1
|
Li D, Donnelley M, Parsons D, Habgood MD, Schneider-Futschik EK. Extent of foetal exposure to maternal elexacaftor/tezacaftor/ivacaftor during pregnancy. Br J Pharmacol 2024; 181:2413-2428. [PMID: 38770951 DOI: 10.1111/bph.16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Cystic fibrosis (CF) patients are living longer and healthier due to improved treatments, e.g. cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI), with treatment possibly occurring in pregnancy. The risk of ETI to foetuses remain unknown. Thus the effect of maternally administered ETI on foetal genetic and structural development was investigated. EXPERIMENTAL APPROACH Pregnant Sprague Dawley rats were orally treated with ETI (6.7 mg·kg-1·day-1 elexacaftor + 3.5 mg·kg-1·day-1 tezacaftor + 25 mg·kg-1·day-1 ivacaftor) for 7 days from E12 to E19. Tissue samples collected at E19 were analysed using histology and RNA sequencing. Histological changes and differentially expressed genes (DEG) were assessed. KEY RESULTS No overt structural abnormalities were found in foetal pancreas, liver, lung and small intestine after 7-day ETI exposure. Very few non-functionally associated DEG in foetal liver, lung and small intestine were identified using RNA-seq. 29 DEG were identified in thymus (27 up-regulated and two down-regulated) and most were functionally linked to each other. Gene ontology enrichment analysis revealed that multiple muscle-related terms were significantly enriched. Many more DEG were identified in cortex (44 up-regulated and four down-regulated) and a group of these were involved in central nervous system and brain development. CONCLUSION AND IMPLICATION Sub-chronic ETI treatment in late pregnancy does not appear to pose a significant risk to the genetic and structural development of many foetal tissues. However, significant gene changes in foetal thymic myoid cells and cortical neuronal development requires future follow-up studies to assess the risk to these organs.
Collapse
Affiliation(s)
- Danni Li
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Mark D Habgood
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elena K Schneider-Futschik
- Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Unuma K, Wen S, Aki T, Uemura K. Ectopic myogenesis and fibrosis accompany adipogenesis during thymic involution induced by repeated cocaine administration. Biochem Biophys Res Commun 2023; 686:149201. [PMID: 37926043 DOI: 10.1016/j.bbrc.2023.149201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
We have shown previously that daily cocaine administration for 7-14 days in rats resulted in the acceleration of thymic involution, which is, alike to age-related thymic involution, accompanied by ectopic adipogenesis. Here we show that the thymic involution caused by repeated cocaine administration is accompanied by not only adipogenesis but also ectopic myogenesis and fibrosis. In accordance with fibrosis, we observed an increase of N-cadherin, a marker of mesenchymal cells, as well as a decrease of E-cadherin, an epithelial cell marker, in the thymus in response to cocaine administration, suggesting the occurrence of epithelial-to-mesenchymal transition (EMT). Levels of fibronectin was also increased in the thymus of cocaine group compared to control group. In addition, increases in the levels of the transcription factors for myogenic differentiation, myogenin, MYF5, and MYF6, were observed in the thymus administered cocaine for 14 days. These results indicate that the thymic involution induced by cocaine administration involves not only adipogenesis and fibrosis but also ectopic myogenesis, which is scarcely observed and rather pathological process during thymic involution.
