1
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Poirier DG, Bhavsar SP, Sibley PK. Fish tissue accumulation and proteomic response to microcystins is species-dependent. CHEMOSPHERE 2022; 287:132028. [PMID: 34474382 DOI: 10.1016/j.chemosphere.2021.132028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 μg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. Update on the adverse effects of microcystins on the liver. ENVIRONMENTAL RESEARCH 2021; 195:110890. [PMID: 33617868 DOI: 10.1016/j.envres.2021.110890] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Chen G, Wang L, Li W, Zhang Q, Hu T. Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110444. [PMID: 32169726 DOI: 10.1016/j.ecoenv.2020.110444] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Nodularin (NOD) is a kind of cyanobacterial toxins. It is of concern due to elicit severe genotoxicity in humans and animals. The comprehensive evaluation of NOD-induced adverse effects in living organisms is urgently needed. This study is aimed to report the developmental toxicity and molecular mechanism using zebrafish embryos exposed to NOD. The embryonic toxicity induced by NOD is demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, embryonic malformation as well as defects in angiogenesis and common cardinal vein remodeling. NOD triggered a decreased rate of angiogenesis through inhibiting endothelial cells migration. NOD induced embryonic cell apoptosis and DNA damage, which can be alleviated by antioxidant N-acetyl-L-cysteine. NOD significantly caused oxidative damage as indicated by changes in reactive oxygen species, superoxide dismutase, catalase, glutathione and malondialdehyde. NOD also altered the expression of vascular development-genes (DLL4, CDH5, VEGFA, VEGFC) and apoptosis-related genes (BAX, BCL-2, P53, CASPASE 3). Taken together, NOD induced adverse effect on zebrafish embryos development, which may be associated with oxidative stress and apoptosis through the activation of P53-BAX/BCL-2-CASPASE 3-mediated pathway.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenping Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
6
|
Li K, Huang M, Xu P, Wang M, Ye S, Wang Q, Zeng S, Chen X, Gao W, Chen J, Zhang Q, Zhong Z, Sun Y, Liu Q. Microcystins-LR induced apoptosis via S-nitrosylation of GAPDH in colorectal cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110096. [PMID: 31901813 DOI: 10.1016/j.ecoenv.2019.110096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/25/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Microcystins-LR (MC-LR), a cyanobacterial toxins, initiate apoptosis in normal and tumor cells. Nitric oxide produced by iNOS is necessary for MC-LR-induced apoptosis. However, the underlying mechanism of NO mediated MC-LR cytotoxicity remains unclear. Here, we performed in vitro experiments on MC-LR cytotoxicity associated with NO induced S-nitrosyation of GAPDH in human colon cancer cells SW480. MTT assay indicated that MC-LR decreased the cellular viability by high concentration (>1 μM). Flow cytometer assay revealed that apoptosis was core mode for MC-LR cytotoxicity. Griess assay showed that MC-LR exposure increased the release of NO through the function of NOS1 and NOS2 in SW480 cells. In turn, NO stress induced the S-nitrosylated modification of GAPDH leading to its nuclear translocation following Siah1 binding. CHIP assay showed that the nuclear GADPH increased P53 transcript of a panner of apoptosis related genes. Moreover, apoptosis induced by MC-LR could be reduced by GAPDH or si-Siah1 or NOSs inhibitor, L-NAME. Thus, our study verified a molecular mechanism of NO/GAPDH/Siah1 cascade in MC-LR mediated apoptosis in colorectal cancer cells, providing a further understanding the in vitro molecular mechanism of MC-LR colorectal toxicity.
Collapse
Affiliation(s)
- Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meng Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Yang Sun
- Delinhai Environmental Technology, Inc, Wuxi, 214000, China
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Center for Medical Transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China.
| |
Collapse
|
7
|
AlKahtane AA, Abushouk AI, Mohammed ET, ALNasser M, Alarifi S, Ali D, Alessia MS, Almeer RS, AlBasher G, Alkahtani S, Aleya L, Abdel-Daim MM. Fucoidan alleviates microcystin-LR-induced hepatic, renal, and cardiac oxidative stress and inflammatory injuries in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2935-2944. [PMID: 31838672 DOI: 10.1007/s11356-019-06931-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 04/15/2023]
Abstract
Fucoidans (FUCs) are sulfated polysaccharides that have a wide range of bioactivities. The current study was designed to evaluate the antioxidant potential of FUC against microcystin-LR (MC-LR)-induced toxicity. Five mice groups (n = 8) were used. Group 1 received saline, Group 2 received oral FUC 100 mg/kg/day for 21 days, Group 3 received i.p. MC-LR 10 μg/kg/day for 14 days, Group 4 received MC-LR plus FUC 50 mg/kg/day, and Group 5 received MC-LR plus FUC 100 mg/kg/day. The present study showed that MC-LR administration was associated with significant increases (p < 0.01) in serum concentrations of hepatic (aspartate transferase, alanine transferase, and alkaline phosphatase), renal (urea and creatinine), and cardiac (creatine kinase and CK-MB) injury biomarkers, as well as serum lactate dehydrogenase, cholesterol, and pro-inflammatory cytokines (interleukins-1β and 6, and tumor necrosis factor-α), compared with the control group. Further, MC-LR-intoxicated mice exhibited significantly higher (p < 0.01) hepatic, renal, and cardiac tissue levels of malondialdehyde and nitric oxide, as well as lower tissue levels of reduced glutathione and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison with control mice. Treatment by FUC significantly ameliorated all the above-mentioned alterations in a dose-dependent manner with frequent restoration of the normal ranges in the FUC 100 mg/kg/day dose group. Moreover, treatment by FUC alone at 100 mg/kg/day was not associated with significant negative alterations in the assessed biochemical parameters, highlighting its safety at this dose. In conclusion, treatment by FUC significantly ameliorated organ injury, induced by MC-LR in mouse hepatic, renal, and cardiac tissues.
