1
|
Thang M, Mellows C, Kass LE, Daglish S, Fennell EM, Mann BE, Mercer-Smith AR, Valdivia A, Graves LM, Hingtgen SD. Combining the constitutive TRAIL-secreting induced neural stem cell therapy with the novel anti-cancer drug TR-107 in glioblastoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200834. [PMID: 39045029 PMCID: PMC11263637 DOI: 10.1016/j.omton.2024.200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/27/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lauren E. Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Sabrina Daglish
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Emily M.J. Fennell
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Breanna E. Mann
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alison R. Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Shawn D. Hingtgen
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Shi L, Lu J, Xia X, Liu X, Li H, Li X, Zhu J, Li X, Sun H, Yang X. Clinically used drug arsenic trioxide targets XIAP and overcomes apoptosis resistance in an organoid-based preclinical cancer model. Chem Sci 2024; 15:8311-8322. [PMID: 38846391 PMCID: PMC11151819 DOI: 10.1039/d4sc01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Drug resistance in tumor cells remains a persistent clinical challenge in the pursuit of effective anticancer therapy. XIAP, a member of the inhibitor of apoptosis protein (IAP) family, suppresses apoptosis via its Baculovirus IAP Repeat (BIR) domains and is responsible for drug resistance in various human cancers. Therefore, XIAP has attracted significant attention as a potential therapeutic target. However, no XIAP inhibitor is available for clinical use to date. In this study, we surprisingly observed that arsenic trioxide (ATO) induced a rapid depletion of XIAP in different cancer cells. Mechanistic studies revealed that arsenic attacked the cysteine residues of BIR domains and directly bound to XIAP, resulting in the release of zinc ions from this protein. Arsenic-XIAP binding suppressed the normal anti-apoptosis functions of BIR domains, and led to the ubiquitination-dependent degradation of XIAP. Importantly, we further demonstrate that arsenic sensitized a variety of apoptosis-resistant cancer cells, including patient-derived colon cancer organoids, to the chemotherapy drug using cisplatin as a showcase. These findings suggest that targeting XIAP with ATO offers an attractive strategy for combating apoptosis-resistant cancers in clinical practice.
Collapse
Affiliation(s)
- Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Jun Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Hong Kong SAR China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai 519000 China
| |
Collapse
|
3
|
Elradi M, Ahmed AI, Saleh AM, Abdel-Raouf KMA, Berika L, Daoud Y, Amleh A. Derivation of a novel antimicrobial peptide from the Red Sea Brine Pools modified to enhance its anticancer activity against U2OS cells. BMC Biotechnol 2024; 24:14. [PMID: 38491556 PMCID: PMC10943910 DOI: 10.1186/s12896-024-00835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.
Collapse
Affiliation(s)
- Mona Elradi
- Biotechnology Program, American University in Cairo, New Cairo, Egypt
| | - Ahmed I Ahmed
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Ahmed M Saleh
- Biology Department, American University in Cairo, New Cairo, Egypt
| | | | - Lina Berika
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Yara Daoud
- Biology Department, American University in Cairo, New Cairo, Egypt
| | - Asma Amleh
- Biotechnology Program, American University in Cairo, New Cairo, Egypt.
- Biology Department, American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
4
|
Benayad S, Wahnou H, El Kebbaj R, Liagre B, Sol V, Oudghiri M, Saad EM, Duval RE, Limami Y. The Promise of Piperine in Cancer Chemoprevention. Cancers (Basel) 2023; 15:5488. [PMID: 38001748 PMCID: PMC10670142 DOI: 10.3390/cancers15225488] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, characterized by the unregulated growth and dissemination of malignantly transformed cells, presents a significant global health challenge. The multistage process of cancer development involves intricate biochemical and genetic alterations within target cells. Cancer chemoprevention has emerged as a vital strategy to address this complex issue to mitigate cancer's impact on healthcare systems. This approach leverages pharmacologically active agents to block, suppress, prevent, or reverse invasive cancer development. Among these agents, piperine, an active alkaloid with a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and immunomodulatory effects, has garnered attention for its potential in cancer prevention and treatment. This comprehensive review explores piperine's multifaceted role in inhibiting the molecular events and signaling pathways associated with various stages of cancer development, shedding light on its promising prospects as a versatile tool in cancer chemoprevention. Furthermore, the review will also delve into how piperine enhances the effectiveness of conventional treatments such as UV-phototherapy and TRAIL-based therapy, potentially synergizing with existing therapeutic modalities to provide more robust cancer management strategies. Finally, a crucial perspective of the long-term safety and potential side effects of piperine-based therapies and the need for clinical trials is also discussed.
Collapse
Affiliation(s)
- Salma Benayad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Bertrand Liagre
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Le Laboratoire des Agroressources, Biomolécules et Chimie pour l’Innovation en Santé (LABCiS), University Limoges, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - El Madani Saad
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
| | - Raphaël Emmanuel Duval
- The Franch Center for Scientific Research (CNRS), Université de Lorraine, L2CM, F-54000 Nancy, France
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (S.B.); (R.E.K.); (E.M.S.)
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco; (H.W.); (M.O.)
| |
Collapse
|
5
|
Saquib Q, Schwaiger S, Alilou M, Ahmed S, Siddiqui MA, Ahmad J, Faisal M, Abdel-Salam EM, Wahab R, Al-Rehaily AJ, Stuppner H, Al-Khedhairy AA. Marine Natural Compound (Neviotin A) Displays Anticancer Efficacy by Triggering Transcriptomic Alterations and Cell Death in MCF-7 Cells. Molecules 2023; 28:6289. [PMID: 37687120 PMCID: PMC10488820 DOI: 10.3390/molecules28176289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
We investigated the anticancer mechanism of a chloroform extract of marine sponge (Haliclona fascigera) (sample C) in human breast adenocarcinoma (MCF-7) cells. Viability analysis using MTT and neutral red uptake (NRU) assays showed that sample C exposure decreased the proliferation of cells. Flow cytometric data exhibited reactive oxygen species (ROS), nitric oxide (NO), dysfunction of mitochondrial potential, and apoptosis in sample C-treated MCF-7 cells. A qPCR array of sample C-treated MCF-7 cells showed crosstalk between different pathways of apoptosis, especially BIRC5, BCL2L2, and TNFRSF1A genes. Immunofluorescence analysis affirmed the localization of p53, bax, bcl2, MAPKPK2, PARP-1, and caspase-3 proteins in exposed cells. Bioassay-guided fractionation of sample C revealed Neviotin A as the most active compound triggering maximum cell death in MCF-7, indicating its pharmacological potency for the development of a drug for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Mostafa Alilou
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Maqsood A. Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Eslam M. Abdel-Salam
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Abdulaziz A. Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| |
Collapse
|
6
|
Ruggeri M, Miele D, Contardi M, Vigani B, Boselli C, Icaro Cornaglia A, Rossi S, Suarato G, Athanassiou A, Sandri G. Mycelium-based biomaterials as smart devices for skin wound healing. Front Bioeng Biotechnol 2023; 11:1225722. [PMID: 37650039 PMCID: PMC10465301 DOI: 10.3389/fbioe.2023.1225722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | |
Collapse
|
7
|
Ma W, Zhang X, Zhuang L. Exogenous Hydrogen Sulfide Induces A375 Melanoma Cell Apoptosis Through Overactivation of the Unfolded Protein Response. Clin Cosmet Investig Dermatol 2023; 16:1641-1651. [PMID: 37396710 PMCID: PMC10314752 DOI: 10.2147/ccid.s412588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Purpose Melanomas are highly malignant and rapidly develop drug resistance due to dysregulated apoptosis. Therefore, pro-apoptotic agents could be effective for the management of melanoma. Hydrogen sulfide is ubiquitous in the body, and exogenous hydrogen sulfide has been reported to show inhibitory and pro-apoptotic effects on cancer cells. However, whether high concentrations of exogenous hydrogen sulfide have pro-apoptotic effects on melanoma and its mechanisms remain unknown. Hence, this study aimed to explore the pro-apoptotic effects and mechanisms of exogenous hydrogen sulfide on the A375 melanoma cell line treated with a hydrogen sulfide donor (NaHS). Methods The cell proliferation test, flow cytometric analysis, Hoechst 33258 staining, and Western blotting of B-cell lymphoma 2 and cleaved caspase-3 were used to explore the pro-apoptotic effects of hydrogen sulfide on A375 cells. The transcriptional profile of NaHS-treated A375 cells was further explored via high-throughput sequencing. Western blotting of phosphorylated inositol-requiring enzyme 1α (p-IRE1α), phosphorylated protein kinase R-like ER kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homologous protein, glucose-regulating protein 78, IRE1α, PERK, and eIF2α was performed to verify the changes in the transcriptional profile. Results NaHS inhibited A375 melanoma cell proliferation and induced apoptosis. The endoplasmic reticulum stress unfolded protein response and apoptosis-associated gene expression was upregulated in NaHS-treated A375 melanoma cells. The overactivation of the unfolded protein response and increase in endoplasmic reticulum stress was verified at the protein level. Conclusion Treatment with NaHS increased endoplasmic reticulum stress, which triggered the overactivation of the unfolded protein response and ultimately lead to melanoma cell apoptosis. The pro-apoptotic effect of NaHS suggests that it can be explored as a potential therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiuwen Zhang
- Department of Dermatology, Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China
| | - Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
8
|
Di Cristofano F, George A, Tajiknia V, Ghandali M, Wu L, Zhang Y, Srinivasan P, Strandberg J, Hahn M, Sanchez Sevilla Uruchurtu A, Seyhan AA, Carneiro BA, Zhou L, Huntington KE, El-Deiry WS. Therapeutic targeting of TRAIL death receptors. Biochem Soc Trans 2023; 51:57-70. [PMID: 36629496 PMCID: PMC9988005 DOI: 10.1042/bst20220098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.