Collapse
Affiliation(s)
- Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Payet CA, You A, Fayet OM, Hemery E, Truffault F, Bondet V, Duffy D, Michel F, Fadel E, Guihaire J, Demeret S, Berrih-Aknin S, Le Panse R. Central Role of Macrophages and Nucleic Acid Release in Myasthenia Gravis Thymus. Ann Neurol 2022; 93:643-654. [PMID: 36571580 DOI: 10.1002/ana.26590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is a neuromuscular disease mediated by antibodies against the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG and is characterized by a type I interferon (IFN) signature linked to IFN-β. We investigated if AChR-MG was characterized by an IFN-I signature in the blood, and further investigated the chronic thymic IFN-I signature. METHODS Serum levels of IFN-β and IFN-α subtypes, and mRNA expression for IFN-I subtypes and IFN-stimulated genes in peripheral mononuclear blood cells (PBMCs) were analyzed. The contribution of endogenous nucleic acids in thymic expression of IFN-I subtypes was investigated in human thymic epithelial cell cultures and the mouse thymus. By immunohistochemistry, thymic CD68+ and CD163+ macrophages were analyzed in AChR-MG. To investigate the impact of a decrease in thymic macrophages, mice were treated with an anti-CSF1R antibody. RESULTS No IFN-I signature was observed in the periphery emphasizing that the IFN-I signature is restricted to the MG thymus. Molecules mimicking endogenous dsDNA signalization (Poly(dA:dT) and 2'3'-cGAMP), or dexamethasone-induced necrotic thymocytes increased IFN-β and α-AChR expression by thymic epithelial cells, and in the mouse thymus. A significant decrease in thymic macrophages was demonstrated in AChR-MG. In mice, a decrease in thymic macrophages led to an increase of necrotic thymocytes associated with IFN-β and α-AChR expression. INTERPRETATION These results suggest that the decrease of thymic macrophages in AChR-MG impairs the elimination of apoptotic thymocytes favoring the release of endogenous nucleic acids from necrotic thymocytes. In this inflammatory context, thymic epithelial cells may overexpress IFN-β, which specifically induces α-AChR, resulting in self-sensitization and thymic changes leading to AChR-MG. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Axel You
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Edouard Hemery
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Frederique Truffault
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédérique Michel
- Cytokine signaling unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Sophie Demeret
- Department of Neurology, Neuro Intensive Care Unit, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, UMRS, Paris, France
| |
Collapse
|
4
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
5
|
The enigmatic thymic myoid cells – their 130 years of history, embryonic origin, function and clinical significance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Franchini A. Adaptive Immunity and Skin Wound Healing in Amphibian Adults. Open Life Sci 2019; 14:420-426. [PMID: 33817177 PMCID: PMC7874748 DOI: 10.1515/biol-2019-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/26/2019] [Indexed: 01/18/2023] Open
Abstract
Regeneration and repair with scarring of the skin are two different responses to tissue injury that proceed depending on the animal species. Several studies in multiple organisms have shown that the effectiveness of tissue repair gradually decreases with age in most vertebrates, while the molecular and cellular mechanisms underlying the diverse potentials remain incompletely understood. It is clear, however, that immune system actively participates in the whole process and immune-related activities can mediate both negative and positive roles to influence the quality and diversity of tissue response to damage. Compared with innate immunity, our understanding of the significance of adaptive immune cells in normal repair outcome is limited and deserves further investigation. Here, experimental evidence supporting the contribution of lymphocytes and the involvement of lymphoid organs in skin wound healing are discussed, focusing on the findings emerged in adult amphibians, key animal models for tissue repair and regeneration research.
Collapse
Affiliation(s)
- Antonella Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, via Campi 213/D, 41125 Modena, Italy
| |
Collapse
|
7
|
Paiola M, Knigge T, Picchietti S, Duflot A, Guerra L, Pinto PIS, Scapigliati G, Monsinjon T. Oestrogen receptor distribution related to functional thymus anatomy of the European sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:106-120. [PMID: 28756001 DOI: 10.1016/j.dci.2017.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In jawed vertebrates, the crosstalk between immune and endocrine system as well as many fundamental mechanisms of T cell development are evolutionary conserved. Oestrogens affect mammalian thymic function and plasticity, but the mechanisms of action and the oestrogen receptors involved remain unclear. To corroborate the oestrogenic regulation of thymic function in teleosts and to identify the implicated oestrogen receptor subtypes, we examined the distribution of nuclear and membrane oestrogen receptors within the thymus of the European Sea bass, Dicentrarchus labrax, in relation to its morpho-functional organisation. Immunohistological analysis specified thymus histology and organisation in teleosts and described, for the first time, Hassall's corpuscle like structures in the medulla of sea bass. All oestrogen receptors were expressed at the transcript and protein level, both in T cells and in stromal cells belonging to specific functional areas. These observations suggest complex regulatory actions of oestrogen on thymic function, notably through the stromal microenvironment, comprising both, genomic and non-genomic pathways that are likely to affect T cell maturation and trafficking processes. Comparison with birds, rodents and humans supports the thymic localization of oestrogen receptors and suggests that oestrogens modulate T cell maturation in all gnathostomes.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 SEBIO, Université Le Havre Normandie, F-76600 Le Havre, France.