Collapse
Affiliation(s)
- Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Moonerah ALNasser
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alessia
- Department of Biology, Science College, Al-Imam Muhammad Ibn Saud, Islamic University, Riyadh, Saudi Arabia
| | - Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249 Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
8
|
Sun Y, Yu X, Li M, Liu J. P44/42 MAPK signal pathway-mediated hyperphosphorylation of paxillin and redistribution of E-cadherin was involved in microcystin-LR-reduced cellular adhesion in a human liver cell line. CHEMOSPHERE 2018; 200:594-602. [PMID: 29505932 DOI: 10.1016/j.chemosphere.2018.02.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-LR (MC-LR) is the most common and toxic variant of microcystins. We hypothesize that p44/42 MAPK (ERK1/2) signal pathway is involved in MC-LR-induced cell adhesion alteration in a human liver cell line-HL7702. We identified that MC-LR constantly activated MEK1/2-ERK1/2 signal pathway for 24 h, 48 h and 72 h in vitro. MC-LR reduced hepatocytes adhesion efficiency. Furthermore, as the focal adhesion biomarker, hyperphosphorylation of paxillin (ser83) was induced by MC-LR, which can be blocked by ERK1/2 pathway inhibitor (U0126) and was enhanced after hepatocytes transfected with pCMV6-MAPK plasmid. E-cadherin, as a biomarker which reflects the dynamic of cell-cell adhesion, its redistribution in hepatocytes was induced by MC-LR, and these redistribution and colocalization can be attenuated by U0126. Furthermore, MC-LR increased the co-localization efficiency of p-ERK1/2 with E-cadherin and paxillin. Finally, MC-LR-induced adhesive alteration of hepatocytes can be blocked by ERK1/2 signal pathway inhibitor. These data suggest ERK1/2-phospho-paxillin (ser83)/E-cadherin axis is involved in MC-LR toxic mechanism, which probably provides adaptive protection against MC-LR-induced hepatocytes adhesion changes.
Collapse
Affiliation(s)
- Yu Sun
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiaomu Yu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Mo Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
10
|
Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon 2016; 125:99-109. [PMID: 27889601 DOI: 10.1016/j.toxicon.2016.11.254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Microcystins are a group of toxins produced by freshwater cyanobacteria. Uptake of microcystin-leucine arginine (MC-LR) by organic anion transporting polypeptide 1B2 in hepatocytes results in inhibition of protein phosphatase 1A and 2A, and subsequent cell death. Studies performed in primary rat hepatocytes demonstrate prototypical apoptosis after MC-LR exposure; however, no study has directly tested whether apoptosis is critically involved in vivo in the mouse, or in human hepatocytes. MC-LR (120 μg/kg) was administered to C57BL/6J mice and cell death was evaluated by alanine aminotransferase (ALT) release, caspase-3 activity in the liver, and histology. Mice exposed to MC-LR had increases in plasma ALT values, and hemorrhage in the liver, but no increase in capase-3 activity in the liver. Pre-treatment with the pan-caspase inhibitor z-VAD-fmk failed to protect against cell death measured by ALT, glutathione depletion, or hemorrhage. Administration of MC-LR to primary human hepatocytes resulted in significant toxicity at concentrations between 5 nM and 1 μM. There were no elevated caspase-3 activities and pretreatment with z-VAD-fmk failed to protect against cell death in human hepatocytes. MC-LR treated human hepatocytes stained positive for propidium iodide, indicating membrane instability, a marker of necrosis. Of note, both increases in PI positive cells, and increases in lactate dehydrogenase release, occurred before the onset of complete actin filament collapse. In conclusion, apoptosis does not contribute to MC-LR-induced cell death in the in vivo mouse model or in primary human hepatocytes in vitro. Thus, targeting necrotic cell death mechanisms will be critical for preventing microcystin-induced liver injury.
