1
|
Abuzaid O, Idris AB, Yılmaz S, Idris EB, Idris LB, Hassan MA. Prediction of the most deleterious non-synonymous SNPs in the human IL1B gene: evidence from bioinformatics analyses. BMC Genom Data 2024; 25:56. [PMID: 38858637 PMCID: PMC11163699 DOI: 10.1186/s12863-024-01233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Polymorphisms in IL1B play a significant role in depression, multiple inflammatory-associated disorders, and susceptibility to infection. Functional non-synonymous SNPs (nsSNPs) result in changes in the encoded amino acids, potentially leading to structural and functional alterations in the mutant proteins. So far, most genetic studies have concentrated on SNPs located in the IL1B promoter region, without addressing nsSNPs and their association with multifactorial diseases. Therefore, this study aimed to explore the impact of deleterious nsSNPs retrieved from the dbSNP database on the structure and functions of the IL1B protein. RESULTS Six web servers (SIFT, PolyPhen-2, PROVEAN, SNPs&GO, PHD-SNP, PANTHER) were used to analyze the impact of 222 missense SNPs on the function and structure of IL1B protein. Five novel nsSNPs (E100K, T240I, S53Y, D128Y, and F228S) were found to be deleterious and had a mutational impact on the structure and function of the IL1B protein. The I-mutant v2.0 and MUPro servers predicted that these mutations decreased the stability of the IL1B protein. Additionally, these five mutations were found to be conserved, underscoring their significance in protein structure and function. Three of them (T240I, D128Y, and F228S) were predicted to be cancer-causing nsSNPs. To analyze the behavior of the mutant structures under physiological conditions, we conducted a 50 ns molecular dynamics simulation using the WebGro online tool. Our findings indicate that the mutant values differ from those of the IL1B wild type in terms of RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds. CONCLUSIONS This study provides valuable insights into nsSNPs located in the coding regions of IL1B, which lead to direct deleterious effects on the functional and structural aspects of the IL1B protein. Thus, these nsSNPs could be considered significant candidates in the pathogenesis of disorders caused by IL1B dysfunction, contributing to effective drug discovery and the development of precision medications. Thorough research and wet lab experiments are required to verify our findings. Moreover, bioinformatic tools were found valuable in the prediction of deleterious nsSNPs.
Collapse
Affiliation(s)
- Ola Abuzaid
- Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
- Erciyes Teknopark, Promoseed Biotechnology A.Ş, Kayseri, Turkey
| | - Einass Babikir Idris
- Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | | | - Mohamed A Hassan
- Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan
- Sanimed International Lab and Management L.L.C, Abu Dhabi, UAE
| |
Collapse
|
2
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Tai KY, Dhaliwal J, Wong K. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach. BMC Bioinformatics 2022; 23:325. [PMID: 35934714 PMCID: PMC9358850 DOI: 10.1186/s12859-022-04870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The malaria risk prediction is currently limited to using advanced statistical methods, such as time series and cluster analysis on epidemiological data. Nevertheless, machine learning models have been explored to study the complexity of malaria through blood smear images and environmental data. However, to the best of our knowledge, no study analyses the contribution of Single Nucleotide Polymorphisms (SNPs) to malaria using a machine learning model. More specifically, this study aims to quantify an individual's susceptibility to the development of malaria by using risk scores obtained from the cumulative effects of SNPs, known as weighted genetic risk scores (wGRS). RESULTS We proposed an SNP-based feature extraction algorithm that incorporates the susceptibility information of an individual to malaria to generate the feature set. However, it can become computationally expensive for a machine learning model to learn from many SNPs. Therefore, we reduced the feature set by employing the Logistic Regression and Recursive Feature Elimination (LR-RFE) method to select SNPs that improve the efficacy of our model. Next, we calculated the wGRS of the selected feature set, which is used as the model's target variables. Moreover, to compare the performance of the wGRS-only model, we calculated and evaluated the combination of wGRS with genotype frequency (wGRS + GF). Finally, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), and Ridge regression algorithms are utilized to establish the machine learning models for malaria risk prediction. CONCLUSIONS Our proposed approach identified SNP rs334 as the most contributing feature with an importance score of 6.224 compared to the baseline, with an importance score of 1.1314. This is an important result as prior studies have proven that rs334 is a major genetic risk factor for malaria. The analysis and comparison of the three machine learning models demonstrated that LightGBM achieves the highest model performance with a Mean Absolute Error (MAE) score of 0.0373. Furthermore, based on wGRS + GF, all models performed significantly better than wGRS alone, in which LightGBM obtained the best performance (0.0033 MAE score).
Collapse
Affiliation(s)
- Kah Yee Tai
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jasbir Dhaliwal
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia.
| | - KokSheik Wong
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Tai KY, Dhaliwal J, Balasubramaniam V. Leveraging Mann-Whitney U test on large-scale genetic variation data for analysing malaria genetic markers. Malar J 2022; 21:79. [PMID: 35264165 PMCID: PMC8905822 DOI: 10.1186/s12936-022-04104-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The malaria risk analysis of multiple populations is crucial and of great importance whilst compressing limitations. However, the exponential growth in diversity and accumulation of genetic variation data obtained from malaria-infected patients through Genome-Wide Association Studies opens up unprecedented opportunities to explore the significant differences between genetic markers (risk factors), particularly in the resistance or susceptibility of populations to malaria risk. Thus, this study proposes using statistical tests to analyse large-scale genetic variation data, comprising 20,854 samples from 11 populations within three continents: Africa, Oceania, and Asia. Methods Even though statistical tests have been utilized to conduct case–control studies since the 1950s to link risk factors to a particular disease, several challenges faced, including the choice of data (ordinal vs. non-ordinal) and test (parametric vs. non-parametric). This study overcomes these challenges by adopting the Mann–Whitney U test to analyse large-scale genetic variation data; to explore the statistical significance of markers between populations; and to further identify the highly differentiated markers. Results The findings of this study revealed a significant difference in the genetic markers between populations (p < 0.01) in all the case groups and most control groups. However, for the highly differentiated genetic markers, a significant difference (p < 0.01) was present for most genetic markers with varying p-values between the populations in the case and control groups. Moreover, several genetic markers were observed to have very significant differences (p < 0.001) across all populations, while others exist between certain specific populations. Also, several genetic markers have no significant differences between populations. Conclusions These findings further support that the genetic markers contribute differently between populations towards malaria resistance or susceptibility, thus showing differences in the likelihood of malaria infection. In addition, this study demonstrated the robustness of the Mann–Whitney U test in analysing genetic markers in large-scale genetic variation data, thereby indicating an alternative method to explore genetic markers in other complex diseases. The findings hold great promise for genetic markers analysis, and the pipeline emphasized in this study can fully be reproduced to analyse new data. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04104-x.
Collapse
Affiliation(s)
- Kah Yee Tai
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Jasbir Dhaliwal
- School of Information Technology, Monash University Malaysia, Subang Jaya, Selangor, Malaysia.
