1
|
Phosri S, Naladta A, Teerakulkittipong N, Somsakeesit LO, Tastub S, Nualkaew N, Joompang A. Piperine derivative, (2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(2-hydroxyphenyl)penta-2,4-dienamide, exerted cytotoxic activity toward MCF-7 breast cancer cells via Apoptosis: Gene expression and biomolecular change study. Biochem Biophys Res Commun 2025; 766:151895. [PMID: 40294461 DOI: 10.1016/j.bbrc.2025.151895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Breast cancer is one of the leading causes of mortality in women worldwide. Adverse side effects have been reported from chemotherapeutic agents of systematic therapies. Therefore, new agents are still needed for breast cancer treatment. This research aimed to investigate anticancer activity and mechanisms of a piperine derivative, named (2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-N-(2-hydroxyphenyl)penta-2,4-dienamide (1f), against MCF-7 breast cancer cell. The results show that 1f ranging from 7.5 to 60 μg/mL inhibited MCF-7 cells in dose-dependent manner with IC50 values of 17.02 ± 1.74 μg/mL. It inhibited cell migration in dose and time dependent manners. In addition, it induced morphological characteristics of apoptosis and increased the level of intracellular reactive oxygen species (ROS). Phosphatidylserine (PS) exposure staining and DNA fragmentation confirmed the induction of apoptosis. 1f induced the gene expression of TP53, PTEN, and CASP9, while ESR1, BRCA1, BRCA2, PIK3CA, AKT1 CHEK2, BRIP1 and KRAS expression were decreased. STRING protein-protein interaction network and KEGG pathway analysis predicted the induction of apoptosis linked with DNA repair, estrogen receptor-α (ER-α), and PI3K/AKT signaling pathways. Moreover, Fourier transform infrared spectroscopy (FTIR) results shows that 1f reduced the lipid utilization rate and inhibited protein synthesis, resulting in the induction of apoptosis. Overall, 1f is an interesting candidate for development as an anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Santi Phosri
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, 20131, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - La-Or Somsakeesit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology, Isan Khon Kaen Campus, Mueang, Khon Kaen, 40000, Thailand
| | - Sukanya Tastub
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anupong Joompang
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
2
|
Chen D, Zhong J, Jiang W, Wu P, Ma Y, Liu Y, Ren H, Jin X, Zhou X, Feng L. Dietary phytic acid damages the intestinal mucus barrier and structural integrity in the grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2025; 161:110300. [PMID: 40147507 DOI: 10.1016/j.fsi.2025.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
Phytic acid (PA) is a common anti-nutritional factor found in plant-based protein sources. Our previous research demonstrated that dietary PA negatively affected the growth of grass carp. Intestinal health plays a vital role in the growth, development, and disease resistance of fish. Therefore, in order to comprehensively reveal the impact of PA on the intestines of fish, we further used the grass carp to investigate the impact of PA on the intestines of fish. The 540 grass carp (120.56 ± 0.51 g) were separated into 6 groups and provided with diets that included varying levels of PA (0, 0.8, 1.6, 2.4, 3.2, and 4.0 %) over 60 days. The findings suggested that a higher level of PA in diet, particularly at 3.2 %-4.0 %, led to a decrease in the goblet cell number as well as a reduced expression of mucin 2 and mucin 3 in the intestine. Concurrently, there was an increase in 8-hydroxy-2'-deoxyguanosine, active oxygen species, protein carbonyl, and malondialdehyde. These changes were accompanied by lower anti-superoxide anion activity, total antioxidant capacity, and anti-hydroxyl radical activity, as well as lower activity and gene expression of antioxidant enzymes. The DNA fragmentation in the intestine increased. Additionally, the bcl-2-associated X protein, Fas-ligand, apoptotic protease activating factor-1, cysteine aspartate protease (caspase) 8, caspase 9, and caspase 3 gene expression was increased, while the expression of B-cell lymphoma 2, myeloid cell leukemia-1b, and inhibitor of apoptosis protein was decreased. The gene expression of tight junction-associated molecules (such as claudin-b, -3c, and -7b and zonula occludens-2b) was decreased, whereas the expression of claudin-15b and myosin light chain kinase was increased. These data suggested that dietary PA may compromise the intestinal mucus barrier and the structural integrity of grass carp by inducing a goblet cell number decrease, causing oxidative damage, promoting apoptosis, and disrupting tight junctions. These results indicated that we must consider the potential threat posed by PA to the intestine of grass carp when utilizing plant-based protein sources.
Collapse
Affiliation(s)
- Daiyu Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingren Zhong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yaobin Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
3
|
Meshry N, Carneiro KMM. DNA as a promising biomaterial for bone regeneration and potential mechanisms of action. Acta Biomater 2025; 197:68-86. [PMID: 40090507 DOI: 10.1016/j.actbio.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
DNA nanotechnology has created new possibilities for the use of DNA in tissue regeneration - an important advance for DNA use beyond its paradigmatic role as the hereditary biomacromolecule. Biomaterials containing synthetic or natural DNA have been proposed for several applications including drug and gene delivery, and more recently, as osteoconductive biomaterials. This review provides an in-depth discussion of studies that have used DNA-based materials for biomineralization and/or bone repair, with expansion on the topic of DNA hydrogels specifically, and the advantages they offer for advancing the field of bone regeneration. Four mechanisms of action for the osteoconductive capabilities of DNA-based materials are discussed, and a proposed model for degradation of these materials and its link to their osteoconductive properties is later presented. Finally, the review considers current limitations of DNA-based materials and summarizes important aspects that need to be addressed for future application of DNA nanotechnology in tissue repair. STATEMENT OF SIGNIFICANCE: Herein we summarize the developing field of DNA-based materials for biomineralization and bone repair, with a focus on DNA hydrogels. We first provide a comprehensive review of different forms of DNA-based materials described thus far which have been shown to enhance bone repair and mineralization (namely DNA coatings, DNA-containing pastes, DNA nanostructures and DNA hydrogels). Next, we describe four different mechanisms by which DNA-based materials could be exerting their osteogenic effect. Then, we propose a novel model that links DNA degradation and osteoconductivity. Lastly, we suggest possible research directions to enhance DNA-based materials for future clinical application. The suggested mechanisms and the proposed model can guide future research to better understand how DNA functions as a mineral- and bone-promoting molecule.
Collapse
Affiliation(s)
- Nadeen Meshry
- Faculty of Dentistry, University of Toronto, Toronto, Canada, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Canada, 124 Edward Street, Toronto, ON M5G 1G6, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada, 164 College St, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
4
|
Cao H, Wu X, Shi H, Chu B, He Y, Wang H, Dong F. AI-assisted SERS imaging method for label-free and rapid discrimination of clinical lymphoma. J Nanobiotechnology 2025; 23:295. [PMID: 40241186 PMCID: PMC12001690 DOI: 10.1186/s12951-025-03339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Lymphoma is a malignant tumor of the immune system and its incidence is increasing year after year, causing a major threat to people's health. Conventional diagnosis of lymphoma basically depends on histological images consuming long-time and tedious manipulations (e.g., 7-15 days) and large-field view (e.g., > 1000 × 1000 μm2). Artificial intelligence has recently revolutionized cancer diagnosis by training pathological image databases via deep learning. Current approaches, however, remain dependent on analyzing wide-field pathological images to detect distinct nuclear, cytologic, and histomorphologic traits for diagnostic categorization, limiting their applicability to minimally invasive lesion. RESULTS Herein, we develop a molecular imaging strategy for minimally invasive lymphoma diagnosis. By spreading lymphoma tissue sections tightly on a surface-enhanced Raman scattering (SERS) chip, label-free images of DNA double strand breaks (DSBs) in 30 × 30 μm2 tissue sections could be achieved in ~ 15 min. To establish a proof of concept, the Raman image datasets collected from clinical samples of normal lymphatic tissues and non-Hodgkin's lymphoma (NHL) tissues were well organized and trained in a deep convolutional neural network model, finally achieving a recognition rate of ~ 91.7 ± 2.1%. CONCLUSIONS The molecular imaging strategy for minimally invasive lymphoma diagnosis that can achieve a recognition rate of ~ 91.7 ± 2.1%. We anticipate that these results will catalyze the development of a series of histological SERS-AI technologies for diagnosing various diseases, including other types of cancer. In this work, we present a reliable tool to facilitate clinicians in the diagnosis of lymphoma.
Collapse
Affiliation(s)
- Haiting Cao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaofeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu, China
| | - Huayi Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, Jiangsu, China.