Collapse
|
11
|
Teneva I, Klaczkowska D, Batsalova T, Kostova Z, Dzhambazov B. Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines. Toxicon 2016; 111:50-7. [DOI: 10.1016/j.toxicon.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
|
12
|
Cao Z, Liu D, Zhang Q, Sun X, Li Y. Aluminum Chloride Induces Osteoblasts Apoptosis via Disrupting Calcium Homeostasis and Activating Ca(2+)/CaMKII Signal Pathway. Biol Trace Elem Res 2016; 169:247-53. [PMID: 26138010 DOI: 10.1007/s12011-015-0417-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Aluminum promotes osteoblast (OB) apoptosis. Apoptosis is induced by the disordered calcium homeostasis. Therefore, to investigate the relationship between Al-induced OB apoptosis and calcium homeostasis, calvarium OBs from neonatal rats (3-4 days) were cultured and exposed to 0.048-mg/mL Al(3+) or 0.048-mg/mL Al(3+) combined with 5 μM BAPTA-AM (OBs were pretreated with 5 μM BAPTA-AM for 1 h, then added 0.048 mg/mL Al(3+)), respectively. Then OB apoptosis rate, intracellular calcium ions concentration ([Ca(2+)]i), mRNA expression level of calmodulin (CaM), and protein expression levels of CaM and p-CaMKII in OBs were examined. The result showed that AlCl3 increased OB apoptosis rate, and [Ca(2+)]i and p-CaMKII expression levels and decreased CaM expression levels, whereas BAPTA-AM relieved the effects. These results proved that AlCl3 induced OB apoptosis by disrupting the intracellular Ca(2+) homeostasis and activating the Ca(2+)/CaMKII signal pathway. Our findings can provide new insights for revealing the apoptosis mechanism of OBs exposed to AlCl3.
Collapse
Affiliation(s)
- Zheng Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Dawei Liu
- Heilongjiang Province Hospital, Harbin, 150036, China
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qiuyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xudong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Cell Death Inducing Microbial Protein Phosphatase Inhibitors--Mechanisms of Action. Mar Drugs 2015; 13:6505-20. [PMID: 26506362 PMCID: PMC4626703 DOI: 10.3390/md13106505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023] Open
Abstract
Okadaic acid (OA) and microcystin (MC) as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS) and activation of Ca2+/calmodulin kinase II (CaM-KII). New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte) death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced) cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity.
Collapse
|
14
|
Cai F, Liu J, Li C, Wang J. Intracellular Calcium Plays a Critical Role in the Microcystin-LR-Elicited Neurotoxicity Through PLC/IP3 Pathway. Int J Toxicol 2015; 34:551-8. [PMID: 26395499 DOI: 10.1177/1091581815606352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotoxicity of microcystin-leucine-arginine (MCLR) has been widely reported. However, the mechanism is not fully understood. Using primary hippocampal neurons, we tested the hypothesis that MCLR-triggered activation in intracellular free calcium concentration ([Ca(2+)](i)) induces the death of neurons. Microcystin-leucine-arginine inhibited cell viability at a range of 0.1 to 30 μmol/L and caused a dose-dependent increase in [Ca(2+)](i). This increase in [Ca(2+)](i) was observed in Ca(2+)-free media and blocked by an endoplasmic reticulum Ca(2+) pump inhibitor, suggesting intracellular Ca(2+) release. Moreover, pretreatment of hippocampal neurons with intracellular Ca(2+) chelator (O,O'-bis (2-aminophenyl) ethyleneglycol-N,N,N',N'-tetraacetic acid, tetraacetoxy-methyl ester) and inositol 1,4,5-trisphosphate receptor antagonist (2-aminoethoxydiphenyl borate) could block both the Ca(2+) mobilization and the neuronal death following MCLR exposure. In contrast, the ryanodine receptor inhibitor (dantrolene) did not ameliorate the effect of MCLR. In conclusion, MCLR disrupts [Ca(2+)](i) homeostasis in neurons by releasing Ca(2+) from intracellular stores, and this increase in [Ca(2+)](i) may be a key determinant in the mechanism underlying MCLR-induced neurotoxicity.
Collapse
Affiliation(s)
- Fei Cai
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cairong Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Liu J, Sun Y. The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol Lett 2015; 236:1-7. [PMID: 25922137 DOI: 10.1016/j.toxlet.2015.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/28/2022]
Abstract
Microcystins are a family of monocyclic heptapeptides produced by cyanobacteria during water blooms. Microcystin-LR (MC-LR) is the most common member of this family. Microcystins induce a variety of toxic cellular effects, including oxidative damage, apoptosis, cytoskeletal destabilization, and cancer cell invasion. Recent studies have examined the molecular mechanism of their toxicity. Protein phosphatase 2A (PP2A) is emerging as a critical regulator of the microcystin-induced molecular network. Furthermore, it has been shown that several molecules or signal pathways associated with PP2A play important roles in microcystin-induced toxic effects. This review summarizes the recent research progress of the molecular mechanism and focuses on the role of PP2A in MC-LR toxicity, which will contribute to a better understanding of the mechanism of microcystin toxicity, and will provide biomarkers for toxicity assessment and control.
