1
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Morioka S, Kajioka D, Yamaoka Y, Ellison RM, Tufan T, Werkman IL, Tanaka S, Barron B, Ito ST, Kucenas S, Okusa MD, Ravichandran KS. Chimeric efferocytic receptors improve apoptotic cell clearance and alleviate inflammation. Cell 2022; 185:4887-4903.e17. [PMID: 36563662 PMCID: PMC9930200 DOI: 10.1016/j.cell.2022.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/03/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.
Collapse
Affiliation(s)
- Sho Morioka
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Daiki Kajioka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Yusuke Yamaoka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rochelle M Ellison
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Turan Tufan
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Shinji Tanaka
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Brady Barron
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Satoshi T Ito
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA; Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Tokyo, Japan
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA; VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
4
|
Gong P, Chen S, Zhang L, Hu Y, Gu A, Zhang J, Wang Y. RhoG-ELMO1-RAC1 is involved in phagocytosis suppressed by mono-butyl phthalate in TM4 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35440-35450. [PMID: 30350139 DOI: 10.1007/s11356-018-3503-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is ubiquitous in the environment. Male reproductive toxicity of DBP and its active metabolite mono-butyl phthalate (MBP) has been demonstrated in in vivo and in vitro studies. The objective of this study was to explore the roles of RhoG-ELMO1-RAC1 in phagocytosis disrupted by MBP in TM4 cells. Mouse Sertoli cell lines (TM4 cells) were maintained and treated by various levels of MBP (1, 10, and 100 μM) for 24 h. Then, cells were harvested for further experiments. Phagocytic capacity of TM4 cells was detected by flow cytometry, immunofluorescence, and oil red O staining. RAC1 activity (GTP-RAC1) was measured by RAC1 pull-down assay. Expression of mRNA and protein related to phagocytosis including ELMO1, RhoG, and RAC1 was analyzed by qRT-PCR and Western blots, respectively. MBP inhibited phagocytosis of TM4 cells and downregulated GTP-RAC1 expression and movement to membrane markedly. Furthermore, ELMO1 protein expression was downregulated in a dose-dependent manner after MBP treatments. Additionally, expression of proteins relating to phagocytosis, including RhoG and GTP-RAC1, was decreased significantly, but expression of total-RAC1 remained unchanged. GTP-RAC1 expression increased dramatically after TM4 cells were transfected with ELMO1 or RhoG plasmid, but restored under co-treatments with MBP and ELMO1/RhoG plasmid. This study suggests that MBP can reduce the phagocytosis of Sertoli cells through RhoG-ELMO1-RAC1 pathway.
Collapse
Affiliation(s)
- Pan Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Shanshan Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Lulu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yanhui Hu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
5
|
Barth ND, Marwick JA, Vendrell M, Rossi AG, Dransfield I. The "Phagocytic Synapse" and Clearance of Apoptotic Cells. Front Immunol 2017; 8:1708. [PMID: 29255465 PMCID: PMC5723006 DOI: 10.3389/fimmu.2017.01708] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Apoptosis and subsequent phagocytic clearance of apoptotic cells is important for embryonic development, maintenance of tissues that require regular cellular renewal and innate immunity. The timely removal of apoptotic cells prevents progression to secondary necrosis and release of cellular contents, preventing cellular stress and inflammation. In addition, altered phagocyte behavior following apoptotic cell contact and phagocytosis engages an anti-inflammatory phenotype, which impacts upon development and progression of inflammatory and immune responses. Defective apoptotic cell clearance underlies the development of various inflammatory and autoimmune diseases. There is considerable functional redundancy in the receptors that mediate apoptotic cell clearance, highlighting the importance of this process in diverse physiological processes. A single phagocyte may utilize multiple receptor pathways for the efficient capture of apoptotic cells by phagocytes (tethering) and the subsequent initiation of signaling events necessary for internalization. In this review, we will consider the surface alterations and molecular opsonization events associated with apoptosis that may represent a tunable signal that confers distinct intracellular signaling events and hence specific phagocyte responses in a context-dependent manner. Efficient molecular communication between phagocytes and apoptotic targets may require cooperative receptor utilization and the establishment of efferocytic synapse, which acts to stabilize adhesive interactions and facilitate the organization of signaling platforms that are necessary for controlling phagocyte responses.
Collapse
Affiliation(s)
- Nicole D Barth
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John A Marwick
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc Vendrell
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Dransfield
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Fond AM, Ravichandran KS. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:25-49. [PMID: 27558816 PMCID: PMC6721615 DOI: 10.1007/978-3-319-39406-0_2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.
Collapse
Affiliation(s)
- Aaron M Fond
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, and the Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Abstract
In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.
Collapse
Affiliation(s)
- Peter M Henson
- Department of Pediatrics, National Jewish Health, and Departments of Immunology and Medicine, University of Colorado, Denver, Colorado 80206;
| |
Collapse
|
8
|
Lawrence P, Rieder E. Insights into Jumonji C-domain containing protein 6 (JMJD6): a multifactorial role in foot-and-mouth disease virus replication in cells. Virus Genes 2017; 53:340-351. [PMID: 28364140 DOI: 10.1007/s11262-017-1449-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/18/2017] [Indexed: 12/24/2022]
Abstract
The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history, and recent reports indicating a multifactorial role in foot-and-mouth disease virus (FMDV) infection have further complicated the functionality of this protein. It was first identified as the phosphatidylserine receptor on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Subsequent study revealed a nuclear subcellular localization, where JMJD6 participated in lysine hydroxylation and arginine demethylation of histone proteins and other non-histone proteins. Interestingly, to date, JMDJ6 remains the only known arginine demethylase with a growing list of known substrate molecules. These conflicting associations rendered the subcellular localization of JMJD6 to be quite nebulous. Further muddying this area, two different groups illustrated that JMJD6 could be induced to redistribute from the cell surface to the nucleus of a cell. More recently, JMJD6 was demonstrated to be a host factor contributing to the FMDV life cycle, where it was not only exploited for its arginine demethylase activity, but also served as an alternative virus receptor. This review attempts to coalesce these divergent roles for a single protein into one cohesive account. Given the diverse functionalities already characterized for JMJD6, it is likely to continue to be a confounding protein resulting in much contention going into the near future.