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
5
|
Olanlokun JO, Balogun AA, Olorunsogo OO. INFLUENCE OF ARTESUNATE COMBINATIVE THERAPY CO-ADMINISTRATION WITH RUTIN ON INFLAMMATORY CYTOKINES AND IMMUNOGLOBULINS IN PLASMODIUM BERGHEI-INFECTED MICE. J Parasitol 2021; 107:639-647. [PMID: 34358312 DOI: 10.1645/20-87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Some antimalarial drugs are immune-modulators that impact multiple pathways of innate immunity in malarial treatment. However, information on the immunomodulatory effects of artequine and rutin in the treatment of malaria remains elusive. Twenty-five Swiss mice (18 ± 2 g) were used for this study. Twenty were infected with Plasmodium berghei (NK65). Parasitemia was confirmed, and the animals were grouped (n = 5) as follows: Group A was not infected but treated orally with vehicle. Groups B to E were infected and treated (B) orally with vehicle (10 ml/kg), (C) with 10 mg/kg artequine, (D) with 10 mg/kg of artequine supplemented with 100 mg rutin/kg, and (D) with 10 mg/kg of artequine supplemented with 200 mg rutin/kg, for 7 days. Blood was collected for hematological, inflammatory cytokines, and immunoglobulins G and M assays. Post mitochondrial supernatant fraction was used for antioxidant assays. Rutin co-administration (200 mg/kg) significantly (P < 0.001) increased platelet and neutrophil counts (P < 0.01) but significantly (P < 0.01) decreased white blood cell count and lymphocyte relative to parasitized control. Also, it significantly (P < 0.05) decreased lipid peroxidation, xanthine oxidase, and superoxide dismutase activities but significantly (P < 0.05) increased reduced glutathione and glutathione S-transferase activity. Rutin co-administration also caused a significant (P < 0.001) increase in tumor necrosis factor-alpha, interleukin-6, and immunoglobulin M levels, while interleukin-1β and immunoglobulin G decreased significantly (P < 0.001) compared with parasitized control. These results showed that rutin co-administration with artequine improved host antioxidant status and modulated the immune and inflammatory responses.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| | - Adisa Abayomi Balogun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria 200001
| |
Collapse
|
6
|
Natama HM, Rovira-Vallbona E, Krit M, Guetens P, Sorgho H, Somé MA, Traoré-Coulibaly M, Valéa I, Mens PF, Schallig HDFH, Berkvens D, Kestens L, Tinto H, Rosanas-Urgell A. Genetic variation in the immune system and malaria susceptibility in infants: a nested case-control study in Nanoro, Burkina Faso. Malar J 2021; 20:94. [PMID: 33593344 PMCID: PMC7885350 DOI: 10.1186/s12936-021-03628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetic polymorphisms in the human immune system modulate susceptibility to malaria. However, there is a paucity of data on the contribution of immunogenetic variants to malaria susceptibility in infants, who present differential biological features related to the immaturity of their adaptive immune system, the protective effect of maternal antibodies and fetal haemoglobin. This study investigated the association between genetic variation in innate immune response genes and malaria susceptibility during the first year of life in 656 infants from a birth cohort survey performed in Nanoro, Burkina Faso. METHODS Seventeen single nucleotide polymorphisms (SNPs) in 11 genes of the immune system previously associated with different malaria phenotypes were genotyped using TaqMan allelic hybridization assays in a Fluidigm platform. Plasmodium falciparum infection and clinical disease were documented by active and passive case detection. Case-control association analyses for both alleles and genotypes were carried out using univariate and multivariate logistic regression. For cytokines showing significant SNP associations in multivariate analyses, cord blood supernatant concentrations were measured by quantitative suspension array technology (Luminex). RESULTS Genetic variants in IL-1β (rs1143634) and FcγRIIA/CD32 (rs1801274)-both in allelic, dominant and co-dominant models-were significantly associated with protection from both P. falciparum infection and clinical malaria. Furthermore, heterozygote individuals with rs1801274 SNP in FcγRIIA/CD32 showed higher IL-1RA levels compared to wild-type homozygotes (P = 0.024), a cytokine whose production is promoted by the binding of IgG immune complexes to Fcγ receptors on effector immune cells. CONCLUSIONS These findings indicate that genetic polymorphisms in genes driving innate immune responses are associated to malaria susceptibility during the first year of life, possibly by modulating production of inflammatory mediators.
Collapse
Affiliation(s)
- Hamatandi Magloire Natama
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | - Meryam Krit
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hermann Sorgho
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
| | - M Athanase Somé
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
| | - Maminata Traoré-Coulibaly
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
| | - Innocent Valéa
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
| | - Petra F Mens
- Department of Medical Microbiology-Parasitology Unit, Academic Medical Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Henk D F H Schallig
- Department of Medical Microbiology-Parasitology Unit, Academic Medical Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Luc Kestens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
- Centre Muraz, Bobo Dioulasso, Burkina Faso
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
7
|
Mario-Vásquez JE, Naranjo-González CA, Montiel J, Zuluaga LM, Vásquez AM, Tobón-Castaño A, Bedoya G, Segura C. Association of variants in IL1B, TLR9, TREM1, IL10RA, and CD3G and Native American ancestry on malaria susceptibility in Colombian populations. INFECTION GENETICS AND EVOLUTION 2020; 87:104675. [PMID: 33316430 DOI: 10.1016/j.meegid.2020.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Host genetics is an influencing factor in the manifestation of infectious diseases. In this study, the association of mild malaria with 28 variants in 16 genes previously reported in other populations and/or close to ancestry-informative markers (AIMs) selected was evaluated in an admixed 736 Colombian population sample. Additionally, the effect of genetic ancestry on phenotype expression was explored. For this purpose, the ancestral genetic composition of Turbo and El Bagre was determined. A higher Native American ancestry trend was found in the population with lower malaria susceptibility [odds ratio (OR) = 0.416, 95% confidence interval (95% CI) = 0.234-0.740, P = 0.003]. Three AIMs presented significant associations with the disease phenotype (MID1752, MID921, and MID1586). The first two were associated with greater malaria susceptibility (D/D, OR = 2.23, 95% CI = 1.06-4.69, P = 0.032 and I/D-I/I, OR = 2.14, 95% CI = 1.18-3.87, P = 0.011, respectively), and the latter has a protective effect on the appearance of malaria (I/I, OR = 0.18, 95% CI = 0.08-0.40, P < 0.0001). After adjustment by age, sex, municipality, and genetic ancestry, genotype association analysis showed evidence of association with malaria susceptibility for variants in or near IL1B, TLR9, TREM1, IL10RA, and CD3G genes: rs1143629-IL1B (G/A-A/A, OR = 0.41, 95% CI = 0.21-0.78, P = 0.0051), rs352139-TLR9 (T/T, OR = 0.28, 95% CI = 0.11-0.72, P = 0.0053), rs352140-TLR9 (C/C, OR = 0.41, 95% CI = 0.20-0.87, P = 0.019), rs2234237-TREM1 (T/A-A/A, OR = 0.43, 95% CI = 0.23-0.79, P = 0.0056), rs4252246-IL10RA (C/A-A/A, OR = 2.11, 95% CI = 1.18-3.75, P = 0.01), and rs1561966-CD3G (A/A, OR = 0.20, 95% CI = 0.06-0.69, P = 0.0058). The results showed the participation of genes involved in immunological processes and suggested an effect of ancestral genetic composition over the traits analyzed. Compared to the paisa population (Antioquia), Turbo and El Bagre showed a strong decrease in European ancestry and an increase in African and Native American ancestries. Also, a novel association of two single nucleotide polymorphisms with malaria susceptibility was identified in this study.
Collapse
Affiliation(s)
- Jorge Eliécer Mario-Vásquez
- Grupo Genética Molecular (GENMOL), Universidad de Antioquia, Carrera 53 No. 61-30, Lab 430. Medellín, Colombia
| | | | - Jehidys Montiel
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Lina M Zuluaga
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Ana M Vásquez
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Alberto Tobón-Castaño
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia
| | - Gabriel Bedoya
- Grupo Genética Molecular (GENMOL), Universidad de Antioquia, Carrera 53 No. 61-30, Lab 430. Medellín, Colombia
| | - Cesar Segura
- Grupo Malaria-Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Lab 610, Medellín, Colombia.
| |
Collapse
|
8
|
da Silva GAV, de Mesquita TGR, de Souza Encarnação HV, do Espírito Santo Junior J, da Costa Sabino K, de Aguiar Neres I, de Almeida SA, de Souza MLG, Talhari S, Ramasawmy R. A polymorphism in the IL1B gene (rs16944 T/C) is associated with cutaneous leishmaniasis caused by Leishmania guyanensis and plasma cytokine interleukin receptor antagonist. Cytokine 2019; 123:154788. [PMID: 31357078 DOI: 10.1016/j.cyto.2019.154788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Nod-like Receptor Protein3 (NLRP3) inflammasome in macrophages infected with Leishmania sp. enhances the secretion of IL-1β. Excess IL-1β production is linked to disease severity in patients with cutaneous leishmaniasis (CL) caused by L. mexicana. Blockade of the NLRP3 inflammasome in cell cultures from skin biopsies of patients with CL caused by L. braziliensis inhibited the release of IL-1β. We hypothesized that common single nucleotide polymorphisms in the IL1B and in its receptor antagonist IL1RN genes may be predictive of CL caused by L. guyanensis. The SNPs -511T/C (rs16944) and +3954C/T (rs1143634) of the IL1B and IL1RN VNTR (rs2234663) were assessed in 881 patients with CL and 837 healthy controls by PCR-RFLP and direct PCR respectively. Plasma cytokines levels were also assayed. The plasma levels of IL-1β were higher in patients compared to control subjects. In contrast, increased plasma levels of IL-1Ra were observed in controls. The rs16944 C/C genotype was more common among the patients (OR = 1.5 [95%CI 1.1-2.0]; P = 0.004) and the C allele suggests susceptibility to CL (OR = 1.2 [95%CI 1.1-1.4]; P = 0.003). The rs16944 C/C genotype shows a tendency to correlate with lower levels of the IL-1Ra cytokine. Low levels of IL-1Ra cytokine and rs16944 C/C genotype seem to confer susceptibility to L. guyanensis-infection in the Amazonas.