Collapse
Affiliation(s)
- Jing Liu
- Regenerative Medicine Centre, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Yu Sun
- Regenerative Medicine Centre, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
16
|
Wang L, Chan JYW, Rêgo JV, Chong CM, Ai N, Falcão CB, Rádis-Baptista G, Lee SMY. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim Biophys Acta Gen Subj 2015; 1850:1253-60. [PMID: 25731980 DOI: 10.1016/j.bbagen.2015.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/15/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Animal venoms contain a diverse array of proteins and enzymes that are toxic toward various physiological systems. However, there are also some practical medicinal uses for these toxins including use as anti-bacterial and anti-tumor agents. METHODS In this study, we identified a nine-residue cryptic oligopeptide, KRFKKFFKK (EVP50) that is repeatedly encoded in tandem within vipericidin sequences. RESULTS EVP50 displayed in vivo potent lethal toxicity to zebrafish larvae (LD50=6 μM) when the peptide's N-terminus was chemically conjugated to rhodamine B (RhoB). In vitro, RhoB-conjugated EVP50 (RhoB-EVP50) exhibited a concentration-dependent cytotoxic effect toward MCF-7 and MDA-MB-231 breast cancer cells. In MCF-7 cells, the RhoB-EVP50 nonapeptide accumulated inside the cells within minutes. In the cytoplasm, the RhoB-EVP50 induced extracellular calcium influx and intracellular calcium release. Membrane budding was also observed after incubation with micromolar concentrations of the fluorescent EVP50 conjugate. CONCLUSIONS The conjugate's interference with calcium homeostasis, its intracellular accumulation and its induced membrane dysfunction (budding and vacuolization) seem to act in concert to disrupt the cell circuitry. Contrastively, unconjugated EVP50 peptide did not display neither toxic nor cytotoxic activities in our in vivo and in vitro models. GENERAL SIGNIFICANCE The synergic mechanism of toxicity was restricted to the structurally modified encrypted vipericidin nonapeptide.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Y W Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Juciane V Rêgo
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceara, Brazil; Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nana Ai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cláudio B Falcão
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Brazil.
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
17
|
Ufelmann H, Schrenk D. Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 2015; 29:16-26. [DOI: 10.1016/j.tiv.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|
18
|
Zhang H, Fang W, Xiao W, Lu L, Jia X. Protective role of oligomeric proanthocyanidin complex against hazardous nodularin-induced oxidative toxicity in Carassius auratus lymphocytes. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:247-257. [PMID: 24794815 DOI: 10.1016/j.jhazmat.2014.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/09/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Nodularin (NOD) is a hazardous material widely detected in water blooms. Fish immune cells are extremely vulnerable to NOD-induced oxidative stress. Oligomeric proanthocyanidin complex (OPC), extracted from grapeseed, was used as an antioxidant to eliminate reactive oxygen species and prevent apoptotic effects. Carassius auratus lymphocytes were treated with different concentrations (0, 10, 100, and 1,000 μg/L) of OPC and a constant dose (100 μg/L) of NOD for 12h in vitro. OPC inhibited mitosis by decreasing intracellular levels of oxidative stress, regulating antioxidant enzymes (CAT, SOD, GPx, GR, and GST), mediating bcl-2 family proteins, and deactivating caspase-3. Glutathione (GSH) levels in group V (NOD 100 μg/L; OPC 1,000 μg/L) showed a twofold increase compared with corresponding levels in group II (NOD 100 μg/L). Structure parameters of NOD and NOD-GSH were calculated using SYBYL 7.1 software. ClogP and HINK logP values of NOD-GSH decreased by 10.4- and 2.3-fold, respectively, compared with corresponding values of NOD. OPC-stimulated GSH can lower the lipophilicity and polarity of NOD. OPC, as a protective agent, can alleviate NOD-induced toxicity in C. auratus lymphocytes by regulating oxidative stress and inducing NOD-GSH detoxification.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China.
| | - Wendi Fang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Wenfeng Xiao
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Liping Lu
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Xiuying Jia
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| |
Collapse
|
19
|
Microcystins alter chemotactic behavior in Caenorhabditis elegans by selectively targeting the AWA sensory neuron. Toxins (Basel) 2014; 6:1813-36. [PMID: 24918360 PMCID: PMC4073131 DOI: 10.3390/toxins6061813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/17/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms expose humans and animals to microcystins (MCs) through contaminated drinking water. While hepatotoxicity following acute exposure to MCs is well documented, neurotoxicity after sub-lethal exposure is poorly understood. We developed a novel statistical approach using a generalized linear model and the quasibinomial family to analyze neurotoxic effects in adult Caenorhabditis elegans exposed to MC-LR or MC-LF for 24 h. Selective effects of toxin exposure on AWA versus AWC sensory neuron function were determined using a chemotaxis assay. With a non-monotonic response MCs altered AWA but not AWC function, and MC-LF was more potent than MC-LR. To probe a potential role for protein phosphatases (PPs) in MC neurotoxicity, we evaluated the chemotactic response in worms exposed to the PP1 inhibitor tautomycin or the PP2A inhibitor okadaic acid for 24 h. Okadaic acid impaired both AWA and AWC function, while tautomycin had no effect on function of either neuronal cell type at the concentrations tested. These findings suggest that MCs alter the AWA neuron at concentrations that do not cause AWC toxicity via mechanisms other than PP inhibition.