| |
Collapse
|
8
|
Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathol 2017; 134:869-888. [PMID: 28756524 DOI: 10.1007/s00401-017-1754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.
Collapse
|
9
|
Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-Aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2017; 1412:137-145. [DOI: 10.1111/nyas.13519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie A. Cron
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Solène Maillard
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - José Villegas
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Frédérique Truffault
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Muriel Sudres
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Nadine Dragin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Sonia Berrih-Aknin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Rozen Le Panse
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| |
Collapse
|
10
|
Mikušová R, Mešťanová V, Polák Š, Varga I. What do we know about the structure of human thymic Hassall’s corpuscles? A histochemical, immunohistochemical, and electron microscopic study. Ann Anat 2017; 211:140-148. [DOI: 10.1016/j.aanat.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
11
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
12
|
Mešťanová V, Varga I. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974; Paris France
- CNRS FRE3617; Paris France
- Sorbonne University; UPMC Univ Paris 06; Paris France
- AIM; Institute of Myology; Paris France
| |
Collapse
|
14
|
Human thymus medullary epithelial cells promote regulatory T-cell generation by stimulating interleukin-2 production via ICOS ligand. Cell Death Dis 2014; 5:e1420. [PMID: 25210803 PMCID: PMC4540205 DOI: 10.1038/cddis.2014.377] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023]
Abstract
Natural thymic T regulatory (tTreg) cells maintain tolerance to self-antigen. These cells are generated in the thymus, but how this generation occurs is still controversial. Furthermore, the contribution of thymus epithelial cells to this process is still unclear, especially in humans. Using an exceptional panel of human thymic samples, we demonstrated that medullary thymus epithelial cells (mTECs) promote the generation of tTreg cells and favor their function. These effects were mediated through soluble factors and were mTEC specific since other cell types had no such effect. By evaluating the effects of mTECs on the absolute number of Treg cells and their state of proliferation or cell death, we conclude that mTECs promote the proliferation of newly generated CD25+ cells from CD4+CD25- cells and protect Treg cells from cell death. This observation implicates Bcl-2 and mitochondrial membrane potential changes, indicating that the intrinsic cell death pathway is involved in Treg protection by mTECs. Interestingly, when the mTECs were cultured directly with purified Treg cells, they were able to promote their phenotype but not their expansion, suggesting that CD4+CD25- cells have a role in the expansion process. To explore the mechanisms involved, several neutralizing antibodies were tested. The effects of mTECs on Treg cells were essentially due to interleukin (IL)-2 overproduction by thymus CD4+ T cells. We then searched for a soluble factor produced by mTECs able to increase IL-2 production by CD4+ cells and could identify the inducible T-cell costimulator ligand (ICOSL). Our data strongly suggest a « ménage à trois »: mTEC cells (via ICOSL) induce overproduction of IL-2 by CD25- T cells leading to the expansion of tTreg cells. Altogether, these results demonstrate for the first time a role of mTECs in promoting Treg cell expansion in the human thymus and implicate IL-2 and ICOSL in this process.