Collapse
Affiliation(s)
- Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Laura Wu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Marina Hahn
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Ashley Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| |
Collapse
|
9
|
Pimentel JM, Zhou JY, Wu GS. Regulation of programmed death ligand 1 (PD-L1) expression by TNF-related apoptosis-inducing ligand (TRAIL) in triple-negative breast cancer cells. Mol Carcinog 2023; 62:135-144. [PMID: 36239572 PMCID: PMC10015553 DOI: 10.1002/mc.23471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that lacks targeted therapies. Previous studies have shown that TNBC cells are highly sensitive to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), making it a promising agent for treating TNBC. However, the development of TRAIL resistance limits its further clinical development, and the underlying mechanisms are not fully understood. In this study, we report the role of PD-L1 in TRAIL resistance. Specifically, we found that TRAIL treatment increases PD-L1 expression in TRAIL-sensitive cells and that basal PD-L1 expression is increased in acquired TRAIL-resistant cells. Mechanistically, we found that increased PD-L1 expression was accompanied by increased extracellular signal-regulated kinase (ERK) activation. Using both genetic and pharmacological approaches, we showed that knockdown of ERK by siRNA or inhibition of ERK activation by the mitogen-activated protein kinase kinase inhibitor U0126 decreased PD-L1 expression and increased TRAIL-induced cell death. Furthermore, we found that knockout or knockdown of PD-L1 enhances TRAIL-induced apoptosis, suggesting that PD-L1-mediated TRAIL resistance is independent of its ability to evade immune suppression. Therefore, this study identifies a noncanonical mechanism by which PD-L1 promotes TRAIL resistance, which can be potentially exploited for immune checkpoint therapy.
Collapse
Affiliation(s)
- Julio M. Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan 48201
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
10
|
Thang M, Mellows C, Mercer-Smith A, Nguyen P, Hingtgen S. Current approaches in enhancing TRAIL therapies in glioblastoma. Neurooncol Adv 2023; 5:vdad047. [PMID: 37215952 PMCID: PMC10195206 DOI: 10.1093/noajnl/vdad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive, primary brain cancer in adults and continues to pose major medical challenges due in part to its high rate of recurrence. Extensive research is underway to discover new therapies that target GBM cells and prevent the inevitable recurrence in patients. The pro-apoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted attention as an ideal anticancer agent due to its ability to selectively kill cancer cells with minimal toxicity in normal cells. Although initial clinical evaluations of TRAIL therapies in several cancers were promising, later stages of clinical trial results indicated that TRAIL and TRAIL-based therapies failed to demonstrate robust efficacies due to poor pharmacokinetics, resulting in insufficient concentrations of TRAIL at the therapeutic site. However, recent studies have developed novel ways to prolong TRAIL bioavailability at the tumor site and efficiently deliver TRAIL and TRAIL-based therapies using cellular and nanoparticle vehicles as drug loading cargos. Additionally, novel techniques have been developed to address monotherapy resistance, including modulating biomarkers associated with TRAIL resistance in GBM cells. This review highlights the promising work to overcome the challenges of TRAIL-based therapies with the aim to facilitate improved TRAIL efficacy against GBM.
Collapse
Affiliation(s)
- Morrent Thang
- Neuroscience Center, University of North Carolina—Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Clara Mellows
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Alison Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina—Chapel Hill School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Phuong Nguyen
- Michigan State University School of Medicine, East Lansing, Michigan, USA
| | - Shawn Hingtgen
- Corresponding Author: Shawn Hingtgen, PhD, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599-7363, USA ()
| |
Collapse
|
11
|
Mechanisms of Drug Resistance in Ovarian Cancer and Associated Gene Targets. Cancers (Basel) 2022; 14:cancers14246246. [PMID: 36551731 PMCID: PMC9777152 DOI: 10.3390/cancers14246246] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the United States, over 100,000 women are diagnosed with a gynecologic malignancy every year, with ovarian cancer being the most lethal. One of the hallmark characteristics of ovarian cancer is the development of resistance to chemotherapeutics. While the exact mechanisms of chemoresistance are poorly understood, it is known that changes at the cellular and molecular level make chemoresistance challenging to treat. Improved therapeutic options are needed to target these changes at the molecular level. Using a precision medicine approach, such as gene therapy, genes can be specifically exploited to resensitize tumors to therapeutics. This review highlights traditional and novel gene targets that can be used to develop new and improved targeted therapies, from drug efflux proteins to ovarian cancer stem cells. The review also addresses the clinical relevance and landscape of the discussed gene targets.
Collapse
|
12
|
Lin CI, Chen ZC, Chen CH, Chang YH, Lee TC, Tang TT, Yu TW, Yang CM, Tsai MC, Huang CC, Yang TW, Lin CC, Wang RH, Chiou GY, Jong YJ, Chao JI. Co-inhibition of Aurora A and Haspin kinases enhances survivin blockage and p53 induction for mitotic catastrophe and apoptosis in human colorectal cancer. Biochem Pharmacol 2022; 206:115289. [PMID: 36241092 DOI: 10.1016/j.bcp.2022.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a leading cause and mortality worldwide. Aurora A and haspin kinases act pivotal roles in mitotic progression. However, the blockage of Aurora A and Haspin for CRC therapy is still unclear. Here we show that the Haspin and p-H3T3 protein levels were highly expressed in CRC tumor tissues of clinical patients. Overexpression of Haspin increased the protein levels of p-H3T3 and survivin in human CRC cells; conversely, the protein levels of p-H3T3 and survivin were decreased by the Haspin gene knockdown. Moreover, the gene knockdown of Aurora A induced abnormal chromosome segregation, mitotic catastrophe, and cell growth inhibition. Combined targeted by co-treatment of CHR6494, a Haspin inhibitor, and MLN8237, an Aurora A inhibitor, enhanced apoptosis and CRC tumor inhibition. MLN8237 and CHR6494 induced abnormal chromosome segregation and mitotic catastrophe. Meanwhile, MLN8237 and CHR6494 inhibited survivin protein levels but conversely induced p53 protein expression. Ectopic survivin expression by transfection with a survivin-expressed vector resisted the cell death in the MLN8237- and CHR6494-treated cells. In contrast, the existence of functional p53 increased the apoptotic levels by treatment with MLN8237 and CHR6494. Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Chien-I Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zan-Chu Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Hsuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Chia Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Tai Tang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Wei Yu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Man Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Chang Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Chou Huang
- Division of Colon and Rectum, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Wei Yang
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Che Lin
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Guang-Yuh Chiou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Departments of Pediatrics and Laboratory Medicine, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jui-I Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan.
| |
Collapse
|
13
|
Wang W, Lin H, Zheng E, Hou Z, Liu Y, Huang W, Chen D, Feng J, Li J, Li L. Regulation of survivin protein stability by USP35 is evolutionarily conserved. Biochem Biophys Res Commun 2021; 574:48-55. [PMID: 34438346 DOI: 10.1016/j.bbrc.2021.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Survivin is the key component of the chromosomal passenger complex and plays important roles in the regulation of cell division. Survivin has also been implicated in the regulation of apoptosis and tumorigenesis. Although the survivin protein has been reported to be degraded by a ubiquitin/proteasome-dependent mechanism, whether there is a DUB that is involved in the regulation of its protein stability is largely unknown. Using an expression library containing 68 deubiquitinating enzymes, we found that ubiquitin-specific-processing protease 35 (USP35) regulates survivin protein stability in an enzymatic activity-dependent manner. USP35 interacted with and promoted the deubiquitination of the survivin protein. USP38, an ortholog of USP35 encoded by the human genome, is also able to regulate survivin protein stability. Moreover, we found that the deubiquitinating enzyme DUBAI, the Drosophila homolog of human USP35, is able to regulate the protein stability of Deterin, the Drosophila homolog of survivin. Interestingly, USP35 also regulated the protein stability of Aurora B and Borealin which are also the component of the chromosomal passenger complex. By regulating protein stabilities of chromosomal passenger complex components, USP35 regulated cancer cell proliferation. Taken together, our work uncovered an evolutionarily conserved relationship between USP35 and survivin that might play an important role in cell proliferation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Hanbin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Enrun Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhenzhu Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanyuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenyang Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Danni Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinan Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Lisheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Wang SP, Hsu YP, Chang CJ, Chan YC, Chen CH, Wang RH, Liu KK, Pan PY, Wu YH, Yang CM, Chen C, Yang JM, Liang MC, Wong KK, Chao JI. A novel EGFR inhibitor suppresses survivin expression and tumor growth in human gefitinib-resistant EGFR-wild type and -T790M non-small cell lung cancer. Biochem Pharmacol 2021; 193:114792. [PMID: 34597670 DOI: 10.1016/j.bcp.2021.114792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
Tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) are currently used therapy for non-small cell lung cancer (NSCLC) patients; however, drug resistance during cancer treatment is a critical problem. Survivin is an anti-apoptosis protein, which promotes cell proliferation and tumor growth that highly expressed in various human cancers. Here, we show a novel synthetic compound derived from gefitinib, do-decyl-4-(4-(3-(4-(3-chloro-4-fluorophenylamino)-7-methoxyquinazolin-6-yloxy)propyl) piper-azin-1-yl)-4-oxobutanoate, which is named as SP101 that inhibits survivin expression and tumor growth in both the EGFR-wild type and -T790M of NSCLC. SP101 blocked EGFR kinase activity and induced apoptosis in the A549 (EGFR-wild type) and H1975 (EGFR-T790M) lung cancer cells. SP101 reduced survivin proteins and increased active caspase 3 for inducing apoptosis. Ectopic expression of survivin by a survivin-expressed vector attenuated the SP101-induced cell death in lung cancer cells. Moreover, SP101 inhibited the gefitinib-resistant tumor growth in the xenograft human H1975 lung tumors of nude mice. SP101 substantially reduced survivin proteins but conversely elicited active caspase 3 proteins in tumor tissues. Besides, SP101 exerted anticancer abilities in the gefitinib resistant cancer cells separated from pleural effusion of a clinical lung cancer patient. Consistently, SP101 decreased the survivin proteins and the patient-derived xenografted lung tumor growth in nude mice. Anti-tumor ability of SP101 was also confirmed in the murine lung cancer model harboring EGFR T790M-L858R. Together, SP101 is a new EGFR inhibitor with inhibiting survivin that can be developed for treating EGFR wild-type and EGFR-mutational gefitinib-resistance in human lung cancers.
