1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Abstract
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Collapse
Affiliation(s)
- Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Chandra R, Singh S, Ganguly C. β-Sitosterol & quercetin enhances brain development in iodine deficient rat models. Nutr Health 2022:2601060221122209. [PMID: 36017551 DOI: 10.1177/02601060221122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recently thyroid hormone studies on brain growth, development and activity are regaining popularity. Thyroid hormones have long been believed to play critical role in mammalian brain growth and maturation regulating facets of neuronal cell growth, proliferation and differentiation and further signaling and glial cell differentiation. Deficiency of these hormones in mother leads to mental retardation in the subsequent offspring's. METHODS In this presented study, brain development of iodine deficient rat models created through deficiency in feeding, mating and further selection. Young adult female wistar rats were induced with iodine deficiency and then mated with healthy male rats. These pregnant hypothyroid induced females were treated with β-sitosterol (150 mg/kg/day) and quercetin (150 mg/kg/day) alone and in combination for whole gestation period. Analysis were dealt with the genetic and histological studies of the pups brain. PCR based RNA analysis was also carried out. Histology was done using eosin and hematoxylin. RESULTS Positive impacts of the β-sitosterol and quercetin on the iodine deficient brain were observed upon histological and PCR analysis. Altogether, the analysis proves that combined doses of β-sitosterol and quercetin for normal brain development in iodine deficient infants hence can be potentially applied as therapeutics in iodine deficiency circumstances.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Biotechnology, 231528IMS Engineering College, Ghaziabad, UP, India
| | - Sushant Singh
- Amity Institute of Biotechnology, 557953Amity University Chhattisgarh, Raipur, India
| | - Chaiti Ganguly
- Department of Biotechnology, 582893IILM-CET, Greater Noida, UP, India
| |
Collapse
|
4
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
5
|
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20:175-193. [PMID: 30655609 PMCID: PMC7325303 DOI: 10.1038/s41580-018-0089-8] [Citation(s) in RCA: 1353] [Impact Index Per Article: 225.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Sumathi T, Jacob S, Gopalakrishnan R. Methylmercury exposure develops atherosclerotic risk factors in the aorta and programmed cell death in the cerebellum: ameliorative action of Celastrus paniculatus ethanolic extract in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30212-30223. [PMID: 30155631 DOI: 10.1007/s11356-018-3031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative global environmental contaminant present in fishes and seafood. MeHg is the methylated form of mercury emitted from diverse anthropogenic and natural sources. MeHg is accumulated in the aquatic environment and eventually reaches human system via food chain by biomagnification. We have reported previously that the neurotoxic effect of MeHg in rat cerebellum is mitigated by the administration of an ayurvedic medicinal plant, Celastrus paniculatus ethanolic extract. The present study has focussed to further explore the mechanism of action of Celastrus paniculatus against MeHg-induced neurotoxicity in the cerebellum. We have also inspected the effect of Celastrus paniculatus (CP) against MeHg-induced atherosclerotic risk factors like alterations in antioxidant levels, aortic lipid profile, and aortic histology by MeHg in the largest vasculature, aorta, which are the initiating factors of cardiovascular diseases. Male Wistar rats were divided as (i) control, (ii) MeHg (5 mg/kg b.w.), (iii) MeHg + CP (200 mg/kg b.w.), and (iv) CP alone (200 mg/kg b.w.). All were given orally for 21 days. In cerebellum Celastrus paniculatus, there were increased mitochondrial electron transport chain (p < 0.05) activity, reduced cytochrome c release (p < 0.05), and caspase 3 mRNA expression (p < 0.05). In the aorta, MeHg-induced oxidative stress, lipid profile changes, and endothelial denudation were ameliorated by Celastrus paniculatus. Hence, we conclude that Celastrus paniculatus protects against MeHg toxicity by inhibiting mitochondrial cytochrome c/caspase 3 apoptotic pathway in the cerebellum and reducing the development of atherosclerotic risk factors in the aorta.
Collapse
Affiliation(s)
- Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India.
| | - Sherin Jacob
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India
| | - Rahul Gopalakrishnan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India
| |
Collapse
|
7
|
Jacob S, Thangarajan S. Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F 1 generation rats. Int J Dev Neurosci 2018; 69:88-96. [PMID: 30009881 DOI: 10.1016/j.ijdevneu.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 01/14/2023] Open
Abstract
Methyl mercury is a teratogenic and neurodevelopmental toxicant in the environment. MeHg affects several biological pathways critical for brain development. The present study validated the effect of Fisetin on developmental MeHg exposure induced alterations in mitochondrial apoptotic pathway and Rho GTPase mRNA expressions in hippocampus of F1 generation rats. Pregnant Wistar rats were grouped as Group I : administered with vehicle control, Group II: MeHg (1.5 mg/kg b.w), Group III: MeHg + Fisetin (10 mg/kg b.w), Group IV: MeHg + Fisetin (30 mg/kg b.w), Group V: MeHg + Fisetin (50 mg/kg b.w), Group VI: MeHg + Fisetin (70 mg/kg b.w), Group VII: Fisetin (30 mg/kg b.w) alone. Fisetin reduced mercury accumulation in offspring brain. In hippocampus, Fisetin preserved mitochondrial total thiol status, glutathione antioxidant system, mitochondrial metabolic integrity and respiratory chain activity. Fisetin ameliorated apoptotic signals by preventing Cytochrome c release, down regulating ERK 1/2 and Caspase 3 gene expression. Fisetin also upregulated mRNA expressions of RhoA/Rac1/Cdc42 in hippocampus. Predominant effect of Fisetin was to reduce mercury accumulation in offspring brain there by diminishing the toxic effect of MeHg. Hence we showed that, gestational intake of Fisetin (30 mg/kg b.w.) impedes developmental MeHg neurotoxicity by regulating mitochondrial apoptotic and Rho GTPase signalling molecules and by reducing the mercury accumulation in hippocampus of F1 generation rats.
