1
|
Norberto S, Assalin HB, Guadagnini D, Tobar N, Boer PA, Kang MC, Saad MJA, Kim YB, Prada PO. CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion. Front Endocrinol (Lausanne) 2023; 14:1172835. [PMID: 37635967 PMCID: PMC10449579 DOI: 10.3389/fendo.2023.1172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cdc2-like kinase (CLK2) is a member of CLK kinases expressed in hypothalamic neurons and is activated in response to refeeding, leptin, or insulin. Diet-induced obesity and leptin receptor-deficient db/db mice lack CLK2 signal in the hypothalamic neurons. The neurotransmiter gamma-aminobutyric acid (GABA) is among the most prevalent in the central nervous system (CNS), particularly in the hypothalamus. Given the abundance of GABA-expressing neurons and their potential influence on regulating energy and behavioral homeostasis, we aimed to explore whether the deletion of CLK2 in GABAergic neurons alters energy homeostasis and behavioral and cognitive functions in both genders of mice lacking CLK2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) on chow diet. Methods We generated mice lacking Clk2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) by mating Clk2loxP/loxP mice with Vgat-IRES-Cre transgenic mice and employed behavior, and physiological tests, and molecular approaches to investigate energy metabolism and behavior phenotype of both genders. Results and discussion We showed that deletion of CLK2 in GABAergic neurons increased adiposity and food intake in females. The mechanisms behind these effects were likely due, at least in part, to hypothalamic insulin resistance and upregulation of hypothalamic Npy and Agrp expression. Besides normal insulin and pyruvate sensitivity, Vgat-Cre; Clk2loxP/loxP females were glucose intolerant. Male Vgat-Cre; Clk2loxP/loxP mice showed an increased energy expenditure (EE). Risen EE may account for avoiding weight and fat mass gain in male Vgat-Cre; Clk2loxP/loxP mice. Vgat-Cre; Clk2loxP/loxP mice had no alteration in cognition or memory functions in both genders. Interestingly, deleting CLK2 in GABAergic neurons changed anxiety-like behavior only in females, not males. These findings suggest that CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion and could be a molecular therapeutic target for combating obesity associated with psychological disorders in females.
Collapse
Affiliation(s)
- Sónia Norberto
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natália Tobar
- Department of Radiology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Department of Internal Medicine, Fetal Programming Laboratory, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Research Group of Food Processing, Korea Food Research Instute, Jeollabuk-do, Wanju, Republic of Korea
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
2
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Hasan I, Hossain A, Bhuiyan P, Miah S, Rahman H. A system biology approach to determine therapeutic targets by identifying molecular mechanisms and key pathways for type 2 diabetes that are linked to the development of tuberculosis and rheumatoid arthritis. Life Sci 2022; 297:120483. [DOI: 10.1016/j.lfs.2022.120483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
|
4
|
Wu W, Li WX, Huang CH. Phospholipase A 2, a nonnegligible enzyme superfamily in gastrointestinal diseases. Biochimie 2021; 194:79-95. [PMID: 34974145 DOI: 10.1016/j.biochi.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Gastrointestinal tract is important for digestion, absorption, detoxification and immunity. Gastrointestinal diseases are mainly caused by the imbalance of protective and attacking factors in gastrointestinal mucosa, which can seriously harm human health. Phospholipase A2 (PLA2) is a large family closely involved in lipid metabolism and is found in almost all human cells. A growing number of studies have revealed that its metabolites are deeply implicated in various inflammatory pathways and also regulates the maintenance of numerous biological events such as dietary digestion, membrane remodeling, barrier action, and host immunity. In addition to their phospholipase activity, some members of the superfamily also have other catalytic activities. Based on the in-depth effects of phospholipase A2 on bioactive lipid metabolism and inflammatory cytokines, PLA2 and its metabolites are likely to be involved in the pathogenesis, development or prevention of gastrointestinal diseases. Therefore, this review will focus on the physiological and pathogenic roles of several important PLA2 enzymes in the gastrointestinal tract, and reveals the potential of PLA2 as a therapeutic target for gastrointestinal diseases.
