 216:595-602. [PMID: 18330885 DOI: 10.1002/jcp.21435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations in pyrin cause the autoinflammatory disorder familial Mediterranean fever (FMF), a syndrome characterized by sporadic and unpredictable attacks of fever and localized severe pain. Currently, it is not clear how attacks are triggered, nor why they spontaneously resolve after 2 or 3 days. In fact, the cellular function of the pyrin protein and the molecular underpinnings of its malfunction in FMF have so far eluded clear definition. The identification of pyrin-interacting proteins has the potential to increase our understanding of the cellular networks in which pyrin functions. Previous reports have established that pyrin interacts with the apoptotic protein ASC, the cytoskeletal adaptor protein PSTPIP1, the inflammatory caspase, Caspase-1 and certain forms of the cytosolic anchoring protein 14-3-3. Here, we report that pyrin also interacts with Siva, a pro-apoptotic protein first identified for its interaction with the cytosolic tail of CD27, a TNF family receptor. The interaction between pyrin and Siva involves the C-terminal B30.2/rfp/SRPY domain of pyrin and exon 1 of Siva. We show that Siva and pyrin are indeed co-expressed in human neutrophils, monocytes, and synovial cells. Furthermore, using a novel protein/protein interaction assay, we demonstrate that pyrin can recruit Siva to ASC specks, establishing a potential platform for intersection of ASC and Siva function. Finally, we show that pyrin modulates the apoptotic response to oxidative stress mediated by Siva. Thus, the Siva-pyrin interaction may be a potential target for future therapeutic strategies.
Collapse
|
49
|
Py B, Bouchet J, Jacquot G, Sol-Foulon N, Basmaciogullari S, Schwartz O, Biard-Piechaczyk M, Benichou S. The Siva protein is a novel intracellular ligand of the CD4 receptor that promotes HIV-1 envelope-induced apoptosis in T-lymphoid cells. Apoptosis 2008; 12:1879-92. [PMID: 17653867 DOI: 10.1007/s10495-007-0106-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In addition to its positive signaling function in the antigen presentation process, CD4 acts as the primary receptor for HIV-1. Contact between CD4 and the viral envelope leads to virus entry, but can also trigger apoptosis of uninfected CD4+ T-cells through a mechanism that is poorly understood. We show that Siva-1, a death domain-containing proapoptotic protein, associates with the cytoplasmic domain of CD4. This interaction is mediated by the cysteine-rich region found in the C-terminal part of the Siva-1 protein. Expression of Siva-1 specifically increases the susceptibility of both T-cell lines and unstimulated human primary CD4+ T-lymphocytes to CD4-mediated apoptosis triggered by the HIV-1 envelope, and results in activation of a caspase-dependent mitochondrial pathway. The same susceptibility is observed in T-cells expressing a truncated form of CD4 that is able to recruit Siva-1 but fails to associate with p56Lck, indicating that Siva-1 participates in a pathway independent of the p56Lck kinase activity. Altogether, these results suggest that Siva-1 might participate in the CD4-initiated signaling apoptotic pathway induced by the HIV-1 envelope in T-lymphoid cells.
Collapse
Affiliation(s)
- Bénédicte Py
- Institut Cochin, CNRS (UMR 8104), Université Paris Descartes, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin FT, Lai YJ, Makarova N, Tigyi G, Lin WC. The lysophosphatidic acid 2 receptor mediates down-regulation of Siva-1 to promote cell survival. J Biol Chem 2007; 282:37759-69. [PMID: 17965021 PMCID: PMC3496872 DOI: 10.1074/jbc.m705025200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA) promotes cell survival through the activation of G protein-coupled LPA receptors. However, whether different LPA receptors activate distinct anti-apoptotic signaling pathways is not yet clear. Here we report a novel mechanism by which the LPA(2) receptor targets the proapoptotic Siva-1 protein for LPA-dependent degradation, thereby attenuating Siva-1 function in DNA damage response. The carboxyl-terminal tail of the LPA(2) receptor, but not LPA(1) or LPA(3) receptor, specifically associates with the carboxyl cysteine-rich domain of Siva-1. Prolonged LPA stimulation promotes the association of Siva-1 with the LPA(2) receptor and targets both proteins for ubiquitination and degradation. As a result, adriamycin-induced Siva-1 protein stabilization is attenuated by LPA in an LPA(2)-dependent manner, and the function of Siva-1 in promoting DNA damage-induced apoptosis is inhibited by LPA pretreatment. Consistent with this result, inhibition of the LPA(2) receptor expression increases Siva-1 protein levels and augments adriamycin-induced caspase-3 cleavage and apoptosis. Together, these findings reveal a critical and specific role for the LPA(2) receptor through which LPA directly inactivates a critical component of the death machinery to promote cell survival.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|