Collapse
|
15
|
Franchini A, Bertolotti E. The thymus and skin wound healing in Xenopus laevis adults. Acta Histochem 2014; 116:1141-7. [PMID: 24998030 DOI: 10.1016/j.acthis.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023]
Abstract
The capacity to heal wounds without scars is generally lost during the development in vertebrates. To explore the involvement of cells of the adaptive immune system in a scar-like tissue based repair, we studied the thymus in 15-month-old Xenopus after skin incisional wounding. After injury, the organ size significantly increased and marked changes in structure and TNF-α immunoreactivity were detected in the medullary microenvironment when the granulation tissue was present in the repair area. Most of the lymphocytes present in this wound connective tissue were found to be immunoreactive to specific T cell markers. Thymic mucocyte-like cells and epithelial cysts increased in number, the myoid cells acquired a faster turnover and associated in large clusters, blood vessels were dilated and corpuscles similar to mammalian Hassall's bodies were formed in medulla. A higher number of stronger medullary TNF-α immunoreactive cells, i.e., dendritic, epithelial, granular basophilic and myoid cells were also induced after wounding. With progression of healing the thymus gradually returned to histochemical patterns of controls. Our results suggest that during the scar-based skin repair of Xenopus adults the activity of the thymus may be stimulated and associated with the T lymphocyte infiltration observed into injured granulation tissue.
Collapse
|
16
|
Cufi P, Soussan P, Truffault F, Fetouchi R, Robinet M, Fadel E, Berrih-Aknin S, Le Panse R. Thymoma-associated myasthenia gravis: On the search for a pathogen signature. J Autoimmun 2014; 52:29-35. [DOI: 10.1016/j.jaut.2013.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
|
17
|
Berrih-Aknin S, Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmun 2014; 52:90-100. [PMID: 24389034 DOI: 10.1016/j.jaut.2013.12.011] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022]
Abstract
Autoimmune myasthenia gravis (MG) is characterized by muscle weakness caused by antibodies directed against proteins of the neuromuscular junction. The main antigenic target is the acetylcholine receptor (AChR), but the muscle Specific Kinase (MuSK) and the low-density lipoprotein receptor-related protein (LRP4) are also targets. This review summarizes the clinical and biological data available for different subgroups of patients, who are classified according to antigenic target, age of onset, and observed thymic abnormalities, such as follicular hyperplasia or thymoma. Here, we analyze in detail the role of the thymus in the physiopathology of MG and propose an explanation for the development of the thymic follicular hyperplasia that is commonly observed in young female patients with anti-AChR antibodies. The influence of the pro-inflammatory environment is discussed, particularly the role of TNF-α and Th17-related cytokines, which could explain the escape of thymic T cells from regulation and the chronic inflammation in the MG thymus. Together with this immune dysregulation, active angiogenic processes and the upregulation of chemokines could promote thymic follicular hyperplasia. MG is a multifactorial disease, and we review the etiological mechanisms that could lead to its onset. Recent global genetic analyses have highlighted potential susceptibility genes. In addition, miRNAs, which play a crucial role in immune function, have been implicated in MG by recent studies. We also discuss the role of sex hormones and the influence of environmental factors, such as the viral hypothesis. This hypothesis is supported by reports that type I interferon and molecules mimicking viral infection can induce thymic changes similar to those observed in MG patients with anti-AChR antibodies.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of myology, Paris, France.
| | - Rozen Le Panse
- INSERM U974, Paris, France; CNRS UMR 7215, Paris, France; UPMC Univ Paris 6, Paris, France; AIM, Institute of myology, Paris, France.