Collapse
Affiliation(s)
| | | | | | | | - Karolina da Costa Sabino
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Isaac de Aguiar Neres
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | - Mara Lúcia Gomes de Souza
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Sinésio Talhari
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Faculdade de Medicina, Universidade de Nilton Lins, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Universidade Federal do Amazonas, Manaus, Brazil; Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Faculdade de Medicina, Universidade de Nilton Lins, Manaus, Amazonas, Brazil.
| |
Collapse
|
9
|
Dewasurendra RL, Jeffreys A, Gunawardena SA, Chandrasekharan NV, Rockett K, Kwiatkowski D, Karunaweera ND. Host genetic polymorphisms and serological response against malaria in a selected population in Sri Lanka. Malar J 2018; 17:473. [PMID: 30558622 PMCID: PMC6296029 DOI: 10.1186/s12936-018-2622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Antibodies against the merozoite surface protein 1-19 (MSP1-19) and the apical membrane antigen 1 (AMA1) of the malaria parasite (Plasmodium vivax) are proven to be important in protection against clinical disease. Differences in the production/maintenance of antibodies may be due to many factors including host genetics. This paper discusses the association of 4 anti-malarial antibodies with selected host genetic markers. METHODS Blood was collected from individuals (n = 242) with a history of malaria within past 15 years for DNA and serum. ELISA was carried out for serum to determine the concentration of anti-malarial antibodies MSP1-19 and AMA1 for both vivax and falciparum malaria. 170 SNPs related to malaria were genotyped. Associations between seropositivity, antibody levels and genetic, non-genetic factors were determined. RESULTS Age ranged 13-74 years (mean age = 40.21 years). Majority were females. Over 90% individuals possessed either one or more type(s) of anti-malarial antibodies. Five SNPs were significantly associated with seropositivity. One SNP was associated with MSP1-19_Pv(rs739718); 4 SNPs with MSP1-19_Pf (rs6874639, rs2706379, rs2706381 and rs2075820) and1 with AMA1_Pv (rs2075820). Eleven and 7 genotypes (out of 15) were significantly associated with either presence or absence of antibodies. Three SNPs were found to be significantly associated with the antibody levels viz. rs17411697 with MSP1-19_Pv, rs2227491 with AMA1_Pv and rs229587 with AMA1_Pf. Linkage of the markers in the two groups was similar, but lower LOD scores were observed in seropositives compared to seronegatives. DISCUSSION AND CONCLUSIONS The study suggests that several SNPs in the human genome that exist in Sri Lankan populations are significantly associated with anti-malarial antibodies, either with generation and/or maintenance of antibodies for longer periods, which can be due to either individual polymorphisms or most probably a combined effect of the markers.
Collapse
Affiliation(s)
- Rajika L Dewasurendra
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka
| | - Anna Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sharmini A Gunawardena
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka
| | | | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 8, Sri Lanka.
| |
Collapse
|
10
|
Differential Gene Expression Profile of Human Neutrophils Cultured with Plasmodium falciparum-Parasitized Erythrocytes. J Immunol Res 2018; 2018:6709424. [PMID: 30069491 PMCID: PMC6057315 DOI: 10.1155/2018/6709424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Neutrophils (PMNs) are the most abundant cellular component of our innate immune system, where they play central roles in the pathogenesis of and resistance to a broad range of diseases. However, their roles in malarial infection remain poorly understood. Therefore, we examined the transcriptional gene profile of human PMNs in response to Plasmodium falciparum-parasitized erythrocytes (iRBCs) by using oligonucleotide microarrays. Results revealed that PMNs induced a broad and vigorous set of changes in gene expression in response to malarial parasites, represented by 118 upregulated and 216 downregulated genes. The transcriptional response was characterized by the upregulation of numerous genes encoding multiple surface receptors, proteins involved in signal transduction pathways, and defense response proteins. This response included a number of genes which are known to be involved in the pathogenesis of malaria and other inflammatory diseases. Gene enrichment analysis suggested that the biological pathways involved in the PMN responses to the iRBCs included insulin receptor, Jak-STAT signaling pathway, mitogen-activated protein kinase (MAPK), and interleukin and interferon-gamma (IFN-γ) signaling pathways. The current study provides fundamental knowledge on the molecular responses of neutrophils to malarial parasites, which may aid in the discovery of novel therapeutic interventions.
Collapse
|
11
|
Khazim K, Azulay EE, Kristal B, Cohen I. Interleukin 1 gene polymorphism and susceptibility to disease. Immunol Rev 2017; 281:40-56. [DOI: 10.1111/imr.12620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khaled Khazim
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Etti Ester Azulay
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| | - Batya Kristal
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Department of Nephrology and Hypertension; Galilee Medical Center; Nahariya Israel
| | - Idan Cohen
- Faculty of Medicine in the Galilee; Bar Ilan University; Safed Israel
- Research Institute; Galilee Medical Center; Nahariya Israel
| |
Collapse
|
12
|
Legason ID, Pfeiffer RM, Udquim KI, Bergen AW, Gouveia MH, Kirimunda S, Otim I, Karlins E, Kerchan P, Nabalende H, Bayanjargal A, Emmanuel B, Kagwa P, Talisuna AO, Bhatia K, Yeager M, Biggar RJ, Ayers LW, Reynolds SJ, Goedert JJ, Ogwang MD, Fraumeni JF, Prokunina-Olsson L, Mbulaiteye SM. Evaluating the Causal Link Between Malaria Infection and Endemic Burkitt Lymphoma in Northern Uganda: A Mendelian Randomization Study. EBioMedicine 2017; 25:58-65. [PMID: 29033373 PMCID: PMC5704046 DOI: 10.1016/j.ebiom.2017.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium falciparum (Pf) malaria infection is suspected to cause endemic Burkitt Lymphoma (eBL), but the evidence remains unsettled. An inverse relationship between sickle cell trait (SCT) and eBL, which supports that between malaria and eBL, has been reported before, but in small studies with low power. We investigated this hypothesis in children in a population-based study in northern Uganda using Mendelian Randomization. Methods Malaria-related polymorphisms (SCT, IL10, IL1A, CD36, SEMA3C, and IFNAR1) were genotyped in 202 eBL cases and 624 controls enrolled during 2010–2015. We modeled associations between genotypes and eBL or malaria using logistic regression. Findings SCT was associated with decreased risk of eBL (adjusted odds ratio [OR] 0·37, 95% CI 0·21–0·66; p = 0·0003). Decreased risk of eBL was associated with IL10 rs1800896-CT (OR 0·73, 95% CI 0·50–1·07) and -CC genotypes (OR 0·53, 95% CI 0·29–0·95, ptrend = 0·019); IL1A rs2856838-AG (OR 0·56, 95% CI 0·39–0·81) and -AA genotype (OR 0·50, 95% CI 0·28–1·01, ptrend = 0·0016); and SEMA3C rs4461841-CT or -CC genotypes (OR 0·57, 95% CI 0·35–0·93, p = 0·0193). SCT and IL10 rs1800896, IL1A rs2856838, but not SEMA3C rs4461841, polymorphisms were associated with decreased risk of malaria in the controls. Interpretation Our results support a causal effect of malaria infection on eBL. Mendelian randomization analysis was done to assess a causal relationship between malaria infection and endemic Burkitt lymphoma in Uganda Carriage of the sickle cell trait was associated with decreased risk of endemic Burkitt lymphoma Heterozygous or homozygous minor alleles of IL10 rs1800896, IL1A rs2856838, and SEMA3C rs4461841 were associated with decreased risk of endemic Burkitt lymphoma The inverse association between sickle cell trait and endemic Burkitt lymphoma supports a causal role of malaria in endemic Burkitt lymphoma
Collapse
Affiliation(s)
- Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| | - Krizia-Ivana Udquim
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Andrew W Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA
| | - Mateus H Gouveia
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Kirimunda
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda
| | - Ariunaa Bayanjargal
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Emmanuel
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda; Benjamin Emmanuel, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Paul Kagwa
- EMBLEM Study, African Field Epidemiology Network, P.O. Box 12874, Kampala, Uganda
| | - Ambrose O Talisuna
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| | - Robert J Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA.