Collapse
Affiliation(s)
- Paul Lawrence
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA.
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, USDA/ARS/NAA/FADRU, P.O. Box 848, Greenport, NY, 11944-0848, USA
| |
Collapse
|
9
|
Penberthy KK, Ravichandran KS. Apoptotic cell recognition receptors and scavenger receptors. Immunol Rev 2016; 269:44-59. [PMID: 26683144 DOI: 10.1111/imr.12376] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphatidylserine recognition receptors are a highly diverse set of receptors grouped by their ability to recognize the 'eat-me' signal phosphatidylserine on apoptotic cells. Most of the phosphatidylserine recognition receptors dampen inflammation by inducing the production of anti-inflammatory mediators during the phagocytosis of apoptotic corpses. However, many phosphatidylserine receptors are also capable of recognizing other ligands, with some receptors being categorized as scavenger receptors. It is now appreciated that these receptors can elicit different downstream events for particular ligands. Therefore, how phosphatidylserine recognition receptors mediate specific signals during recognition of apoptotic cells versus other ligands, and how this might help regulate the inflammatory state of a tissue is an important question that is not fully understood. Here, we revisit the work on signaling downstream of the phosphatidylserine recognition receptor BAI1, and evaluate how these and other signaling modules mediate signaling downstream from other receptors, including Stabilin-2, MerTK, and αvβ5. We also propose the concept that phosphatidylserine recognition receptors could be viewed as a subset of scavenger receptors that are capable of eliciting anti-inflammatory responses to apoptotic cells.
Collapse
Affiliation(s)
- Kristen K Penberthy
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Lawrence P, Rai D, Conderino JS, Uddowla S, Rieder E. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 2016; 492:38-52. [PMID: 26896934 DOI: 10.1016/j.virol.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease virus (FMDV) utilizes four integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as its primary cell receptor. During cell culture propagation, FMDV frequently adapts to use heparan sulfate (HS), and rarely utilizes an unidentified third receptor. Capsid mutations acquired by a soluble integrin resistant FMDV cause (i) adaptation to CHO-677 cells (ii) increased affinity to membrane-bound Jumonji C-domain containing protein 6 (JMJD6) (iii) induced JMJD6 re-localization from the cell surface and cytoplasm to the nucleus. Interestingly, pre-treatment of cells with N- and C-terminal JMJD6 antibodies or by simultaneous incubation of mutant virus with soluble JMJD6 (but not by treatment with HS or αvβ6) impaired virus infectivity in cultured cells. JMJD6 and mutant virus co-purified by reciprocal co-immunoprecipitation. Molecular docking predictions suggested JMJD6 C-terminus interacts with mutated VP1 capsid protein. We conclude when specific VP1 mutations are displayed, JMJD6 contributes to FMDV infectivity and may be a previously unidentified FMDV receptor.
Collapse
Affiliation(s)
- Paul Lawrence
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Devendra Rai
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Joseph S Conderino
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Sabena Uddowla
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY 11944, United States.
| |
Collapse
|
11
|
Ismail OZ, Zhang X, Bonventre JV, Gunaratnam L. G protein α 12 (Gα 12) is a negative regulator of kidney injury molecule-1-mediated efferocytosis. Am J Physiol Renal Physiol 2015; 310:F607-F620. [PMID: 26697979 DOI: 10.1152/ajprenal.00169.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023] Open
Abstract
Kidney injury molecule-1 (KIM-1) is a receptor for the "eat me" signal, phosphatidylserine, on apoptotic cells. The specific upregulation of KIM-1 by injured tubular epithelial cells (TECs) enables them to clear apoptotic cells (also known as efferocytosis), thereby protecting from acute kidney injury. Recently, we uncovered that KIM-1 binds directly to the α-subunit of heterotrimeric G12 protein (Gα12) and inhibits its activation by reactive oxygen species during renal ischemia-reperfusion injury (Ismail OZ, Zhang X, Wei J, Haig A, Denker BM, Suri RS, Sener A, Gunaratnam L. Am J Pathol 185: 1207-1215, 2015). Here, we investigated the role that Gα12 plays in KIM-1-mediated efferocytosis by TECs. We showed that KIM-1 remains bound to Gα12 and suppresses its activity during phagocytosis. When we silenced Gα12 expression using small interefering RNA, KIM-1-mediated engulfment of apoptotic cells was increased significantly; in contrast overexpression of constitutively active Gα12 (QLGα12) resulted in inhibition of efferocytosis. Inhibition of RhoA, a key effector of Gα12, using a chemical inhibitor or expression of dominant-negative RhoA, had the same effect as inhibition of Gα12 on efferocytosis. Consistent with this, silencing Gα12 suppressed active RhoA in KIM-1-expressing cells. Finally, using primary TECs from Kim-1+/+ and Kim-1-/- mice, we confirmed that engulfment of apoptotic cells requires KIM-1 expression and that silencing Gα12 enhanced efferocytosis by primary TECs. Our data reveal a previously unknown role for Gα12 in regulating efferocytosis and that renal TECs require KIM-1 to mediate this process. These results may have therapeutic implications given the known harmful role of Gα12 in acute kidney injury.
Collapse
Affiliation(s)
- Ola Z Ismail
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada.,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Xizhong Zhang
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Joseph V Bonventre
- Renal Division and Biomedical Engineering Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; .,Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.