| |
Collapse
|
18
|
Berrih-Aknin S, Le Panse R. [Myasthenia gravis and autoantibodies: Pathophysiology of the different subtypes]. Rev Med Interne 2013; 35:413-20. [PMID: 24156976 DOI: 10.1016/j.revmed.2013.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Myasthenia gravis is characterized by muscle weakness and abnormal fatigability. It is an autoimmune disease caused by the presence of antibodies against components of the muscle membrane localized at the neuromuscular junction. In most cases, the autoantibodies are directed against the acetylcholine receptor (AChR). Recently, other targets have been described, such as muscle-specific kinase protein (MuSK) or lipoprotein related protein 4 (LRP4). The origin of the autoimmune response is not known, but thymic abnormalities and defects in immune regulation certainly play a major role in patients with anti-AChR antibodies. Genetic predisposition probably influences the occurrence of the disease. Sex hormones seem to play a role in the early form of the disease. Muscle weakness is fluctuating and worsens with exercise. Myasthenia gravis could be classified according to the location of the affected muscles (ocular versus generalized), the age of onset of symptoms, thymic abnormalities and profile of autoantibodies. These criteria are used to optimize the management and treatment of patients. In this review, we analyze the latest concepts of the pathophysiology of myasthenia gravis according to the different subgroups of the disease, including a description of the role of immunological, genetic and environmental factors. The potential viral hypothesis of this disease is discussed. Finally, we also discuss the biological assays available to validate the diagnosis.
Collapse
Affiliation(s)
- S Berrih-Aknin
- Unité mixte de recherche (UMR), CNRS UMR7215/Inserm U974/UPMC UM76/AIM, thérapie des maladies du muscle strié, groupe hospitalier Pitié-Salpêtrière, 105, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - R Le Panse
- Unité mixte de recherche (UMR), CNRS UMR7215/Inserm U974/UPMC UM76/AIM, thérapie des maladies du muscle strié, groupe hospitalier Pitié-Salpêtrière, 105, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
19
|
Weiss JM, Cufi P, Le Panse R, Berrih-Aknin S. The thymus in autoimmune Myasthenia Gravis: Paradigm for a tertiary lymphoid organ. Rev Neurol (Paris) 2013; 169:640-9. [DOI: 10.1016/j.neurol.2013.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/10/2013] [Accepted: 02/04/2013] [Indexed: 01/02/2023]
|
20
|
McKeon A, Lennon VA, LaChance DH, Klein CJ, Pittock SJ. Striational antibodies in a paraneoplastic context. Muscle Nerve 2013; 47:585-7. [DOI: 10.1002/mus.23774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew McKeon
- Department of Medicine and Pathology; Mayo Clinic; Hilton 3-78, 200 First Street SW Rochester Minnesota 55905 USA
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
| | - Vanda A. Lennon
- Department of Medicine and Pathology; Mayo Clinic; Hilton 3-78, 200 First Street SW Rochester Minnesota 55905 USA
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
- Department of Laboratory and Immunology; Mayo Clinic; Rochester Minnesota USA
| | - Daniel H. LaChance
- Department of Medicine and Pathology; Mayo Clinic; Hilton 3-78, 200 First Street SW Rochester Minnesota 55905 USA
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
| | - Christopher J. Klein
- Department of Medicine and Pathology; Mayo Clinic; Hilton 3-78, 200 First Street SW Rochester Minnesota 55905 USA
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
| | - Sean J. Pittock
- Department of Medicine and Pathology; Mayo Clinic; Hilton 3-78, 200 First Street SW Rochester Minnesota 55905 USA
- Department of Neurology; Mayo Clinic; Rochester Minnesota USA
| |
Collapse
|
21
|
Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH, Roussin R, Fadel E, Berrih-Aknin S, Le Panse R. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2012; 73:281-93. [PMID: 23280437 DOI: 10.1002/ana.23791] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 09/28/2012] [Accepted: 10/13/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disease mediated mainly by anti-acetylcholine receptor (AChR) antibodies. The thymus plays a primary role in MG pathogenesis. As we recently showed an inflammatory and antiviral signature in MG thymuses, we investigated whether pathogen-sensing molecules could contribute to an anti-AChR response. METHODS We studied the effects of toll-like receptor agonists on the expression of α-AChR and various tissue-specific antigens (TSAs) in human thymic epithelial cell (TEC) cultures. As polyinosinic-polycytidylic acid (poly[I:C]), which mimics double-stranded RNA (dsRNA), stimulated specifically α-AChR expression, the signaling pathways involved were investigated. In parallel, we analyzed the expression of dsRNA-signaling components in the thymus of MG patients, and the relevance of our data was investigated in vivo in poly(I:C)-injected mice. RESULTS We demonstrate that dsRNA signaling induced by poly(I:C) specifically triggers the overexpression of α-AChR in TECs and not of other TSAs. A poly(I:C) effect was also observed on MG TECs. This induction is mediated through toll-like receptor 3 (TLR3) and protein kinase R (PKR), and by the release of interferon (IFN)-β. In parallel, human MG thymuses also display an overexpression of TLR3, PKR, and IFN-β. In addition, poly(I:C) injections specifically increase thymic expression of α-AChR in wild-type mice, but not in IFN-I receptor knockout mice. These injections also lead to an anti-AChR autoimmune response characterized by a significant production of serum anti-AChR antibodies and a specific proliferation of B cells. INTERPRETATION Because anti-AChR antibodies are highly specific for MG and are pathogenic, dsRNA-signaling activation could contribute to the etiology of MG.