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Fenglin Dong
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, 215031, Jiangsu, China.
| |
Collapse
|
5
|
Kodipaka A, Vuradi RK, Airva PK, Nambigari N, Sirasani S. Application of Novel Ruthenium (II) Polypyridyl Complexes as Robust DNA Probes, Optical Material and Antimicrobials-An Experimental and DFT Approach. J Fluoresc 2025; 35:2415-2432. [PMID: 38602589 DOI: 10.1007/s10895-024-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
The nature of the interaction of DNA with heteroleptic Ruthenium (II) Polypyridyl complexes of the type [Ru (A)2TPIP]2+, where TPIP = 2-(1-p-tolyl-1H pyrazol-4 -yl)-1H-imidazo [4, 5-f[1. 10] phenanthroline and A = 1,10 phenanthroline (1),4,4'-dimethyl-1,10-ortho Phenanthroline (2), 2,2' - bipyridine (3) and 4, 4' dimethyl 2, 2'- bipyridine (4), has been investigated by experimentaland molecular docking approaches. The order of the DNA binding affinities of the synthesised complexes is 1 > 2 > 3 > 4. The findings imply that the unsubstituted complex has a better affinity to bind with DNA than the substituted (dmp and dmb) emphasizing the significance of the auxiliary ligand. Additionally, as the medium's ionic strength drops, the DNA/Ru ratio rises, or when water is displaced by glycerol, the intercalation of complexes into DNA increases. DFT calculations at the B3LYP/LANL2MB level was used for molecular geometry (Ground State) and electronic characteristic calculations. The HOMO-LUMO gap of the Ru [II] complex is less than the intercalator and hence kinetically labile. Among the complexes, the bpy complex has shown utmost non-linear optical properties (α = -153.9099 10-24esu and β = 3.8498 10-30esu). The docking study shows the significance of the Metal-intercalator's shorter length may increase DNA binding affinity. This study divulges that the Ruthenium (II) polypyridyl complexes bind to DNA preponderantly by intercalation supporting Viscosity studies. All the complexes have a considerable attraction for guanine. The standard disk diffusion method reveals that complexes (1, 2, 3 and 4) have good antibacterial activity.
Collapse
Affiliation(s)
- Aruna Kodipaka
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Hyderabad, 500 004, Telangana, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - Praveen Kumar Airva
- Department of Biotechnology, Sri Satya Sai University of Technology & Medical Sciences, Bhopal- Indore Road, Opp. Oilfed Plant, Sehore, 466001, Madhya Pradesh, India
| | - Navaneetha Nambigari
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Hyderabad, 500 004, Telangana, India.
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, 500 007, Telangana, India.
| | - Satyanarayana Sirasani
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
6
|
Song W, Yuan Y, Cao F, Pan H, Liu Y. The key pathways and genes related to oncolytic Newcastle disease virus-induced phenotypic changes in ovarian cancer cells. J Microbiol 2025; 63:e2411018. [PMID: 40313149 DOI: 10.71150/jm.2411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 05/03/2025]
Abstract
The poor prognosis and high recurrence rate of ovarian cancer highlight the urgent need to develop new therapeutic strategies. Oncolytic Newcastle disease virus (NDV) can kill cancer cells directly and regulate innate and adaptive immunity. In this study, ovarian cancer cells infected with or without velogenic NDV-BJ were subjected to a CCK-8 assay for detecting cell proliferation, flow cytometry for detecting the cell cycle and apoptosis, and wound healing and transwell assays for detecting cell migration and invasion. Transcriptomic sequencing was conducted to identify the differentially expressed genes (DEGs). GO and KEGG enrichment analyses were performed to explore the mechanism underlying the oncolytic effect of NDV on ovarian cancer cells. The results showed that infection with NDV inhibited ovarian cancer cell proliferation, migration, and invasion; disrupted the cell cycle; and promoted apoptosis. Compared with those in negative control cells, the numbers of upregulated and downregulated genes in ovarian cancer cells infected with NDV were 1,499 and 2,260, respectively. Thirteen KEGG pathways related to cell growth and death, cell mobility, and signal transduction were significantly enriched. Among these pathways, 48 DEGs, especially SESN2, HLA B/C/E, GADD45B, and RELA, that may be involved in the oncolytic process were screened, and qPCR analysis verified the reliability of the transcription data. This study discovered some key pathways and genes related to oncolytic NDV-induced phenotypic changes in ovarian cancer cells, which will guide our future research directions and help further explore the specific mechanisms by which infection with NDV suppresses ovarian cancer development.
Collapse
Affiliation(s)
- Wei Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Yuan Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Fangfang Cao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| | - Yaqing Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, P. R. China
| |
Collapse
|
7
|
Subramanian S, Pajaniradje S, Bhat SA, Chandramohan S, Anaikutti P, Rajagopalan R. Cytotoxic potential of an indole-conjugated Oleanolic acid analogue: suppression of NSCLC proliferation through modulation of mitochondrial apoptotic dynamics. Toxicol Mech Methods 2025:1-14. [PMID: 40103544 DOI: 10.1080/15376516.2025.2481915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Pre-clinical toxicological investigations are pivotal in the development of safer and more efficacious chemotherapeutic agents. Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid, has demonstrated anticancer potential but is often limited by the toxic side effects of its derivatives. In the current study, we carried out the facile synthesis of a modified OA analogue, OD2, and studied its cytotoxicity and efficacy analysis across several cell lines. Mechanistic toxicology was explored through fluorescence-based assays. Annexin-V/Propidium Iodide (A-V/PI) staining and TUNEL assays were used to confirm apoptosis. OD2 exhibited dose-dependent cytotoxicity, with a pronounced effect on A549 lung cancer cells compared to other cancerous and non-cancerous cell lines. Apoptosis was found to be the predominant mode of cell death, evidenced by Fluorescence imaging analysis of chromatin condensation and mitochondrial dysfunction. This was further validated by an increase in Annexin-V-positive and TUNEL-positive cells in treated groups. OD2 activated the intrinsic mitochondrial apoptotic pathway as evidenced by increased Bax and decreased Bcl-2 protein abundance levels. While the current study showcases the therapeutic potential of the selective toxicological activity of OD2, future studies will focus on the deconvolution of its potential polypharmacological mode of action and decoding the basis of its selective action, so as to glean important lessons that can be applied in the development of chemotherapeutic agents with favorable toxicological profiles.
Collapse
Affiliation(s)
- Srividya Subramanian
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | - Parthiban Anaikutti
- General Pathology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
8
|
Olszewski M, Maciejewska N, Kallingal A, Chylewska A, Dąbrowska AM, Biedulska M, Makowski M, Padrón JM, Baginski M. Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. J Enzyme Inhib Med Chem 2024; 39:2302920. [PMID: 38221785 PMCID: PMC10791108 DOI: 10.1080/14756366.2024.2302920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024] Open
Abstract
Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra M. Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Małgorzata Biedulska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, La Laguna, Spain
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
9
|
Morgan I, Rennert R, Berger R, Jelača S, Maksimović-Ivanić D, Dunđerović D, Mijatović S, Kaluđerović GN, Wessjohann LA. The impact of 9-azaglycophymine and phenylguanidine derivatives on the proliferation of various breast cancer cell lines in vitro and in vivo. Sci Rep 2024; 14:28126. [PMID: 39548116 PMCID: PMC11568214 DOI: 10.1038/s41598-024-71624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024] Open
Abstract
Quinazolinones, particularly 9-azaglycophymines, and closely related derivatives and precursors were tested in vitro against various breast cancer cell lines representing the major types of breast tumors. Among the 49 compounds tested, azaglycophymine derivative 19 with an electron-withdrawing substituent demonstrated the most significant anti-proliferative effects, with IC50 values of around 4 µM. Extensive cell-based investigations revealed that compound 19 induced caspase-dependent apoptosis in HCC1937 (human TNBC), BT-474 (human HER2+/HR+), and 4T1 (mouse TNBC) cells. In contrast, in MDA-MB-468 (human TNBC) and MCF-7 (human HR+) cells, the cell death was induced via a non-apoptotic pathway. The in vivo efficacy of compound 19 was validated using a syngeneic orthotopic 4T1 model in BALB/c mice, resulting in significant reduction of 4T1 breast tumor growth upon intraperitoneal (i.p.) application of doses of 5 or 20 mg/kg. These findings highlight the potential of compound 19 as a promising scaffold for the development of new therapeutic agents for various types of breast cancer and a first structure-activity insight.
Collapse
Affiliation(s)
- Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| | - Robert Berger
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- , Berlin, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000, Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia (IBISS), University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217, Merseburg, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Dutta D, Pajaniradje S, Nair AS, Chandramohan S, Bhat SA, Manikandan E, Rajagopalan R. An in-vitro study of active targeting & anti-cancer effect of folic acid conjugated chitosan encapsulated indole curcumin analogue nanoparticles. Int J Biol Macromol 2024; 282:136990. [PMID: 39505180 DOI: 10.1016/j.ijbiomac.2024.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Natural compounds like Curcumin with anti-cancer, anti-inflammatory and anti-bacterial properties are good target for drug development but its poor aqueous solubility, bioavailability, and low retention properties makes it a poor drug candidate in clinical settings. Here in this study, we have used an indole curcumin analogue (ICA) that has better bioavailability and enhanced permeability and retention (EPR) effect than curcumin. To make an active targeting drug we have designed folic acid conjugated chitosan-based nanoparticles encapsulating Indole curcumin analogue (CS-FA-ICA-np). The physical characteristics of CS-FA-ICA-np were evaluated by DLS, SEM, FTIR, XPS, XRD and TGA. Anti-cancer activity was analyzed using MTT, Fluorescence staining, Flow cytometry, comet assay, DNA fragmentation assay, wound healing, gelatin zymography, chick chorioallantoic membrane (CAM) assay and hemolysis assay. The size of CS-FA-ICA-nps were found to be 111 nm, and spherical in shape as observed in SEM. In-vitro assays show that CS-FA-ICA np has IC50 of 90 μg/mL in MDA-MB-231, increases ROS concentration, arrests cell cycle in G2-M phase, reduces matrix metalloproteinase-9 (MMP-9) activity and initiates apoptosis in cancer cells. Our results indicate that encapsulation of ICA increases its anti-cancer effect, drug stability, enhanced drug delivery to cancer microenvironment.