Collapse
Affiliation(s)
- Yingyu Mao
- a Department of Biological Sciences; Center for Cancer, Genetic Diseases, and Gene Regulation; Fordham University ; Bronx , NY , USA
| | | |
Collapse
|
13
|
Morin A, Cordelières FP, Cherfils J, Olofsson B. RhoGDI3 and RhoG: Vesicular trafficking and interactions with the Sec3 Exocyst subunit. Small GTPases 2014; 1:142-156. [PMID: 21686268 DOI: 10.4161/sgtp.1.3.15112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/13/2022] Open
Abstract
RhoGDIs are negative regulators of small GTP-binding proteins of the Rho family, which have essential cellular functions in most aspects of actin-based morphology and motility processes. They extract Rho proteins from membranes, keep them in inactive rhoGDI/Rho complexes and eventually deliver them again to specific membranes in response to cellular signals. RhoGDI3, the most divergent member of the rhoGDI family, is well suited to document the underlying molecular mechanisms, since the active and inactive forms of its cellular target, RhoG, have well-separated subcellular localizations. In this study, we investigate trafficking structures and molecular interactions involved in rhoGDI3-mediated shuttling of RhoG between the Golgi and the plasma membrane.Bimolecular fluorescence complementation and acceptor-photobleaching FRET experiments suggest that rhoGDI3 and RhoG form complexes on Golgi and vesicular structures in mammalian cells. 4D-videomicroscopy confirms this localization, and show that RhoG/rhoGDI3-labelled structures are less dynamic than RhoG and rhoGDI3-labeled vesicles, consistent with the inhibitory function of rhoGDI3. Next, we identify the Exocyst subunit Sec3 as a candidate rhoGDI3 partner in cells. RhoGDI3 relocates a subcomplex of the Exocyst (Sec3 and Sec8) from the cytoplasm to the Golgi, while Sec6 is unaffected. Remarkably, Sec3 increases the level of GTP-bound endogenous RhoG, the RhoG-dependent induction of membrane ruffles, and the formation of intercellular tunneling nanotube-like protrusions.Altogether, our study identifies a novel link between vesicular traffic and the regulation of Rho proteins by rhoGDIs. It also suggests that components of the Exocyst machinery may be involved in RhoG functions, possibly regulated by rhoGDI3.
Collapse
Affiliation(s)
- Annie Morin
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif-sur-Yvette; CNRS; Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
14
|
Bagci H, Laurin M, Huber J, Muller WJ, Côté JF. Impaired cell death and mammary gland involution in the absence of Dock1 and Rac1 signaling. Cell Death Dis 2014; 5:e1375. [PMID: 25118935 PMCID: PMC4454313 DOI: 10.1038/cddis.2014.338] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/23/2023]
Abstract
Throughout life, the tight equilibrium between cell death and the prompt clearance of dead corpses is required to maintain a proper tissue homeostasis and prevent inflammation. Following lactation, mammary gland involution is triggered and results in the death of excessive epithelial cells that are rapidly cleared by phagocytes to ensure that the gland returns to its prepregnant state. Orthologs of Dock1 (dedicator of cytokinesis 1), Elmo and Rac1 (ras-related C3 botulinum toxin substrate 1) in Caenorhabditis elegans are part of a signaling module in phagocytes that is linking apoptotic cell recognition to cytoskeletal reorganization required for engulfment. In mammals, Elmo1 was shown to interact with the phosphatidylserine receptor Bai1 and relay signals to promote phagocytosis of apoptotic cells. Still, the role of the RacGEF Dock1 in the clearance of dying cells in mammals was never directly addressed. We generated two mouse models with conditional inactivation of Dock1 and Rac1 and revealed that the expression of these genes is not essential in the mammary gland during puberty, pregnancy and lactation. We induced mammary gland involution in these mice to investigate the role of Dock1/Rac1 signaling in the engulfment of cell corpses. Unpredictably, activation of Stat3 (signal transducer and activator of transcription 3), a key regulator of mammary gland involution, was impaired in the absence of Rac1 and Dock1 expression. Likewise, failure to activate properly Stat3 was coinciding with a significant delay in the initiation and progression of mammary gland involution in mutant animals. By using an in vitro phagocytosis assay, we observed that Dock1 and Rac1 are essential to mediate engulfment in epithelial phagocytes. In vivo, cell corpses accumulated at late time points of involution in Dock1 and Rac1 mutant mammary glands. Overall, our study demonstrated an unsuspected role for Dock1/Rac1 signaling in the initiation of mammary gland involution, and also suggested a role for this pathway in the clearance of dead cells by epithelial phagocytes.
Collapse
Affiliation(s)
- H Bagci
- 1] Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada [2] Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - M Laurin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - J Huber
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - W J Muller
- Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | - J-F Côté
- 1] Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada [2] Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada [3] Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada [4] Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Eguchi K, Yoshioka Y, Yoshida H, Morishita K, Miyata S, Hiai H, Yamaguchi M. The Drosophila DOCK family protein sponge is involved in differentiation of R7 photoreceptor cells. Exp Cell Res 2013; 319:2179-95. [DOI: 10.1016/j.yexcr.2013.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 01/17/2023]
|
16
|
Abstract
Activating mutations and overexpression of classical Ras subfamily members (K-Ras, N-Ras and H-Ras) have been widely investigated as key events in the development of human cancers. The role in cancer of its closest relatives, the Ras-related (RRas) subfamily members, has been less studied despite the fact that one of its members (TC21 or RRas2) is strongly transforming in vitro. Nevertheless, and in spite the paucity of publications, several studies have shown that wild type TC21 is overexpressed in different types of carcinomas and lymphomas. If the study of RRas members in cancer is still in its infancy, their role in physiological functions is even behind. For instance, T and B cell immunologists still use the vague term "Ras activation" without indication of what Ras family molecule is indeed intervening. In this view, we discuss the participation of TC21 in the specific process of T cell antigen receptor internalization from the immunological synapse and acquisition of membrane fragments from the antigen presenting cells by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autonoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
17
|
Hochreiter-Hufford A, Ravichandran KS. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 2013; 5:a008748. [PMID: 23284042 DOI: 10.1101/cshperspect.a008748] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via "find me" signals, the recognition of corpses via "eat me" signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events "immunologically silent." This study focuses on our understanding of these steps.