Collapse
Affiliation(s)
- Perrine Cufi
- Research unit CNRS UMR7215/INSERM U974/UPMC UM76/AIM - Institute of Myology - Therapies of the disorders of striated muscle Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Franchini A, Bertolotti E. The thymus and tail regenerative capacity in Xenopus laevis tadpoles. Acta Histochem 2012; 114:334-41. [PMID: 21794900 DOI: 10.1016/j.acthis.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/19/2023]
Abstract
A morphofunctional analysis of the thymus from differently aged Xenopus laevis tadpoles during regeneration of the tail is reported. In stage 50 larvae, competent to regenerate, the appendage cut provoked thymic structural modifications that affected the medullary microenvironment cells and changes in TNF-α immunoreactivity. Mucocyte-like cells, multicellular epithelial cysts, myoid cells and cells immunoreactive to TNF-α increased in number. Increased numbers of lymphocytes were also found in regenerating areas and, at the end of regeneration, thymic structural and immunocytochemical patterns were restored to control levels. The observed cellular responses and the induction of molecules critical for thymus constitutive processes suggest a stimulation of thymic function after tail amputation. In older larvae, whose capacity to form a new complete and correctly patterned tail was reduced, thymic morphological changes were more severe and may persist throughout the regeneration process with a significant reduction in organ size. In these larvae the histological patterns and the marked thymic decrease may be related to the events occurring during regeneration, i.e. the higher inflammatory response and the reduced tail regenerative potential.
Collapse
|
23
|
Wong ESW, Papenfuss AT, Heger A, Hsu AL, Ponting CP, Miller RD, Fenelon JC, Renfree MB, Gibbs RA, Belov K. Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genomics 2011; 12:420. [PMID: 21854594 PMCID: PMC3173455 DOI: 10.1186/1471-2164-12-420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/19/2011] [Indexed: 02/08/2023] Open
Abstract
Background The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby. Results We show that both the tammar thoracic and the cervical thymuses displayed gene expression profiles consistent with roles in T-cell development. Both thymuses expressed genes that mediate distinct phases of T-cells differentiation, including the initial commitment of blood stem cells to the T-lineage, the generation of T-cell receptor diversity and development of thymic epithelial cells. Crucial immune genes, such as chemokines were also present. Comparable patterns of expression of non-coding RNAs were seen. 67 genes differentially expressed between the two thymuses were detected, and the possible significance of these results are discussed. Conclusion This is the first study comparing the transcriptomes of two thymuses from a single individual. Our finding supports that both thymuses are functionally equivalent and drive T-cell development. These results are an important first step in the understanding of the genetic processes that govern marsupial immunity, and also allow us to begin to trace the evolution of the mammalian immune system.
Collapse
Affiliation(s)
- Emily S W Wong
- Faculty of Veterinary Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|