Collapse
|
20
|
Herfindal L, Krakstad C, Myhren L, Hagland H, Kopperud R, Teigen K, Schwede F, Kleppe R, Døskeland SO. Introduction of aromatic ring-containing substituents in cyclic nucleotides is associated with inhibition of toxin uptake by the hepatocyte transporters OATP 1B1 and 1B3. PLoS One 2014; 9:e94926. [PMID: 24740327 PMCID: PMC3989234 DOI: 10.1371/journal.pone.0094926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Analogs of the cyclic nucleotides cAMP and cGMP have been extensively used to mimic or modulate cellular events mediated by protein kinase A (PKA), Exchange protein directly activated by cAMP (Epac), or protein kinase G (PKG). We report here that some of the most commonly used cyclic nucleotide analogs inhibit transmembrane transport mediated by the liver specific organic anion transporter peptides OATP1B1 and OATP1B3, unrelated to actions on Epac, PKA or PKG. Several cAMP analogs, particularly with 8-pCPT-substitution, inhibited nodularin (Nod) induced primary rat hepatocyte apoptosis. Inhibition was not mediated by PKA or Epac, since increased endogenous cAMP, and some strong PKA- or Epac-activating analogs failed to protect cells against Nod induced apoptosis. The cAMP analogs inhibiting Nod induced hepatocyte apoptosis also reduced accumulation of radiolabeled Nod or cholic acid in primary rat hepatocytes. They also inhibited Nod induced apoptosis in HEK293 cells with enforced expression of OATP1B1 or 1B3, responsible for Nod transport into cells. Similar results were found with adenosine analogs, disconnecting the inhibitory effect of certain cAMP analogs from PKA or Epac. The most potent inhibitors were 8-pCPT-6-Phe-cAMP and 8-pCPT-2′-O-Me-cAMP, whereas analogs like 6-MB-cAMP or 8-Br-cAMP did not inhibit Nod uptake. This suggests that the addition of aromatic ring-containing substituents like the chloro-phenyl-thio group to the purines of cyclic nucleotides increases their ability to inhibit the OATP-mediated transport. Taken together, our data show that aromatic ring substituents can add unwanted effects to cyclic nucleotides, and that such nucleotide analogs must be used with care, particularly when working with cells expressing OATP1B1/1B3, like hepatocytes, or intact animals where hepatic metabolism can be an issue, as well as certain cancer cells. On the other hand, cAMP analogs with substituents like bromo, monobutyryl were non-inhibitory, and could be considered an alternative when working with cells expressing OATP1 family members.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bacterial Toxins/metabolism
- Bacterial Toxins/pharmacokinetics
- Bacterial Toxins/pharmacology
- Biological Transport/drug effects
- Cells, Cultured
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Glycocholic Acid/metabolism
- Glycocholic Acid/pharmacokinetics
- Glycocholic Acid/pharmacology
- Guanine Nucleotide Exchange Factors/metabolism
- HEK293 Cells
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Liver-Specific Organic Anion Transporter 1
- Male
- Microscopy, Confocal
- Models, Molecular
- Nucleotides, Cyclic/chemistry
- Nucleotides, Cyclic/pharmacology
- Organic Anion Transporters/chemistry
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- Organic Anion Transporters, Sodium-Independent/chemistry
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacokinetics
- Peptides, Cyclic/pharmacology
- Protein Structure, Tertiary
- Rats, Wistar
- Solute Carrier Organic Anion Transporter Family Member 1B3
Collapse
Affiliation(s)
- Lars Herfindal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Translational Signaling Group, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | | | - Lene Myhren
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hanne Hagland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Reidun Kopperud
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Rune Kleppe
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
21
|
Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from Streptosporangium sp. induces apoptosis selectively in myeloid leukemia cell lines and patient cells. Mar Drugs 2013; 11:332-49. [PMID: 23364682 PMCID: PMC3640383 DOI: 10.3390/md11020332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 01/24/2023] Open
Abstract
Despite recent improvement in therapy, acute myeloid leukemia (AML) is still associated with high lethality. In the presented study, we analyzed the bioactive compound iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from a marine actinomycetes bacterium for the ability to induce cell death in a range of cell types. Iodinin showed selective toxicity to AML and acute promyelocytic (APL) leukemia cells, with EC50 values for cell death up to 40 times lower for leukemia cells when compared with normal cells. Iodinin also successfully induced cell death in patient-derived leukemia cells or cell lines with features associated with poor prognostic such as FLT3 internal tandem duplications or mutated/deficient p53. The cell death had typical apoptotic morphology, and activation of apoptotic signaling proteins like caspase-3. Molecular modeling suggested that iodinin could intercalate between bases in the DNA in a way similar to the anti-cancer drug daunorubicin (DNR), causing DNA-strand breaks. Iodinin induced apoptosis in several therapy-resistant AML-patient blasts, but to a low degree in peripheral blood leukocytes, and in contrast to DNR, not in rat cardiomyoblasts. The low activity towards normal cell types that are usually affected by anti-leukemia therapy suggests that iodinin and related compounds represent promising structures in the development of anti-cancer therapy.
Collapse
|
22
|
Nodularin exposure induces SOD1 phosphorylation and disrupts SOD1 co-localization with actin filaments. Toxins (Basel) 2012; 4:1482-99. [PMID: 23242317 PMCID: PMC3528258 DOI: 10.3390/toxins4121482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS), which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1), without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.