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA
| | - Martin D Ogwang
- EMBLEM Study, St. Mary's Hospital, Lacor, P.O. Box 180, Gulu, Uganda.
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Ctr Dr, Bethesda 20892, MD, USA.
| |
Collapse
|
13
|
Wujcicka W, Wilczyński J, Paradowska E, Studzińska M, Nowakowska D. The role of single nucleotide polymorphisms, contained in proinflammatory cytokine genes, in the development of congenital infection with human cytomegalovirus in fetuses and neonates. Microb Pathog 2017; 105:106-116. [PMID: 28219832 DOI: 10.1016/j.micpath.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/04/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE The research project targeted the distribution of genotypes, alleles and haplotypes in single nucleotide polymorphisms (SNPs) within the interleukin (IL) 1A, IL1B, IL6, IL12B and TNFA genes, in fetuses and neonates, congenitally infected with human cytomegalovirus (HCMV), and among uninfected controls. METHODS The study included 20 fetuses and neonates with congenital HCMV infection and 31 control individuals. The genotypes in SNPs of the studied cytokine genes were identified by a self-designed nested PCR-RFLP assays. Selected genotypes, representing distinct variants in analyzed polymorphisms, were confirmed by sequencing. The relationship between the genetic status of the studied polymorphisms and congenital infection development was estimated, using a logistic regression model. RESULTS The CT haplotype, composed of C allele determined in IL1A -889 C > T and T allele in IL1B +3954 C > T SNP, increased the risk of congenital HCMV infection, as well as the onset of disease related symptoms (P ≤ 0.0001). Considering disease outcome, the risk of development of symptoms, was increased among the CT heterozygotes in IL1A -889 C > T polymorphism (OR 2.86, 95% CI 0.24-33.90; P = 0.045). Moreover, multiple-SNP variants CCGAG in the range of all the SNPs, analyzed in the study, increased the risk of congenital infection with HCMV (OR 7.94, 95% CI 1.38-45.69; P = 0.026). CONCLUSIONS Polymorphisms within the proinflammatory cytokine genes may contribute to the development of congenital infection with HCMV.
Collapse
Affiliation(s)
- Wioletta Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland; Department of Perinatology and Gynecology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland.
| | - Jan Wilczyński
- 2nd Chair of Obstetrics and Gynecology, Duchess Anna Mazowiecka Public Teaching Hospital, Warsaw, Poland.
| | - Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Mirosława Studzińska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Dorota Nowakowska
- Department of Perinatology and Gynecology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland.
| |
Collapse
|
14
|
Neonatal infections in Saudi Arabia: Association with cytokine gene polymorphisms. Cent Eur J Immunol 2015; 40:68-77. [PMID: 26155186 PMCID: PMC4472542 DOI: 10.5114/ceji.2015.50836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022] Open
Abstract
In recent years, many studies have reported potential associations between cytokine gene polymorphisms and the development, course, and outcome of sepsis, often with apparently conflicting results. The objective of this study was to investigate single nucleotide polymorphism (SNP) in the interleukin (IL)-1β –31 T/C, IL-6 –174 G/C, tumor necrosis factor α (TNF-α) –308 G/A, and interferon γ (IFN-γ) +874 A/T genes for their possible association with susceptibility to early onset sepsis (EOS) in Saudi newborn infants. A total of 205 newborn infants aged 1-2 days were consecutively enrolled onto the study having met the inclusion criteria (as per the research protocol). DNA was extracted from filter papers using the Chelex-100 method. The cytokines SNP were genotyping using Taqman 5’ nuclease allelic discrimination. For cytokine measurements we used the commercially available Enzyme-Linked Immunosorbent Assay (ELISA) kit. Our results show that the circulating IL-1β, IL-6, TNF-α, and IFN-γ were significantly (p < 0.001) elevated in EOS patients compared to suspected and sepsis-free control groups; and IL-1β –31C, IL-6 –174G, TNF-α –308G, and IFN-γ +874A alleles were associated with EOS in Saudi infants. In conclusion, analysis of cytokines concentrations and SNP for the four tested genes can be used as a predictor of sepsis outcome in newborns.
Collapse
|
15
|
Abstract
Parasites still impose a high death and disability burden on human populations, and are therefore likely to act as selective factors for genetic adaptations. Genetic epidemiological investigation of parasitic diseases is aimed at disentangling the mechanisms underlying immunity and pathogenesis by looking for associations or linkages between loci and susceptibility phenotypes. Until recently, most studies used a candidate gene approach and were relatively underpowered, with few attempts at replicating findings in different populations. However, in the last 5 years, genome-wide and/or multicentre studies have been conducted for severe malaria, visceral leishmaniasis, and cardiac Chagas disease, providing some novel important insights. Furthermore, studies of helminth infections have repeatedly shown the involvement of common loci in regulating susceptibility to distinct diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocherciasis. As more studies are conducted, evidence is increasing that at least some of the identified susceptibility loci are shared not only among parasitic diseases but also with immunological disorders such as allergy or autoimmune disease, suggesting that parasites may have played a role in driving the evolution of the immune system.
Collapse
Affiliation(s)
- V D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy
| | | |
Collapse
|
16
|
Hernandez-Valladares M, Rihet P, Iraqi FA. Host susceptibility to malaria in human and mice: compatible approaches to identify potential resistant genes. Physiol Genomics 2014; 46:1-16. [DOI: 10.1152/physiolgenomics.00044.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.
Collapse
Affiliation(s)
| | - Pascal Rihet
- UMR1090 TAGC, INSERM, Marseille, France
- Aix-Marseille University, Marseille, France; and
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
17
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Mugri RN, Ngwai AN, Rockett KA, Mbunwe E, Besingi RN, Clark TG, Kwiatkowski DP, Achidi EA. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One 2013; 8:e81071. [PMID: 24312262 PMCID: PMC3842328 DOI: 10.1371/journal.pone.0081071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022] Open
Abstract
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.