Collapse
Affiliation(s)
- Su-Pei Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Ping Hsu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Jen Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yu-Chi Chan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Hung Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Rou-Hsin Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Kai Liu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Ying Pan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ya-Hui Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Man Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Hualien, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, MA, United States; Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, United States
| | - Jui-I Chao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
15
|
Wu C, You M, Nguyen D, Wangpaichitr M, Li YY, Feun LG, Kuo MT, Savaraj N. Enhancing the Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Signaling and Arginine Deprivation in Melanoma. Int J Mol Sci 2021; 22:7628. [PMID: 34299249 PMCID: PMC8306073 DOI: 10.3390/ijms22147628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells. However, resistance to both drugs has also been noted. Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies have been proposed for these drug candidates with various other agents, and achieved enhanced or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component of this combination. It is found that combination treatment generally can alter the expression of the components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the clinical application of both drugs, current and future development to overcome these hurdles are briefly discussed.
Collapse
Affiliation(s)
- Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Min You
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
| | - Dao Nguyen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ying-Ying Li
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
| | - Lynn G. Feun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Macus T. Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL 33125, USA; (C.W.); (M.W.); (Y.-Y.L.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (M.Y.); (D.N.); (L.G.F.)
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Shen J, Su Z. Vanillin oxime inhibits lung cancer cell proliferation and activates apoptosis through JNK/ERK-CHOP pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:273-280. [PMID: 34187946 PMCID: PMC8255118 DOI: 10.4196/kjpp.2021.25.4.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 11/29/2022]
Abstract
Lung cancer despite advancement in the medical field continues to be a major threat to human lives and accounts for a high proportion of fatalities caused by cancers globally. The current study investigated vanillin oxime, a derivative of vanillin, against lung cancer cells for development of treatment and explored the mechanism. Cell viability changes by vanillin oxime were measured using MTT assay. Vanillin oxime-mediated apoptosis was detected in A549 and NCI-H2170 cells at 48 h of exposure by flow cytometry. The CEBP homologous protein (CHOP) and death receptor 5 (DR5) levels were analysed by RT-PCR and protein levels by Western blotting. Vanillin oxime in concentration-dependent way suppressed A549 and NCI-H2170 cell viabilities. On exposure to 12.5 and 15 μM concentrations of vanillin oxime elevated Bax, caspase-3, and -9 levels in A549 and NCI-H2170 cells were observed. Vanillin oxime exposure suppressed levels of Bcl-2, survivin, Bcl-xL, cFLIP, and IAPs proteins in A549 and NCI-H2170 cells. It stimulated significant elevation in DR4 and DR5 levels in A549 and NCI-H2170 cells. In A549 and NCI-H2170 cells vanillin oxime exposure caused significant (p < 0.05) enhancement in CHOP and DR5 mRNA expression. Vanillin oxime exposure of A549 and NCI-H2170 cells led to significant (p < 0.05) enhancement in levels of phosphorylated extracellular-signal-regulated kinase and c-Jun N-terminal kinase. Thus, vanillin oxime inhibits pulmonary cell proliferation via induction of apoptosis through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated pathway. Therefore, vanillin oxime may be studied further to develop a treatment for lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- Department of Respiratory, Yan'an People's Hospital, Yan'an, Shaanxi 716000, China
| | - Zhixiang Su
- Department of Medical Oncology Hospital Unit 3, Shaanxi Provincial Cancer Hospital, Xian 710061, China
| |
Collapse
|
17
|
Han TL, Sha H, Ji J, Li YT, Wu DS, Lin H, Hu B, Jiang ZX. Depletion of Survivin suppresses docetaxel-induced apoptosis in HeLa cells by facilitating mitotic slippage. Sci Rep 2021; 11:2283. [PMID: 33504817 PMCID: PMC7840972 DOI: 10.1038/s41598-021-81563-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The anticancer effects of taxanes are attributed to the induction of mitotic arrest through activation of the spindle assembly checkpoint. Cell death following extended mitotic arrest is mediated by the intrinsic apoptosis pathway. Accordingly, factors that influence the robustness of mitotic arrest or disrupt the apoptotic machinery confer drug resistance. Survivin is an inhibitor of apoptosis protein. Its overexpression is associated with chemoresistance, and its targeting leads to drug sensitization. However, Survivin also acts specifically in the spindle assembly checkpoint response to taxanes. Hence, the failure of Survivin-depleted cells to arrest in mitosis may lead to taxane resistance. Here we show that Survivin depletion protects HeLa cells against docetaxel-induced apoptosis by facilitating mitotic slippage. However, Survivin depletion does not promote clonogenic survival of tumor cells but increases the level of cellular senescence induced by docetaxel. Moreover, lentiviral overexpression of Survivin does not provide protection against docetaxel or cisplatin treatment, in contrast to the anti-apoptotic Bcl-xL or Bcl-2. Our findings suggest that targeting Survivin may influence the cell response to docetaxel by driving the cells through aberrant mitotic progression, rather than directly sensitizing cells to apoptosis.
Collapse
Affiliation(s)
- Teng-Long Han
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China.
| | - Hang Sha
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Jun Ji
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Yun-Tian Li
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Deng-Shan Wu
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Hu Lin
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Bin Hu
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China
| | - Zhi-Xin Jiang
- The 305 Hospital of the People's Liberation Army, Beijing, 100017, China.
| |
Collapse
|
18
|
Woo SM, Min KJ, Kwon TK. Magnolol Enhances the Therapeutic Effects of TRAIL through DR5 Upregulation and Downregulation of c-FLIP and Mcl-1 Proteins in Cancer Cells. Molecules 2020; 25:molecules25194591. [PMID: 33050112 PMCID: PMC7582760 DOI: 10.3390/molecules25194591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Magnolol is a biologically active compound, isolated from the Chinese herb Magnolia, that regulates antiproliferative, anticancer, antiangiogenic and antimetastatic activities. We found that magnolol sensitizes TRAIL-induced apoptotic cell death via upregulation of DR5 and downregulation of cellular FLICE-inhibitory protein (c-FLIP) and Mcl-1 in cancer cells, but not in normal cells. Mechanistically, magnolol increased ATF4-dependent DR5 expression at the transcription level, and knockdown of ATF4 markedly inhibited magnolol-induced DR5 upregulation. Silencing DR5 with siRNA prevented combined treatment with magnolol and TRAIL-induced apoptosis and PARP cleavage. Magnolol induced proteasome-mediated Mcl-1 downregulation, while magnolol-induced c-FLIP downregulation was regulated, at least in part, by lysosomal degradation. Our results revealed that magnolol enhanced TRAIL-induced apoptosis via ATF4-dependent DR5 upregulation and downregulation of c-FLIP and Mcl-1 proteins.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
| | - Kyoung-jin Min
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
- New Drug Development Center, Deagu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro, Dong-gu, Daegu 41061, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Korea; (S.M.W.); (K.-j.M.)