Collapse
Affiliation(s)
- Dipranil Dutta
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Anjali Suresh Nair
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - E Manikandan
- Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
11
|
Ghasedi S, Jafarian V, Ghajari Y, Bahari A, Mekanik M, Fardood ST. A novel encapsulation approach to enhance the delivery and antitumor activity of docetaxel in breast cancer therapy. J Pharm Sci 2024; 113:3362-3374. [PMID: 39276978 DOI: 10.1016/j.xphs.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Docetaxel (DTX) is one of the most potent anticancer drugs but its extensive side effects necessitate innovative formulations. In this study, we aimed to investigate the expression pattern of apoptotic proteins, cell cycle arrest, and apoptosis induction after treatment with encapsulated DTX in alginate-chitosan nanoparticles in both breast cancer cells (MCF-7) and peripheral blood mononuclear cells (PBMCs). The characterization of the nanoparticles revealed a spherical shape with a size <50 nm, a hydrodynamic diameter of 200 nm, a Polydispersity Index of 0.5, and an encapsulation efficiency of 98.75 %. The free drug was released completely within 11 h while encapsulated DTX was released only 34 % in 96 h. The encapsulated drug indicated higher cytotoxicity on MCF-7 cells and the half inhibitory concentration (IC50) value was 2 µg/ml after 72 h. Quantitative real-time PCR demonstrated a significant increase in cell death as the expression of apoptosis regulatory protein (Bcl-2) was downregulated with no impact on Bax in the MCF-7 cells. A notable decrease in the expression pattern of pro-inflammatory cytokine (IL-1β) in PBMCs indicated less inflammation induction. Flow cytometry analysis revealed that the newly formulated drug induced less opoptosis in PBMCs than the free DTX. Cell cycle arrest in the sub-G1 phase was observed for the free drug while the encapsulated drug exhibited no significant changes. Our results suggest the high toxicity of the formulated drug in contrast to the free DTX on the MCF-7 cell line, minimal blood cell side effects, and no inflammation positioning it as a promising alternative to free docetaxel.
Collapse
Affiliation(s)
- Shabnam Ghasedi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Yasaman Ghajari
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Abbas Bahari
- Department of Biotechnology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mahsa Mekanik
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | | |
Collapse
|
12
|
Naselli F, Cardinale PS, Volpes S, Martino C, Cruciata I, Valenti R, Luparello C, Caradonna F, Chiarelli R. An alternative approach of TUNEL assay to specifically characterize DNA fragmentation in cell model systems. Histochem Cell Biol 2024; 162:429-442. [PMID: 38940846 PMCID: PMC11393043 DOI: 10.1007/s00418-024-02306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
DNA damage is one of the most important effects induced by chemical agents. We report a comparative analysis of DNA fragmentation on three different cell lines using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, generally applied to detect apoptosis. Our approach combines cytogenetic techniques and investigation in detached cellular structures, recovered from the culture medium with the aim to compare the DNA fragmentation of three different cell line even beyond the cells adherent to substrate. Consequently, we detect any fragmentation points on single chromosomes, whole nuclei and other cellular structures. Cells were exposed to resveratrol (RSV) and doxorubicin (Doxo), in single and combined treatments. Control and treated astrocytes showed DNA damage in condensed nuclei and detached structures. Caco-2 cells showed fragmented DNA only after Doxo-treatment, while controls showed fragmented chromosomes, indicating DNA damage in replicating cells. MDA-MB-231 cells showed nuclear condensation and DNA fragmentation above all after RSV-treatment and related to detached structures. This model proved to perform a grading of genomic instability (GI). Astrocytes show a hybrid level of GI. Caco-2 cells showed fragmented metaphase chromosomes, proving that the DNA damage was transmitted to the daughter cells probably due to an absence of DNA repair mechanisms. Instead, MDA-MB-231 cells showed few or no fragmented metaphase, suggesting a probable activation of DNA repair mechanisms. By applying this alternative approach of TUNEL test, we obtained data that can more specifically characterize DNA fragmentation for a suitable application in various fields.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Rossella Valenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale Delle Scienze Building 16, 90128, Palermo, Italy
| |
Collapse
|
13
|
Bhat SA, Chandramohan S, Subramanian S, Pajaniradje S, Yadav N, Rajagopalan R. Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an in vitro and in silico approach. Drug Dev Ind Pharm 2024:1-20. [PMID: 39226131 DOI: 10.1080/03639045.2024.2400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Becceneri AB, Martin MT, Graminha AE, Cominetti MR, Ford PC, Santana da Silva R. The effect of light irradiation on a nitro-ruthenium porphyrin complex in the induced death of lung cancer cells in two- and three-dimensional cultures: Insights into the effect of nitric oxide. Dalton Trans 2024; 53:11264-11275. [PMID: 38695514 DOI: 10.1039/d4dt00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Efforts to find compounds selectively affecting cancer cells while sparing normal ones have continued to grow. Nitric oxide (NO) is critical in physiology and pathology, including cancer. It influences cellular processes like proliferation, apoptosis, and angiogenesis. The intricate interaction of NO with cancer cells offers innovative treatment possibilities, but its effects can vary by concentration and site. Ruthenium complexes capable of releasing NO upon stimulation show for this purpose. These versatile compounds can also enhance photodynamic therapy (PDT), a light-activated approach, which induces cellular damage. Ruthenium-based photosensitizers (PSs), delivering NO and producing reactive oxygen species (ROS), offer a novel strategy for improved cancer treatments. In this study, a nitro-ruthenium porphyrin conjugate: {TPyP[Ru(NO2)(bpy)2]4}(PF6)4, designated RuNO2TPyP, which releases NO upon irradiation, was investigated for its effects on lung cells (non-tumor MRC-5 and tumor A549) in 2D and 3D cell cultures. The findings suggest that this complex has potential for PDT treatment in lung cancer, as it exhibits photocytotoxicity at low concentrations without causing cytotoxicity to normal lung cells. Moreover, treatment of cells with RuNO2TPyP followed by light irradiation (4 J cm-2) can induce apoptosis, generate ROS, promote intracellular NO formation, and has anti-migratory effects. Additionally, the complex can modify tumor cell structures and induce photocytotoxicity and apoptosis in a 3D culture. These outcomes are attributed to the internalization of the complex and its subsequent activation upon light irradiation, resulting in NO release and singlet oxygen production.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Matheus Torelli Martin
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Angelica Ellen Graminha
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Institute of Chemistry, São Paulo State University, Av. Prof. Francisco Degni, 55, 14800-900, Araraquara, São Paulo, Brazil
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| | - Roberto Santana da Silva
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| |
Collapse
|
15
|
Bastawy EM, Eraslan IM, Voglsanger L, Suphioglu C, Walker AJ, Dean OM, Read JL, Ziemann M, Smith CM. Novel Insights into Changes in Gene Expression within the Hypothalamus in Two Asthma Mouse Models: A Transcriptomic Lung-Brain Axis Study. Int J Mol Sci 2024; 25:7391. [PMID: 39000495 PMCID: PMC11242700 DOI: 10.3390/ijms25137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention.
Collapse
Affiliation(s)
- Eslam M Bastawy
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Lara Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Cenk Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne 3052, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Mark Ziemann
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
- Burnet Institute, Melbourne 3004, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| |
Collapse
|
16
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
17
|
Alasmari A. Achillea fragrantissima (Forssk.) Sch.Bip instigates the ROS/FADD/c-PARP expression that triggers apoptosis in breast cancer cell (MCF-7). PLoS One 2024; 19:e0304072. [PMID: 38820323 PMCID: PMC11142488 DOI: 10.1371/journal.pone.0304072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 06/02/2024] Open
Abstract
Achillea fragrantissima is a shrub plant that belongs to the Asteraceae family in Arabia and Egypt. It is used as folk medicine and is a good source of phenolic acids, flavonoids, and some active compounds. To investigate the anti-cancer effect of A.fragrantissima on breast cancer MCF-7 cells and find the critical mechanism involved in apoptosis. The toxicity and pharmacokinetic studies of ethanolic extract of A.fragrantissima was examined for anti-breast cancer properties. In turn, cytotoxicity and cell viability were achieved by the MTT method. Furthermore, the trypan blue exclusion and microscopy examination proved the presence of apoptotic cells. Again, fluorescent staining such as AO/EtBr, DCFH-DA, Rho-123, and Hoechst-33342 reveals the cellular cytoplasmic disciplines upon A. fragrantissima effect. Moreover, cellular functioning tests like wound healing, colony formation, and Transwell invasion assay were demonstrated. In addition, the qRT-PCR technique authenticates the A. fragrantissima -induced apoptotic network genes (Caspase-3, Caspase-8, Caspase-9, Cytochrome c, BCL-2, BID, BAX, PARP, PTEN, PI3K, and Akt) expression were evaluated. Mainly, the Immunoblot technique proved the expressed level of apoptotic proteins such as cleaved PARP, CYCS, and FADD. This study confirmed that the A. fragrantissima exerts cytotoxicity at 20 μg/mL for 24 hrs in MCF-7 cells. Also, decreases cellular viability, producing apoptotic cells and damaged cellular surfaces with dead matter. Consequently, it creates ROS species accumulation, loss of mitochondrial membrane potential, and fragmentation of DNA in MCF-7 cells. Furthermore, it arrests cell migration, induces colony-forming ability loss, and suppresses cell invasion. In addition, A. fragrantissima significantly upregulates genes such as caspase-3, 9, cytochrome c, BID, BAX, and PTEN while downregulating the Pi3K/ Akt signaling. Nonetheless, A.fragrantissima induced cleaved PARP, CYCS, and FADD proteins in MCF-7 cells to avail apoptosis.