Collapse
Affiliation(s)
- Sherin Jacob
- Dr.ALMPG IBMS, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Sumathi Thangarajan
- Dr.ALMPG IBMS, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
8
|
Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, Cantlon A, Fisch S, Golomb-Mello G, Ryan JA, Deng J, Jian B, Corbett C, Goldenberg M, Madsen JR, Liao R, Walsh D, Sedivy J, Murphy DJ, Carrasco DR, Robinson S, Moslehi J, Letai A. Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell 2017; 31:142-156. [PMID: 28017613 PMCID: PMC5363285 DOI: 10.1016/j.ccell.2016.11.011] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/13/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023]
Abstract
It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 profiling, we find that mitochondria of many adult somatic tissues, including brain, heart, and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities.
Collapse
Affiliation(s)
- Kristopher A Sarosiek
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Cameron Fraser
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA
| | | | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Weiting Chang
- Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Adam Cantlon
- Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sudeshna Fisch
- Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gail Golomb-Mello
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jeremy A Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jing Deng
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Brian Jian
- Department of Neurosurgery, Kaiser Permanente, Sacramento, CA 95815, USA
| | - Chris Corbett
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marti Goldenberg
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joseph R Madsen
- Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ronglih Liao
- Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dominic Walsh
- Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - John Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Daniel J Murphy
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland
| | - Daniel Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Shenandoah Robinson
- Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Javid Moslehi
- Division of Cardiovascular Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Division of Hematology-Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Cardio-Oncology Program, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Mayer 430, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. J Neuropathol Exp Neurol 2015; 74:756-66. [DOI: 10.1097/nen.0000000000000214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Zimmer F, Montgomery SH. Phylogenetic Analysis Supports a Link between DUF1220 Domain Number and Primate Brain Expansion. Genome Biol Evol 2015; 7:2083-8. [PMID: 26112965 PMCID: PMC4558844 DOI: 10.1093/gbe/evv122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expansion of DUF1220 domain copy number during human evolution is a dramatic example of rapid and repeated domain duplication. Although patterns of expression, homology, and disease associations suggest a role in cortical development, this hypothesis has not been robustly tested using phylogenetic methods. Here, we estimate DUF1220 domain counts across 12 primate genomes using a nucleotide Hidden Markov Model. We then test a series of hypotheses designed to examine the potential evolutionary significance of DUF1220 copy number expansion. Our results suggest a robust association with brain size, and more specifically neocortex volume. In contradiction to previous hypotheses, we find a strong association with postnatal brain development but not with prenatal brain development. Our results provide further evidence of a conserved association between specific loci and brain size across primates, suggesting that human brain evolution may have occurred through a continuation of existing processes.
Collapse
Affiliation(s)
- Fabian Zimmer
- Department of Genetics, Evolution & Environment, University College London, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics, Evolution & Environment, University College London, United Kingdom
| |
Collapse
|
11
|
Schober ME, Requena DF, Block B, Davis LJ, Rodesch C, Casper TC, Juul SE, Kesner RP, Lane RH. Erythropoietin improved cognitive function and decreased hippocampal caspase activity in rat pups after traumatic brain injury. J Neurotrauma 2014; 31:358-69. [PMID: 23972011 DOI: 10.1089/neu.2013.2922] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Traumatic brain injury (TBI) is a leading cause of acquired neurologic disability in children. Erythropoietin (EPO), an anti-apoptotic cytokine, improved cognitive outcome in adult rats after TBI. To our knowledge, EPO has not been studied in a developmental TBI model. HYPOTHESIS We hypothesized that EPO would improve cognitive outcome and increase neuron fraction in the hippocampus in 17-day-old (P17) rat pups after controlled cortical impact (CCI). METHODS EPO or vehicle was given at 1, 24, and 48 h after CCI and at post injury day (PID) 7. Cognitive outcome at PID14 was assessed using Novel Object Recognition (NOR). Hippocampal EPO levels, caspase activity, and mRNA levels of the apoptosis factors Bcl2, Bax, Bcl-xL, and Bad were measured during the first 14 days after injury. Neuron fraction and caspase activation in CA1, CA3, and DG were studied at PID2. RESULTS EPO normalized recognition memory after CCI. EPO blunted the increased hippocampal caspase activity induced by CCI at PID1, but not at PID2. EPO increased neuron fraction in CA3 at PID2. Brain levels of exogenous EPO appeared low relative to endogenous. Timing of EPO administration was associated with temporal changes in hippocampal mRNA levels of EPO and pro-apoptotic factors. Conclusion/Speculation: EPO improved recognition memory, increased regional hippocampal neuron fraction, and decreased caspase activity in P17 rats after CCI. We speculate that EPO improved cognitive outcome in rat pups after CCI as a result of improved neuronal survival via inhibition of caspase-dependent apoptosis early after injury.