Collapse
Affiliation(s)
- Amelia Hochreiter-Hufford
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Clearance and Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
18
|
The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress. Nat Cell Biol 2011; 14:87-92. [PMID: 22179045 PMCID: PMC3245775 DOI: 10.1038/ncb2395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Excessive demands on the protein folding capacity of the endoplasmic reticulum (ER) cause irremediable ER stress and contribute to cell loss in a number of cell degenerative diseases, including type 2 diabetes and neurodegeneration1,2. The signals communicating catastrophic ER damage to the mitochondrial apoptotic machinery remain poorly understood3-6. We used a biochemical approach to purify a cytosolic activity induced by ER stress that causes release of cytochrome c from isolated mitochondria. We discovered that the principal component of the purified pro-apoptotic activity is proto-oncogene CT10-regulated kinase (CRK), an adaptor protein with no known catalytic activity7. Crk-/- cells are strongly resistant to ER stress-induced apoptosis. Moreover, CRK is cleaved in response to ER stress to generate an N-terminal ~14kD fragment with greatly enhanced cytotoxic potential. We identified a putative BCL2 homology-3 (BH3) domain within this N-terminal CRK fragment, which sensitizes isolated mitochondria to cytochrome c release and when mutated significantly reduces CRK's apoptotic activity in vivo. Together these results identify CRK as a pro-apoptotic protein that signals irremediable ER stress to the mitochondrial execution machinery.
Collapse
|
19
|
Kang Y, Xu J, Liu Y, Sun J, Sun D, Hu Y, Liu Y. Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 410:189-94. [PMID: 21616056 DOI: 10.1016/j.bbrc.2011.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
In the nematode Caenorhabditis elegans, the cell corpse engulfment proteins CED-2, CED-5, and CED-12 act in the same pathway to regulate the activation of the Rac small GTPase, CED-10, leading to the rearrangement of the actin cytoskeleton for engulfing apoptotic cells. Nevertheless, it is not well understood how these proteins act together. Here we report the crystal structures of the CED-2 protein as determined by X-ray crystallography. The full-length CED-2 protein and its truncated form containing the N-terminal SH2 domain and the first SH3 domain show similar three-dimensional structures. A CED-2 point mutation (F125G) disrupting its interaction with the PXXP motif of CED-5 did not affect its rescuing activity. However, CED-2 was found to interact with the N-terminal region of CED-5. Our findings suggest that CED-2 may regulate cell corpse engulfment by interacting with CED-5 through the N-terminal region rather than the PXXP motif.
Collapse
Affiliation(s)
- Yanyong Kang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Almendinger J, Doukoumetzidis K, Kinchen JM, Kaech A, Ravichandran KS, Hengartner MO. A conserved role for SNX9-family members in the regulation of phagosome maturation during engulfment of apoptotic cells. PLoS One 2011; 6:e18325. [PMID: 21494661 PMCID: PMC3072968 DOI: 10.1371/journal.pone.0018325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/02/2011] [Indexed: 12/02/2022] Open
Abstract
Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution.
Collapse
Affiliation(s)
- Johann Almendinger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
21
|
Biersmith B, Liu Z, Bauman K, Geisbrecht ER. The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development. PLoS One 2011; 6:e16120. [PMID: 21283588 PMCID: PMC3026809 DOI: 10.1371/journal.pone.0016120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022] Open
Abstract
Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is
essential to coordinate the development of tissues such as the musculature and
nervous system during normal embryonic development. One class of signaling
proteins that regulate actin cytoskeletal rearrangement is the evolutionarily
conserved CDM (C. elegansCed-5, human DOCK180,
DrosophilaMyoblast city, or Mbc) family of proteins, which function
as unconventional guanine nucleotide exchange factors for the small GTPase Rac.
This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced
upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We
identified and characterized the role of Drosophila Sponge
(Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein.
Our analysis shows Spg mRNA and protein is expressed in the visceral musculature
and developing nervous system, suggesting a role for Spg in later embryogenesis.
As maternal null mutants of spg die early in development, we
utilized genetic interaction analysis to uncover the role of Spg in central
nervous system (CNS) development. Consistent with its role in ELMO-dependent
pathways, we found genetic interactions with spg and
elmo mutants exhibited aberrant axonal defects. In
addition, our data suggests Ncad may be responsible for recruiting Spg to the
membrane, possibly in CNS development. Our findings not only characterize the
role of a new DOCK family member, but help to further understand the role of
signaling downstream of N-cadherin in neuronal development.
Collapse
Affiliation(s)
- Bridget Biersmith
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Ze Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- Ph.D. Program, School of Biological Sciences, University of Missouri,
Kansas City, Missouri, United States of America
| | - Kenneth Bauman
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
| | - Erika R. Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences,
University of Missouri, Kansas City, Missouri, United States of
America
- * E-mail:
| |
Collapse
|
22
|
Kinchen JM. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 2010; 15:998-1006. [PMID: 20461556 DOI: 10.1007/s10495-010-0509-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Programmed cell death is used during developmental morphogenesis to eliminate superfluous cells or cells with inappropriate developmental potential (e.g., self-reactive immune cells, tumorigenic cells). Recent work in genetic models has led to a number of key observations, revealing signal transduction pathways and identifying new roles for genes previously studied in corpse removal (e.g., removal of broken synapses in the nervous system). Further, studies using mouse models have suggested a role for removal of apoptotic cells in the establishment or maintenance of immune tolerance. In this review, we survey current knowledge of phagocytic pathways derived from studies in the nematode (Caenorhabditis elegans), the fly (Drosophila melanogaster), and mouse (Mus musculus) model systems.