Collapse
Affiliation(s)
- Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
18
|
Wattanasuntorn P, Phuektes P, Poapolathep S, Mimapan S, Tattiyapong M, Fink-Gremmels J, Oswald IP, Poapolathep A. Individual cytotoxicity of three major type A trichothecene, T-2, HT-2, and diacetoxyscirpenol in human Jurkat T cells. Toxicon 2024; 243:107718. [PMID: 38614246 DOI: 10.1016/j.toxicon.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Mycotoxins are toxic, fungal secondary metabolites that contaminate agricultural commodities, food, and feed. Among them, T-2, HT-2, and diacetoxyscirpenol (DAS; the major type A trichothecene) are primarily produced from Fusarium species. These mycotoxins exert numerous toxicological effects in animals and humans, such as dermatotoxicity, haematotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity. In the present study, human Jurkat T cells were used as a model to investigate apoptotic cell death induced by T-2, HT-2, and DAS. The results showed that T-2, HT-2, and DAS decreased cell viability and increased production of Reactive Oxygen Species in a time- and dose-dependency. Based on their IC50 values, they could be ranked in decreasing order of cytotoxicity as T-2 > HT-2 > DAS. All tested mycotoxins caused DNA fragmentation, up-regulated cytochrome C, caspase 3, and caspase 9 mRNA levels, and down-regulated the relative expression of Bcl-2 and caspase 8. The effects of these trichothecenes on apoptosis were determined based on flow cytometry. At the IC50 concentrations, the percentages of apoptotic cells were significantly higher than for the controls. Taken together, these data suggested that T-2, HT-2, and DAS could induce apoptosis through the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Phattarawadee Wattanasuntorn
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, 10900, Thailand
| | - Patchara Phuektes
- Department of Pathobiology, Faculty of Veterinary Medicine, Khonkaen University, Khonkaen, 40002, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Sontana Mimapan
- National Institute of Animal Health (NIAH), Department of Livestock Development, Bangkok, 10900, Thailand
| | - Muncharee Tattiyapong
- National Institute of Animal Health (NIAH), Department of Livestock Development, Bangkok, 10900, Thailand
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Amnart Poapolathep
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, 10900, Thailand; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
19
|
Wei J, Wei J, Wang S. Hydroxytyrosol acetate from olive leaves ( Olea Europaea L.) induces apoptosis via mitochondrial pathway in BEL7402 cell line. Nat Prod Res 2024:1-4. [PMID: 38693720 DOI: 10.1080/14786419.2024.2348679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Hydroxytyrosol acetate is one of the polyphenolic compounds in olive leaves. Hydroxytyrosol acetate has a variety of biological activities, such as antibacterial, antioxidant, anti-inflammatory, cognitive improvement and neuroprotective effects. However, there is no report on the antitumor activity and the antitumor mechanism of hydroxytyrosol acetate. In our study, we studied the antitumor activity of hydroxytyrosol acetate by MTT assay and determined the antitumor mechanism by DNA ladder assay, mitochondrial membrane potential assay and western blot assay. We found that hydroxytyrosol acetate could inhibit cell proliferation, and the inhibition rate was 78.08%. The further researches showed that hydroxytyrosol acetate could downregulate Bcl-2 protein while upregulate Bax protein. It also could induce mitochondrial depolarisation and release of cytochrome C. These results indicated that hydroxytyrosol acetate might induce BEL7402 cells apoptosis via mitochondrial pathway.
Collapse
Affiliation(s)
- Jianteng Wei
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with, Qingdao Agricultural University, Dongying, China
| | - Jianfang Wei
- Qingdao Jiaozhou Central Hospital, Qingdao, China
| | - Shuxian Wang
- Marine Science Research Institute of Shandong Province, Qingdao, China
| |
Collapse
|
20
|
Dantu SC, Khalil M, Bria M, Saint-Pierre C, Orio M, Gasparutto D, Sicoli G. Cleaving DNA with DNA: Cooperative Tuning of Structure and Reactivity Driven by Copper Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306710. [PMID: 38419268 DOI: 10.1002/advs.202306710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/15/2024] [Indexed: 03/02/2024]
Abstract
A copper-dependent self-cleaving DNA (DNAzyme or deoyxyribozyme) previously isolated by in vitro selection has been analyzed by a combination of Molecular Dynamics (MD) simulations and advanced Electron Paramagnetic Resonance (Electron Spin Resonance) EPR/ESR spectroscopy, providing insights on the structural and mechanistic features of the cleavage reaction. The modeled 46-nucleotide deoxyribozyme in MD simulations forms duplex and triplex sub-structures that flank a highly conserved catalytic core. The DNA self-cleaving construct can also form a bimolecular complex that has a distinct substrate and enzyme domains. The highly dynamic structure combined with an oxidative site-specific cleavage of the substrate are two key-aspects to elucidate. By combining EPR/ESR spectroscopy with selectively isotopically labeled nucleotides it has been possible to overcome the major drawback related to the "metal-soup" scenario, also known as "super-stoichiometric" ratios of cofactors versus substrate, conventionally required for the DNA cleavage reaction within those nucleic acids-based enzymes. The focus on the endogenous paramagnetic center (Cu2+) here described paves the way for analysis on mixtures where several different cofactors are involved. Furthermore, the insertion of cleavage reaction within more complex architectures is now a realistic perspective towards the applicability of EPR/ESR spectroscopic studies.
Collapse
Affiliation(s)
- Sarath Chandra Dantu
- Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Mahdi Khalil
- LASIRE, CNRS UMR 8516, University of Lille, C4 building, Avenue Paul Langevin, Villeneuve d'Ascq, F-59655, France
| | - Marc Bria
- Michle-Eugène Chevreul Institute, FR 2638, Avenue Paul Langevin, Villeneuve d'Ascq, F-59655, France
| | - Christine Saint-Pierre
- Université Grenoble Alpes, CEA, CNRS, UMR 5819 SyMMES-CREAB, Avenue des Martyrs, Grenoble, F-38000, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, UMR CNRS 7313, Marseille, 13397, France
| | - Didier Gasparutto
- Université Grenoble Alpes, CEA, CNRS, UMR 5819 SyMMES-CREAB, Avenue des Martyrs, Grenoble, F-38000, France
| | - Giuseppe Sicoli
- LASIRE, CNRS UMR 8516, University of Lille, C4 building, Avenue Paul Langevin, Villeneuve d'Ascq, F-59655, France
| |
Collapse
|
21
|
Valdez BC, Yuan B, Murray D, Ramdial JL, Popat U, Nieto Y, Andersson BS. ABT199/venetoclax synergism with thiotepa enhances the cytotoxicity of fludarabine, cladribine and busulfan in AML cells. Oncotarget 2024; 15:220-231. [PMID: 38484153 PMCID: PMC10939475 DOI: 10.18632/oncotarget.28563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
ABT199/venetoclax, an inhibitor of the pro-survival BCL-2 protein, has improved AML treatment. Its efficacy in hematopoietic stem cell transplantation (HSCT), when combined with other chemotherapeutic drugs, has not been thoroughly investigated. The present study demonstrates the synergistic cytotoxicity of ABT199/venetoclax with the DNA alkylator thiotepa (Thio) in AML cells. Cleavage of Caspase 3, PARP1 and HSP90, as well as increased Annexin V positivity, suggest potent activation of apoptosis by this two-drug combination; increased levels of γ-H2AX, P-CHK1 (S317), P-CHK2 (S19) and P-SMC1 (S957) indicate an enhanced DNA damage response. Likewise, the increased level of P-SAPK/JNK (T183/Y185) and decreased P-PI3Kp85 (Y458) suggest enhanced activation of stress signaling pathways. These molecular readouts were synergistically enhanced when ABT199/venetoclax and Thio were combined with fludarabine, cladribine and busulfan. The five-drug combination decreased the levels of BCL-2, BCL-xL and MCL-1, suggesting its potential clinical relevance in overcoming ABT199/venetoclax resistance. Moreover, this combination is active against P53-negative and FLT3-ITD-positive cell lines. Enhanced activation of apoptosis was observed in leukemia patient-derived cell samples exposed to the five-drug combination, suggesting a clinical relevance. The results provide a rationale for clinical trials using these two- and five-drug combinations as part of a conditioning regimen for AML patients undergoing HSCT.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Murray
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Jeremy L. Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Azhar G, Nagano K, Patyal P, Zhang X, Verma A, Wei JY. Deletion of Interleukin-1β Converting Enzyme Alters Mouse Cardiac Structure and Function. BIOLOGY 2024; 13:172. [PMID: 38534442 DOI: 10.3390/biology13030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Interleukin-1β converting enzyme (ICE, caspase-1) is a thiol protease that cleaves the pro-inflammatory cytokine precursors of IL-1β and IL-18 into active forms. Given the association between caspase-1 and cardiovascular pathology, we analyzed the hearts of ICE knockout (ICE KO) mice to test the hypothesis that caspase-1 plays a significant role in cardiac morphology and function. We characterized the histological and functional changes in the hearts of ICE KO mice compared to the Wild type. The cardiomyocytes from the neonatal ICE KO mice showed an impaired response to oxidative stress. Subsequently, the hearts from the ICE KO mice were hypertrophied, with a significant increase in the left ventricular and septal wall thickness and a greater LV mass/body weight ratio. The ICE KO mice hearts exhibited irregular myofibril arrangements and disruption of the cristae in the mitochondrial structure. Proapoptotic proteins that were significantly increased in the hearts of ICE KO versus the Wild type included pErk, pJNK, p53, Fas, Bax, and caspase 3. Further, the antiapoptotic proteins Bag-1 and Bcl-2 are activated in ICE KO hearts. Functionally, there was an increase in the left ventricular epicardial diameter and volume in ICE KO. In conclusion, our findings support the important role of caspase-1 in maintaining cardiac health; specifically, a significant decrease in caspase-1 is detrimental to the cardiovascular system.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Koichiro Nagano
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics, Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Worrapitirungsi W, Sathirapatya T, Sukawutthiya P, Vongpaisarnsin K, Varrathyarom P. Assessing the feasibility of free DNA for disaster victim identification and forensic applications. Sci Rep 2024; 14:5411. [PMID: 38443390 PMCID: PMC10914783 DOI: 10.1038/s41598-024-53040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
In tropical disaster victim identification (DVI) scenarios, challenging environmental conditions lead to accelerated DNA degradation in remains. To further enhance the utilization of leached DNA from tissue in the preservative solution (termed "free DNA") as an alternative source, we incorporated new results by assessing its integrity in postmortem and decomposing cadavers preserved in DNA/RNA Shield™ and modified TENT, with silica-based purification (QIAquick®) for faster processing. The psoas muscle tissues of one decomposed and ten cadavers were preserved in each solution at 25 °C and 35 °C for 3 months. Free DNA efficiency was compared with individual reference samples for reliable results in quantity, quality, and STR profiles. The findings revealed that DNA/RNA Shield™ effectively preserves free DNA integrity for extended storage, while modified TENT is more suitable for short-term storage due to higher degradation levels. Moreover, the use of free DNA samples with massive parallel sequencing displays potential for forensic DNA analysis. Successful amplification of the mtDNA control region enables variant calling and heteroplasmy analysis while also serving as quality control using ACTB and enabling differentiation within the 16S rRNA region for microbiome analysis. The simplicity of handling free DNA for PCR-based forensic analysis adds to its potential for various applications, including DVI and field-based analysis of biological evidence.