Collapse
Affiliation(s)
- Michelle E Schober
- 1 Department of Pediatrics, Division of Critical Care, University of Utah , Salt Lake City, Utah
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schober ME, Requena DF, Davis LJ, Metzger RR, Bennett KS, Morita D, Niedzwecki C, Yang Z, Wang KKW. Alpha II Spectrin breakdown products in immature Sprague Dawley rat hippocampus and cortex after traumatic brain injury. Brain Res 2014; 1574:105-12. [PMID: 24929209 DOI: 10.1016/j.brainres.2014.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
After traumatic brain injury (TBI), proteolysis of Alpha II Spectrin by Calpain 1 produces 145 Spectrin breakdown products (SBDPs) while proteolysis by Caspase 3 produces 120 SBDPs. 145 and 120 SBDP immunoblotting reflects the relative importance of caspase-dependent apoptosis or calpain-dependent excitotoxic/necrotoxic cell death in brain regions over time. In the adult rat, controlled cortical impact (CCI) increased 120 SBDPs in the first hours, lasting a few days, and increased 145 SBDPs within the first few days lasting up to 14 days after injury. Little is known about SBDPs in the immature brain after TBI. Since development affects susceptibility to apoptosis after TBI, we hypothesized that CCI would increase 145 and 120 SBDPs in the immature rat brain relative to SHAM during the first 3 and 5 days, respectively. SBDPs were measured in hippocampi and cortices at post injury days (PID) 1, 2, 3, 5, 7 and 14 after CCI or SHAM surgery in the 17 day old Sprague Dawley rat. 145 SBDPs increased in both brain tissues ipsilateral to injury during the first 3 days, while changes in contralateral tissues were limited to PID2 cortex. 145 SBDPs elevations were more marked and enduring in hippocampus than in cortex. Against expectations, 120 SBDPs only increased in PID1 hippocampus and PID2 cortex. 145 SBDPs elevations occurred early after CCI, similar to previous studies in the adult rat, but resolved more quickly. The minimal changes in 120 SBDPs suggest that calpain-dependent, but not caspase-dependent, cell death predominates in the 17 day old rat after CCI.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Daniela F Requena
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT 84132, United States
| | - Lizeth J Davis
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT 84132, United States
| | - Ryan R Metzger
- Department of Surgery, University of Utah, Salt Lake City, UT 84132, United States
| | - Kimberly S Bennett
- Department of Pediatrics, Division of Critical Care, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Denise Morita
- Department of Pediatrics, Division of Neurology, University of Utah, Salt Lake City, UT 84132, United States
| | - Christian Niedzwecki
- Department of Pediatrics, Division of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT 84132, United States
| | - Zhihui Yang
- Department of Pediatrics, Center for Neuroproteomics & Biomarker Research, Department of Psychiatry, University of Florida, Gainsville, FL 32611, United States
| | - Kevin K W Wang
- Department of Pediatrics, Center for Neuroproteomics & Biomarker Research, Department of Psychiatry, University of Florida, Gainsville, FL 32611, United States
| |
Collapse
|
13
|
Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ. The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 2014; 8:40. [PMID: 24578682 PMCID: PMC3936504 DOI: 10.3389/fnins.2014.00040] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
Acute post-asphyxial encephalopathy occurring around the time of birth remains a major cause of death and disability. The recent seminal insight that allows active neuroprotective treatment is that even after profound asphyxia (the “primary” phase), many brain cells show initial recovery from the insult during a short “latent” phase, typically lasting approximately 6 h, only to die hours to days later after a “secondary” deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Although many of these secondary processes are potentially injurious, they appear to be primarily epiphenomena of the “execution” phase of cell death. Animal and human studies designed around this conceptual framework have shown that moderate cerebral hypothermia initiated as early as possible but before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, has been associated with potent, long-lasting neuroprotection. Recent clinical trials show that while therapeutic hypothermia significantly reduces morbidity and mortality, many babies still die or survive with disabilities. The challenge for the future is to find ways of improving the effectiveness of treatment. In this review, we will dissect the known mechanisms of hypoxic-ischemic brain injury in relation to the known effects of hypothermic neuroprotection.
Collapse
Affiliation(s)
- Guido Wassink
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Eleanor R Gunn
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| |
Collapse
|
14
|
Abstract
Neurons completely transform how they regulate cell death over the course of their lifetimes. Developing neurons freely activate cell death pathways to fine-tune the number of neurons that are needed during the precise formation of neural networks. However, the regulatory balance between life and death shifts as neurons mature beyond early development. Mature neurons promote survival at all costs by employing multiple, often redundant, strategies to prevent cell death by apoptosis. This dramatic shift from permitting cell death to ensuring cellular survival is critical, as these post-mitotic cells must provide neuronal circuitry for an organism's entire lifetime. Importantly, as many neurodegenerative diseases afflict adult neuronal populations, the survival mechanisms in mature neurons are likely to be either reversed or circumvented during neurodegeneration. Examining the adaptations for inhibiting apoptosis during neuronal maturation is key to comprehending not just how neurons survive long term, but may also provide insight for understanding how neuronal toxicity in various neurodegenerative diseases may ultimately lead to cell death.