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
19
|
Martini S, Figini M, Croce A, Frigerio B, Pennati M, Gianni AM, De Marco C, Daidone MG, Argueta C, Landesman Y, Zaffaroni N, Satta A. Selinexor Sensitizes TRAIL-R2-Positive TNBC Cells to the Activity of TRAIL-R2xCD3 Bispecific Antibody. Cells 2020; 9:cells9102231. [PMID: 33023194 PMCID: PMC7599683 DOI: 10.3390/cells9102231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with poor prognosis and limited therapeutic options. Recent advances in the immunotherapy field have enabled the development of new treatment strategies, among which the use of bispecific antibodies (BsAbs), able to redirect T cells against tumors, has shown promising results. In particular, a BsAb that uses TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) as a target was constructed and demonstrated good results in redirecting CD3+ T cells to kill TRAIL-R2-expressing TNBC cells. In the present study, we investigated whether treatment with selinexor, a selective inhibitor of nuclear export (SINE) targeting exportin-1/chromosome maintenance protein 1 (XPO1/CRM1), could potentiate the antitumor activity of this BsAb. In combination experiments, we found that selinexor-exposed TNBC cells exhibited greater growth inhibition when treated with the TRAIL-R2xCD3 BsAb than that expected by simple additivity. Similarly, the apoptosis rate in selinexor/TRAIL-R2xCD3 BsAb-treated TNBC cells was significantly higher than that observed after exposure to either single agent. Together, our results suggest that the combination of selinexor and TRAIL-R2xCD3 BsAb can be a viable anticancer strategy and indicate this treatment as a promising therapeutic option for TNBC patients.
Collapse
Affiliation(s)
- Silvia Martini
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Mariangela Figini
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Aurora Croce
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Barbara Frigerio
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
| | - Alessandro Massimo Gianni
- Medical Oncology C Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Cinzia De Marco
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | - Maria Grazia Daidone
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
| | | | - Yosef Landesman
- Karyopharm Therapeutics, Newton, MA 02459, USA; (C.A.); (Y.L.)
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.M.); (A.C.); (M.P.)
- Correspondence: (N.Z.); (A.S.); Tel.: +39-02-23903260 (N.Z.); +39-02-23905110 (A.S.)
| | - Alessandro Satta
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.F.); (B.F.); (C.D.M.); (M.G.D.)
- Correspondence: (N.Z.); (A.S.); Tel.: +39-02-23903260 (N.Z.); +39-02-23905110 (A.S.)
| |
Collapse
|
20
|
LeBlanc N, Mallette E, Zhang W. Targeted modulation of E3 ligases using engineered ubiquitin variants. FEBS J 2020; 288:2143-2165. [PMID: 32867007 DOI: 10.1111/febs.15536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitination plays an essential role in signal transduction to regulate most if not all cellular processes. Among the enzymes that are involved in the ubiquitin (Ub) signaling cascade, tremendous efforts have been focused on elucidating the roles of E3 Ub ligases as they determine the complexity and specificity of ubiquitination. Not surprisingly, the malfunction of E3 ligases is directly implicated in many human diseases, including cancer. Therefore, there is an urgent need to develop potent and specific molecules to modulate E3 ligase activity as intracellular probes for target validation and as pharmacological agents in preclinical research. Unfortunately, the progress has been hampered by the dynamic regulation mechanisms for different types of E3 ligases. Here, we summarize the progress of using protein engineering to develop Ub variant (UbV) inhibitors for all major families of E3 ligases and UbV activators for homologous with E6-associated protein C terminus E3s and homodimeric RING E3s. We believe that this provides a general strategy and a valuable toolkit for the research community to inhibit or activate E3 ligases and these synthetic molecules have important implications in exploring protein degradation for drug discovery.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Evan Mallette
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada.,CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
21
|
Detrimental Effects of UVB on Retinal Pigment Epithelial Cells and Its Role in Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1904178. [PMID: 32855763 PMCID: PMC7443017 DOI: 10.1155/2020/1904178] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/25/2022]
Abstract
Retinal pigment epithelial (RPE) cells are an essential part of the human eye because they not only mediate and control the transfer of fluids and solutes but also protect the retina against photooxidative damage and renew photoreceptor cells through phagocytosis. However, their function necessitates cumulative exposure to the sun resulting in UV damage, which may lead to the development of age-related macular degeneration (AMD). Several studies have shown that UVB induces direct DNA damage and oxidative stress in RPE cells by increasing ROS and dysregulating endogenous antioxidants. Activation of different signaling pathways connected to inflammation, cell cycle arrest, and intrinsic apoptosis was reported as well. Besides that, essential functions like phagocytosis, osmoregulation, and water permeability of RPE cells were also affected. Although the melanin within RPE cells can act as a photoprotectant, this photoprotection decreases with age. Nevertheless, the changes in lens epithelium-derived growth factor (LEDGF) and autophagic activity or application of bioactive compounds from natural products can reverse the detrimental effect of UVB. Additionally, in vivo studies on the whole retina demonstrated that UVB irradiation induces gene and protein level dysregulation, indicating cellular stress and aberrations in the chromosome level. Morphological changes like retinal depigmentation and drusen formation were noted as well which is similar to the etiology of AMD, suggesting the connection of UVB damage with AMD. Therefore, future studies, which include mechanism studies via in vitro or in vivo and other potential bioactive compounds, should be pursued for a better understanding of the involvement of UVB in AMD.
Collapse
|
22
|
Thapa B, Kc R, Uludağ H. TRAIL therapy and prospective developments for cancer treatment. J Control Release 2020; 326:335-349. [PMID: 32682900 DOI: 10.1016/j.jconrel.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Tumor Necrosis Factor (TNF) Related Apoptosis-Inducing Ligand (TRAIL), an immune cytokine of TNF-family, has received much attention in late 1990s as a potential cancer therapeutics due to its selective ability to induce apoptosis in cancer cells. TRAIL binds to cell surface death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) and facilitates formation of death-inducing signaling complex (DISC), eventually activating the p53-independent apoptotic cascade. This unique mechanism makes the TRAIL a potential anticancer therapeutic especially for p53-mutated tumors. However, recombinant human TRAIL protein (rhTRAIL) and TRAIL-R agonist monoclonal antibodies (mAb) failed to exert robust anticancer activities due to inherent and/or acquired resistance, poor pharmacokinetics and weak potencies for apoptosis induction. To get TRAIL back on track as a cancer therapeutic, multiple strategies including protein modification, combinatorial approach and TRAIL gene therapy are being extensively explored. These strategies aim to enhance the half-life and bioavailability of TRAIL and synergize with TRAIL action ultimately sensitizing the resistant and non-responsive cells. We summarize emerging strategies for enhanced TRAIL therapy in this review and cover a wide range of recent technologies that will provide impetus to rejuvenate the TRAIL therapeutics in the clinical realm.
Collapse
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Remant Kc
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Mamriev D, Abbas R, Klingler FM, Kagan J, Kfir N, Donald A, Weidenfeld K, Sheppard DW, Barkan D, Larisch S. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis 2020; 11:483. [PMID: 32587235 PMCID: PMC7316745 DOI: 10.1038/s41419-020-2670-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Many human cancers over-express B cell lymphoma 2 (Bcl-2) or X-linked inhibitor of apoptosis (IAP) proteins to evade cell death. The pro-apoptotic ARTS (Sept4_i2) protein binds directly to both Bcl-2 and XIAP and promotes apoptosis by stimulating their degradation via the ubiquitin-proteasome system (UPS). Here we describe a small molecule, A4, that mimics the function of ARTS. Microscale thermophoresis assays showed that A4 binds XIAP, but not cellular inhibitor of apoptosis protein 1 (cIAP1). A4 binds to a distinct ARTS binding pocket in the XIAP-BIR3 (baculoviral IAP repeat 3) domain. Like ARTS, A4 stimulated poly-ubiquitylation and UPS-mediated degradation of XIAP and Bcl-2, but not cIAP1, resulting in caspase-9 and -3 activation and apoptosis. In addition, over-expression of XIAP rescued HeLa cells from A4-induced apoptosis, consistent with the idea that A4 kills by antagonizing XIAP. On the other hand, treatment with the SMAC-mimetic Birinapant induced secretion of tumour necrosis factor-α (TNFα) and killed ~50% of SKOV-3 cells, and addition of A4 to Birinapant-treated cells significantly reduced secretion of TNFα and blocked Birinapant-induced apoptosis. This suggests that A4 acts by specifically targeting XIAP. The effect of A4 was selective as peripheral blood mononuclear cells and normal human breast epithelial cells were unaffected. Furthermore, proteome analysis revealed that cancer cell lines with high levels of XIAP were particularly sensitive to the killing effect of A4. These results provide proof of concept that the ARTS binding site in XIAP is "druggable". A4 represents a novel class of dual-targeting compounds stimulating apoptosis by UPS-mediated degradation of important anti-apoptotic oncogenes.
Collapse
Affiliation(s)
- Dana Mamriev
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.,The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Ruqaia Abbas
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Juliana Kagan
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Nir Kfir
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Keren Weidenfeld
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | | | - Dalit Barkan
- The Laboratory of Tumor Dormancy and Metastasis, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel
| | - Sarit Larisch
- Cell Death and Cancer Research Laboratory, Department of Human Biology and Medical Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
24
|
Fullstone G, Bauer TL, Guttà C, Salvucci M, Prehn JHM, Rehm M. The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death Differ 2020; 27:2828-2842. [PMID: 32341447 PMCID: PMC7493894 DOI: 10.1038/s41418-020-0545-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
The execution phase of apoptosis is a critical process in programmed cell death in response to a multitude of cellular stresses. A crucial component of this pathway is the apoptosome, a platform for the activation of pro-caspase 9 (PC9). Recent findings have shown that autocleavage of PC9 to Caspase 9 (C9) p35/p12 not only permits XIAP-mediated C9 inhibition but also temporally shuts down apoptosome activity, forming a molecular timer. In order to delineate the combined contributions of XIAP and the apoptosome molecular timer to apoptosis execution we utilised a systems modelling approach. We demonstrate that cooperative recruitment of PC9 to the apoptosome, based on existing PC9-apoptosome interaction data, is important for efficient formation of PC9 homodimers, autocatalytic cleavage and dual regulation by XIAP and the molecular timer across biologically relevant PC9 and APAF1 concentrations. Screening physiologically relevant concentration ranges of apoptotic proteins, we discovered that the molecular timer can prevent apoptosis execution in specific scenarios after complete or partial mitochondrial outer membrane permeabilisation (MOMP). Furthermore, its ability to prevent apoptosis is intricately tied to a synergistic combination with XIAP. Finally, we demonstrate that simulations of these processes are prognostic of survival in stage III colorectal cancer and that the molecular timer may promote apoptosis resistance in a subset of patients. Based on our findings, we postulate that the physiological function of the molecular timer is to aid XIAP in the shutdown of caspase-mediated apoptosis execution. This shutdown potentially facilitates switching to pro-inflammatory caspase-independent responses subsequent to Bax/Bak pore formation.