Collapse
Affiliation(s)
- Tobias O. Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- * E-mail:
| | | | - Clarisse Njua-Yafi
- Department of Animal Biology and Physiology, University of Yaounde I, Yaounde, Cameroon
| | - Regina N. Mugri
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Andre N. Ngwai
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric Mbunwe
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Richard N. Besingi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric A. Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | | |
Collapse
|
18
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
19
|
Sortica VA, Cunha MG, Ohnishi MDO, Souza JM, Ribeiro-Dos-Santos AKC, Santos NPC, Callegari-Jacques SM, Santos SEB, Hutz MH. IL1B, IL4R, IL12RB1 and TNF gene polymorphisms are associated with Plasmodium vivax malaria in Brazil. Malar J 2012; 11:409. [PMID: 23217179 PMCID: PMC3537609 DOI: 10.1186/1475-2875-11-409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022] Open
Abstract
Background Malaria is among the most prevalent parasitic diseases worldwide. In Brazil, malaria is concentrated in the northern region, where Plasmodium vivax accounts for 85% disease incidence. The role of genetic factors in host immune system conferring resistance/susceptibility against P. vivax infections is still poorly understood. Methods The present study investigates the influence of polymorphisms in 18 genes related to the immune system in patients with malaria caused by P. vivax. A total of 263 healthy individuals (control group) and 216 individuals infected by P. vivax (malaria group) were genotyped for 33 single nucleotide polymorphisms (SNPs) in IL1B, IL2, IL4, IL4R, IL6, IL8, IL10, IL12A, IL12B, IL12RB1, SP110, TNF, TNFRSF1A, IFNG, IFNGR1, VDR, PTPN22 and P2X7 genes. All subjects were genotyped with 48 ancestry informative insertion-deletion polymorphisms to determine the proportion of African, European and Amerindian ancestry. Only 13 SNPs in 10 genes with differences lower than 20% between cases and controls in a Poisson Regression model with age as covariate were further investigated with a structured population association test. Results The IL1B gene -5839C > T and IL4R 1902A > G polymorphisms and IL12RB1 -1094A/-641C and TNF -1031 T/-863A/-857 T/-308 G/-238 G haplotypes were associated with malaria susceptibility after population structure correction (p = 0.04, p = 0.02, p = 0.01 and p = 0.01, respectively). Conclusion Plasmodium vivax malaria pathophysiology is still poorly understood. The present findings reinforce and increase our understanding about the role of the immune system in malaria susceptibility.
Collapse
Affiliation(s)
- Vinicius A Sortica
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dunstan SJ, Rockett KA, Quyen NTN, Teo YY, Thai CQ, Hang NT, Jeffreys A, Clark TG, Small KS, Simmons CP, Day N, O'Riordan SE, Kwiatkowski DP, Farrar J, Phu NH, Hien TT. Variation in human genes encoding adhesion and proinflammatory molecules are associated with severe malaria in the Vietnamese. Genes Immun 2012; 13:503-8. [PMID: 22673309 PMCID: PMC3758997 DOI: 10.1038/gene.2012.25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The genetic basis for susceptibility to malaria has been studied widely in African populations but less is known of the contribution of specific genetic variants in Asian populations. We genotyped 67 single-nucleotide polymorphisms (SNPs) in 1030 severe malaria cases and 2840 controls from Vietnam. After data quality control, genotyping data of 956 cases and 2350 controls were analysed for 65 SNPs (3 gender confirmation, 62 positioned in/near 42 malarial candidate genes). A total of 14 SNPs were monomorphic and 2 (rs8078340 and rs33950507) were not in Hardy-Weinberg equilibrium in controls (P<0.01). In all, 7/46 SNPs in 6 genes (ICAM1, IL1A, IL17RC, IL13, LTA and TNF) were associated with severe malaria, with 3/7 SNPs in the TNF/LTA region. Genotype-phenotype correlations between SNPs and clinical parameters revealed that genotypes of rs708567 (IL17RC) correlate with parasitemia (P=0.028, r(2)=0.0086), with GG homozygotes having the lowest parasite burden. Additionally, rs708567 GG homozygotes had a decreased risk of severe malaria (P=0.007, OR=0.78 (95% CI; 0.65-0.93)) and death (P=0.028, OR=0.58 (95% CI; 0.37-0.93)) than those with AA and AG genotypes. In summary, variants in six genes encoding adhesion and proinflammatory molecules are associated with severe malaria in the Vietnamese. Further replicative studies in independent populations will be necessary to confirm these findings.
Collapse
Affiliation(s)
- S J Dunstan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol 2012; 42:549-55. [PMID: 22549022 DOI: 10.1016/j.ijpara.2012.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/02/2012] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections.
Collapse
|
22
|
IL-1β (-511T/C) gene polymorphism not IL-1β (+3953T/C) and LT-α (+252A/G) gene variants confers susceptibility to visceral leishmaniasis. Mol Biol Rep 2012; 39:6907-14. [PMID: 22311026 DOI: 10.1007/s11033-012-1517-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/24/2012] [Indexed: 01/11/2023]
Abstract
Lymphotoxin-α (LT-α) and interleukin-1beta (IL-1β) are proinflammatory cytokines playing important roles in immunity against Leishmania infection and the outcome of the disease. As cytokine productions are under the genetic control, this study tried to find any probable relationship between these cytokine gene polymorphisms and the susceptibility to visceral leishmaniasis in Iranian pediatric patients. Ninety-five pediatric patients involved with visceral leishmaniasis and 128 non-relative healthy people, from the same area as the patients, were genotyped for LT-α (+252A/G) and IL-1β (+3953T/C and -511T/C) gene polymorphisms using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). There was not found any significant differences in allele and genotype frequencies of LT-α (+252A/G) and IL-1β (+3953) among the study groups. However, the frequency of IL-1β -511TT genotype was higher in the controls (P = 0.0004) while the frequency of IL-1β -511CC genotype and C allele were higher in the patients (P = 0.008 and P = 0.00006, respectively). Furthermore, IL-1β CC (-511/+3953) haplotype was more frequent in VL patients compared with the controls (P = 0.0002) and the distribution of TT haplotype was higher in the controls compared with the patients (P = 0.003). In conclusion, based on the results, IL-1β -511C allele, CC genotype and CC (-511/+3953) haplotype could be considered as the susceptibility factors for visceral leishmaniasis while IL-1β -511TT genotype, T allele and TT haplotype (-511/+3953) might be counted as the influential factors for resistance to the disease.
Collapse
|
23
|
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10:271. [PMID: 21929748 PMCID: PMC3184115 DOI: 10.1186/1475-2875-10-271] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 12/26/2022] Open
Abstract
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature. Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.
Collapse
Affiliation(s)
- Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Nikolopoulos GK, Masgala A, Tsiara C, Limitsiou OK, Karnaouri AC, Dimou NL, Bagos PG. Cytokine gene polymorphisms in multiple sclerosis: a meta-analysis of 45 studies including 7379 cases and 8131 controls. Eur J Neurol 2011; 18:944-51. [PMID: 21299734 DOI: 10.1111/j.1468-1331.2011.03355.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- G K Nikolopoulos
- Hellenic Centre for Diseases Control and Prevention, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
25
|
Cauci S, Di Santolo M, Ryckman KK, Williams SM, Banfi G. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status. BMC MEDICAL GENETICS 2010; 11:29. [PMID: 20175886 PMCID: PMC2837019 DOI: 10.1186/1471-2350-11-29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 02/22/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The interleukin-1 (IL-1) family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra) increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects. METHODS Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional) Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1beta gene (IL-1B) at -511 and +3954 positions, and a variable number tandem repeats (VNTR) in intron 2 of the IL-1ra gene (IL-1RN) were assessed. RESULTS We found a 2-fold higher frequency of the IL-1RN 1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%), and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%). Frequency of the IL-1RN 2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 IL-1B polymorphisms. However, the haplotype (-511)C-(+3954)T-(VNTR)2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87). Interestingly, the IL-1RN 1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%). CONCLUSIONS Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR IL-1RN polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR IL-1RN polymorphism is implicated in several disease conditions, athlete status may constitute a confounding variable that will need to be accounted for when examining associations of this polymorphism with disease risk.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Biomedical Sciences and Technologies, School of Medicine, Università di Udine, Udine, Italy.
| | | | | | | | | |
Collapse
|
26
|
Ferrante L, Opdal SH, Vege A, Rognum TO. IL-1 gene cluster polymorphisms and sudden infant death syndrome. Hum Immunol 2010; 71:402-6. [PMID: 20080142 DOI: 10.1016/j.humimm.2010.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 01/10/2023]
Abstract
Several studies indicate that interleukin gene polymorphisms are of importance to sudden infant death syndrome (SIDS), and so far it has been reported that associations between SIDS and polymorphism in the genes encoding tumor necrosis factor alpha, IL (interleukin)-6, and IL-10. IL-1 are important for the synthesis of acute phase proteins, and it is a pyrogen cytokine that may cause fever. The purpose of the present study was to investigate two polymorphisms in the IL-1alpha gene; a variable number of tandem repeat (VNTR) in intron 6 and a single nucleotide polymorphism in +4845G/T, as well as the -511C/T polymorphism in the gene encoding IL-1beta, and a VNTR in intron 2 of the competitive antagonist IL-1Ra, in SIDS cases, cases of infectious death, and controls. Furthermore, the genotypes were correlated with known external risk factors for SIDS. When investigating each polymorphism separately, no differences in genotype distribution between the diagnosis groups and controls were found. However, when combining VNTR and single nucleotide polymorphism genotypes, an association between the gene combination IL-1alpha VNTR A1A1/IL-1beta+ +4845TT and SIDS was disclosed (p < 0.01). In the SIDS group it was also found that the genotypes IL-1beta -511CC/CT were significantly more frequent in the SIDS victims found dead in a prone sleeping position, compared with SIDS victims found dead in other sleeping positions (p = 0.004). The findings in the present study indicate that specific interleukin gene variants may be a predisposing factor for sudden unexpected infant death.