Collapse
Affiliation(s)
- Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| | - Pagparpat Varrathyarom
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
24
|
Jan S, Iram S, Bashir O, Shah SN, Kamal MA, Rahman S, Kim J, Jan AT. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. PLANTS (BASEL, SWITZERLAND) 2024; 13:724. [PMID: 38475570 DOI: 10.3390/plants13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ommer Bashir
- Department of School Education, Srinagar 190001, Jammu and Kashmir, India
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
25
|
Chan PF, Ang KP, Hamid RA. Cytotoxicity of bismuth(III) dithiocarbamate derivatives by promoting a mitochondrial-dependent apoptotic pathway and suppressing MCF-7 breast adenocarcinoma cell invasion. J Biol Inorg Chem 2024; 29:217-241. [PMID: 38369679 DOI: 10.1007/s00775-023-02041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024]
Abstract
We previously reported that the bismuth(III) dithiocarbamate derivative, bismuth diethyldithiocarbamate (1) exhibited greater cytotoxicity while inducing apoptosis via the intrinsic pathway in MCF-7 cells. We further evaluated the other bismuth(III) dithiocarbamate derivatives, Bi[S2CNR]3, with R = (CH2CH2OH)(iPr), (CH2)4, and (CH2CH2OH)(CH3), denoted as 2, 3, and 4, respectively, in the same MCF-7 cell line. 2-4 were found to exhibit IC50 values of 10.33 ± 0.06 µM, 1.07 ± 0.01 µM and 25.37 ± 0.12 µM, respectively, compared to that of cisplatin at 30.53 ± 0.23 µM. Apoptotic promotion via the mitochondrial-dependent pathway was due to the elevation of intracellular reactive oxygen species (ROS), promotion of caspases, release of cytochrome c, fragmentation of DNA, and results of staining assay observed in all compound-treated cells. 2-4 are also capable of suppressing MCF-7 cell invasion and modulate Lys-48 also Lys-63 linked polyubiquitination, leading to proteasomal degradation. Analysis of gene expression via qRT-PCR revealed their modulation, which supported all activities conducted upon treatment with 2-4. Altogether, bismuth dithiocarbamate derivatives, with bismuth(III) as the metal center bound to ligands, isopropyl ethanol, pyrrolidine, and methyl ethanol dithiocarbamate, are potential anti-breast cancer agents that induce apoptosis and suppress metastasis. Further studies using other breast cancer cell lines and in vivo studies are recommended to clarify the anticancer effects of these compounds.
Collapse
Affiliation(s)
- Pit Foong Chan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kok Pian Ang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abd Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
26
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
27
|
Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and Trehalose-Modulated Autophagy Exerts a Neurotherapeutic Effect on Parkinson's Disease. Mol Neurobiol 2023; 60:7253-7273. [PMID: 37542649 DOI: 10.1007/s12035-023-03530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria J Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
28
|
Choi MS, Lee CY, Kim JH, Lee YM, Lee S, Kim HJ, Heo K. Gramicidin, a Bactericidal Antibiotic, Is an Antiproliferative Agent for Ovarian Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2059. [PMID: 38138162 PMCID: PMC10744341 DOI: 10.3390/medicina59122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.
Collapse
Affiliation(s)
- Min Sung Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
| | - Chae Yeon Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
| | - Ji Hyeon Kim
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
| | - Yul Min Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (M.S.C.); (Y.M.L.); (S.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (C.Y.L.); (J.H.K.)
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
29
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
30
|
Sroor FM, Mahrous KF, El-Kader HAMA, Othman AM, Ibrahim NS. Impact of trifluoromethyl and sulfonyl groups on the biological activity of novel aryl-urea derivatives: synthesis, in-vitro, in-silico and SAR studies. Sci Rep 2023; 13:17560. [PMID: 37845243 PMCID: PMC10579241 DOI: 10.1038/s41598-023-44753-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
We designed and prepared a novel series of urea derivatives with/without sulfonyl group in their structures to investigate the impact of the sulfonyl group on the biological activity of the evaluated compounds. Antibacterial investigations indicated that derivatives 7, 8, 9, and 11 had the most antibacterial property of all the compounds examined, their minimum inhibitory concentrations (MICs) determined against B. mycoides, E. coli, and C. albicans, with compound 8 being the most active at a MIC value of 4.88 µg/mL. Anti-cancer activity has been tested against eight human cancer cell lines; A549, HCT116, PC3, A431, HePG2, HOS, PACA2 and BJ1. Compounds 7, 8 and 9 emerged IC50 values better than Doxorubicin as a reference drug. Compounds 7 and 8 showed IC50 = 44.4 and 22.4 μM respectively against PACA2 compared to Doxorubicin (IC50 = 52.1 μM). Compound 9 showed IC50 = 17.8, 12.4, and 17.6 μM against HCT116, HePG2, and HOS, respectively. qRT-PCR revealed the down-regulation of PALB2 in compounds 7 and 15 treated PACA2 cells. Also, the down-regulation of BRCA1 and BRCA2 was shown in compound 7 treated PC3 cells. As regard A549 cells, compound 8 decreased the expression level of EGFR and KRAS genes. While compounds 7 and 9 down-regulated TP53 and FASN in HCT116 cells. Molecular docking was done against Escherichia coli enoyl reductase and human Son of sevenless homolog 1 (SOS1) and the results showed the promising inhibition of the studied proteins.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt.
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Dokki, 12622, Egypt
| | | | - Abdelmageed M Othman
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622, Egypt
| | - Nada S Ibrahim
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
31
|
Kiddane AT, Roy VC, Kang MJ, Patil MP, Chun BS, Kim GD. Anticancer and apoptotic activity in neuroblastoma SK-N-SH using phospholipid extract from bone of Scomberomorus niphonius. Chem Biol Drug Des 2023; 102:424-433. [PMID: 36303298 DOI: 10.1111/cbdd.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/22/2022] [Indexed: 12/01/2022]
Abstract
Among various types children's health challenges, neuroblastoma is the most serious solid neoplasm forming outside the cranium. Scomberomorus niphonius is a valuable edible fish that has been widely used for a meal. In this study, we obtained phospholipid extract from the bone of S. niphonius with the supercritical CO2 extraction method and tested anticancer activity with a cell viability assay. The phospholipid showed anticancer activity on neuroblastoma SK-N-SH cells, and the anticancer activity was presented with an IC50 of 710.25 ± 28.31 μg/ml, but did not show a significant toxicity on HUVEC cell lines. Western blot was used to detect signaling proteins; Bak, caspase-9, caspase-8, caspase-3, Bax, and IκBα were increased, whereas IKKβ and NFκB were downregulated in experimental groups compared to untreated groups. Gene expression was revealed by RT-qPCR, and the fold ratio of Apaf-1, cytochrome-c, caspase-9, caspase-3, and Bax genes' expression was raised in treated groups, implying apoptosis. Gel electrophoresis revealed that the experimental groups had more fragmented DNA than the control group. The study shows that a phospholipid extract from S. niphonius' bone could be used as a biological origin of anticancer activity in neuroblastoma SK-N-SH cells.