Collapse
Affiliation(s)
- Wei Wu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Xuan Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Chun-Hong Huang
- School of Basic Medical Sciences, 330006, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Cytotoxic, Antioxidant, and Metabolic Enzyme Inhibitory Activities of Euphorbia cyparissias Extracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9835167. [PMID: 33178390 PMCID: PMC7647782 DOI: 10.1155/2020/9835167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023]
Abstract
Plants of the Euphorbia genus present a wide range of therapeutic applications. This study is aimed at investigating new antidigestive enzyme agents from Euphorbia cyparissias through inhibition of lipid and carbohydrate absorption, to evaluate their potential applications for the treatment of metabolic syndrome. Lipase, phospholipase, protease, α-amylase, β-glucosidase, and xanthine oxidase activities under treatment with aqueous and ethanolic extracts of Euphorbia cyparissias were observed to evaluate the inhibitory effect of these extracts, as well as their antioxidant and cytotoxic effects. Results showed that ethanolic and aqueous extracts exhibited important inhibitory activity in a concentration-related manner on digestive enzymes, which is more effective than the commercial drugs used as controls. Results also showed that, out of the two extracts tested, the ethanolic extract presented the most promising results in inhibiting the activities of all digestive enzymes used. Moreover, the two extracts displayed a higher reducing power than that of the positive control used. The obtained results, together with previous reports in the literature, strongly suggest that Euphorbia cyparissias extracts may be natural inhibitors of the digestive enzymes and thus a potential new drug for metabolic syndrome treatment.
Collapse
|
6
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
7
|
Cardiometabolic disease risk among siblings of patients with major depressive disorder. J Dev Orig Health Dis 2020; 12:530-535. [PMID: 32924904 DOI: 10.1017/s2040174420000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies have suggested an association between metabolic and cerebrocardiovascular diseases and major depressive disorder (MDD). However, the risk of metabolic and cerebrocardiovascular diseases in the unaffected siblings of patients with MDD remains uncertain. Using the Taiwan National Health Insurance Research Database, 22,438 unaffected siblings of patients with MDD and 89,752 age-/sex-matched controls were selected and followed up from 1996 to the end of 2011. Individuals who developed metabolic and cerebrocardiovascular diseases during the follow-up period were identified. Compared with the controls, the unaffected siblings of patients with MDD had a higher prevalence of metabolic diseases, such as hypertension (5.0% vs. 4.5%, p = 0.007), dyslipidemia (5.6% vs. 4.8%, p < 0.001), and obesity (1.7% vs. 1.5%, p = 0.028), and cerebrocardiovascular diseases, such as ischemic stroke (0.6% vs. 0.4%, p < 0.005) and ischemic heart disease (2.1% vs. 1.7%, p < 0.001). Logistic regression analyses revealed that the unaffected siblings of patients with MDD were more likely to develop hypertension, dyslipidemia, ischemic stroke, and ischemic heart diseases during the follow-up period than the controls. Our study revealed a familial coaggregation between MDD and metabolic and cerebrocardiovascular diseases. Additional studies are required to investigate the shared pathophysiology of MDD and metabolic and cerebrocardiovascular diseases.
Collapse
|
8
|
Nishiumi S, Izumi Y, Kobayashi T, Yoshida M. Possible Involvement of Lipids in the Effectiveness of Kombu in Individuals with Abnormally High Serum Triglyceride Levels. J Nutr Sci Vitaminol (Tokyo) 2020; 66:185-190. [PMID: 32350180 DOI: 10.3177/jnsv.66.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Japan, Kombu (Laminaria japonica), which is a type of seaweed, is considered to be a foodstuff with health-promoting benefits, and Japanese people actively incorporate Kombu into their diets. Previously, we reported that the frequent intake of Kombu reduced the serum triglyceride levels of subjects with abnormally high serum triglyceride levels. In the current human study, we performed metabolomic analysis of serum lipids, and then the molecular species profiles of phosphatidylcholines (PC), phosphatidylethanolamines (PE), lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), and free fatty acids (FFA) were evaluated. As a result, it was found that there were no marked differences between the lipid profiles obtained before and after the intake of Kombu for 4 wk in all subjects. In the subjects with abnormal serum triglyceride levels, the intake of Kombu improved the subjects' molecular species profiles in terms of their serum levels of the diacyl and acyl forms of PC, PE, LPC, and LPE, and FFA. Furthermore, the intake of Kombu also tended to increase the serum levels of both the plasmanyl and plasmenyl forms of PC and PE in these subjects. The lipid alterations observed in our study might be related to the functionality of Kombu. Furthermore, it is important to evaluate the quality of lipids as well as the quantity of lipids in various types of research, including food functionality studies.