Collapse
Affiliation(s)
- Jason M Kinchen
- Department of Microbiology, Center for Cell Clearance, University of Virginia, Charlottesville, 22908, USA.
| |
Collapse
|
23
|
Neukomm LJ, Frei AP, Cabello J, Kinchen JM, Zaidel-Bar R, Ma Z, Haney LB, Hardin J, Ravichandran KS, Moreno S, Hengartner MO. Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans. Nat Cell Biol 2010; 13:79-86. [PMID: 21170032 DOI: 10.1038/ncb2138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/23/2010] [Indexed: 12/21/2022]
Abstract
Multicellular animals rapidly clear dying cells from their bodies. Many of the pathways that mediate this cell removal are conserved through evolution. Here, we identify srgp-1 as a negative regulator of cell clearance in both Caenorhabditis elegans and mammalian cells. Loss of srgp-1 function results in improved engulfment of apoptotic cells, whereas srgp-1 overexpression inhibits apoptotic cell corpse removal. We show that SRGP-1 functions in engulfing cells and functions as a GTPase activating protein (GAP) for CED-10 (Rac1). Interestingly, loss of srgp-1 function promotes not only the clearance of already dead cells, but also the removal of cells that have been brought to the verge of death through sublethal apoptotic, necrotic or cytotoxic insults. In contrast, impaired engulfment allows damaged cells to escape clearance, which results in increased long-term survival. We propose that C. elegans uses the engulfment machinery as part of a primitive, but evolutionarily conserved, survey mechanism that identifies and removes unfit cells within a tissue.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kinchen JM, Ravichandran KS. Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 2010; 464:778-82. [PMID: 20305638 DOI: 10.1038/nature08853] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/13/2010] [Indexed: 01/08/2023]
Abstract
Engulfment of apoptotic cells occurs throughout life in multicellular organisms. Impaired apoptotic cell clearance (due to defective recognition, internalization or degradation) results in autoimmune disease. One fundamental challenge in understanding how defects in corpse removal translate into diseased states is the identification of critical components orchestrating the different stages of engulfment. Here we use genetic, cell biological and molecular studies in Caenorhabditis elegans and mammalian cells to identify SAND-1 and its partner CCZ-1 as new factors in corpse removal. In worms deficient in either sand-1 or ccz-1, apoptotic cells are internalized and the phagosomes recruit the small GTPase RAB-5 but fail to progress to the subsequent RAB-7(+) stage. The mammalian orthologues of SAND-1, namely Mon1a and Mon1b, were similarly required for phagosome maturation. Mechanistically, Mon1 interacts with GTP-bound Rab5, identifying Mon1 as a previously unrecognized Rab5 effector. Moreover, a Mon1-Ccz1 complex (but not either protein alone) could bind Rab7 and could also influence Rab7 activation, suggesting Mon1-Ccz1 as an important link in progression from the Rab5-positive stage to the Rab7-positive stage of phagosome maturation. Taken together, these data identify SAND-1 (Mon1) and CCZ-1 (Ccz1) as critical and evolutionarily conserved components regulating the processing of ingested apoptotic cell corpses.
Collapse
Affiliation(s)
- Jason M Kinchen
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
25
|
Hsu TY, Wu YC. Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr Biol 2010; 20:477-86. [PMID: 20226672 DOI: 10.1016/j.cub.2010.01.062] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/16/2010] [Accepted: 01/28/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Engulfment of apoptotic cells is important for cellular homeostasis and the development of multicellular organisms. Previous studies have shown that more than one engulfment receptors act upstream of the conserved signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for cell corpse removal in C. elegans, but little is known about their identities, except for PSR-1. RESULTS We show that in C. elegans, integrin functions as an engulfment receptor in the recognition and subsequent phagocytosis of apoptotic cells. Mutations in the integrin alpha gene ina-1 result in inefficient engulfment of apoptotic cells. The INA-1 extracellular domain binds to the surface of apoptotic cells in vivo. This binding requires the phospholipid scramblase SCRM-1, which promotes the exposure of phosphatidylserine, a key "eat me" signal in apoptotic cells. Furthermore, we identify an essential role of the nonreceptor tyrosine kinase SRC-1 in INA-1-mediated cell corpse removal. INA-1 and SRC-1 both act in the engulfing cells during the engulfment process and are colocalized in the phagocytic cups extending around apoptotic cells. Finally, our genetic and biochemical data suggest that SRC-1 relays the scrm-1-dependent engulfment signal from INA-1 to the conserved motility-promoting signaling complex CED-2/CrkII-CED-5/Dock180-CED-12/ELMO for CED-10/Rac activation, probably by interactions with CED-2 and the INA-1 cytoplasmic domain, leading to the internalization of apoptotic cells. CONCLUSIONS Our findings provide evidence that integrin functions as an engulfment receptor at the whole-organism level and reveal a nonconventional signaling pathway in which SRC provides a FAK-independent linkage between integrin alpha and the common motility-promoting signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO to promote the internalization of apoptotic cells.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | | |
Collapse
|
26
|
Miyamoto Y, Yamauchi J. Cellular signaling of Dock family proteins in neural function. Cell Signal 2009; 22:175-82. [PMID: 19796679 DOI: 10.1016/j.cellsig.2009.09.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/24/2009] [Accepted: 09/13/2009] [Indexed: 12/11/2022]
Abstract
Dock180-related proteins are genetically conserved from Drosophila and C. elegans to mammals and are atypical types of guanine-nucleotide exchange factors (GEFs) for Rac and/or Cdc42 of small GTPases of the Rho family. Eleven members of the family occur in mammalian cells, each playing key roles in many aspects of essential cellular functions such as regulation of cytoskeletal organization, phagocytosis, cell migration, polarity formation, and differentiation. This review will summarize the newly accumulated findings concerning the Dock180-related proteins' molecular and cellular functions, emphasizing the roles of these proteins in neuronal cells and glial cells as well as their interactions in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | | |
Collapse
|
27
|
An essential role for calcium flux in phagocytes for apoptotic cell engulfment and the anti-inflammatory response. Cell Death Differ 2009; 16:1323-31. [PMID: 19461656 DOI: 10.1038/cdd.2009.55] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cells undergo programmed cell death/apoptosis throughout the lifespan of an organism. The subsequent immunologically silent removal of apoptotic cells plays a role in the maintenance of tolerance; defects in corpse clearance have been associated with autoimmune disease. A number of receptors and signaling molecules involved in this process have been identified, but intracellular signaling downstream of corpse recognition is only now being defined. Calcium plays a key role as a second messenger in many cell types, leading to the activation of downstream molecules and eventual transcription of effector genes; however, the role of calcium signaling during apoptotic cell removal is unclear. Here, using studies in cell lines and in the context of a whole organism, we show that apoptotic cell recognition induces both an acute and sustained calcium flux within phagocytes and that the genes required for calcium flux are essential for engulfment. Furthermore, we provide evidence that both the release of calcium from the endoplasmic reticulum and the entry of extracellular calcium through CRAC channels into the phagocytes are important during engulfment. Moreover, knockdown in Caenorhabditis elegans of stim-1 and jph-1, two genes linked to the entry of extracellular calcium into cells, led to increased persistence of apoptotic cells in the nematode. Loss of these genes seemed to affect early signaling events, leading to a decreased enrichment of actin adjacent to the apoptotic cell during corpse removal. We also show that calcium is crucial for the secretion of TGF-beta by the phagocytes during the engulfment of apoptotic cells. Taken together, these data point to an earlier unappreciated and evolutionarily conserved role for calcium flux at two distinguishable steps: the formation of the phagocytic cup and the internalization of the apoptotic cell, and the anti-inflammatory signaling induced in phagocytes by contact with apoptotic cells.