Collapse
Affiliation(s)
- Anley Teferra Kiddane
- Department of Microbiology, Laboratory of Cell Signaling, College of Natural Science, Pukyong National University, Busan, Korea
| | - Vikash Chandra Roy
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Min-Jae Kang
- Department of Microbiology, Laboratory of Cell Signaling, College of Natural Science, Pukyong National University, Busan, Korea
| | | | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Gun-Do Kim
- Department of Microbiology, Laboratory of Cell Signaling, College of Natural Science, Pukyong National University, Busan, Korea
| |
Collapse
|
32
|
Mukherjee A, Debnath S, Bhowmik A, Biswas S. DNA interactive property of poly-L-lysine induces apoptosis in MCF-7 cells through DNA interaction. J Biochem Mol Toxicol 2023; 37:e23378. [PMID: 37114286 DOI: 10.1002/jbt.23378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/16/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Poly-L-lysine (PLL) is known to be an encapsulating agent in drug formulation and delivery. PLL also has apoptotic and antiproliferative activities that enable blocking of the tumorigenesis process. However, the dose-selective activities of PLL in exerting apoptosis against cancer are unclear. Therefore, this study has been designed to explore the potential role and dose of PLL in apoptosis, if any. For this, PLL was administered at several doses in cancer cell lines and was found to be more potent against MCF-7 cells. PLL causes mitochondria-mediated apoptotic death through the upregulation of cleaved caspase-3. To investigate the mechanism responsible for this activity, we have analyzed if PLL could have the DNA interactive property or not. For this, molecular docking analysis was carried out to prove whether it has the property to bind with DNA or not. Studies have revealed that PLL is a potent DNA binder and it probably performs such apoptotic activities through the binding of cellular DNA early in an exposure. Simultaneous upregulation of both ROS-mediated stress and also in key protein expressions like γ-H2AX could also help us to confirm that PLL induces apoptosis through DNA interaction. This finding leads us to believe that PLL could play an interfering role with other chemotherapeutic compounds when used as a drug-coating material as it exerts an apoptotic effect on cancer cells, which should be avoided by using a much lower concentration.
Collapse
Affiliation(s)
- Avinaba Mukherjee
- Department of Zoology, Charuchandra College, University of Calcutta, Kolkata, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
33
|
Ahmed SA, Eltamany EE, Nafie MS, Elhady SS, Karanis P, Mokhtar AB. Anti- Cryptosporidium parvum activity of Artemisia judaica L. and its fractions: in vitro and in vivo assays. Front Microbiol 2023; 14:1193810. [PMID: 37476671 PMCID: PMC10354666 DOI: 10.3389/fmicb.2023.1193810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
Background This study investigates the toxic activity of Artemisia judaica ethanolic extract (ArEx) as well as its phenolic fraction (ArPh), and terpenoid fraction (ArT) against Cryptosporidium parvum (C. parvum) oocysts. Methods Over a 4 months period, estimation of the total phenolic (TPC), total flavonoids (TFC), and total terpenoids contents (TTC) in ArEx; investigation of the in vitro antioxidant activity of ArEx, ArPh, and ArT; evaluation of ArEx, ArPh, and ArT toxic activity against C. parvum oocysts using MTT assay; parasitological analysis on ArPh-treated C. parvum oocysts and comet assay were performed both in vitro and in vivo (infectivity). Results The ArEx TPC, TFC, and TTC was 52.6 ± 3.1 mgGAE/g, 64.5 ± 3.1 mg QE/g, and 9.5 ± 1.1 mg Linol/g, respectively. Regarding the phytochemical in vitro antioxidant activity, the ArPh exhibited the highest antioxidant activity compared to the ArEx and ArT. The ArPh showed promising free radical scavenging activity of DPPH and ABTS•+ with IC50 values of 47.27 ± 1.86 μg/mL and 66.89 ± 1.94 μg/mL, respectively. Moreover, the FRAP of ArPh was 2.97 ± 0.65 mMol Fe+2/g while its TAC was 46.23 ± 3.15 mg GAE/g. The ArPh demonstrated toxic activity against C. parvum oocysts with a potent IC50 value of 31.6 μg/mL compared to ArT (promising) and ArEx (non-effective). ArPh parasitological analysis demonstrated MIC90 at 1000 μg/ml and effective oocysts destruction on count and morphology. ArPh fragmented oocysts nuclear DNA in comet assay. Beginning at 200 μg/mL, ArPh-treated oocysts did not infect mice. Conclusion To combat C. parvum infection, the phenolic fraction of A. judaica L. shows promise as an adjuvant therapy or as a source of potentially useful lead structures for drug discovery.
Collapse
Affiliation(s)
- Shahira A. Ahmed
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed S. Nafie
- Department of Chemistry (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, Cologne, Germany
- Department of Basic and Clinical SciencesUniversity of Nicosia Medical School, Nicosia, Cyprus
| | - Amira B. Mokhtar
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
34
|
Sharma S, Kumar M, Kumar J, Mazumder S. β-Catenin Elicits Drp1-Mediated Mitochondrial Fission Activating the Pro-Apoptotic Caspase-1/IL-1β Signalosome in Aeromonas hydrophila-Infected Zebrafish Macrophages. Cells 2023; 12:1509. [PMID: 37296630 PMCID: PMC10252323 DOI: 10.3390/cells12111509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a, fzd5, lrp6, and β-catenin (ctnnb1) expression, coinciding with the decreased expression of gsk3b and axin. Additionally, increased nuclear β-catenin protein accumulation was observed in infected ZKM, thereby suggesting the activation of canonical Wnt signaling in A. hydrophila infection. Our studies with the β-catenin specific inhibitor JW67 demonstrated β-catenin to be pro-apoptotic, which initiates the apoptosis of A. hydrophila-infected ZKM. β-catenin induces NADPH oxidase (NOX)-mediated ROS production, which orchestrates sustained mitochondrial ROS (mtROS) generation in the infected ZKM. Elevated mtROS favors the dissipation of the mitochondrial membrane potential (ΔΨm) and downstream Drp1-mediated mitochondrial fission, leading to cytochrome c release. We also report that β-catenin-induced mitochondrial fission is an upstream regulator of the caspase-1/IL-1β signalosome, which triggers the caspase-3 mediated apoptosis of the ZKM as well as A. hydrophila clearance. This is the first study suggesting a host-centric role of canonical Wnt signaling pathway in A. hydrophila pathogenesis wherein β-catenin plays a primal role in activating the mitochondrial fission machinery, which actively promotes ZKM apoptosis and helps in containing the bacteria.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi 110021, India
| |
Collapse
|
35
|
Nafeh G, Abi Akl M, Samarani J, Bahous R, Al Kari G, Younes M, Sarkis R, Rizk S. Urtica dioica Leaf Infusion Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Cisplatin Treatment. Pharmaceuticals (Basel) 2023; 16:780. [PMID: 37375728 DOI: 10.3390/ph16060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Urtica dioica (UD) has been widely used in traditional medicine due to its therapeutic benefits, including its anticancer effects. Natural compounds have a promising potential when used in combination with chemotherapeutic drugs. The present study explores the anticancer and anti-proliferative properties of UD tea in combination with cisplatin on MDA-MB-231 breast cancer cells in vitro. To elucidate the effect of this combination, a cell viability assay, Annexin V/PI dual staining, cell death ELISA, and Western blots were performed. The results showed that the combination of UD and cisplatin significantly decreased the proliferation of MDA-MB-231 cells in a dose- and time-dependent manner compared to each treatment alone. This was accompanied by an increase in two major hallmarks of apoptosis, the flipping of phosphatidylserine to the outer membrane leaflet and DNA fragmentation, as revealed by Annexin V/PI staining and cell death ELISA, respectively. DNA damage was also validated by the upregulation of the cleaved PARP protein as revealed by Western blot analysis. Finally, the increase in the Bax/Bcl-2 ratio further supported the apoptotic mechanism of death induced by this combination. Thus, a leaf infusion of Urtica dioica enhanced the sensitivity of an aggressive breast cancer cell line to cisplatin via the activation of apoptosis.
Collapse
Affiliation(s)
- Guy Nafeh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Abi Akl
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jad Samarani
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rawane Bahous
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Georges Al Kari
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
36
|
Nakagawa Y, Hishida T, Sumaru K, Morishita K, Kirito K, Yokojima S, Sakamoto Y, Nakamura S, Uchida K. Phototunable Cell Killing by Photochromic Diarylethene of Thiazoyl and Thienyl Derivatives. J Med Chem 2023; 66:5937-5949. [PMID: 37128763 DOI: 10.1021/acs.jmedchem.3c00164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a unique phototunable cell killing technique using diarylethene molecules as photo-isomerizing-molecular switches. These molecules were delivered to DNA in the cell nucleus due to closed-form generated by UV light, and then blue light triggered cell killing. A UV light irradiation switches the open form, having no DNA intercalation activity, to the closed form to induce intercalation in DNA. This isomer, thus prepared ready for the action, exerts photocytotoxicity upon the subsequent blue light irradiation. Molecular biological analysis clarifies that photocytotoxicity is due to DNA double-strand breaks. Since cell death is observed only when irradiated with light where both the open- and closed-ring isomers have absorption, the possible mechanism of cell death is assumed to be due to the repeated photocyclization and photocycloreversion reactions of the diarylethene molecules, which induce irreparable damage to DNA. This unique photo-controllable action in a cell system can provide the basis of a novel scheme of phototherapy.