Collapse
Affiliation(s)
- Linda Ferrante
- Institute of Forensic Medicine, Rikshospitalet, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
27
|
Dutra WO, Moreira PR, Souza PEA, Gollob KJ, Gomez RS. Implications of cytokine gene polymorphisms on the orchestration of the immune response: lessons learned from oral diseases. Cytokine Growth Factor Rev 2009; 20:223-32. [PMID: 19502097 DOI: 10.1016/j.cytogfr.2009.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past 10 years, a plethora of information concerning the influence of gene polymorphisms on cytokine expression has been made available in the literature. Significant contribution to this field has come from studies of oral diseases, one of the widest spread health problems in the world, affecting hundreds of millions worldwide. Here we will discuss the importance of studies of gene polymorphism towards the identification of susceptible groups or prognostic indicators of oral disease. Additionally, we will highlight the differences in data obtained from genetically diverse populations and review the application of cytokine gene polymorphisms studies in oral diseases in autoimmune processes and parasitic infections.
Collapse
Affiliation(s)
- Walderez O Dutra
- Laboratory of Cell-Cell Interactions, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte-MG, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 2009; 31:234-53. [PMID: 19388945 DOI: 10.1111/j.1365-3024.2009.01106.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum represents one of the strongest selective forces on the human genome. This stable and perennial pressure has contributed to the progressive accumulation in the exposed populations of genetic adaptations to malaria. Descriptive genetic epidemiology provides the initial step of a logical procedure of consequential phases spanning from the identification of genes involved in the resistance/susceptibility to diseases, to the determination of the underlying mechanisms and finally to the possible translation of the acquired knowledge in new control tools. In malaria, the rational development of this strategy is traditionally based on complementary interactions of heterogeneous disciplines going from epidemiology to vaccinology passing through genetics, pathogenesis and immunology. New tools including expression profile analysis and genome-wide association studies are recently available to explore the complex interactions of host-parasite co-evolution. Particularly, the combination of genome-wide association studies with large multi-centre initiatives can overcome the limits of previous results due to local population dynamics. Thus, we anticipate substantial advances in the interpretation and validation of the effects of genetic variation on malaria susceptibility, and thereby on molecular mechanisms of protective immune responses and pathogenesis.
Collapse
Affiliation(s)
- F Verra
- Department of Public Health, University of Rome La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
29
|
Parikh S, Rosenthal PJ. Human genetics and malaria: relevance for the design of clinical trials. J Infect Dis 2008; 198:1255-7. [PMID: 18752442 DOI: 10.1086/592223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Ouma C, Davenport GC, Awandare GA, Keller CC, Were T, Otieno MF, Vulule JM, Martinson J, Ong'echa JM, Ferrell RE, Perkins DJ. Polymorphic variability in the interleukin (IL)-1beta promoter conditions susceptibility to severe malarial anemia and functional changes in IL-1beta production. J Infect Dis 2008; 198:1219-26. [PMID: 18781863 DOI: 10.1086/592055] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Interleukin (IL)-1beta is a cytokine released as part of the innate immune response to Plasmodium falciparum. Because the role played by IL-1beta polymorphic variability in conditioning the immunopathogenesis of severe malarial anemia (SMA) remains undefined, relationships between IL-1beta promoter variants (-31C/T and -511A/G), SMA (hemoglobin [Hb] level <6.0 g/dL), and circulating IL-1beta levels were investigated in children with parasitemia (n= 566) from western Kenya. The IL-1beta promoter haplotype -31C/-511A (CA) was associated with increased risk of SMA (Hb level <6.0 g/dL; odds ratio [OR], 1.98 [95% confidence interval {CI}, 1.55-2.27]; P < .05) and reduced circulating IL-1beta levels (p <.05). The TA (-31T/-511A) haplotype was nonsignificantly associated with protection against SMA (OR, 0.52 [95% CI, 0.18-1.16]; p =.11) and elevated IL-1beta production ( p<.05). Compared with the non-SMA group, children with SMA had significantly lower IL-1beta levels and nonsignificant elevations in both IL-1 receptor antagonist (IL-1Ra) and the ratio of IL-1Ra to IL-1beta. The results presented demonstrate that variation in IL-1beta promoter conditions susceptibility to SMA and functional changes in circulating IL-1beta levels.
Collapse
Affiliation(s)
- Collins Ouma
- 1University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sirugo G, Hennig BJ, Adeyemo AA, Matimba A, Newport MJ, Ibrahim ME, Ryckman KK, Tacconelli A, Mariani-Costantini R, Novelli G, Soodyall H, Rotimi CN, Ramesar RS, Tishkoff SA, Williams SM. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet 2008; 123:557-98. [PMID: 18512079 DOI: 10.1007/s00439-008-0511-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/07/2008] [Indexed: 01/13/2023]
Abstract
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.
Collapse
Affiliation(s)
- Giorgio Sirugo
- Medical Research Council Laboratories, Fajara, The Gambia, West Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sainz J, Pérez E, Gómez-Lopera S, Jurado M. IL1 gene cluster polymorphisms and its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and modulate C-reactive protein level. J Clin Immunol 2008; 28:473-85. [PMID: 18484169 DOI: 10.1007/s10875-008-9197-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 03/11/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether interleukin-1 alpha (IL1alpha), interleukin-1 beta (IL1beta), and IL1 receptor antagonist (IL1Ra) polymorphisms are implicated in invasive pulmonary aspergillosis (IPA) pathogenesis. MATERIALS AND METHODS Subjects comprised 110 hematological patients and 148 healthy controls. Genotypic and allelic frequencies were similar between hematological patients and controls. IPA was diagnosed in 59 of the 110 patients according to consensus criteria published by the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group (EORTC/IFICG). RESULTS AND DISCUSSIONS Individual locus analysis showed that IL1alpha and IL1Ra polymorphisms were not associated with the presence of IPA (p = 0.560 and p = 0.680, respectively). However, a trend towards a higher presence of IL1beta( - ) (511TT) genotype (or IL1beta(-511T) allele) in the IPA group than in the non-IPA patient group (p = 0.092 and p = 0.095, respectively) was found. Haplotype analysis revealed that VNTR2/-889C/-511T haplotype was strongly associated with susceptibility to develop IPA infection (p = 0.020). Haplotype analysis also showed an association between VNTR2/-889C/-511C haplotype and resistance to IPA infection (p = 0.028). Furthermore, patients with IL1Ra VNTR2/2 and IL1beta(-511)T/T genotypes had a higher positive serum galactomannan percentage versus patients with other genotypes. Finally, C-reactive protein (CRP) production was significantly associated with IL1 gene cluster polymorphisms, although CRP values were similar between IPA and non-IPA groups. CONCLUSION These findings indicate a critical role of IL1 gene cluster polymorphisms in the susceptibility to IPA infection and CRP production.