Collapse
Affiliation(s)
- Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
- Department of Omics Medicine, Hyogo College of Medicine
| | - Yoshihiro Izumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
- Division of Metabolomics Research, Department of Internal Medicine Related, Kobe University Graduate School of Medicine
- AMED-CREST, AMED
| |
Collapse
|
9
|
Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet 2019; 180:186-203. [PMID: 30729689 PMCID: PMC6492942 DOI: 10.1002/ajmg.b.32712] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Collapse
Affiliation(s)
- Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, Maryland,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, Colorado,Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, Maryland
| | - Laura del Bosque-Plata
- National Institute of Genomic Medicine, Nutrigenetics and Nutrigenomic Laboratory, Mexico City, Mexico
| | - Serge Jabbour
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Vergare
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Department of Statistics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
10
|
Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Pértille F, Ledur MC, Moura ASAMT, Garrick DJ, Coutinho LL. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken. Sci Rep 2018; 8:16222. [PMID: 30385857 PMCID: PMC6212401 DOI: 10.1038/s41598-018-34364-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Excessive fat deposition is a negative factor for poultry production because it reduces feed efficiency, increases the cost of meat production and is a health concern for consumers. We genotyped 497 birds from a Brazilian F2 Chicken Resource Population, using a high-density SNP array (600 K), to estimate the genomic heritability of fat deposition related traits and to identify genomic regions and positional candidate genes (PCGs) associated with these traits. Selection signature regions, haplotype blocks and SNP data from a previous whole genome sequencing study in the founders of this chicken F2 population were used to refine the list of PCGs and to identify potential causative SNPs. We obtained high genomic heritabilities (0.43-0.56) and identified 22 unique QTLs for abdominal fat and carcass fat content traits. These QTLs harbored 26 PCGs involved in biological processes such as fat cell differentiation, insulin and triglyceride levels, and lipid biosynthetic process. Three of these 26 PCGs were located within haplotype blocks there were associated with fat traits, five overlapped with selection signature regions, and 12 contained predicted deleterious variants. The identified QTLs, PCGs and potentially causative SNPs provide new insights into the genetic control of fat deposition and can lead to improved accuracy of selection to reduce excessive fat deposition in chickens.
Collapse
Affiliation(s)
| | - Clarissa Boschiero
- Department of Animal Science, University of São Paulo, Piracicaba, SP, Brazil
| | | | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Fábio Pértille
- Department of Animal Science, University of São Paulo, Piracicaba, SP, Brazil
| | | | | | - Dorian J Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | | |
Collapse
|
11
|
Hui DY. Group 1B phospholipase A 2 in metabolic and inflammatory disease modulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:784-788. [PMID: 30003964 DOI: 10.1016/j.bbalip.2018.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
The group 1B phospholipase A2 (PLA2G1B) is a secreted phospholipase that catalyzes the hydrolytic removal of the sn-2 fatty acyl moiety from phospholipids. This enzyme is synthesized most abundantly in the pancreas and is also expressed in the lung. The first part of this review article focuses on the role of pancreatic-derived PLA2G1B in mediating lipid absorption and discusses how the PLA2G1B-derived metabolic product contributes to cardiometabolic diseases, including obesity, hyperinsulinemia, hyperlipidemia, and atherosclerosis. The anti-helminth properties of PLA2G1B will also be discussed. The second part of this review will focus on PLA2G1B expressed in the lung, and in vitro data suggest that how this enzyme may modulate lung inflammation via both hydrolytic activity-dependent and -dependent mechanisms. Finally, recent studies revealing a relationship between PLA2G1B and cancer will also be discussed. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; Department of Pathology, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, 2120 E. Galbraith Road, Cincinnati, OH 45237, United States.