Collapse
|
23
|
Oftedal L, Myhren L, Jokela J, Gausdal G, Sivonen K, Døskeland SO, Herfindal L. The lipopeptide toxins anabaenolysin A and B target biological membranes in a cholesterol-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3000-9. [PMID: 22842546 DOI: 10.1016/j.bbamem.2012.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 07/19/2012] [Indexed: 11/26/2022]
Abstract
The two novel cyanobacterial cyclic lipopeptides, anabaenolysin (Abl) A and B permeabilised mammalian cells, leading to necrotic death. Abl A was a more potent haemolysin than other known biodetergents, including digitonin, and induced discocyte-echinocyte transformation in erythrocytes. The mitochondria of the dead cells appeared intact with regard to both ultrastructure and membrane potential. Also isolated rat liver mitochondria were resistant to Abl, judged by their ultrastructure and lack of cytochrome c release. The sparing of the mitochondria could be related to the low cholesterol content of their outer membrane. In fact, a supplement of cholesterol in liposomes sensitised them to Abl. In contrast, the prokaryote-directed cyclic lipopeptide surfactin lysed preferentially non-cholesterol-containing membranes. In silico comparison of the positions of relevant functional chemical structures revealed that Abl A matched poorly with surfactin in spite of the common cyclic lipopeptide structure. Abl A and the plant-derived glycolipid digitonin had, however, predicted overlaps of functional groups, particularly in the cholesterol-binding tail of digitonin. This may suggest independent evolution of Abl and digitonin to target eukaryotic cholesterol-containing membranes. Sub-lytic concentrations of Abl A or B allowed influx of propidium iodide into cells without interfering with their long-term cell viability. The transient permeability increase allowed the influx of enough of the cyanobacterial cyclic peptide toxin nodularin to induce apoptosis. The anabaenolysins might therefore not only act solely as lysins, but also as cofactors for the internalisation of other toxins. They represent a potent alternative to digitonin to selectively disrupt cholesterol-containing biological membranes.
Collapse
Affiliation(s)
- Linn Oftedal
- Department of Biomedicine, University of Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
24
|
PCV2 induces apoptosis and modulates calcium homeostasis in piglet lymphocytes in vitro. Res Vet Sci 2012; 93:1525-30. [PMID: 22542803 DOI: 10.1016/j.rvsc.2012.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
Abstract
This study investigated the process of PCV2-induced apoptosis and the effect of PCV2 inoculation on calcium homeostasis in piglet lymphocytes in vitro. PCV2-inoculated lymphocytes exhibited chromatin condensation, chromatin segregation, the appearance of membrane-enclosed apoptotic bodies, and DNA fragmentation. Moreover, the proportion of apoptotic cells increased significantly in PCV2-inoculated lymphocytes compared with controls. These results demonstrate that PCV2 induces lymphocyte apoptosis. Some evidence suggests that an alteration in the intracellular free Ca2+ concentration ([Ca2+]i) could cause apoptosis. We measured elevated [Ca2+]i in PCV2-inoculated lymphocytes for 12 or 24 h compared with controls. Our results support that PCV2-induced apoptosis may be relative to [Ca2+]i. In addition, calmodulin (CaM) was increased in PCV2-inoculated lymphocytes for 12 h compared with controls. The amount of CaM-dependent protein kinase II (CaMKII) did not change with PCV2 inoculation. We infer that the increased [Ca2+]i can bind CaM protein, but functions independently of CaMKII. Inositol 1,4,5-trisphosphate receptor (IP3R)-1 mRNA expression increased with PCV2 inoculation, whereas plasma Ca2+-ATP4 mRNA expression decreased. A decreased Ca2+-ATP4 level may inhibit Ca2+ efflux, and the increased IP3R-1 may trigger Ca2+ release from the endoplasmic reticulum. Both of these changes may contribute to increased [Ca2+]i.
Collapse
|
25
|
CaMKII-γ mediates phosphorylation of BAD at Ser170 to regulate cytokine-dependent survival and proliferation. Biochem J 2012; 442:139-49. [PMID: 22103330 DOI: 10.1042/bj20111256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.
Collapse
|
26
|
Lezcano N, Sedán D, Lucotti I, Giannuzzi L, Vittone L, Andrinolo D, Mundiña-Weilenmann C. Subchronic microcystin-lr exposure increased hepatic apoptosis and induced compensatory mechanisms in mice. J Biochem Mol Toxicol 2012; 26:131-8. [DOI: 10.1002/jbt.20419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 01/19/2023]
|
27
|
Abstract
Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²⁺ overload resulting in neuronal cell death (excitotoxicity). The Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²⁺ stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.
Collapse
|
28
|
Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice. Toxicol Appl Pharmacol 2011; 255:9-17. [PMID: 21684301 DOI: 10.1016/j.taap.2011.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/07/2023]
Abstract
Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We report that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae.