Collapse
Affiliation(s)
- Gavin Fullstone
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany
| | - Tabea L Bauer
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiano Guttà
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Manuela Salvucci
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany. .,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany. .,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
25
|
TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020; 155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.
Collapse
|
26
|
Uddin MH, Pimentel JM, Chatterjee M, Allen JE, Zhuang Z, Wu GS. Targeting PP2A inhibits the growth of triple-negative breast cancer cells. Cell Cycle 2020; 19:592-600. [PMID: 32011210 DOI: 10.1080/15384101.2020.1723195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) does not respond to widely used targeted/endocrine therapies because of the absence of progesterone and estrogen receptors and HER2 amplification. It has been shown that the majority of TNBC cells are highly sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, but the development of TRAIL resistance limits its efficacy. We previously found that protein phosphatase 2A (PP2A) plays an important role in TRAIL resistance. In this study, we evaluated the effects of PP2A inhibition on cell death in TRAIL-resistant TNBC cells. We found that the PP2A inhibitor LB-100 effectively inhibits the growth of a panel of TNBC cell lines including lines that are intrinsically resistant to TRAIL. Using two TRAIL-resistant cell lines generated from TRAIL-sensitive parental cells (MDA231 and SUM159), we found that both TRAIL-sensitive and -resistant cell lines are equally sensitive to LB-100. We also found that LB-100 sensitizes TNBC cells to clinically used chemotherapeutical agents, including paclitaxel and cisplatin. Importantly, we found that LB-100 effectively inhibits the growth of MDA468 tumors in mice in vivo without apparent toxicity. Collectively, these data suggest that pharmacological inhibition of PP2A activity could be a novel therapeutic strategy for treating patients with TNBC in a clinical setting.
Collapse
Affiliation(s)
- Mohammed Hafiz Uddin
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio M Pimentel
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madhumita Chatterjee
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joshu E Allen
- Department of Research and Development, Oncoceutics, Inc, Philadelphia, PA, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gen Sheng Wu
- Department of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
27
|
ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis 2020; 11:33. [PMID: 31949127 PMCID: PMC6965651 DOI: 10.1038/s41419-020-2222-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is now widely considered the third endogenous gasotransmitter and plays critical roles in cancer biological processes. In this study, we demonstrate that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), the most widely used moiety for synthesising slow-releasing H2S donors, induces melanoma cell death in vitro and in vivo. Consistent with previous reports, ADT-OH inhibited IκBɑ degradation, resulting in reduced NF-κB activation and subsequent downregulation of the NF-κB-targeted anti-apoptotic proteins XIAP and Bcl-2. More importantly, we found that ADT-OH suppressed the ubiquitin-induced degradation of FADD by downregulating the expression of MKRN1, an E3 ubiquitin ligase of FADD. In addition, ADT-OH had no significant therapeutic effect on FADD-knockout B16F0 cells or FADD-knockdown A375 cells. Based on these findings, we evaluated the combined effects of ADT-OH treatment and FADD overexpression on melanoma cell death in vivo using a mouse xenograft model. As expected, tumour-specific delivery of FADD through a recombinant Salmonella strain, VNP-FADD, combined with low-dose ADT-OH treatment significantly inhibited tumour growth and induced cancer cell apoptosis. Taken together, our data suggest that ADT-OH is a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.
Collapse
|
28
|
Honokiol Enhances TRAIL-Mediated Apoptosis through STAMBPL1-Induced Survivin and c-FLIP Degradation. Biomolecules 2019; 9:biom9120838. [PMID: 31817770 PMCID: PMC6995549 DOI: 10.3390/biom9120838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Honokiol is a natural biphenolic compound extracted from traditional Chinese medicine Magnolia species, which have been known to display various biological effects including anti-cancer, anti-proliferative, anti-angiogenic, and anti-metastatic activities in cancer cells. Here, we found that honokiol sensitizes cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through downregulation of anti-apoptotic proteins survivin and c-FLIP. Ectopic expression of survivin and c-FLIP markedly abolished honokiol and TRAIL-induced apoptosis. Mechanistically, honokiol induced protein degradation of c-FLIP and survivin through STAMBPL1, a deubiquitinase. STAMBPL1 interacted with survivin and c-FLIP, resulted in reduction of ubiquitination. Knockdown of STAMBPL1 reduced survivin and c-FLIP protein levels, while overexpression of STAMBPL1 inhibited honokinol-induced survivin and c-FLIP degradation. Our findings provided that honokiol could overcome TRAIL resistance through survivin and c-FLIP degradation induced by inhibition of STAMBPL1 expression.
Collapse
|
29
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
30
|
Axl Inhibitor R428 Enhances TRAIL-Mediated Apoptosis Through Downregulation of c-FLIP and Survivin Expression in Renal Carcinoma. Int J Mol Sci 2019; 20:ijms20133253. [PMID: 31269715 PMCID: PMC6651098 DOI: 10.3390/ijms20133253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
R428, a selective small molecule Axl inhibitor, is known to have anti-cancer effects, such as inhibition of invasion and proliferation and induction of cell death in cancer cells. The Axl receptor tyrosine kinase is highly expressed in cancer cells and the level of Axl expression is associated with survival, metastasis, and drug resistance of many cancer cells. However, the effect of Axl inhibition on overcoming anti-cancer drugs resistance is unclear. Therefore, we investigated the capability of Axl inhibition as a therapeutic agent for the induction of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) sensitivity. In this study, R428 markedly sensitized cancer cells to TRAIL-induced apoptotic cell death, but not in normal human skin fibroblast (HSF) and human umbilical vein cells (EA.hy926). Moreover, knockdown of Axl by siRNA also increased TRAIL-induced apoptosis. R428 decreased c-FLIP proteins levels via induction of miR-708 expression and survivin protein levels at the post-translational level, and we found that knockdown of Axl also decreased both c-FLIP and survivin protein expression. Overexpression of c-FLIP and survivin markedly inhibited R428 plus TRAIL-induced apoptosis. Furthermore, R428 sensitized cancer cells to multiple anti-cancer drugs-mediated cell death. Our results provide that inhibition of Axl could improve sensitivity to TRAIL through downregulation of c-FLIP and survivin expression in renal carcinoma cells. Taken together, Axl may be a tempting target to overcome TRAIL resistance.
Collapse
|
31
|
Yoo JK, Lee JM, Kang SH, Jeon SH, Kim CM, Oh SH, Kim CH, Kim NK, Kim JK. The novel microRNA hsa-miR-CHA1 regulates cell proliferation and apoptosis in human lung cancer by targeting XIAP. Lung Cancer 2019; 132:99-106. [DOI: 10.1016/j.lungcan.2018.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022]
|
32
|
Eberle J. Countering TRAIL Resistance in Melanoma. Cancers (Basel) 2019; 11:cancers11050656. [PMID: 31083589 PMCID: PMC6562618 DOI: 10.3390/cancers11050656] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope of finally defeating this deadly disease. TNF-related apoptosis-inducing ligand (TRAIL) represents a promising antitumor strategy. The principal sensitivity of melanoma cells for TRAIL was demonstrated in previous studies; however, inducible resistance appeared as a major problem. To address this issue, combination strategies were tested, and survival pathway inhibitors were shown to sensitize melanoma cells for TRAIL-induced apoptosis. Finally, cell cycle inhibition was identified as a common principle of TRAIL sensitization in melanoma cells. Mitochondrial apoptosis pathways, pro- and antiapoptotic Bcl-2 proteins as well as the rheostat consisted of Smac (Second mitochondria-derived activator of caspase) and XIAP (X-linked inhibitor of apoptosis protein) appeared to be of particular importance. Furthermore, the role of reactive oxygen species (ROS) was recognized in this setting. Inducible TRAIL resistance in melanoma can be explained by (i) high levels of antiapoptotic Bcl-2 proteins, (ii) high levels of XIAP, and (iii) suppressed Bax activity. These hurdles have to be overcome to enable the use of TRAIL in melanoma therapy. Several strategies appear as particularly promising, including new TRAIL receptor agonists, Smac and BH3 mimetics, as well as selective kinase inhibitors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany.
| |
Collapse
|
33
|
Kamra M, Maiti B, Dixit A, Karande AA, Bhattacharya S. Tumor Chemosensitization through Oncogene Knockdown Mediated by Unique α-Tocopherylated Cationic Geminis. Biomacromolecules 2019; 20:1555-1566. [DOI: 10.1021/acs.biomac.8b01751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mohini Kamra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anjali A. Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
34
|
Hsp90 Inhibitor SNX-2112 Enhances TRAIL-Induced Apoptosis of Human Cervical Cancer Cells via the ROS-Mediated JNK-p53-Autophagy-DR5 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9675450. [PMID: 31019655 PMCID: PMC6452544 DOI: 10.1155/2019/9675450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.