Collapse
Affiliation(s)
- A J Kole
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
15
|
Yu Y, Huang H, Li J, Zhang J, Gao J, Lu B, Huang C. GADD45β mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell Death Dis 2013; 4:e637. [PMID: 23681232 PMCID: PMC3674369 DOI: 10.1038/cddis.2013.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth arrest and DNA-damage-inducible, beta (GADD45β) has been reported to inhibit apoptosis via attenuating c-Jun N-terminal kinase (JNK) activation. We demonstrated here that GADD45β mediated its anti-apoptotic effect via promoting p53 protein degradation following arsenite treatment. We found that p53 protein expression was upregulated in GADD45β−/− cells upon arsenite exposure as compared with those in GADD45β+/+ cells. Further studies showed that GADD45β attenuated p53 protein expression through Src/protein phosphatase 2A/murine double minute 2-dependent p53 protein-degradation pathway. Moreover, we identified that GADD45β-mediated p53 protein degradation was crucial for its anti-apoptotic effect due to arsenite exposure, whereas increased JNK activation was not involved in the increased cell apoptotic response in GADD45β−/− cells under same experimental conditions. Collectively, our results demonstrate a novel molecular mechanism responsible for GADD45β protection of arsenite-exposed cells from cell death, which provides insight into our understanding of GADD45β function and a unique compound arsenite as both a cancer therapeutic reagent and an environmental carcinogen. Those novel findings may also enable us to design more effective strategies for utilization of arsenite for the treatment of cancers.
Collapse
Affiliation(s)
- Y Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Erythropoietin in neonatal brain protection: the past, the present and the future. Brain Dev 2011; 33:632-43. [PMID: 21109375 DOI: 10.1016/j.braindev.2010.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022]
Abstract
Over the last decade, neuroprotective effects of erythropoietin (Epo) and its underlying mechanisms in terms of signal transduction pathways have been defined and there is a growing interest in the potential therapeutic use of Epo for neuroprotection. Several mechanisms by which Epo provides neuroprotection are recognized. In this review, we focused on the neuroprotective mechanisms of Epo and provide a short overview on both experimental and clinical studies, testing Epo as a neuroprotective agent in the neonatal brain injury, and the safety concerns with the clinical use of Epo treatment in neonates.
Collapse
|
17
|
Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS. Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma 2011; 28:763-74. [PMID: 21250918 DOI: 10.1089/neu.2010.1635] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclosporin A (CsA) has been shown to be neuroprotective in mature animal models of traumatic brain injury (TBI), but its effects on immature animal models of TBI are unknown. In mature animal models, CsA inhibits the opening of the mitochondrial permeability transition pore (MPTP), thereby maintaining mitochondrial homeostasis following injury by inhibiting calcium influx and preserving mitochondrial membrane potential. The aim of the present study was to evaluate CsA's ability to preserve mitochondrial bioenergetic function following TBI (as measured by mitochondrial respiration and cerebral microdialysis), in two immature models (focal and diffuse), and in two different species (rat and piglet). Three groups were studied: injured+CsA, injured+saline vehicle, and uninjured shams. In addition, we evaluated CsA's effects on cerebral hemodynamics as measured by a novel thermal diffusion probe. The results demonstrate that post-injury administration of CsA ameliorates mitochondrial dysfunction, preserves cerebral blood flow (CBF), and limits neuropathology in immature animals 24 h post-TBI. Mitochondria were isolated 24 h after controlled cortical impact (CCI) in rats and rapid non-impact rotational injury (RNR) in piglets, and CsA ameliorated cerebral bioenergetic crisis with preservation of the respiratory control ratio (RCR) to sham levels. Results were more dramatic in RNR piglets than in CCI rats. In piglets, CsA also preserved lactate pyruvate ratios (LPR), as measured by cerebral microdialysis and CBF at sham levels 24 h after injury, in contrast to the significant alterations seen in injured piglets compared to shams (p<0.01). The administration of CsA to piglets following RNR promoted a 42% decrease in injured brain volume (p<0.01). We conclude that CsA exhibits significant neuroprotective activity in immature models of focal and diffuse TBI, and has exciting translational potential as a therapeutic agent for neuroprotection in children.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- University of Pennsylvania School of Medicine, Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kirkland RA, Saavedra GM, Cummings BS, Franklin JL. Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 2010; 30:16114-27. [PMID: 21123558 PMCID: PMC3004742 DOI: 10.1523/jneurosci.2862-10.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/01/2010] [Accepted: 09/20/2010] [Indexed: 11/21/2022] Open
Abstract
A Bax- and, apparently, mitochondria-dependent increase in superoxide (O(2)(·-)) and other reactive oxygen species (ROS) occurs in apoptotic superior cervical ganglion (SCG) and cerebellar granule (CG) neurons. Here we show that Bax also lies upstream of ROS produced in nonapoptotic neurons and present evidence that caspases partially mediate the pro-oxidant effect of Bax. We used the O(2)(·-)-sensitive dye MitoSOX to monitor O(2)(·-) in neurons expressing different levels of Bax and mitochondrial superoxide dismutase (SOD2). Basal and apoptotic O(2)(·-) levels in both SCG and CG neurons were reduced in SOD2 wild-type (WT) cells having lower Bax concentrations. Apoptotic and nonapoptotic neurons from Bax-WT/SOD2-null but not Bax-null/SOD2-null mice had increased O(2)(·-) levels. A caspase inhibitor inhibited O(2)(·-) in both apoptotic and nonapoptotic SCG neurons. O(2)(·-) production increased when WT, but not Bax-null, SCG neurons were permeabilized and treated with active caspase 3. There was no apoptosis and little increase in O(2)(·-) in SCG neurons from caspase 3-null mice exposed to an apoptotic stimulus. O(2)(·-) levels in nonapoptotic caspase 3-null SCG neurons were lower than in WT cells but not as low as in caspase inhibitor-treated cells. These data indicate that Bax lies upstream of most O(2)(·-) produced in neurons, that caspase 3 is required for increased O(2)(·-) production during neuronal apoptosis, that caspase 3 is partially involved in O(2)(·-) production in nonapoptotic neurons, and that other caspases may also be involved in Bax-dependent O(2)(·-) production in nonapoptotic cells.