Collapse
|
28
|
Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7:13. [PMID: 19426560 PMCID: PMC2689226 DOI: 10.1186/1478-811x-7-13] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/10/2009] [Indexed: 01/24/2023] Open
Abstract
The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses.
Collapse
Affiliation(s)
- Raymond B Birge
- Department of Biochemistry & Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
29
|
Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H. Dock4 regulates dendritic development in hippocampal neurons. J Neurosci Res 2009; 86:3052-61. [PMID: 18615735 DOI: 10.1002/jnr.21763] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dendrite development is required for establishing proper neuronal connectivity. Rho-family small GTPases have been reported to play important roles in the regulation of dendritic growth and morphology. However, the molecular mechanisms that control the activities of Rho GTPases in developing dendrites are not well understood. In the present study we found Dock4, an activator of the small GTPase Rac, to have a role in regulating dendritic growth and branching in rat hippocampal neurons. Dock4 is highly expressed in the developing rat brain, predominantly in hippocampal neurons. In dissociated cultured hippocampal neurons, the expression of Dock4 protein is up-regulated after between 3 and 8 days in culture, when dendrites begin to grow. Knockdown of endogenous Dock4 results in reduced dendritic growth and branching. Conversely, overexpression of Dock4 with its binding partner ELMO2 enhances the numbers of dendrites and dendritic branches. These morphological effects elicited by Dock4 and ELMO2 require Rac activation and the C-terminal Crk-binding region of Dock4. Indeed, Dock4 forms a complex with ELMO2 and CrkII in hippocampal neurons. These findings demonstrate a new function of the Rac activator Dock4 in dendritic morphogenesis in hippocampal neurons.
Collapse
Affiliation(s)
- Shuhei Ueda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
30
|
Park D, Hochreiter-Hufford A, Ravichandran KS. The Phosphatidylserine Receptor TIM-4 Does Not Mediate Direct Signaling. Curr Biol 2009; 19:346-51. [DOI: 10.1016/j.cub.2009.01.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 12/23/2008] [Accepted: 01/09/2009] [Indexed: 12/01/2022]
|
31
|
Curtis JL, Todt JC, Hu B, Osterholzer JJ, Freeman CM. Tyro3 receptor tyrosine kinases in the heterogeneity of apoptotic cell uptake. Front Biosci (Landmark Ed) 2009; 14:2631-46. [PMID: 19273223 DOI: 10.2741/3401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that lies at the very epicenter of host defense against pathogens and the interplay of the innate and adaptive arms of immunity. Understanding the molecular mechanisms that control the response of mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that response is an important goal with implications for multiple areas of biomedical sciences. This review details current understanding of the heterogeneity of apoptotic cell uptake by different members of the mononuclear phagocyte family in humans and mice. It also recounts the unique role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result.
Collapse
Affiliation(s)
- Jeffrey L Curtis
- Pulmonary and Critical Care Medicine, Department of Veterans Affairs Healthsystem and University of Michigan Health System, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
32
|
Smith HW, Marra P, Marshall CJ. uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. ACTA ACUST UNITED AC 2008; 182:777-90. [PMID: 18725541 PMCID: PMC2518715 DOI: 10.1083/jcb.200712050] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) drives tumor cell membrane protrusion and motility through activation of Rac; however, the pathway leading from uPAR to Rac activation has not been described. In this study we identify DOCK180 as the guanine nucleotide exchange factor acting downstream of uPAR. We show that uPAR cooperates with integrin complexes containing β3 integrin to drive formation of the p130Cas–CrkII signaling complex and activation of Rac, resulting in a Rac-driven elongated-mesenchymal morphology, cell motility, and invasion. Our findings identify a signaling pathway underlying the morphological changes and increased cell motility associated with uPAR expression.
Collapse
Affiliation(s)
- Harvey W Smith
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, London, England, UK
| | | | | |
Collapse
|
33
|
Dupuy AG, Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci 2008; 121:1773-83. [PMID: 18492791 DOI: 10.1242/jcs.018036] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By linking actin dynamics to extracellular components, integrins are involved in a wide range of cellular processes that are associated with or require cytoskeletal remodelling and cell-shape changes. One such function is integrin-dependent phagocytosis, a process that several integrins are capable of mediating and that allows the binding and clearance of particles. Integrin-dependent phagocytosis is involved in a wide range of physiological processes, from the clearance of microorganisms and apoptotic-cell removal to extracellular-matrix remodelling. Integrin signalling is also exploited by microbial pathogens for entry into host cells. Far from being a particular property of specific integrins and specialised cells, integrin-dependent uptake is emerging as a general, intrinsic ability of most integrins that is associated with their capacity to signal to the actin cytoskeleton. Integrin-mediated phagocytosis can therefore be used as a robust model in which to study integrin regulation and signalling.