Collapse
Affiliation(s)
- J Sainz
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada, Spain.
| | | | | | | |
Collapse
|
33
|
Sakuntabhai A, Ndiaye R, Casadémont I, Peerapittayamongkol C, Rogier C, Tortevoye P, Tall A, Paul R, Turbpaiboon C, Phimpraphi W, Trape JF, Spiegel A, Heath S, Mercereau-Puijalon O, Dieye A, Julier C. Genetic determination and linkage mapping of Plasmodium falciparum malaria related traits in Senegal. PLoS One 2008; 3:e2000. [PMID: 18431485 PMCID: PMC2295258 DOI: 10.1371/journal.pone.0002000] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/10/2008] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum malaria episodes may vary considerably in their severity and clinical manifestations. There is good evidence that host genetic factors contribute to this variability. To date, most genetic studies aiming at the identification of these genes have used a case/control study design for severe malaria, exploring specific candidate genes. Here, we performed a family-based genetic study of falciparum malaria related phenotypes in two independent longitudinal survey cohorts, as a first step towards the identification of genes and mechanisms involved in the outcome of infection. We studied two Senegalese villages, Dielmo and Ndiop that differ in ethnicity, malaria transmission and endemicity. We performed genome-scan linkage analysis of several malaria-related phenotypes both during clinical attacks and asymptomatic infection. We show evidence for a strong genetic contribution to both the number of clinical falciparum malaria attacks and the asymptomatic parasite density. The asymptomatic parasite density showed linkage to chromosome 5q31 (LOD = 2.26, empirical p = 0.0014, Dielmo), confirming previous findings in other studies. Suggestive linkage values were also obtained at three additional chromosome regions: the number of clinical malaria attacks on chromosome 5p15 (LOD = 2.57, empirical p = 0.001, Dielmo) and 13q13 (LOD = 2.37, empirical p = 0.0014 Dielmo), and the maximum parasite density during asymptomatic infection on chromosome 12q21 (LOD = 3.1, empirical p<10−4, Ndiop). While regions of linkage show little overlap with genes known to be involved in severe malaria, the four regions appear to overlap with regions linked to asthma or atopy related traits, suggesting that common immune related pathways may be involved.
Collapse
Affiliation(s)
- Anavaj Sakuntabhai
- Institut Pasteur, Unité de Génétique des Maladies Infectieuses et Autoimmunes, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Balasubramanian SP, Cox A, Cross SS, Higham SE, Brown NJ, Reed MW. Influence of VEGF-A gene variation and protein levels in breast cancer susceptibility and severity. Int J Cancer 2007; 121:1009-16. [PMID: 17471570 DOI: 10.1002/ijc.22772] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor-A (VEGF-A) plays an important role in tumour angiogenesis and cancer progression. VEGF gene variation may influence VEGF levels and therefore cancer susceptibility and progression. We studied the role of VEGF single nucleotide polymorphisms and haplotypes in breast cancer susceptibility and severity. We also studied the relationships of VEGF SNPs with circulating VEGF levels in healthy volunteers and protein expression in breast cancers. Single nucleotide polymorphisms (SNPs) in the regulatory regions of the VEGF gene were genotyped by high throughput methods in approximately 500 breast cancer cases and 500 appropriate controls. Haplotype frequencies were inferred using methods based on the Expectation Maximisation algorithm. The effect of VEGF genotypes on serum and plasma VEGF levels were studied in another cohort of healthy individuals. A semi-quantitative assessment of VEGF protein expression on tissue micro arrays (TMA) constructed from approximately 300 breast cancer samples was performed and compared with VEGF genotypes and with histopathological parameters and survival in breast cancer. The -460T/+405C/-7C/936C haplotype in the VEGF gene was found to be associated with decreased breast cancer risk (p = 0.029). The -7C>T polymorphism may influence overall breast cancer survival (p = 0.027). Individual polymorphisms however did not affect breast cancer susceptibility. There was no association between the individual polymorphisms and circulating VEGF levels in healthy volunteers and VEGF expression on the breast cancer micro array. VEGF expression in breast cancers was however associated with high grade (p = 0.002) and ER negative tumours (p = 0.03).
Collapse
|
35
|
Jessen KM, Lindboe SB, Petersen AL, Eugen-Olsen J, Benfield T. Common TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis. BMC Infect Dis 2007; 7:108. [PMID: 17877801 PMCID: PMC2034565 DOI: 10.1186/1471-2334-7-108] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 09/18/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have investigated single nucleotide polymorphisms (SNPs) in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population. METHODS Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-alpha, (TNF-alpha), interleukin-1 beta (IL-1 beta), plasminogen activator-1 (PAI-1), urokinase plasminogen activator (uPA), CD14 and toll-like receptor 4 (TLR4) was done. RESULTS Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. CONCLUSION We did not find any association between TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.
Collapse
Affiliation(s)
| | | | | | - Jesper Eugen-Olsen
- Clinical Research Unit, Hvidovre University Hospital, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre University Hospital, Copenhagen, Denmark
| |
Collapse
|
36
|
Carpenter D, Abushama H, Bereczky S, Färnert A, Rooth I, Troye-Blomberg M, Quinnell RJ, Shaw MA. Immunogenetic Control of Antibody Responsiveness in a Malaria Endemic Area. Hum Immunol 2007; 68:165-9. [PMID: 17349871 DOI: 10.1016/j.humimm.2006.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/17/2022]
Abstract
This study builds upon the established genetic control of antimalarial immune responses and prior association studies by using a family-based approach, transmission disequilibrium testing, to identify immune response genes that influence antibody responses to Plasmodium falciparum infection in an endemic Tanzanian population. Candidate polymorphisms are within the interleukin-1 (IL-1) gene cluster, the IL-10 promoter, Major histocompatibility complex class II and III, the 5q31-q33 region, and the T-Cell Receptor beta variable region. There was a significant association between the IL1RN alleles and total IgE. Weak evidence for association was present between polymorphisms in the IL10 promoter region and both anti-P falciparum IgE and IgG4 antibodies.
Collapse
MESH Headings
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/genetics
- Antibodies, Protozoan/immunology
- Antibody Formation/genetics
- Endemic Diseases
- Genes, MHC Class II
- Genotype
- HLA-D Antigens/genetics
- Haplotypes/genetics
- Humans
- Immunoglobulin E/biosynthesis
- Immunoglobulin E/genetics
- Immunoglobulin E/immunology
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Interleukin-1/genetics
- Interleukin-10/genetics
- Interleukin-13/genetics
- Interleukin-4/genetics
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Minisatellite Repeats
- Polymorphism, Restriction Fragment Length
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-1/genetics
- Tanzania/epidemiology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Danielle Carpenter
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, England.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Severe falciparum malaria is an acute systemic disease that can affect multiple organs, including those in which few parasites are found. The acute disease bears many similarities both clinically and, potentially, mechanistically, to the systemic diseases caused by bacteria, rickettsia, and viruses. Traditionally the morbidity and mortality associated with severe malarial disease has been explained in terms of mechanical obstruction to vascular flow by adherence to endothelium (termed sequestration) of erythrocytes containing mature-stage parasites. However, over the past few decades an alternative ‘cytokine theory of disease’ has also evolved, where malarial pathology is explained in terms of a balance between the pro- and anti-inflammatory cytokines. The final common pathway for this pro-inflammatory imbalance is believed to be a limitation in the supply and mitochondrial utilisation of energy to cells. Different patterns of ensuing energy depletion (both temporal and spatial) throughout the cells in the body present as different clinical syndromes. This chapter draws attention to the over-arching position that inflammatory cytokines are beginning to occupy in the pathogenesis of acute malaria and other acute infections. The influence of inflammatory cytokines on cellular function offers a molecular framework to explain the multiple clinical syndromes that are observed during acute malarial illness, and provides a fresh avenue of investigation for adjunct therapies to ameliorate the malarial disease process.