Collapse
|
35
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
36
|
Kim BR, Park SH, Jeong YA, Na YJ, Kim JL, Jo MJ, Jeong S, Yun HK, Oh SC, Lee DH. RUNX3 enhances TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer. Oncogene 2019; 38:3903-3918. [PMID: 30692634 DOI: 10.1038/s41388-019-0693-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022]
Abstract
RUNX3 is frequently inactivated by DNA hypermethylation in numerous cancers. Here, we show that RUNX3 has an important role in modulating apoptosis in immediate response to tumor necrosis factor-related apoptosis-including ligand (TRAIL). Importantly, no combined effect of TRAIL and RUNX3 was observed in non-cancerous cells. We investigated the expression of the death receptors (DRs) DR4 and DR5, which are related to TRAIL resistance. Overexpression of RUNX3 increased DR5 expression via induction of the reactive oxygen species (ROS)-endoplasmic reticulum (ER) stress-effector CHOP. Reduction of DR5 markedly decreased apoptosis enhanced by the combined therapy of TRAIL and RUNX3. Interestingly, RUNX3 induced reactive oxygen species production by inhibiting SOD3 transcription via binding to the Superoxide dismutase 3 (SOD3) promoter. Additionally, the combined effect of TRAIL and RUNX3 decreased tumor growth in xenograft models. Our results demonstrate a direct role for RUNX3 in TRAIL-induced apoptosis via activation of DR5 and provide further support for RUNX3 as an anti-tumor.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Dae-Hee Lee
- Department of Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Sheikh S, Saxena D, Tian X, Amirshaghaghi A, Tsourkas A, Brem S, Dorsey JF. An Integrated Stress Response Agent that Modulates DR5-Dependent TRAIL Synergy Reduces Patient-Derived Glioma Stem Cell Viability. Mol Cancer Res 2019; 17:1102-1114. [DOI: 10.1158/1541-7786.mcr-18-0276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/14/2018] [Accepted: 01/07/2019] [Indexed: 11/16/2022]
|
38
|
Del Mistro G, Lucarelli P, Müller I, De Landtsheer S, Zinoveva A, Hutt M, Siegemund M, Kontermann RE, Beissert S, Sauter T, Kulms D. Systemic network analysis identifies XIAP and IκBα as potential drug targets in TRAIL resistant BRAF mutated melanoma. NPJ Syst Biol Appl 2018; 4:39. [PMID: 30416750 PMCID: PMC6218484 DOI: 10.1038/s41540-018-0075-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/28/2022] Open
Abstract
Metastatic melanoma remains a life-threatening disease because most tumors develop resistance to targeted kinase inhibitors thereby regaining tumorigenic capacity. We show the 2nd generation hexavalent TRAIL receptor-targeted agonist IZI1551 to induce pronounced apoptotic cell death in mutBRAF melanoma cells. Aiming to identify molecular changes that may confer IZI1551 resistance we combined Dynamic Bayesian Network modelling with a sophisticated regularization strategy resulting in sparse and context-sensitive networks and show the performance of this strategy in the detection of cell line-specific deregulations of a signalling network. Comparing IZI1551-sensitive to IZI1551-resistant melanoma cells the model accurately and correctly predicted activation of NFκB in concert with upregulation of the anti-apoptotic protein XIAP as the key mediator of IZI1551 resistance. Thus, the incorporation of multiple regularization functions in logical network optimization may provide a promising avenue to assess the effects of drug combinations and to identify responders to selected combination therapies.
Collapse
Affiliation(s)
- Greta Del Mistro
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Philippe Lucarelli
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Ines Müller
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Sébastien De Landtsheer
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Anna Zinoveva
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, 70569 Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, 70569 Germany
| | - Stefan Beissert
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
| | - Thomas Sauter
- Systems Biology, Life Science Research Unit, University of Luxembourg, Belvaux, 4367 Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, 01307 Germany
- Center of Regenerative Therapies Dresden, TU-Dresden, Dresden, 01307 Germany
| |
Collapse
|
39
|
Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells. Molecules 2018; 23:molecules23092264. [PMID: 30189637 PMCID: PMC6225471 DOI: 10.3390/molecules23092264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Niclosamide is used to treat intestinal parasite infections, as being an anthelmintic drug. Recently, several papers suggest the niclosamide inhibits multiple signaling pathways, which are highly activated and mutated in cancer. Here, niclosamide was evaluated for identifying strategies to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. Although niclosamide (100–200 nM) alone did not bring about cell death, combinations of niclosamide and TRAIL led to apoptotic cell death in carcinoma cells, but not in normal cells. Niclosamide markedly increased DR5 protein levels, including cell-surface DR5, and decreased c-FLIP protein levels. Down-regulation of DR5 by specific small interfering RNA (siRNA) and ectopic expression of c-FLIP markedly blocked niclosamide plus TRAIL-induced apoptosis. Our findings provide that niclosamide could overcome resistance to TRAIL through up-regulating DR5 on the cell surface and down-regulating c-FLIP in cancer cells. Taken together, niclosamide may be an attractive candidate to overcome TRAIL resistance.
Collapse
|
40
|
Li Y, Gao W, Ma Y, Zhu G, Chen F, Qu H. Dual targeting of survivin and X-linked inhibitor of apoptosis protein suppresses the growth and promotes the apoptosis of gastric cancer HGC-27 cells. Oncol Lett 2018; 16:3489-3498. [PMID: 30127953 PMCID: PMC6096218 DOI: 10.3892/ol.2018.9081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer can be a fatal tumor and therefore represents one of the primary challenges in modern oncology. Survivin and X-linked inhibitor of apoptosis protein (XIAP) are members of the IAP family, which exerts a strong inhibitory effect on cellular apoptosis. In previous studies, the expression levels of survivin and XIAP have been demonstrated to influence the prognosis of patients with gastric cancer; therefore, the present study investigated the effect of silencing survivin and XIAP on the biological activity of the gastric cancer HGC-27 cell line. It was demonstrated that the expression levels of survivin and XIAP were significantly increased in gastric cancer tissues, compared with the adjacent non-tumor tissues. Furthermore, it was observed that the expression levels of survivin and XIAP were similarly elevated in gastric cancer HGC-27 cells, compared with normal gastric epithelial GES-1cells. Furthermore, small interfering RNA-mediated surviving- or XIAP-knockdown, in addition to the dual knockdown of survivin and XIAP, inhibited the proliferation and promoted the apoptosis of HGC-27 cells. Simultaneous inhibition of XIAP and survivin expression was more effective, compared with inhibition of XIAP or survivin alone. These results indicated that the dual knockdown of survivin and XIAP may be an effective strategy for treating gastric cancer in the future.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Wenbo Gao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Guanyu Zhu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Fuhui Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyan Qu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
41
|
Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17028-17039. [PMID: 29687994 DOI: 10.1021/acsami.8b02342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed hairpin-hairpin interaction method. The single nucleotide polymorphism sensitivity and a low detection limit of 26 nM (S/N = 3σ) for complementary targets have been achieved.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Bartlomiej E Krazinski
- Department of Human Histology and Embryology , University of Warmia and Mazury , 30 Warszawska Street , 10082 Olsztyn , Poland
| | - Anna E Kowalczyk
- Department of Human Histology and Embryology , University of Warmia and Mazury , 30 Warszawska Street , 10082 Olsztyn , Poland
| | - Beata Dworakowska
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Slawomir Jakiela
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| | - Magdalena Stobiecka
- Department of Biophysics , Warsaw University of Life Sciences (SGGW) , 159 Nowoursynowska Street , 02776 Warsaw , Poland
| |
Collapse
|
42
|
Konge J, Leteurtre F, Goislard M, Biard D, Morel-Altmeyer S, Vaurijoux A, Gruel G, Chevillard S, Lebeau J. Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant. Oncotarget 2018; 9:23519-23531. [PMID: 29805752 PMCID: PMC5955125 DOI: 10.18632/oncotarget.25240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022] Open
Abstract
Failure of conventional antitumor therapy is commonly associated with cancer stem cells (CSCs), which are often defined as inherently resistant to radiation and chemotherapeutic agents. However, controversy about the mechanisms involved in the radiation response remains and the inherent intrinsic radioresistance of CSCs has also been questioned. These discrepancies observed in the literature are strongly associated with the cell models used. In order to clarify these contradictory observations, we studied the radiosensitivity of breast CSCs using purified CD24−/low/CD44+ CSCs and their corresponding CD24+/CD44low non-stem cells. These cells were generated after induction of the epithelial-mesenchymal transition (EMT) by transforming growth factor β (TGFβ) in immortalized human mammary epithelial cells (HMLE). Consequently, these 2 cellular subpopulations have an identical genetic background, their differences being related exclusively to TGFβ-induced cell reprogramming. We showed that mesenchymal CD24−/low/CD44+ CSCs are more resistant to radiation compared with CD24+/CD44low parental cells. Cell cycle distribution and free radical scavengers, but not DNA repair efficiency, appeared to be intrinsic determinants of cellular radiosensitivity. Finally, for the first time, we showed that reduced radiation-induced activation of the death receptor pathways (FasL, TRAIL and TNF-α) at the transcriptional level was a key causal event in the radioresistance of CD24−/low/CD44+ cells acquired during EMT.