| |
Collapse
|
12
|
MURAKAMI M. Lipoquality control by phospholipase A 2 enzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:677-702. [PMID: 29129849 PMCID: PMC5743847 DOI: 10.2183/pjab.93.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phospholipase A2 (PLA2) family comprises a group of lipolytic enzymes that typically hydrolyze the sn-2 position of glycerophospholipids to give rise to fatty acids and lysophospholipids. The mammalian genome encodes more than 50 PLA2s or related enzymes, which are classified into several subfamilies on the basis of their structures and functions. From a general viewpoint, the PLA2 family has mainly been implicated in signal transduction, producing bioactive lipid mediators derived from fatty acids and lysophospholipids. Recent evidence indicates that PLA2s also contribute to phospholipid remodeling for membrane homeostasis or energy production for fatty acid β-oxidation. Accordingly, PLA2 enzymes can be regarded as one of the key regulators of the quality of lipids, which I herein refer to as lipoquality. Disturbance of PLA2-regulated lipoquality hampers tissue and cellular homeostasis and can be linked to various diseases. Here I overview the current state of understanding of the classification, enzymatic properties, and physiological functions of the PLA2 family.
Collapse
Affiliation(s)
- Makoto MURAKAMI
- Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Correspondence should be addressed: M. Murakami, Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| |
Collapse
|
13
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Liver-specific overexpression of LPCAT3 reduces postprandial hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr Diabetes 2016; 6:e206. [PMID: 27110687 PMCID: PMC4855257 DOI: 10.1038/nutd.2016.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that group 1B phospholipase A2-mediated absorption of lysophospholipids inhibits hepatic fatty acid β-oxidation and contributes directly to postprandial hyperglycemia and hyperlipidemia, leading to increased risk of cardiometabolic disease. The current study tested the possibility that increased expression of lysophosphatidylcholine acyltransferase-3 (LPCAT3), an enzyme that converts lysophosphatidylcholine to phosphatidylcholine in the liver, may alleviate the adverse effects of lysophospholipids absorbed after a lipid-glucose mixed meal. The injection of an adenovirus vector harboring the human LPCAT3 gene into C57BL/6 mice increased hepatic LPCAT3 expression fivefold compared with mice injected with a control LacZ adenovirus. Postprandial glucose tolerance tests after feeding these animals with a bolus lipid-glucose mixed meal revealed that LPCAT3 overexpression improved postprandial hyperglycemia and glucose tolerance compared with control mice with LacZ adenovirus injection. Mice with LPCAT3 overexpression also showed reduced very low density lipoprotein production and displayed elevated levels of the metabolic- and cardiovascular-protective large apoE-rich high density lipoproteins in plasma. The mechanism underlying the metabolic benefits of LPCAT3 overexpression was shown to be due to the alleviation of lysophospholipid inhibition of fatty acid β-oxidation in hepatocytes. Taken together, these results suggest that specific LPCAT3 induction in the liver may be a viable strategy for cardiometabolic disease intervention.
Collapse
|
15
|
Jose PA, Welch W. Do You Want to Ditch Sodium? Meet Nitric Oxide Synthase 1β at the Macula Densa. J Am Soc Nephrol 2016; 27:2217-8. [PMID: 26903534 DOI: 10.1681/asn.2015121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Pedro A Jose
- Department of Medicine, Division of Kidney Diseases and Hypertension and Department of Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC; and
| | - William Welch
- Department of Medicine, Division of Nephrology and Hypertension, Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, DC
| |
Collapse
|
16
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.
Collapse
Affiliation(s)
- Peter Kovacs
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, Medical Faculty, University of Leipzig, Liebigstr. 21, Leipzig, 04103, Germany.
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, Leipzig, 04103, Germany.