Collapse
Affiliation(s)
- Rebecca A. Kirkland
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602
| | - Geraldine M. Saavedra
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602
| | - James L. Franklin
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia 30602
| |
Collapse
|
19
|
Abstract
Brain injury after hypoxic-ischemic encephalopathy often develops with delayed appearance, opening a therapeutic window. Clinical studies in newborns show that post-hypoxic-ischemic hypothermia improves outcome. This has generated renewed interest in the molecular mechanisms of hypoxic-ischemic brain injury. In this brief review, we propose that mitochondrial permeabilization is crucial for injury to advance beyond the point of no return. We suggest that excitatory amino acids, nitric oxide, inflammation, trophic factor withdrawal, and an increased pro- versus antiapoptotic Bcl-2 protein ratio will trigger Bax-dependent mitochondrial outer membrane permeabilization. Mitochondrial outer membrane permeabilization, in turn, elicits mitochondrial release of cytochrome C, apoptosis-inducing factor, second mitochondria-derived activator of caspase/Diablo, and HtrA2/Omi. Cytochrome C efflux activates caspase-9/-3, leading to DNA fragmentation. Apoptosis-inducing factor interacts with cyclophilin A and induces chromatinolysis. Blockage of mitochondrial outer membrane permeabilization holds promise as a strategy for perinatal brain protection.
Collapse
Affiliation(s)
- Henrik Hagberg
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Sweden.
| | | | | | | |
Collapse
|
20
|
Robertson CL, Scafidi S, McKenna MC, Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol 2009; 218:371-80. [PMID: 19427308 PMCID: PMC3096876 DOI: 10.1016/j.expneurol.2009.04.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
There are several forms of acute pediatric brain injury, including neonatal asphyxia, pediatric cardiac arrest with global ischemia, and head trauma, that result in devastating, lifelong neurologic impairment. The only clinical intervention that appears neuroprotective is hypothermia initiated soon after the initial injury. Evidence indicates that oxidative stress, mitochondrial dysfunction, and impaired cerebral energy metabolism contribute to the brain cell death that is responsible for much of the poor neurologic outcome from these events. Recent results obtained from both in vitro and animal models of neuronal death in the immature brain point toward several molecular mechanisms that are either induced or promoted by oxidative modification of macromolecules, including consumption of cytosolic and mitochondrial NAD(+) by poly-ADP ribose polymerase, opening of the mitochondrial inner membrane permeability transition pore, and inactivation of key, rate-limiting metabolic enzymes, e.g., the pyruvate dehydrogenase complex. In addition, the relative abundance of pro-apoptotic proteins in immature brains and neurons, and particularly within their mitochondria, predisposes these cells to the intrinsic, mitochondrial pathway of apoptosis, mediated by Bax- or Bak-triggered release of proteins into the cytosol through the mitochondrial outer membrane. Based on these pathways of cell dysfunction and death, several approaches toward neuroprotection are being investigated that show promise toward clinical translation. These strategies include minimizing oxidative stress by avoiding unnecessary hyperoxia, promoting aerobic energy metabolism by repletion of NAD(+) and by providing alternative oxidative fuels, e.g., ketone bodies, directly interfering with apoptotic pathways at the mitochondrial level, and pharmacologic induction of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Courtney L. Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Susanna Scafidi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD, USA
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD, USA
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore MD, USA
- Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
21
|
Wang X, Carlsson Y, Basso E, Zhu C, Rousset CI, Rasola A, Johansson BR, Blomgren K, Mallard C, Bernardi P, Forte MA, Hagberg H. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci 2009; 29:2588-96. [PMID: 19244535 PMCID: PMC3049447 DOI: 10.1523/jneurosci.5832-08.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 11/21/2022] Open
Abstract
Cyclophilin D (CypD), a regulator of the mitochondrial membrane permeability transition pore (PTP), enhances Ca(2+)-induced mitochondrial permeabilization and cell death in the brain. However, the role of CypD in hypoxic-ischemic (HI) brain injury at different developmental ages is unknown. At postnatal day (P) 9 or P60, littermates of CypD-deficient [knock-out (KO)], wild-type (WT), and heterozygous mice were subjected to HI, and brain injury was evaluated 7 d after HI. CypD deficiency resulted in a significant reduction of HI brain injury at P60 but worsened injury at P9. After HI, caspase-dependent and -independent cell death pathways were more induced in P9 CypD KO mice than in WT controls, and apoptotic activation was minimal at P60. The PTP had a considerably higher induction threshold and lower sensitivity to cyclosporin A in neonatal versus adult mice. On the contrary, Bax inhibition markedly reduced caspase activation and brain injury in immature mice but was ineffective in the adult brain. Our findings suggest that CypD/PTP is critical for the development of brain injury in the adult, whereas Bax-dependent mechanisms prevail in the immature brain. The role of CypD in HI shifts from a predominantly prosurvival protein in the immature to a cell death mediator in the adult brain.