Collapse
|
29
|
Herfindal L, Myhren L, Kleppe R, Krakstad C, Selheim F, Jokela J, Sivonen K, Døskeland SO. Nostocyclopeptide-M1: a potent, nontoxic inhibitor of the hepatocyte drug transporters OATP1B3 and OATP1B1. Mol Pharm 2011; 8:360-7. [PMID: 21214185 DOI: 10.1021/mp1002224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have isolated a novel cyanobacterial cyclic peptide (nostocyclopeptide M1; Ncp-M1) that blocks the hepatotoxic action of microcystin (MC) and nodularin (Nod). We show here that Ncp-M1 is nontoxic to primary hepatocytes in long-term culture. Ncp-M1 does not affect any known intracellular targets or pathways involved in MC action, like protein phosphatases, CaM-KII, or ROS-dependent cell death effectors. In support of this conclusion Ncp-M1 had no protective effect when microinjected into cells. Rather, the antitoxin effect was solely due to blocked hepatocyte uptake of MC and Nod. The hepatic uptake of MC and Nod is mainly via the closely related organic anion transporters OATP1B1 and OATP1B3, which also mediate hepatic transport of endogenous metabolites and hormones as well as drugs. OATP1B3 is also expressed in some aggressive cancers, where it confers apoptosis resistance. We show that Ncp-M1 inhibits transport through OATP1B3 and OATP1B1 expressed in HEK293 cells. The Ncp-M1 molecule has several nonproteinogenic amino acids and an imino bond, which hamper its synthesis. Moreover, a cyclic all L-amino acid heptapeptide analogue of Ncp-M1 also inhibits the OATP1B1/1B3 transporters, and with higher OATP1B3 preference than Ncp-M1 itself. The nontoxic Ncp-M1 and its synthetic cyclic peptide analogues thus provide new tools to probe the role of OATB1B1/1B3 mediated drug and metabolite transport in liver and cancer cells. They can also serve as scaffolds to design new, exopeptidase resistant OATP1B3-specific modulators.
Collapse
Affiliation(s)
- Lars Herfindal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jokela J, Herfindal L, Wahlsten M, Permi P, Selheim F, Vasconçelos V, Døskeland SO, Sivonen K. A novel cyanobacterial nostocyclopeptide is a potent antitoxin against microcystins. Chembiochem 2010; 11:1594-9. [PMID: 20575133 DOI: 10.1002/cbic.201000179] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyanobacterial hepatotoxins (microcystins and nodularins) cause numerous animal poisonings worldwide each year and are threats to human health. However, we found that extracts from several cyanobacteria isolates failed to induce hepatotoxicity even if they contained high concentrations of the liver toxin microcystin. The antitoxic activity abolishes all morphological hallmarks of microcystin-induced apoptosis, and therefore invalidates cell-based assays of the microcystin content of bloom-forming cyanobacteria. The antitoxin was purified from a cyanobacterial isolate (Nostoc sp. XSPORK 13A) from the Baltic Sea, and the activity was shown to reside in a novel cyclic peptide of the nostocyclopeptide family (nostocyclopeptide M1, Ncp-M1) that consists of seven amino acids (Tyr1-Tyr2-D-HSe3-L-Pro4-L-Val5-(2S,4S)-4-MPr6-Tyr7; MW=881) with an imino linkage between Tyr1 and Tyr7. Ncp-M1 did not compete with labelled microcystin for binding to protein phosphatase 2A; this explains why the antitoxin did not interfere with phosphatase-based microcystin assays. Currently used agents that interfere with microcystin action, such as inhibitors of ROS formation, microcystin uptake and Cam-kinase activity, are themselves inherently toxic. Since Ncp-M1 is potent and nontoxic it promises to become a useful mechanistic tool as soon as its exact cellular target is elucidated.
Collapse
Affiliation(s)
- Jouni Jokela
- Department of Food and Environmental Sciences, Division of Microbiology, University of Helsinki, P. O. Box 56, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins (Basel) 2010; 2:2359-410. [PMID: 22069558 PMCID: PMC3153167 DOI: 10.3390/toxins2102359] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/01/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Collapse
Affiliation(s)
- Elisabete Valério
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Sandra Chaves
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| | - Rogério Tenreiro
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| |
Collapse
|
32
|
Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 2010; 11:268-287. [PMID: 20162015 PMCID: PMC2821003 DOI: 10.3390/ijms11010268] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022] Open
Abstract
Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.
Collapse
Affiliation(s)
- Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +351-223-401-813; Fax: +351-223-390-608
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| |
Collapse
|
33
|
Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Mar Drugs 2009; 7:605-23. [PMID: 20098602 PMCID: PMC2810217 DOI: 10.3390/md7040605] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 11/16/2022] Open
Abstract
In spite of the high abundance and species diversity of diatoms, only a few bioactive compounds from them have been described. The present study reveals a high number of mammalian cell death inducing substances in biofilm-associated diatoms sampled from the intertidal zone. Extracts from the genera Melosira, Amphora, Phaeodactylum and Nitzschia were all found to induce leukemia cell death, with either classical apoptotic or autophagic features. Several extracts also contained inhibitors of thrombin-induced blood platelet activation. Some of this activity was caused by a high content of adenosine in the diatoms, ranging from 0.07 to 0.31 μg/mg dry weight. However, most of the bioactivity was adenosine deaminase-resistant. An adenosine deaminase-resistant active fraction from one of the extracts was partially purified and shown to induce apoptosis with a distinct phenotype. The results show that benthic diatoms typically found in the intertidal zone may represent a richer source of interesting bioactive compounds than hitherto recognized.