| |
Collapse
|
17
|
Tekola-Ayele F, Doumatey AP, Shriner D, Bentley AR, Chen G, Zhou J, Fasanmade O, Johnson T, Oli J, Okafor G, Eghan BA, Agyenim-Boateng K, Adebamowo C, Amoah A, Acheampong J, Adeyemo A, Rotimi CN. Genome-wide association study identifies African-ancestry specific variants for metabolic syndrome. Mol Genet Metab 2015; 116:305-13. [PMID: 26507551 PMCID: PMC5292212 DOI: 10.1016/j.ymgme.2015.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
The metabolic syndrome (MetS) is a constellation of metabolic disorders that increase the risk of developing several diseases including type 2 diabetes and cardiovascular diseases. Although genome-wide association studies (GWAS) have successfully identified variants associated with individual traits comprising MetS, the genetic basis and pathophysiological mechanisms underlying the clustering of these traits remain unclear. We conducted GWAS of MetS in 1427 Africans from Ghana and Nigeria followed by replication testing and meta-analysis in another continental African sample from Kenya. Further replication testing was performed in an African American sample from the Atherosclerosis Risk in Communities (ARIC) study. We found two African-ancestry specific variants that were significantly associated with MetS: SNP rs73989312[A] near CA10 that conferred increased risk (P=3.86 × 10(-8), OR=6.80) and SNP rs77244975[C] in CTNNA3 that conferred protection against MetS (P=1.63 × 10(-8), OR=0.15). Given the exclusive expression of CA10 in the brain, our CA10 finding strengthens previously reported link between brain function and MetS. We also identified two variants that are not African specific: rs76822696[A] near RALYL associated with increased MetS risk (P=7.37 × 10(-9), OR=1.59) and rs7964157[T] near KSR2 associated with reduced MetS risk (P=4.52 × 10(-8), Pmeta=7.82 × 10(-9), OR=0.53). The KSR2 locus displayed pleiotropic associations with triglyceride and measures of blood pressure. Rare KSR2 mutations have been reported to be associated with early onset obesity and insulin resistance. Finally, we replicated the LPL and CETP loci previously found to be associated with MetS in Europeans. These findings provide novel insights into the genetics of MetS in Africans and demonstrate the utility of conducting trans-ethnic disease gene mapping studies for testing the cosmopolitan significance of GWAS signals of cardio-metabolic traits.
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Johnnie Oli
- University of Nigeria Teaching Hospital, Enugu, Nigeria
| | | | - Benjami A Eghan
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | | | - Clement Adebamowo
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Albert Amoah
- University of Ghana Medical School, Department of Medicine, Accra, Ghana
| | - Joseph Acheampong
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Hao H, Haas MJ, Wu R, Gragnoli C. T2D and Depression Risk Gene Proteasome Modulator 9 is Linked to Insomnia. Sci Rep 2015; 5:12032. [PMID: 26166263 PMCID: PMC4648424 DOI: 10.1038/srep12032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 06/15/2015] [Indexed: 12/18/2022] Open
Abstract
Insomnia increases type-2 diabetes (T2D) risk. The 12q24 locus is linked to T2D, depression, bipolar disorder and anxiety. At the 12q24 locus, the Proteasome-Modulator 9 (PSMD9) single nucleotide polymorphisms (SNPs) rs74421874 [intervening sequence (IVS) 3+nt460-G>A], rs3825172 (IVS3+nt437-C>T) and rs14259 (E197G-A>G) are linked to: T2D, depression, anxiety, maturity-onset-diabetes-of the young 3/MODY3, obesity, waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular disease, T2D-microvascular disease, T2D-neuropathy, T2D-carpal-tunnel syndrome, T2D-nephropathy, T2D-retinopathy and non-diabetic retinopathy. PSMD9 SNP rs1043307/rs14259 (E197G-A>G) plays a role in anti-depressant therapy response, depression and schizophrenia. We aimed at determining PSMD9 rs74421874/rs3825172/rs14259 SNPs potential linkage to primary insomnia and sleep hours in T2D families. We recruited 200 Italian T2D families phenotyping them for primary insomnia and sleep hours per night. PSMD9-T2D-risk SNPs rs74421874/rs3825172 and rs1043307/rs14259 were tested for linkage with insomnia and sleep hours. Non-parametric-linkage analysis, linkage-disequilibrium-model analysis, single-SNP analysis, cluster-based-parametric analysis, quantitative-trait and variant-component analysis were performed using Merlin software. To validate data, 1000 replicates were executed for the significant non-parametric data. PSMD9 rs74421874 (IVS3+nt460-G>A), rs3825172 (IVS3+nt437-C>T) and rs1043307/rs14259 (E197G-A>G) SNPs are linked to insomnia in our Italian families.