Collapse
Affiliation(s)
- Yuma Nakagawa
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Tatsuya Hishida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Kimio Sumaru
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kana Morishita
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi 409-3898, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Sakamoto
- Cluster for Science, Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinichiro Nakamura
- Cluster for Science, Technology and Innovation Hub Nakamura Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Priority Organization for Innovation and Excellence Laboratory for Data Science, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
37
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
38
|
Wang Q, Li S, Xu C, Hua A, Wang C, Xiong Y, Deng Q, Chen X, Yang T, Wan J, Ding ZY, Zhang BX, Yang X, Li Z. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacol Res 2023; 190:106740. [PMID: 36958408 DOI: 10.1016/j.phrs.2023.106740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
39
|
Asong GM, Voshavar C, Amissah F, Bricker B, Lamango NS, Ablordeppey SY. An Evaluation of the Anticancer Properties of SYA014, a Homopiperazine-Oxime Analog of Haloperidol in Triple Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:6047. [PMID: 36551533 PMCID: PMC9776707 DOI: 10.3390/cancers14246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a type of breast cancer associated with early metastasis, poor prognosis, high relapse rates, and mortality. Previously, we demonstrated that SYA013, a selective σ2RL, could inhibit cell proliferation, suppress migration, reduce invasion, and induce mitochondria-mediated apoptosis in MDA-MB-231 cell lines, although we were unable to demonstrate the direct involvement of sigma receptors. This study aimed to determine the anticancer properties and mechanisms of action of SYA014, [4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one oxime], an oxime analogue of SYA013, the contribution of its sigma-2 receptor (σ2R) binding, and its possible synergistic use with cisplatin to improve anticancer properties in two TNBC cell lines, MDA-MB-231 (Caucasian) and MDA-MB-468 (Black). In the present investigation, we have shown that SYA014 displays anticancer properties against cell proliferation, survival, metastasis and apoptosis in the two TNBC cell lines. Furthermore, a mechanistic investigation was conducted to identify the apoptotic pathway by which SYA014 induces cell death in MDA-MB-231 cells. Since SYA014 has a higher binding affinity for σ2R compared to σ1R, we tested the role of σ2R on the antiproliferative property of SYA014 with a σ2R blockade. We also attempted to evaluate the combination effect of SYA014 with cisplatin in TNBC cells.
Collapse
Affiliation(s)
- Gladys M. Asong
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Felix Amissah
- College of Pharmacy, Ferris State University, Big Rapids, MI 49307, USA
| | - Barbara Bricker
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Seth Y. Ablordeppey
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
40
|
Suzuki M, Shindo Y, Yamanaka R, Oka K. Live imaging of apoptotic signaling flow using tunable combinatorial FRET-based bioprobes for cell population analysis of caspase cascades. Sci Rep 2022; 12:21160. [PMID: 36476686 PMCID: PMC9729311 DOI: 10.1038/s41598-022-25286-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding cellular signaling flow is required to comprehend living organisms. Various live cell imaging tools have been developed but challenges remain due to complex cross-talk between pathways and response heterogeneities among cells. We have focused on multiplex live cell imaging for statistical analysis to address the difficulties and developed simple multiple fluorescence imaging system to quantify cell signaling at single-cell resolution using Förster Resonance Energy Transfer (FRET)-based chimeric molecular sensors comprised of fluorescent proteins and dyes. The dye-fluorescent protein conjugate is robust for a wide selection of combinations, facilitating rearrangement for coordinating emission profile of molecular sensors to adjust for visualization conditions, target phenomena, and simultaneous use. As the molecular sensor could exhibit highly sensitive in detection for protease activity, we customized molecular sensor of caspase-9 and combine the established sensor for caspase-3 to validate the system by observation of caspase-9 and -3 dynamics simultaneously, key signaling flow of apoptosis. We found cumulative caspase-9 activity rather than reaction rate inversely regulated caspase-3 execution times for apoptotic cell death. Imaging-derived statistics were thus applied to discern the dominating aspects of apoptotic signaling unavailable by common live cell imaging and proteomics protein analysis. Adopted to various visualization targets, the technique can discriminate between rivalling explanations and should help unravel other protease involved signaling pathways.
Collapse
Affiliation(s)
- Miho Suzuki
- grid.263023.60000 0001 0703 3735Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570 Japan
| | - Yutaka Shindo
- grid.26091.3c0000 0004 1936 9959Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, 223-0061 Japan
| | - Ryu Yamanaka
- grid.469470.80000 0004 0617 5071Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, 756-0884 Japan
| | - Kotaro Oka
- grid.26091.3c0000 0004 1936 9959Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, 223-0061 Japan ,grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.5290.e0000 0004 1936 9975Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| |
Collapse
|
41
|
ROS-Induced DNA-Damage and Autophagy in Oral Squamous Cell Carcinoma by Usnea barbata Oil Extract-An In Vitro Study. Int J Mol Sci 2022; 23:ijms232314836. [PMID: 36499160 PMCID: PMC9738295 DOI: 10.3390/ijms232314836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, Usnea barbata (L.) Weber ex. F.H. Wigg (U. barbata) displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of U. barbata extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 104), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 104), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.
Collapse
|
42
|
Balaji S, Neupane R, Malla S, Khupse R, Amawi H, Kumari S, Tukaramrao DB, Chattopadhyay S, Ashby CR, Boddu SHS, Karthikeyan C, Trivedi P, Raman D, Tiwari AK. IND-2, a Quinoline Derivative, Inhibits the Proliferation of Prostate Cancer Cells by Inducing Oxidative Stress, Apoptosis and Inhibiting Topoisomerase II. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111879. [PMID: 36431014 PMCID: PMC9693996 DOI: 10.3390/life12111879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
In men, prostate cancer (PC) is the most frequently diagnosed cancer, causing an estimated 375,000 deaths globally. Currently, existing therapies for the treatment of PC, notably metastatic cases, have limited efficacy due to drug resistance and problematic adverse effects. Therefore, it is imperative to discover and develop novel drugs for treating PC that are efficacious and do not produce intolerable adverse or toxic effects. Condensed quinolines are naturally occurring anticancer compounds. In this study, we determined the in vitro efficacy of IND-2 (4-chloro-2-methylpyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolone) in the PC lines, PC-3 and DU-145. IND-2 significantly inhibited the proliferation of PC-3 and DU-145, with IC50 values of 3 µM and 3.5 µM, respectively. The incubation of PC-3 cells with 5 and 10 µM of IND-2 caused the loss of the mitochondrial membrane potential in PC-3 cells. Furthermore, IND-2, at 5 µM, increased the expression of cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase (PARP). The incubation of PC-3 cells with 5 µM of IND-2 significantly decreased the expression of the apoptotic protein, B-cell lymphoma 2 (Bcl-2). Furthermore, 5 and 10 µM of IND-2 produced morphological changes in PC-3 cells characteristic of apoptosis. Interestingly, IND-2 (2.5, 5 and 10 µM) also induced mitotic catastrophe in PC-3 cells, characterized by the accumulation of multinuclei. The incubation of DU-145 cells with 1.25 and 5 μM of IND-2 significantly increased the levels of reactive oxygen species (ROS). Finally, IND-2, at 10 μM, inhibited the catalytic activity of topoisomerase IIα. Overall, our findings suggest that IND-2 could be a potential lead compound for the development of more efficacious compounds for the treatment of PC.
Collapse
Affiliation(s)
- Swapnaa Balaji
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Rahul Khupse
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, Findlay, OH 43551, USA
| | - Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Diwakar Bastihalli Tukaramrao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Srestha Chattopadhyay
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John’s University, New York, NY 11432, USA
| | - Sai H. S. Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Chandrabose Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, Madhya Pradesh, India
| | - Piyush Trivedi
- Center for Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth, Pune 411038, Maharashtra, India
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-383-1913
| |
Collapse
|
43
|
Rzepka Z, Bębenek E, Chrobak E, Wrześniok D. Synthesis and Anticancer Activity of Indole-Functionalized Derivatives of Betulin. Pharmaceutics 2022; 14:2372. [PMID: 36365190 PMCID: PMC9694481 DOI: 10.3390/pharmaceutics14112372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Pentacyclic triterpenes, including betulin, are widespread natural products with various pharmacological effects. These compounds are the starting material for the synthesis of substances with promising anticancer activity. The chemical modification of the betulin scaffold that was carried out as part of the research consisted of introducing the indole moiety at the C-28 position. The synthesized new 28-indole-betulin derivatives were evaluated for anticancer activity against seven human cancer lines (A549, MDA-MB-231, MCF-7, DLD-1, HT-29, A375, and C32). It was observed that MCF-7 breast cancer cells were most sensitive to the action of the 28-indole-betulin derivatives. The study shows that the lup-20(29)-ene-3-ol-28-yl 2-(1H-indol-3-yl)acetate caused the MCF-7 cells to arrest in the G1 phase, preventing the cells from entering the S phase. The performed cytometric analysis of DNA fragmentation indicates that the mechanism of EB355A action on the MCF-7 cell line is related to the induction of apoptosis. An in silico ADMET profile analysis of EB355A and EB365 showed that both compounds are bioactive molecules characterized by good intestinal absorption. In addition, the in silico studies indicate that the 28-indole-betulin derivatives are substances of relatively low toxicity.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
44
|
Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, Quesada AR. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother 2022; 155:113759. [DOI: 10.1016/j.biopha.2022.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
45
|
Alimba CG, Sivanesan S, Krishnamurthi K. Mitochondrial dysfunctions elicited by solid waste leachates provide insights into mechanisms of leachates induced cell death and pathophysiological disorders. CHEMOSPHERE 2022; 307:136085. [PMID: 36007733 DOI: 10.1016/j.chemosphere.2022.136085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Emissions (mainly leachates and landfill gases) from solid waste facilities are laden with mixtures of dangerous xenobiotics implicated with significant increase in various pathophysiological disorders including cancer, and eventual mortality of exposed wildlife and humans. However, the molecular mechanisms of solid waste leachates induce pathophysiological disorders and cell death are still largely unknown. Although, evolving evidence implicated generation of reactive oxygen species and oxidative stress as the possible mechanism. Recent scientific reports are linking reactive oxygen species and mitochondrial dysfunctions as the player mechanism in pathophysiological disorder and apoptosis induced by xenobiotics in solid waste leachates. This systematic review presents an explicit discussion of recent scientific findings on the structural and functional alterations in mitochondria induced by solid waste leachates as the molecular mechanisms plausibly responsible for the pathophysiological disorders, cancer and cell death reported in landfill toxicology and epidemiological studies. This review aims to increase scientific understanding on solid waste leachate induced mitochondria dysfunctions as the key player in molecular mechanisms of solid waste induced toxicity. The findings in this review were mainly from using primary cells, cell lines, Drosophila and fish. Whether the findings will similarly be observed in mammalian test systems in vivo and particularly in exposed humans, remained to be investigated. Improvement in technological advancements, enforcement of legislation and regulations, and creation of sophisticated health surveillance against exposure to solid waste leachates, will expectedly mitigate human exposure to solid waste emissions and contamination of the environment.