Collapse
|
38
|
Shen J, Deininger PL, Zhao H. Applications of computational algorithm tools to identify functional SNPs in cytokine genes. Cytokine 2006; 35:62-6. [PMID: 16919468 DOI: 10.1016/j.cyto.2006.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 01/03/2006] [Accepted: 07/13/2006] [Indexed: 11/19/2022]
Abstract
Understanding the functions of single nucleotide polymorphisms (SNPs) can greatly help to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. However, how to identify functional SNPs from a pool containing both functional and neutral SNPs is challenging. In this study, we analyzed the genetic variations that can alter the expression and function of a group of cytokine proteins using computational tools. As a result, we extracted 4552 SNPs from 45 cytokine proteins from SNPper database. Of particular interest, 828 SNPs were in the 5'UTR region, 961 SNPs were in the 3' UTR region, and 85 SNPs were non-synonymous SNPs (nsSNPs), which cause amino acid change. Evolutionary conservation analysis using the SIFT tool suggested that 8 nsSNPs may disrupt the protein function. Protein structure analysis using the PolyPhen tool suggested that 5 nsSNPs might alter protein structure. Binding motif analysis using the UTResource tool suggested that 27 SNPs in 5' or 3'UTR might change protein expression levels. Our study demonstrates the presence of naturally occurring genetic variations in the cytokine proteins that may affect their expressions and functions with possible roles in complex human disease, such as immune diseases.
Collapse
Affiliation(s)
- Jie Shen
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | | | | |
Collapse
|
39
|
Franks PW, Luan J, Barroso I, Brage S, Gonzalez Sanchez JL, Ekelund U, Ríos MS, Schafer AJ, O'Rahilly S, Wareham NJ. Variation in the eNOS gene modifies the association between total energy expenditure and glucose intolerance. Diabetes 2005; 54:2795-801. [PMID: 16123371 DOI: 10.2337/diabetes.54.9.2795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelium-derived nitric oxide (NO) facilitates skeletal muscle glucose uptake. Energy expenditure induces the endothelial NO synthase (eNOS) gene, providing a mechanism for insulin-independent glucose disposal. The object was to test 1) the association of genetic variation in eNOS, as assessed by haplotype-tagging single nucleotide polymorphisms (htSNPs) with type 2 diabetes, and 2) the interaction between eNOS haplotypes and total energy expenditure on glucose intolerance. Using multivariate models, we tested associations between eNOS htSNPs and diabetes (n = 461 and 474 case and control subjects, respectively) and glucose intolerance (two cohorts of n = 706 and 738 U.K. and Spanish Caucasians, respectively), and we tested eNOS x total energy expenditure interactions on glucose intolerance. An overall association between eNOS haplotype and diabetes was observed (P = 0.004). Relative to the most common haplotype (111), two haplotypes (121 and 212) tended to increase diabetes risk (OR 1.22, 95% CI 0.96-1.55), and one (122) was associated with decreased risk (0.58, 0.39-0.86). In the cohort studies, no association was observed between haplotypes and 2-h glucose (P > 0.10). However, we observed a significant total energy expenditure-haplotype interaction (P = 0.007). Genetic variation at the eNOS locus is associated with diabetes, which may be attributable to an enhanced effect of total energy expenditure on glucose disposal in individuals with specific eNOS haplotypes. Gene-environment interactions such as this may help explain why replication of genetic association frequently fails.
Collapse
Affiliation(s)
- Paul W Franks
- National Institute of DiabetesDigestiveKidney Diseases, 1550 E. Indian School Rd., Phoenix, AZ 85014, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ohashi J, Naka I, Doi A, Patarapotikul J, Hananantachai H, Tangpukdee N, Looareesuwan S, Tokunaga K. A functional polymorphism in the IL1B gene promoter, IL1B -31C>T, is not associated with cerebral malaria in Thailand. Malar J 2005; 4:38. [PMID: 16098232 PMCID: PMC1224865 DOI: 10.1186/1475-2875-4-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 08/14/2005] [Indexed: 11/30/2022] Open
Abstract
Background IL-1β and IL-1RA levels are higher in the serum of cerebral malaria patients than in patients with mild malaria. Recently, the level of IL1B expression was reported to be influenced by a polymorphism in the promoter of IL1, IL1B -31C>T. Methods To examine whether polymorphisms in IL1B and IL1RA influence the susceptibility to cerebral malaria, IL1B -31C>T, IL1B 3953C>T, and IL1RA variable number of tandem repeat (VNTR) were analysed in 312 Thai patients with malaria (109 cerebral malaria and 203 mild malaria patients). Results In this population, IL1B -31C>T and IL1RA VNTRwere detected, while IL1B 3953C>T (i.e., IL1B 3953T) was not observed in the polymorphism screening for 32 patients. Further analyses for IL1B -31C>T and IL1RA VNTR in 110 cerebral malaria and 206 mild malaria patients showed no significant association of these polymorphisms with cerebral malaria. Conclusion The present results suggest that IL1B -31C>T and IL1RA VNTR polymorphisms do not play a crucial role in susceptibility or resistance to cerebral malaria.
Collapse
Affiliation(s)
- Jun Ohashi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Izumi Naka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiro Doi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jintana Patarapotikul
- Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, Thailand
| | | | - Noppadon Tangpukdee
- Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, Thailand
| | - Sornchai Looareesuwan
- Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, Thailand
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77:171-92. [PMID: 16001361 PMCID: PMC1224522 DOI: 10.1086/432519] [Citation(s) in RCA: 675] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 12/22/2022] Open
Abstract
Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, alpha+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics and University Department of Paediatrics, Oxford, United Kingdom.
| |
Collapse
|
42
|
Zhang DL, Zheng HM, Yu BJ, Jiang ZW, Li JS. Association of polymorphisms of IL and CD14 genes with acute severe pancreatitis and septic shock. World J Gastroenterol 2005; 11:4409-13. [PMID: 16038043 PMCID: PMC4434671 DOI: 10.3748/wjg.v11.i28.4409] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate IL-1b+3 594 in the 5th intron, IL-10-1 082 and CD14-159 polymorphisms in patients with acute pancreatitis (AP) and septic shock.
METHODS: The study included 215 patients (109 with acute severe pancreatitis (SAP), 106 with acute mild pancreatitis (MAP)) and 116 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of PCR products.
RESULTS: The frequencies of IL-1b+3 594T, IL-10-1082G and CD14-159T allele were similar in patients with mild or severe pancreatitis and in controls. Within SAP patients, no significant differences were found in the allele distribution examined when etiology was studied again. Patients with septic shock showed a significantly higher prevalence of IL-10-1082G allele than those without shock (c2 = 5.921, P = 0.015).
CONCLUSION: IL-10-1082G plays an important role in the susceptibility of SAP patients to septic shock. Genetic factors are not important in determination of disease severity or susceptibility to AP.
Collapse
Affiliation(s)
- Dian-Liang Zhang
- Department of General Surgery, Affiliated Hospital, Qingdao University Medial College, Qingdao 266003, Shandong Province, China.
| | | | | | | | | |
Collapse
|
43
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 2005; 38:335-50. [PMID: 15766735 DOI: 10.1016/j.clinbiochem.2004.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/22/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has become one of the most powerful and widely applied technologies for SNP scoring and determination of allele frequencies in the post-genome sequencing era. Although different strategies for allele discrimination combined with MALDI were devised, in practice only primer extension methods are nowadays routinely used. This combination enables the rapid, quantitative, and direct detection of several genetic markers simultaneously in a broad variety of biological samples. In the field of molecular diagnostics, MALDI has been applied to the discovery of genetic markers, that are associated with a phenotype like a disease susceptibility or drug response, as well as an alternative means for diagnostic testing of a range of diseases for which the responsible mutations are already known. It is one of the first techniques with which whole genome scans based on single nucleotide polymorphisms were carried out. It is equally well suited for pathogen identification and the detection of emerging mutant strains as well as for the characterization of the genetic identity and quantitative trait loci mapping in farm animals. MALDI can also be used as a detection platform for a range of novel applications that are more demanding than standard SNP genotyping such as mutation/polymorphism discovery, molecular haplotyping, analysis of DNA methylation, and expression profiling. This review gives an introduction to the application of mass spectrometry for DNA analysis, and provides an overview of most studies using SNPs as genetic markers and MALDI mass spectrometric detection that are related to clinical applications and molecular diagnostics. Further, it aims to show specialized applications that might lead to diagnostic applications in the future. It does not speculate on whether this methodology will ever reach the diagnostic market.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | |
Collapse
|
44
|
|