Collapse
Affiliation(s)
- Aurélien G Dupuy
- Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
34
|
Jankowski A, Zhu P, Marshall JG. Capture of an activated receptor complex from the surface of live cells by affinity receptor chromatography. Anal Biochem 2008; 380:235-48. [DOI: 10.1016/j.ab.2008.05.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/16/2008] [Accepted: 05/18/2008] [Indexed: 11/30/2022]
|
35
|
Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, Sifri CD, Hengartner MO, Ravichandran KS. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 2008; 10:556-66. [PMID: 18425118 PMCID: PMC2851549 DOI: 10.1038/ncb1718] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/20/2008] [Indexed: 01/21/2023]
Abstract
Removal of apoptotic cells is critical for the physiological well-being of the organism and defects in corpse removal have been linked to disease states. Genes regulating corpse recognition and internalization have been identified, but few molecules involved in the processing of internalized corpses are known. Through a combination of targeted and unbiased reverse genetic screens in Caenorhabditis elegans, and studies in mammalian cells, we have identified genes required for maturation of apoptotic-cell-containing phagosomes. We have further ordered these candidates, which include the GTPases RAB-5 and RAB-7 and the HOPS complex, into a coherent linear pathway for the maturation of apoptotic cells within phagosomes. In depth analysis of two additional candidate genes, the phosphatidylinositol 3 kinase (PI(3)K) vps-34 (A001762) and dyn-1/dynamin, showed an accumulation of internalized, but undegraded, corpses within abnormal Rab5-negative phagosomes. We ordered these candidates in our pathway, with DYN-1 functioning upstream of VPS-34 in the recruitment and/or retention of RAB-5 to the phagosome. Finally, we have also identified a previously undescribed biochemical complex containing Vps34, dynamin and Rab5(GDP), thus providing a mechanism for Rab5 recruitment to the nascent phagosome.
Collapse
Affiliation(s)
- Jason M Kinchen
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ndozangue-Touriguine O, Hamelin J, Bréard J. Cytoskeleton and apoptosis. Biochem Pharmacol 2008; 76:11-8. [PMID: 18462707 DOI: 10.1016/j.bcp.2008.03.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/17/2022]
Abstract
Apoptosis is a genetically programmed and physiological mode of cell death that leads to the removal of unwanted or abnormal cells. Cysteine-proteases called caspases are responsible for the apoptotic execution phase which is characterized by specific biochemical events as well as morphological changes. These changes, which lead to the orderly dismantling of the apoptotic cell, include cell contraction, dynamic membrane blebbing, chromatin condensation, nuclear disintegration, cell fragmentation followed by phagocytosis of the dying cell. They involve major modifications of the cytoskeleton which are largely mediated by cleavage of several of its components by caspases. For example, dynamic membrane blebbing is due to the increased contractility of the acto-myosin system following myosin light chain (MLC) phosphorylation. MLC phosphorylation is a consequence of the cleavage of a Rho GTPase effector, the kinase ROCK I, by caspase-3. This cleavage induces a constitutive kinase activity by removal of an inhibitory domain. Chromatin condensation is facilitated by the processing of lamins by caspases. Collapse of the cytokeratin network is mediated by cleavage of keratin 18. On another hand, the actin cytoskeleton rearrangement needed in the phagocyte for engulfment of the dying cell is due to the activation of the small GTPase Rac, a GTPase of the Rho family that induces actin polymerisation and formation of lamellipodia. In addition to mediating the morphological modifications of the apoptotic cell, several proteins of the cytoskeleton such as actin and keratins are also involved in the regulation of apoptotic signaling.
Collapse
|
37
|
Elliott MR, Ravichandran KS. Pallbearer and friends: lending a hand in apoptotic cell clearance. Trends Cell Biol 2008; 18:95-7. [PMID: 18280734 PMCID: PMC2908384 DOI: 10.1016/j.tcb.2007.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Engulfment and prompt removal of apoptotic cells occurs from embryogenesis throughout the lifespan of multicellular organisms. A new player, Pallbearer, has recently been identified in Drosophila as being important for efficient engulfment by macrophages. Pallbearer is a component of the SCF E3 ubiquitin ligase complex involved in the ubiquitylation of proteins targeted for proteasomal degradation. This work provides the first link between the cellular processes of ubiquitylation/proteasomal degradation and the ability to clear apoptotic cells efficiently.
Collapse
Affiliation(s)
- Michael R. Elliott
- Carter Immunology Center and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Kodi S. Ravichandran
- Carter Immunology Center and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
38
|
Geisbrecht ER, Haralalka S, Swanson SK, Florens L, Washburn MP, Abmayr SM. Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization. Dev Biol 2008; 314:137-49. [PMID: 18163987 PMCID: PMC2697615 DOI: 10.1016/j.ydbio.2007.11.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/07/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
Abstract
Members of the CDM (CED-5, Dock180, Myoblast city) superfamily of guanine nucleotide exchange factors function in diverse processes that include cell migration and myoblast fusion. Previous studies have shown that the SH3, DHR1 and DHR2 domains of Myoblast city (MBC) are essential for it to direct myoblast fusion in the Drosophila embryo, while the conserved DCrk-binding proline rich region is expendable. Herein, we describe the isolation of Drosophila ELMO/CED-12, an approximately 82 kDa protein with a pleckstrin homology (PH) and proline-rich domain, by interaction with the MBC SH3 domain. Mass spectrometry confirms the presence of an MBC/ELMO complex within the embryonic musculature at the time of myoblast fusion and embryos maternally and/or zygotically mutant for elmo exhibit defects in myoblast fusion. Overexpression of MBC and ELMO in the embryonic mesoderm causes defects in myoblast fusion reminiscent of those seen with constitutively-activated Rac1, supporting the previous finding that both the absence of and an excess of Rac activity are deleterious to myoblast fusion. Overexpression of MBC and ELMO/CED-12 in the eye causes perturbations in ommatidial organization that are suppressed by mutations in Rac1 and Rac2, demonstrating genetically that MBC and ELMO/CED-12 cooperate to activate these small GTPases in Drosophila.