Collapse
Affiliation(s)
- Julie Konge
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - François Leteurtre
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Maud Goislard
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Denis Biard
- CEA, Institut de Biologie François Jacob, SEPIA, Team Cellular Engineering and Human Syndromes, Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Sandrine Morel-Altmeyer
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Aurélie Vaurijoux
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire de Dosimétrie Biologique, 92262 Fontenay-aux-Roses Cedex, France
| | - Gaetan Gruel
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire de Dosimétrie Biologique, 92262 Fontenay-aux-Roses Cedex, France
| | - Sylvie Chevillard
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Jérôme Lebeau
- CEA, Institut de Biologie François Jacob, DSV, iRCM, SREIT, Laboratoire de Cancérologie Expérimentale (LCE), Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
43
|
Zong S, Li J, Yang L, Huang Q, Ye Z, Hou G, Ye M. Synergistic antitumor effect of polysaccharide from Lachnum sp. in combination with cyclophosphamide in hepatocellular carcinoma. Carbohydr Polym 2018; 196:33-46. [PMID: 29891303 DOI: 10.1016/j.carbpol.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Combination therapy with chemotherapeutics is attracting increasing attention as an important treatment option for hepatocellular carcinoma (HCC) due to its complex pathological characteristics. In this study, as a new therapy strategy, combination treatment of LEP-2a (a non-toxic polysaccharide from Lachnum sp.) with cyclophosphamide (CTX) was investigated. Results showed that combination treatment with LEP-2a and CTX processed a significantly synergistic anti-tumor effect in H22 tumor-bearing mice through Fas/FasL mediated caspase-dependent death pathway and mitochondria apoptosis pathway. Moreover, our study indicated that LEP-2a played a crucial role in enhancement of immune response, inhibition of tumor angiogenesis and down-regulation of survival associated proteins. Notably, side effects induced by CTX were relieved after LEP-2a treatment. These results support the conception that LEP-2a has the potential as an ideal adjuvant agent for a more effective combination therapy with CTX against HCC.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Qianli Huang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ziyang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Guohua Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
44
|
Fancy RM, Kim H, Napier T, Buchsbaum DJ, Zinn KR, Song Y. Calmodulin antagonist enhances DR5-mediated apoptotic signaling in TRA-8 resistant triple negative breast cancer cells. J Cell Biochem 2018; 119:6216-6230. [PMID: 29663486 DOI: 10.1002/jcb.26848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/09/2018] [Indexed: 01/25/2023]
Abstract
Patients with triple negative breast cancer (TNBC) have no successful "targeted" treatment modality, which represents a priority for novel therapy strategies. Upregulated death receptor 5 (DR5) expression levels in breast cancer cells compared to normal cells enable TRA-8, a DR5 specific agonistic antibody, to specifically target malignant cells for apoptosis without inducing normal hepatocyte apoptosis. Drug resistance is a common obstacle in TRAIL-based therapy for TNBC. Calmodulin (CaM) is overexpressed in breast cancer. In this study, we characterized the novel function of CaM antagonist in enhancing TRA-8 induced cytotoxicity in TRA-8 resistant TNBC cells and its underlying molecular mechanisms. Results demonstrated that CaM antagonist(s) enhanced TRA-8 induced cytotoxicity in a concentration and time-dependent manner for TRA-8 resistant TNBC cells. CaM directly bound to DR5 in a Ca2+ dependent manner, and CaM siRNA promoted DR5 recruitment of FADD and caspase-8 for DISC formation and TRA-8 activated caspase cleavage for apoptosis in TRA-8 resistant TNBC cells. CaM antagonist, trifluoperazine, enhanced TRA-8 activated DR5 oligomerization, DR5-mediated DISC formation, and TRA-8 activated caspase cleavage for apoptosis, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expression in TRA-8 resistant TNBC cells. These results suggest that CaM could be a key regulator to mediate DR5-mediated apoptotic signaling, and suggests a potential strategy for using CaM antagonists to overcome drug resistance of TRAIL-based therapy for TRA-8 resistant TNBC.
Collapse
Affiliation(s)
- Romone M Fancy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiara Napier
- Hospital, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Radiology and Biomedical Engineering, Michigan State University, East Lansing, Michigan
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
45
|
Woo SM, Seo SU, Min KJ, Kwon TK. BIX-01294 sensitizes renal cancer Caki cells to TRAIL-induced apoptosis through downregulation of survivin expression and upregulation of DR5 expression. Cell Death Discov 2018. [PMID: 29531826 PMCID: PMC5841352 DOI: 10.1038/s41420-018-0035-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BIX-01294 (BIX), a G9a histone methyltransferase inhibitor, has been reported for its anti-proliferative and anticancer activities against various cancer cell lines. In this study, we investigated whether BIX could sensitize TRAIL-mediated apoptosis in various cancer cells. Combined treatment with BIX and TRAIL markedly induced apoptosis in human renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MCF-7), and lung carcinoma (A549) cells. In contrast, BIX and TRAIL co-treatment did not induce apoptosis in normal cells, specifically mouse kidney cell (TCMK-1) and human skin fibroblast (HSF). BIX downregulated protein expression levels of XIAP and survivin at the post-translational level. Overexpression of survivin markedly blocked combined BIX and TRAIL treatment-induced apoptosis, but XIAP had no effect. Furthermore, BIX induced upregulation of DR5 expression at the transcriptional levels, and knockdown of DR5 expression using small interfering RNAs (siRNAs) markedly attenuated BIX and TRAIL-induced apoptosis. Interestingly, siRNA-mediated G9a histone methyltransferase knockdown also enhanced TRAIL-induced apoptosis in Caki cells. However, knockdown of G9a did not change expression levels of XIAP, survivin, and DR5. Therefore, BIX-mediated TRAIL sensitization was independent of histone methyltransferase G9a activity. Taken together, these results suggest that BIX facilitates TRAIL-mediated apoptosis via downregulation of survivin and upregulation of DR5 expression in renal carcinoma Caki cells. ▶ BIX facilitates TRAIL-mediated apoptosis in human renal carcinoma Caki cells. ▶ Downregulation of survivin contributes to BIX plus TRAIL-induced apoptosis. ▶ Upregulation of DR5 is involved in BIX plus TRAIL-mediated apoptosis. ▶ BIX-mediated TRAIL sensitization is independent of ROS production.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601 South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601 South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601 South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 42601 South Korea
| |
Collapse
|
46
|
Wang D, Huang XF, Hong B, Song XT, Hu L, Jiang M, Zhang B, Ning H, Li Y, Xu C, Lou X, Li B, Yu Z, Hu J, Chen J, Yang F, Gao H, Ding G, Liao L, Rollins L, Jones L, Chen SY, Chen H. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight 2018; 3:98368. [PMID: 29415891 PMCID: PMC5821183 DOI: 10.1172/jci.insight.98368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DC-based tumor vaccines have had limited clinical success thus far. SOCS1, a key inhibitor of inflammatory cytokine signaling, is an immune checkpoint regulator that limits DC immunopotency. METHODS We generated a genetically modified DC (gmDC) vaccine to perform immunotherapy. The adenovirus (Ad-siSSF) delivers two tumor-associated antigens (TAAs), survivin and MUC1; secretory bacterial flagellin for DC maturation; and an RNA interference moiety to suppress SOCS1. A 2-stage phase I trial was performed for patients with relapsed acute leukemia after allogenic hematopoietic stem cell transplantation: in stage 1, we compared the safety and efficacy between gmDC treatment (23 patients) and standard donor lymphocyte infusion (25 patients); in stage 2, we tested the efficacy of the gmDC vaccine for 12 acute myeloid leukemia (AML) patients with early molecular relapse. RESULTS gmDCs elicited potent TAA-specific CTL responses in vitro, and the immunostimulatory activity of gmDC vaccination was demonstrated in rhesus monkeys. A stage 1 study established that this combinatory gmDC vaccine is safe in acute leukemia patients and yielded improved survival rate. In stage 2, we observed a complete remission rate of 83% in 12 relapsed AML patients. Overall, no grade 3 or grade 4 graft-versus-host disease incidence was detected in any of the 35 patients enrolled. CONCLUSIONS This study, with combinatory modifications in DCs, demonstrates the safety and efficacy of SOCS1-silenced DCs in treating relapsed acute leukemia. TRIAL REGISTRATION ClinicalTrials.gov NCT01956630. FUNDING National Institute of Health (R01CA90427); the Key New Drug Development and Manufacturing Program of the "Twelfth Five-Year Plan" of China (2011ZX09102-001-29); and Clinical Application Research of Beijing (Z131107002213148).