Collapse
|
34
|
Herfindal L, Kasprzykowski F, Schwede F, Łankiewicz L, Fladmark KE, Łukomska J, Wahlsten M, Sivonen K, Grzonka Z, Jastorff B, Døskeland SO. Acyloxymethyl esterification of nodularin-R and microcystin-LA produces inactive protoxins that become reactivated and produce apoptosis inside intact cells. J Med Chem 2009; 52:5758-62. [PMID: 19705870 DOI: 10.1021/jm900502e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the esterification of the carboxyl groups of the cyclic peptide toxins nodularin-R and microcystin-LA to produce stable diacetoxymethyl and dipropionyloxymethyl ester derivatives. The derivatives had no activity but were reactivated upon esterase treatment. When injected into cells, the acyloxymethyl moieties were cleaved off and apoptosis induced. Linking the acyloxymethyl-ester moiety of these potent toxins to carriers destined for endocytosis paves the way for selective apoptosis induction in target (e.g., cancer) cells.
Collapse
Affiliation(s)
- Lars Herfindal
- Translational Signaling Group, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Santamaría E, Mora MI, Muñoz J, Sánchez-Quiles V, Fernández-Irigoyen J, Prieto J, Corrales FJ. Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 2009; 9:4495-4506. [PMID: 19688729 DOI: 10.1002/pmic.200900110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/13/2009] [Indexed: 11/08/2022]
Abstract
Proteasome inhibitors are potential therapeutic agents in the treatment of hepatocarcinoma and other liver diseases. The analysis of alternative protein phosphorylation states might contribute to elucidate the underlying mechanisms of proteasome inhibitor-induced apoptosis. We have investigated the response of mouse liver progenitor-29 (MLP-29) cells to MG132 using a combination of phosphoprotein affinity chromatography, DIGE, and nano LC-MS/MS. Thirteen unique deregulated phosphoproteins involved in chaperone activity, stress response, mRNA processing and cell cycle control were unambiguously identified. Alterations in NDRG1 and stathmin suggest new mechanisms associated to proteasome inhibitor-induced apoptosis in MLP-29 cells. Particularly, a transient modification of the phosphorylation state of Ser(16), Ser(25) and Ser(38), which are involved in the regulation of stathmin activity, was detected in three distinct isoforms upon proteasome inhibition. The parallel deregulation of calcium/calmodulin-activated protein kinase II, extracellular regulated kinase-1/2 and cyclin-dependent kinase-2, might explain the modified phosphorylation pattern of stathmin. Interestingly, stathmin phosphorylation profile was also modified in response to epoxomicin treatment, a more specific proteasome inhibitor. In summary, we report here data supporting that regulation of NDRG1 and stathmin by phosphorylation at specific Ser/Thr residues may participate in the cellular response induced by proteasome inhibitors.
Collapse
Affiliation(s)
- Enrique Santamaría
- Center for Applied Medical Research, University of Navarra, Proteomics Laboratory, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Gácsi M, Antal O, Vasas G, Máthé C, Borbély G, Saker ML, Gyori J, Farkas A, Vehovszky A, Bánfalvi G. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro 2009; 23:710-8. [PMID: 19250963 DOI: 10.1016/j.tiv.2009.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/20/2008] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
Abstract
In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.
Collapse
Affiliation(s)
- Mariann Gácsi
- Department of Experimental Zoology, Balaton Limnological Research Institute, Hungarian Academy of Sciences, Tihany, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stringent time-dependent transregulation of calcium calmodulin kinase II (CaMKII) is implicated in anti-apoptotic control. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:214-23. [DOI: 10.1016/j.bbamcr.2007.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/29/2022]
|
38
|
Abolition of stress-induced protein synthesis sensitizes leukemia cells to anthracycline-induced death. Blood 2008; 111:2866-77. [PMID: 18182573 DOI: 10.1182/blood-2007-07-103242] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthracycline action has been thought to involve the neosynthesis of proapoptotic gene products and to therefore depend on protein synthesis for optimal effect. We found that inhibition of general, but not rapamycin-sensitive (cap-dependent), protein synthesis in the preapoptotic period enhanced anthracycline-induced acute myelogenous leukemia (AML) cell death, both in vitro and in several animal AML models. Pre-apoptotic anthracycline-exposed AML cells had altered translational specificity, with enhanced synthesis of a subset of proteins, including endoplasmatic reticulum chaperones. The altered translational specificity could be explained by perturbation (protein degradation, truncation, or dephosphorylation) of the cap-dependent translation initiation machinery and of proteins control-ing translation of specific mRNAs. We propose that judiciously timed inhibition of cap-independent translation is considered for combination therapy with anthracyclines in AML.
Collapse
|
39
|
Liu Y, Templeton DM. Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 2007; 581:1481-6. [PMID: 17367784 DOI: 10.1016/j.febslet.2007.03.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Cadmium is a toxic metal that initiates both mitogenic responses and cell death. We show that Cd(2+) increases phosphorylation and activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) in mesangial cells, in a concentration-dependent manner. Activation is biphasic with peaks at 1-5 min and 4-6 h. Cadmium also activates Erk, but this appears to be independent of CaMK-II. At 10-20 microM, Cd(2+) initiates apoptosis in 25-55% of mesangial cells by 6h. Inhibition of CaMK-II, but not of Erk, suppresses Cd(2+)-induced apoptosis. We conclude that activation of CaMK-II by Cd(2+) contributes to apoptotic cell death, independent of Erk activation.
Collapse
Affiliation(s)
- Ying Liu
- University of Toronto, Laboratory Medicine and Pathobiology, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|