Collapse
Affiliation(s)
- Erika R. Geisbrecht
- Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| | - Shruti Haralalka
- Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| | - Selene K. Swanson
- Proteomics core facility, Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| | - Laurence Florens
- Proteomics core facility, Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| | - Mike P. Washburn
- Proteomics core facility, Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| | - Susan M. Abmayr
- Stowers Institute for Medical Research, 1000 E. 50 St, Kansas City, MO 64110 USA
| |
Collapse
|
39
|
BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450:430-4. [PMID: 17960134 DOI: 10.1038/nature06329] [Citation(s) in RCA: 646] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/01/2007] [Indexed: 12/21/2022]
Abstract
Engulfment and subsequent degradation of apoptotic cells is an essential step that occurs throughout life in all multicellular organisms. ELMO/Dock180/Rac proteins are a conserved signalling module for promoting the internalization of apoptotic cell corpses; ELMO and Dock180 function together as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac, and thereby regulate the phagocyte actin cytoskeleton during engulfment. However, the receptor(s) upstream of the ELMO/Dock180/Rac module are still unknown. Here we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a receptor upstream of ELMO and as a receptor that can bind phosphatidylserine on apoptotic cells. BAI1 is a seven-transmembrane protein belonging to the adhesion-type G-protein-coupled receptor family, with an extended extracellular region and no known ligands. We show that BAI1 functions as an engulfment receptor in both the recognition and subsequent internalization of apoptotic cells. Through multiple lines of investigation, we identify phosphatidylserine, a key 'eat-me' signal exposed on apoptotic cells, as a ligand for BAI1. The thrombospondin type 1 repeats within the extracellular region of BAI1 mediate direct binding to phosphatidylserine. As with intracellular signalling, BAI1 forms a trimeric complex with ELMO and Dock180, and functional studies suggest that BAI1 cooperates with ELMO/Dock180/Rac to promote maximal engulfment of apoptotic cells. Last, decreased BAI1 expression or interference with BAI1 function inhibits the engulfment of apoptotic targets ex vivo and in vivo. Thus, BAI1 is a phosphatidylserine recognition receptor that can directly recruit a Rac-GEF complex to mediate the uptake of apoptotic cells.
Collapse
|
40
|
Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007; 7:964-74. [PMID: 18037898 DOI: 10.1038/nri2214] [Citation(s) in RCA: 507] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clearance of apoptotic cells by phagocytes is an integral component of normal life, and defects in this process can have significant implications for self tolerance and autoimmunity. Recent studies have provided new insights into the engulfment process, including how phagocytes seek apoptotic cells, how they recognize and ingest these targets and how they maintain cellular homeostasis after the 'meal'. Several new factors that regulate engulfment have been identified, whereas the roles of some of the older players require revision. This Review focuses on these recent developments and attempts to highlight some of the important questions in this field.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Carter Immunology Center and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA.
| | | |
Collapse
|
41
|
Kinchen JM, Ravichandran KS. Journey to the grave: signaling events regulating removal of apoptotic cells. J Cell Sci 2007; 120:2143-9. [PMID: 17591687 DOI: 10.1242/jcs.03463] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Programmed cell death is critical both for organ formation during development and during adult life, when billions of cells must be removed every day. The culmination of the apoptotic process is the specific recognition and engulfment of the apoptotic cell by a phagocyte. A number of recent studies have revealed a series of evolutionarily conserved proteins that link corpse recognition to membrane movement, facilitating the internalization of the target and its subsequent degradation. Two potential signaling modules have been identified: one involving the CED-12/ELMO and CED-5/Dock180 proteins, which function as a bipartite guanine nucleotide exchange factor (GEF) for Rac1, and a second involving CED-1/LRP1 (a potential engulfment receptor) and the adaptor protein CED-6/GULP. Recognition of the apoptotic cell modulates cytokine secretion by the phagocyte, resulting in an anti-inflammatory state distinct from that induced by necrotic cells. The recent molecular delineation of the phagocytic process and the identification of novel signaling proteins involved in engulfment have provided an exciting new platform for future studies into this biologically important process.
Collapse
Affiliation(s)
- Jason M Kinchen
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
42
|
Moore CA, Parkin CA, Bidet Y, Ingham PW. A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion. Development 2007; 134:3145-53. [PMID: 17670792 DOI: 10.1242/dev.001214] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myoblast fusion follows a defined sequence of events that is strikingly similar in vertebrates and invertebrates. Genetic analysis in Drosophila has identified many of the molecules that mediate the different steps in the fusion process; by contrast, the molecular basis of myoblast fusion during vertebrate embryogenesis remains poorly characterised. A key component of the intracellular fusion pathway in Drosophila is the protein encoded by the myoblast city (mbc) gene, a close homologue of the vertebrate protein dedicator of cytokinesis 1 (DOCK1, formerly DOCK180). Using morpholino antisense-oligonucleotide-mediated knockdown of gene activity in the zebrafish embryo, we show that the fusion of embryonic fast-twitch myoblasts requires the activities of Dock1 and the closely related Dock5 protein. In addition, we show that the adaptor proteins Crk and Crk-like (Crkl), with which Dock proteins are known to interact physically, are also required for myoblast fusion.
Collapse
Affiliation(s)
- Catherine A Moore
- MRC Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|