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Engineering/methods
- Child
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Follow-Up Studies
- Genetic Vectors/genetics
- Graft vs Host Disease/epidemiology
- Graft vs Host Disease/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Transfusion
- Male
- Middle Aged
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Survival Analysis
- Transplantation, Autologous
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Danhong Wang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xue F. Huang
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Liangding Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Min Jiang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yuhang Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Chen Xu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiao Lou
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Botao Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Zhiyong Yu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jiangwei Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jianlin Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Fan Yang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Haiyan Gao
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Guoliang Ding
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Lianming Liao
- Department of Oncology, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lisa Rollins
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey Jones
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Li SS, Tang QL, Wang SH, Chen YH, Liu JJ, Yang XM. Simultaneously Targeting Bcl-2 and Akt Pathways Reverses Resistance of Nasopharyngeal Carcinoma to TRAIL Synergistically. TUMORI JOURNAL 2018; 97:762-70. [DOI: 10.1177/030089161109700614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims and Background Despite progress in treatment techniques, the five-year survival rate of nasopharyngeal carcinoma (NPC) is disappointing. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can selectively induce apoptosis in most tumor cells while sparing normal cells. Given the antiapoptotic functions of Bcl-2 and Akt, we examined the effects of targeting these pathways alone or simultaneously on TRAIL apoptosis in NPC cell lines. Methods and Study Design We first tested the cytotoxic effect of TRAIL and the expression of death receptors, Bcl-2, Akt, and p-Akt on four NPC cell lines by MTT and Western blotting, respectively. Small interfering RNAs (siRNAs) targeting Bcl-2 and PI3–K inhibitor (LY294002) were used alone or combined with TRAIL in the cell lines and cytotoxicity was examined by MTT. Apoptosis rates, mitochondrial transmembrane potential, and apoptotic pathway signals were detected by flow cytometric analysis, DiOC6(3) assays, and Western blotting after the various combination treatments on CNE-2, the cell line that was most resistant to TRAIL. Results Although no direct correlation between the sensitivity to TRAIL and the relative expression levels of Bcl-2 and activated Akt was found in the NPC cell lines examined, siRNA mediated the downregulation of Bcl-2 and LY294002-induced inactivation of Akt, increasing the sensitivity of all examined NPC cell lines to TRAIL. Synergistic enhancement of TRAIL-mediated cytotoxicity was observed in combination treatment of Bcl-2 siRNA and LY294002 compared to cells treated with each treatment alone. The synergistic effects were mediated through increased apoptotic signaling of the mitochondrial pathway, as was evident from the more increased mitochondrial depolarization, activation of caspase-9 and caspase-3, and suppression of XIAP. Conclusions This study provides proof of principle that TRAIL combined with simultaneously targeting the Bcl-2 and Akt signaling pathways may have potential as a novel future treatment strategy for NPC.
Collapse
Affiliation(s)
- Shi-Sheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing-Lai Tang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shu-hui Wang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue-Hong Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Jia Liu
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Ming Yang
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
48
|
Kim EA, Kim SW, Nam J, Sung EG, Song IH, Kim JY, Kwon TK, Lee TJ. Inhibition of c-FLIPL expression by miRNA-708 increases the sensitivity of renal cancer cells to anti-cancer drugs. Oncotarget 2017; 7:31832-46. [PMID: 27092874 PMCID: PMC5077980 DOI: 10.18632/oncotarget.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/23/2016] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of the anti-apoptotic protein, cellular FLICE-like inhibitory protein (c-FLIP), has been associated with tumorigenesis and chemoresistance in various human cancers. Therefore, c-FLIP is an excellent target for therapeutic intervention. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in tumorigenesis, tumor suppression, and resistance or sensitivity to anti-cancer drugs. However, whether miRNAs can suppress c-FLIPL expression in cancer cells is unclear. The aim of this study was to identify miRNAs that could inhibit the growth of renal cancer cells and induce cell death by inhibiting c-FLIPL expression. We found that MiRNA-708 and c-FLIPL expression were inversely correlated. While c-FLIPL expression was upregulated, miRNA-708 was rarely expressed in renal cancer cells. Luciferase reporter assays demonstrated that miRNA-708 negatively regulated c-FLIPL expression by binding to the miRNA-708 binding site in the 3' untranslated region (3'UTR) of c-FLIPL. Ectopic expression of miRNA-708 increased the accumulation of sub-G1 populations and cleavage of procaspase-3 and PARP, which could be prevented by pretreatment with the pan-caspase inhibitor, Z-VAD. Ectopic expression of miRNA-708 also increased the sensitivity to various apoptotic stimuli such as tumor necrosis factor-related apoptosis-inducing ligand, doxorubicin (Dox), and thapsigargin in Caki cells. Interestingly, miRNA-708 specifically repressed c-FLIPL without any change in c-FLIPs expression. In contrast, inhibition of endogenous miRNA-708 using antago-miRNAs resulted in an increase in c-FLIPL protein expression. The expression of c-FLIPL was upregulated in renal cell carcinoma (RCC) tissues compared to normal tissues. In contrast, miRNA-708 expression was reduced in RCC tissues. Finally, miRNA-708 enhanced the tumor-suppressive effect of Dox in a xenograft model of human RCC. In conclusion, miRNA-708 acts as a tumor suppressor because it negatively regulates the anti-apoptotic protein c-FLIPL and regulates the sensitivity of renal cancer cells to various apoptotic stimuli.
Collapse
Affiliation(s)
- Eun-Ae Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-gu, Daegu, Republic of Korea
| | - Sang-Woo Kim
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Jehyun Nam
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Eon-Gi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-gu, Daegu, Republic of Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-gu, Daegu, Republic of Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-gu, Daegu, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Republic of Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Nam-gu, Daegu, Republic of Korea
| |
Collapse
|
49
|
Wu Q, Finley SD. Predictive model identifies strategies to enhance TSP1-mediated apoptosis signaling. Cell Commun Signal 2017; 15:53. [PMID: 29258506 PMCID: PMC5735807 DOI: 10.1186/s12964-017-0207-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thrombospondin-1 (TSP1) is a matricellular protein that functions to inhibit angiogenesis. An important pathway that contributes to this inhibitory effect is triggered by TSP1 binding to the CD36 receptor, inducing endothelial cell apoptosis. However, therapies that mimic this function have not demonstrated clear clinical efficacy. This study explores strategies to enhance TSP1-induced apoptosis in endothelial cells. In particular, we focus on establishing a computational model to describe the signaling pathway, and using this model to investigate the effects of several approaches to perturb the TSP1-CD36 signaling network. METHODS We constructed a molecularly-detailed mathematical model of TSP1-mediated intracellular signaling via the CD36 receptor based on literature evidence. We employed systems biology tools to train and validate the model and further expanded the model by accounting for the heterogeneity within the cell population. The initial concentrations of signaling species or kinetic rates were altered to simulate the effects of perturbations to the signaling network. RESULTS Model simulations predict the population-based response to strategies to enhance TSP1-mediated apoptosis, such as downregulating the apoptosis inhibitor XIAP and inhibiting phosphatase activity. The model also postulates a new mechanism of low dosage doxorubicin treatment in combination with TSP1 stimulation. Using computational analysis, we predict which cells will undergo apoptosis, based on the initial intracellular concentrations of particular signaling species. CONCLUSIONS This new mathematical model recapitulates the intracellular dynamics of the TSP1-induced apoptosis signaling pathway. Overall, the modeling framework predicts molecular strategies that increase TSP1-mediated apoptosis, which is useful in many disease settings.
Collapse
Affiliation(s)
- Qianhui Wu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
50
|
Woo SM, Min KJ, Seo SU, Kim S, Park JW, Song DK, Lee HS, Kim SH, Kwon TK. Up-regulation of 5-lipoxygenase by inhibition of cathepsin G enhances TRAIL-induced apoptosis through down-regulation of survivin. Oncotarget 2017; 8:106672-106684. [PMID: 29290980 PMCID: PMC5739765 DOI: 10.18632/oncotarget.22508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cathepsin G is a serine protease secreted from activated neutrophils, it has important roles in inflammation and immune response. Moreover, cathepsin G promotes tumor cell-cell adhesion and migration in cancer cells. In this study, we investigated whether inhibition of cathepsin G could sensitize TRAIL-mediated apoptosis in cancer cells. An inhibitor of cathepsin G [Cathepsin G inhibitor I (Cat GI); CAS 429676-93-7] markedly induced TRAIL-mediated apoptosis in human renal carcinoma (Caki, ACHN, and A498), lung cancer (A549) and cervical cancer (Hela) cells. In contrast, combined treatment with Cat GI and TRAIL had no effect on apoptosis in normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. Cat GI induced down-regulation of survivin expression at the post-translational level, and overexpression of survivin markedly blocked apoptosis induced by combined treatment with Cat GI plus TRAIL. Interestingly, Cat GI induced down-regulation of survivin via 5-lipoxygenase (5-LOX)-mediated reactive oxygen species (ROS) production. Inhibition of 5-LOX by gene silencing (siRNA) or a pharmacological inhibitor of 5-LOX (zileuton) markedly attenuated combined treatment-induced apoptosis. Taken together, our results indicate that inhibition of cathepsin G sensitizes TRAIL-induced apoptosis through 5-LOX-mediated down-regulation of survivin expression.
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Kyoung-Jin Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Jong-Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Dae Kyu Song
- Department of Physiology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu 704-701, South Korea
| |
Collapse
|