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Perinatal Center, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Soane L, Siegel ZT, Schuh RA, Fiskum G. Postnatal developmental regulation of Bcl-2 family proteins in brain mitochondria. J Neurosci Res 2008; 86:1267-76. [PMID: 18058945 PMCID: PMC2566804 DOI: 10.1002/jnr.21584] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although it has been long recognized that the relative balance of pro- and antiapoptotic Bcl-2 proteins is critical in determining the susceptibility to apoptotic death, only a few studies have examined the level of these proteins specifically at mitochondria during postnatal brain development. In this study, we examined the age-dependent regulation of Bcl-2 family proteins using rat brain mitochondria isolated at various postnatal ages and from the adult. The results indicate that a general down-regulation of most of the proapoptotic Bcl-2 proteins present in mitochondria occurs during postnatal brain development. The multidomain proapoptotic Bax, Bak, and Bok are all expressed at high levels in mitochondria early postnatally but decline in the adult. Multiple BH3-only proteins, including direct activators (Bid, Bim, and Puma) and the derepressor BH3-only protein Bad, are also present in immature brain mitochondria and are down-regulated in the adult brain. Antiapoptotic Bcl-2 family members are differentially regulated, with a shift from high Bcl-2 expression in immature mitochondria to predominant Bcl-x(L) expression in the adult. These results support the concept that developmental differences in upstream regulators of the mitochondrial apoptotic pathway are responsible for the increased susceptibility of cells in the immature brain to apoptosis following injury.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Zachary T. Siegel
- Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Rosemary A. Schuh
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, Maryland
- Research Service, Veteran’s Affairs Medical Center, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Caspersen CS, Sosunov A, Utkina-Sosunova I, Ratner VI, Starkov AA, Ten VS. An isolation method for assessment of brain mitochondria function in neonatal mice with hypoxic-ischemic brain injury. Dev Neurosci 2008; 30:319-24. [PMID: 18349523 PMCID: PMC2890306 DOI: 10.1159/000121416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022] Open
Abstract
This work was undertaken to develop a method for the isolation of mitochondria from a single cerebral hemisphere in neonatal mice. Mitochondria from the normal mouse brain hemisphere isolated by the proposed method exhibited a good respiratory control ratio of 6.39 +/- 0.53 during glutamate-malate-induced phosphorylating respiration. Electron microscopy showed intact mitochondria. The applicability of this method was tested on mitochondria isolated from naïve mice and their littermates subjected to hypoxic-ischemic insult. Hypoxic-ischemic insult prior to reperfusion resulted in a significant (p < 0.01) inhibition of phosphorylating respiration compared to naïve littermates. This was associated with a profound depletion of the ATP content in the ischemic hemisphere. The expression for Mn superoxide dismutase and cytochrome C (markers for the integrity of the mitochondrial matrix and outer membrane) was determined by Western blot to control for mitochondrial integrity and quantity in the compared samples. Thus, we have developed a method for the isolation of the cerebral mitochondria from a single hemisphere adapted to neonatal mice. This method may serve as a valuable tool to study mitochondrial function in a mouse model of immature brain injury. In addition, the suggested method enables us to examine the mitochondrial functional phenotype in immature mice with a targeted genetic alteration.
Collapse
Affiliation(s)
| | - Alexander Sosunov
- Department of Neurological Surgery, Columbia University, New York, N.Y., USA
| | | | | | | | - Vadim S. Ten
- Department of Pediatrics, Columbia University, New York, N.Y., USA
| |
Collapse
|
24
|
Abstract
Apoptosis mediates the precise and programmed natural death of neurons and is a physiologically important process in neurogenesis during maturation of the central nervous system. However, premature apoptosis and/or an aberration in apoptosis regulation is implicated in the pathogenesis of neurodegeneration, a multifaceted process that leads to various chronic disease states, such as Alzheimer's (AD), Parkinson's (PD), Huntington's (HD) diseases, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and diabetic encephalopathy. The current review focuses on two major areas (a) the fundamentals of apoptosis, which includes elements of the apoptotic machinery, apoptosis inducers, and emerging concepts in apoptosis research, and (b) apoptotic involvement in neurodegenerative disorders, neuroprotective treatment strategies/modalities, and the mechanisms of, and signaling in, neuronal apoptosis. Current and new experimental models for apoptosis research in neurodegenerative diseases are also discussed.
Collapse
Affiliation(s)
- Masahiro Okouchi
- Department of Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | |
Collapse
|
25
|
Uren RT, Dewson G, Chen L, Coyne SC, Huang DCS, Adams JM, Kluck RM. Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. ACTA ACUST UNITED AC 2007; 177:277-87. [PMID: 17452531 PMCID: PMC2064136 DOI: 10.1083/jcb.200606065] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)–only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-xl, Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-xl–like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-xl and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.