Collapse
Affiliation(s)
- Chibuisi Gideon Alimba
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria; Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany.
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Kannan Krishnamurthi
- Health and Toxicity Cell (HTC), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India; Academy of Scientific, Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
46
|
Hu Z, van der Ploeg K, Chakraborty S, Arunachalam PS, Mori DAM, Jacobson KB, Bonilla H, Parsonnet J, Andrews JR, Holubar M, Subramanian A, Khosla C, Maldonado Y, Hedlin H, de la Parte L, Press K, Ty M, Tan GS, Blish C, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Butte AJ, Singh U, Pulendran B, Wang TT, Jagannathan P. Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study. eLife 2022; 11:77943. [PMID: 36239699 PMCID: PMC9566856 DOI: 10.7554/elife.77943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Background The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of CaliforniaSan FranciscoUnited States
- Department of Microbiology and Immunology, University of CaliforniaSan FranciscoUnited States
| | | | | | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford UniversityStanfordUnited States
| | - Diego AM Mori
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Karen B Jacobson
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Hector Bonilla
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Julie Parsonnet
- Department of Medicine, Stanford UniversityStanfordUnited States
- Department of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - Jason R Andrews
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Marisa Holubar
- Department of Medicine, Stanford UniversityStanfordUnited States
| | | | | | - Yvonne Maldonado
- Department of Pediatrics, Stanford UniversityStanfordUnited States
| | - Haley Hedlin
- Quantitative Sciences Unit, Stanford UniversityStanfordUnited States
| | | | - Kathleen Press
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Maureen Ty
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Gene S Tan
- J. Craig Venter InstituteSan DiegoUnited States
- Division of Infectious Diseases, Department of Medicine, University of CaliforniaSan DiegoUnited States
| | - Catherine Blish
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Saki Takahashi
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | | | - Bryan Greenhouse
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of CaliforniaSan FranciscoUnited States
| | - Upinder Singh
- Department of Medicine, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Taia T Wang
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Prasanna Jagannathan
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
47
|
Kim M, An G, Lim W, Song G. Fluroxypyr-1-methylheptyl ester induced ROS production and mitochondrial apoptosis through the MAPK signaling cascade in porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105196. [PMID: 36127068 DOI: 10.1016/j.pestbp.2022.105196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
FPMH (Fluroxypyr-1-methylheptyl ester) is a synthetic auxin herbicide used in agriculture. The mechanism by which FPMH induces adverse effects in porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, which are involved in porcine implantation, have not been studied yet. Therefore, the present study investigates the toxicological effects of FPMH on pTr and pLE cells. We confirmed that FPMH induced cytotoxic effects on the cells, including apoptosis induction, mitochondrial membrane potential (MMP) depolarization, and ROS production. The phosphorylation of the MAPK pathway (ERK1/2, JNK, and p38) was dysregulated by FPMH administration. In addition, FPMH could suppress cell-cell adhesion and migration abilities of pTr and pLE, which are crucial for implantation. Therefore, exposure to FPMH induced adverse effects in pTr and pLE cells and could result in implantation failure.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
48
|
Kaur D, Verma P, Singh M, Sharma A, Lata K, Mukhopadhaya A, Chattopadhyay K. Pore formation-independent cell death induced by a β-barrel pore-forming toxin. FASEB J 2022; 36:e22557. [PMID: 36125006 DOI: 10.1096/fj.202200788r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). It exhibits potent hemolytic activity against erythrocytes that appears to be a direct outcome of its pore-forming functionality. However, VCC-mediated cell-killing mechanism is more complicated in the case of nucleated mammalian cells. It induces apoptosis in the target nucleated cells, mechanistic details of which are still unclear. Furthermore, it has never been explored whether the ability of VCC to trigger programmed cell death is stringently dependent on its pore-forming activity. Here, we show that VCC can evoke hallmark features of the caspase-dependent apoptotic cell death even in the absence of the pore-forming ability. Our study demonstrates that VCC mutants with abortive pore-forming hemolytic activity can trigger apoptotic cell death responses and cytotoxicity, similar to those elicited by the wild-type toxin. VCC as well as its pore formation-deficient mutants display prominent propensity to translocate to the target cell mitochondria and cause mitochondrial membrane damage. Therefore, our results for the first time reveal that VCC, despite being an archetypical β-PFT, can kill target nucleated cells independent of its pore-forming functionality. These findings are intriguing for a β-PFT, whose destination is generally expected to remain limited on the target cell membranes, and whose mode of action is commonly attributed to the membrane-damaging pore-forming ability. Taken together, our study provides critical new insights regarding distinct implications of the two important virulence functionalities of VCC for the V. cholerae pathogenesis process: hemolytic activity for iron acquisition and cytotoxicity for tissue damage by the bacteria.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
49
|
De I, Pahuja M, Ud Din Wani HM, Dey A, Dube T, Ghosh R, Kankan N, Mishra J, Panda JJ, Maruyama T, Ghosh K, Singh M. In-vitro toxicity assessment of a textile dye Eriochrome Black T and its nano-photocatalytic degradation through an innovative approach using Mf-NGr-CNTs-SnO 2 heterostructures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113985. [PMID: 36027712 DOI: 10.1016/j.ecoenv.2022.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to assess the in-vitro toxicity of a popular azodye, Eriochrome Black T (EBT) which may be an environmental hazard causing water pollution if released by textile industries as waste effluents to nearby water ponds. We explored the toxic potential of EBT at 200, 400 and 800 μg/ml concentrations, which were selected based on quantification of EBT present in the pond water near carpet industries. We investigated the permeability of EBT across the organ barriers and found it to be 6.48 ± 0.44% at the highest concentration. EBT also showed up to 26.46 ± 0.533% hemolytic potential on human RBCs. MTT assay revealed toxicity of up to 64.9 ± 10.12%. A dose-dependent increase in intracellular ROS levels and Caspase 3/7 activity was observed and confocal microscopy also demonstrated a similar trend of cellular apoptosis indicating ROS mediated induction of apoptosis as a mechanism of EBT induced cytotoxicity. After establishing the toxicity of EBT, an innovative nano-photocatalytic approach for dye remediation was applied by using as synthesized Mf-NGr-CNTs-SnO2 heterostructures. This catalyst showed dye degradation potential of up to 82% in 2 h in the presence of sun light. The degraded dye products were tested to have up to 30% reduced cellular toxicity as compared to the parent compound. This work successfully establishes the toxicity of EBT along with devising an innovative approach towards dye degradation where the catalyst is adhered on melamine foam and not being mixed in the effluents directly, thereby, reducing the possibility of catalyst being leached out into the river water.
Collapse
Affiliation(s)
- Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Mansi Pahuja
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Henna Mohi Ud Din Wani
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India; Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Taiwan
| | - Akashdeep Dey
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Taru Dube
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Rishita Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | | | - Jibanananda Mishra
- AAL Biosciences Research Pvt. Ltd, Sector 14, Panchkula, Haryana 134113, India
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Takahiro Maruyama
- Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Kaushik Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India.
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India.
| |
Collapse
|
50
|
Tripathi P, Soni R, Antra, Tandon V. Pixantrone confers radiosensitization in KRAS mutated cancer cells by suppression of radiation-induced prosurvival pathways. Free Radic Biol Med 2022; 190:351-362. [PMID: 35970251 DOI: 10.1016/j.freeradbiomed.2022.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Radioresistance towards radiation therapy has generated the need for the development of radiosensitizers as a potential drug. KRAS mutation brings radioresistance in tumor cells. The present work proves sensitization of cancer cells towards radiotherapy through inhibition of KRAS activation. Acquiring a drug repurposing approach, the in-silico screening revealed that pixantrone, an antineoplastic drug, possesses a high affinity towards KRAS G12C and G12D subtypes. The SPR study suggests that maximum affinity of pixantrone was observed with KRAS G12C>WT>G12D and G12S. Pixantrone potentially inhibited the KRAS activation in stable transfectants G12C and G12D cell lines and radiosensitized distinct KRAS mutant subtype cells. The combination of pixantrone with radiation causes enhanced dsDNA breaks along with enhanced ATM expression, and increased late apoptosis. The preclinical studies on NCr-fox1nu xenograft mice showed potent inhibition of tumor progression and prolonged survival of mcie due to the radiosensitizing effect of pixantrone. Radiation-induced activation of key effector proteins of RAS downstream pathways, like MAPK and PI3K/Akt/mTOR pathways, were downregulated in tumor cells upon combination treatment. Interestingly, a robust upregulation of senescence marker p21 was observed in the tumor cells in combination treatment. These findings reveal a convergence between KRAS signaling, pixantrone treatment, and radiation conferring tumor cell death.
Collapse
Affiliation(s)
- Pragya Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ravi Soni
- Institute of Nuclear Medicine & Allied Sciences, New Delhi-110054, India
| | - Antra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|