Collapse
Affiliation(s)
- Rachel T Uren
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 2007; 101:1248-57. [PMID: 17403141 DOI: 10.1111/j.1471-4159.2007.04489.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (<or=4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
27
|
Stelmashuk EV, Belyaeva EA, Isaev NK. Effect of acidosis, oxidative stress, and glutamate toxicity on the survival of mature and immature cultured cerebellar granule cells. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci 2006; 28:432-46. [PMID: 16943666 DOI: 10.1159/000094169] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/03/2006] [Indexed: 01/08/2023] Open
Abstract
Mitochondria play a central role in cerebral energy metabolism, intracellular calcium homeostasis and reactive oxygen species generation and detoxification. Following traumatic brain injury (TBI), the degree of mitochondrial injury or dysfunction can be an important determinant of cell survival or death. Literature would suggest that brain mitochondria from the developing brain are very different from those from mature animals. Therefore, aspects of developmental differences in the mitochondrial response to TBI can make the immature brain more vulnerable to traumatic injury. This review will focus on four main areas of secondary injury after pediatric TBI, including excitotoxicity, oxidative stress, alterations in energy metabolism and cell death pathways. Specifically, we will describe what is known about developmental differences in mitochondrial function in these areas, in both the normal, physiologic state and the pathologic state after pediatric TBI. The ability to identify and target aspects of mitochondrial dysfunction could lead to novel neuroprotective therapies for infants and children after severe TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
29
|
Tan C, Dlugosz PJ, Peng J, Zhang Z, Lapolla SM, Plafker SM, Andrews DW, Lin J. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J Biol Chem 2006; 281:14764-75. [PMID: 16571718 PMCID: PMC2826894 DOI: 10.1074/jbc.m602374200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interactions among Bcl-2 family proteins mediated by Bcl-2 homology (BH) regions transform apoptosis signals into actions. The interactions between BH3 region-only proteins and multi-BH region proteins such as Bax and Bcl-2 have been proposed to be the dominant interactions required for initiating apoptosis. Experimental evidence also suggests that both homo- and hetero-interactions are mediated primarily by the BH3 regions in all Bcl-2 family proteins and contribute to commitment to or inhibition of apoptosis. We found that a peptide containing the BH3 helix of Bax was not sufficient to activate recombinant Bax to permeabilize mitochondria. However, an extended peptide containing the BH3 helix and additional downstream sequences activated Bax to permeabilize mitochondria and liposomes. Bcl-2 inhibited the membrane-permeabilizing activity of peptide-activated Bax. This activity of Bcl-2 was inhibited by the extended but not the BH3-only peptide despite both peptides binding to Bcl-2 with similar affinity. Further, membrane-bound Bax activation intermediates directly activated soluble Bax further permeabilizing the membrane. Bcl-2 inhibited Bax auto-activation. We therefore propose that Bax auto-activation amplifies the initial death signal produced by BH3-only proteins and that Bcl-2 functions as an inhibitor of Bax auto-activation.
Collapse
Affiliation(s)
- Chibing Tan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Paulina J. Dlugosz
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Jun Peng
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Suzanne M. Lapolla
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - Scott M. Plafker
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| | - David W. Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73190
| |
Collapse
|
30
|
Kumral A, Genc S, Ozer E, Yilmaz O, Gokmen N, Koroglu TF, Duman N, Genc K, Ozkan H. Erythropoietin Downregulates Bax and DP5 ProApoptotic Gene Expression in Neonatal Hypoxic-Ischemic Brain Injury. Neonatology 2006; 89:205-10. [PMID: 16319448 DOI: 10.1159/000089951] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 09/12/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Perinatal asphyxia is an important cause of neonatal mortality and subsequent serious sequelae such as motor and cognitive deficits and seizures. The ameliorative effect of erythropoietin (Epo) on experimental hypoxic-ischemic brain injury in neonatal rats has been recently reported. Recent studies also confirm the antiapoptotic effect of Epo in a variety of in vitro and in vivo neuronal injury models including hypoxic-ischemic brain injury. However, molecular mechanisms of Epo protection and antiapoptotic effect in this model are unclear. Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. OBJECTIVES Thus, in the present study, we studied the effects of systemically administered Epo on antiapoptotic (bcl-2, bcl-XL), proapoptotic (bax and DP5) gene expression following hypoxic-ischemic brain injury in neonatal rats. METHODS Seven- day-old Wistar rat pups were divided into three groups: control group (n=15), saline-treated group (n=17), and Epo-treated group (n=18). Rat pups were subjected to left carotid artery occlusion followed by 2.5 h of hypoxic exposure. Epo-treated group received an intraperitoneal injection of recombinant human Epo at a dose of 1,000 units/kg, saline-treated group received an intraperitoneal injection of saline at the same volume of Epo. Forty-eight hours after hypoxia, 3 animals in each group were killed for histopathological evaluation. To detect DNA fragmentation in cell nuclei, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling reaction was applied. Bcl-2 and bax protein expression were also analyzed with immunohistochemistry. For reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, rats were sacrificed 4, 12, and 24 h after hypoxia. Bcl-2, bcl-XL, bax, and DP5 mRNA expression were analyzed by RT-PCR. RESULTS Epo significantly prevented hypoxia-ischemia-induced bax and DP5 mRNA upregulation in brain tissue. Epo did not show any effect on bcl-XL transcription altered by injury. However, Epo reversed injury-induced downregulation in bcl-2 transcription. Modulating effects of Epo on bcl-2 and bax protein expression were also revealed by immunohistochemistry. CONCLUSIONS These results suggest that Epo exerts a neuroprotective effect against hypoxic-ischemic brain injury, at least partially, via the differential regulation of the expression of genes involved in apoptotic process.
Collapse
Affiliation(s)
- Abdullah Kumral
- Department of Pediatrics, School of Medicine, Dokuz Eylul University, Inciralti, Izmir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Donovan M, Doonan F, Cotter TG. Decreased expression of pro-apoptotic Bcl-2 family members during retinal development and differential sensitivity to cell death. Dev Biol 2006; 291:154-69. [PMID: 16427039 DOI: 10.1016/j.ydbio.2005.12.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/22/2005] [Accepted: 12/09/2005] [Indexed: 11/21/2022]
Abstract
Apoptosis plays a crucial role in the sculpture of the mammalian retina during development. However, once the retina is fully differentiated, the emphasis must shift towards survival and mechanisms have to be put in place to prevent inappropriate cell death. In this study, we identify a potential control point at the level of mitochondrial permeability. We show that pro-apoptotic Bcl-2 family members known to be involved in the regulation of permeability transition and physiological cell death in the retina are down regulated during postnatal retinal development. In addition, we demonstrate an age-dependent susceptibility to retinal cell death induced by various stimuli known to target mitochondrion. These results potentially explain why retinal cells employ different death pathways depending on their stage of development. In contrast to developmental apoptosis, pathological retinal cell death in several animal models has been reported to occur independently of caspase activation. Here, we show that not only is cytochrome c release precluded from degenerating retinas but other pro-death molecules such as Omi/HtrA2 and AIF also remain in the mitochondrion. Our results indicate that transcriptional regulation of 'death genes' such as pro-apoptotic Bcl-2 family members during retinal development affords protection in adult post-mitotic neurons by preventing execution of the archetypal mitochondrial death pathway.
Collapse
Affiliation(s)
- Maryanne Donovan
- Cell Development and Disease Laboratory, Dept. of Biochemistry, Biosciences Institute, University College Cork, Ireland
| | | | | |
Collapse
|
32
|
Robertson CL, Bucci CJ, Fiskum G. Mitochondrial response to calcium in the developing brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 151:141-8. [PMID: 15246700 DOI: 10.1016/j.devbrainres.2004.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2004] [Indexed: 10/26/2022]
Abstract
Developmental differences in mitochondrial content and metabolic enzyme activities have been defined, but less is understood about the responses of brain mitochondria to stressful stimuli during development. Cerebral mitochondrial response to high Ca(2+) loads after brain injury is a critical determinant of neuronal outcome. Brain mitochondria isolated from 16-18-day-old rats had lower maximal, respiration-dependent Ca(2+) uptake capacity than brain mitochondria isolated from adult rats in the presence of ATP at both a pH of 7.0 and 6.5. However, in the absence of ATP, immature brain mitochondria exhibited greater Ca(2+) uptake capacity at pH 7.0 and 6.5, indicating a greater resistance of immature brain mitochondria to Ca(2+)-induced dysfunction under conditions relevant to those that exist during acute ischemic and traumatic brain injury. Acidosis reduced the maximal Ca(2+) uptake capacity in both immature and adult brain mitochondria. Cytochrome c was released from both immature and adult brain mitochondria in response to Ca(2+) exposure, but was not affected by cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition. Developmental changes in mitochondrial response to Ca(2+) loads may have important implications in the pathobiology of brain injury to the developing brain.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
33
|
Zovein A, Flowers-Ziegler J, Thamotharan S, Shin D, Sankar R, Nguyen K, Gambhir S, Devaskar SU. Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. Am J Physiol Regul Integr Comp Physiol 2004; 286:R273-82. [PMID: 14525722 DOI: 10.1152/ajpregu.00160.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of hypoxic ischemia and hypoxia vs. normoxia on postnatal murine brain substrate transporter concentrations and function. We detected a transient increase in the neuronal brain glucose transporter isoform (GLUT-3) in response to hypoxic ischemia after 4 h of reoxygenation. This increase was associated with no change in GLUT-1 (blood-brain barrier/glial isoform), monocarboxylate transporter isoforms 1 and 2, synapsin I (neuronal marker), or Bax (proapoptotic protein) but with a modest increase in Bcl-2 (antiapoptotic mitochondrial protein) protein concentrations. At 24 h of reoxygenation, the increase in GLUT-3 disappeared but was associated with a decline in Bcl-2 protein concentrations and the Bcl2:Bax ratio, an increase in caspase-3 enzyme activity (apoptotic effector enzyme), and extensive DNA fragmentation, which persisted later in time (48 h) only in the hippocampus. Hypoxia alone in the absence of ischemia was associated with a transient but modest increase in GLUT-3 and synapsin I protein concentrations, which did not cause significant apoptosis and/or necrosis. Assessment of glucose transporter function by 2-deoxyglucose (2-DG) uptake using two distinct techniques, namely positron emission tomography (PET) and the modified Sokoloff method, revealed a discrepancy due to glucose uptake by extracranial Harderian glands that masked the accurate detection of intracranial brain glucose uptake by PET scanning. The modified Sokoloff method assessing 2-DG uptake revealed that the transient increase in GLUT-3 was critical in protecting against a decline in brain glucose uptake. We conclude that hypoxic-ischemic brain injury is associated with transient compensatory changes targeted at protecting glucose delivery to fuel cellular energy metabolism, which then may delay the processes of apoptosis and cell necrosis.
Collapse
Affiliation(s)
- Ann Zovein
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|