Collapse
Affiliation(s)
- Han Hao
- Department of Statistics, Penn State University, State College, PA, USA
| | - Michael J. Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL
| | - Rongling Wu
- Department of Statistics, Penn State University, State College, PA, USA
| | - Claudia Gragnoli
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
- Center for Biotechnology and Department of Biology, Temple University’s College of Science & Technology, Philadelphia, PA, USA
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
19
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
20
|
Go MJ, Hwang JY, Park TJ, Kim YJ, Oh JH, Kim YJ, Han BG, Kim BJ. Genome-wide association study identifies two novel Loci with sex-specific effects for type 2 diabetes mellitus and glycemic traits in a korean population. Diabetes Metab J 2014; 38:375-87. [PMID: 25349825 PMCID: PMC4209352 DOI: 10.4093/dmj.2014.38.5.375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/31/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Until recently, genome-wide association study (GWAS)-based findings have provided a substantial genetic contribution to type 2 diabetes mellitus (T2DM) or related glycemic traits. However, identification of allelic heterogeneity and population-specific genetic variants under consideration of potential confounding factors will be very valuable for clinical applicability. To identify novel susceptibility loci for T2DM and glycemic traits, we performed a two-stage genetic association study in a Korean population. METHODS We performed a logistic analysis for T2DM, and the first discovery GWAS was analyzed for 1,042 cases and 2,943 controls recruited from a population-based cohort (KARE, n=8,842). The second stage, de novo replication analysis, was performed in 1,216 cases and 1,352 controls selected from an independent population-based cohort (Health 2, n=8,500). A multiple linear regression analysis for glycemic traits was further performed in a total of 14,232 nondiabetic individuals consisting of 7,696 GWAS and 6,536 replication study participants. A meta-analysis was performed on the combined results using effect size and standard errors estimated for stage 1 and 2, respectively. RESULTS A combined meta-analysis for T2DM identified two new (rs11065756 and rs2074356) loci reaching genome-wide significance in CCDC63 and C12orf51 on the 12q24 region. In addition, these variants were significantly associated with fasting plasma glucose and homeostasis model assessment of β-cell function. Interestingly, two independent single nucleotide polymorphisms were associated with sex-specific stratification in this study. CONCLUSION Our study showed a strong association between T2DM and glycemic traits. We further observed that two novel loci with multiple diverse effects were highly specific to males. Taken together, these findings may provide additional insights into the clinical assessment or subclassification of disease risk in a Korean population.
Collapse
Affiliation(s)
- Min Jin Go
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Joo-Yeon Hwang
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Tae-Joon Park
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Young Jin Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Ji Hee Oh
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Yeon-Jung Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Bok-Ghee Han
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongwon, Korea
| |
Collapse
|
21
|
Gragnoli C. Proteasome modulator 9 gene SNPs, responsible for anti-depressant response, are in linkage with generalized anxiety disorder. J Cell Physiol 2014; 229:1157-9. [PMID: 24648162 DOI: 10.1002/jcp.24581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/11/2014] [Indexed: 01/14/2023]
Abstract
Proteasome modulator 9 (PSMD9) gene single nucleotide polymorphism (SNP) rs1043307/rs2514259 (E197G) is associated with significant clinical response to the anti-depressant desipramine. PSMD9 SNP rs74421874 [intervening sequence (IVS) 3 + nt460 G>A], rs3825172 (IVS3 + nt437 C>T) and rs1043307/rs2514259 (E197G A>G) are all linked to type 2 diabetes (T2D), maturity-onset-diabetes-of the young 3 (MODY3), obesity and waist circumference, hypertension, hypercholesterolemia, T2D-macrovascular and T2D-microvascular disease, T2D-neuropathy, T2D-carpal tunnel syndrome, T2D-nephropathy, T2D-retinopathy, non-diabetic retinopathy and depression. PSMD9 rs149556654 rare SNP (N166S A>G) and the variant S143G A>G also contribute to T2D. PSMD9 is located in the chromosome 12q24 locus, which per se is in linkage with depression, bipolar disorder and anxiety. In the present study, we wanted to determine whether PSMD9 is linked to general anxiety disorder in Italian T2D families. Two-hundred Italian T2D families were phenotyped for generalized anxiety disorder, using the diagnostic criteria of DSM-IV. When the diagnosis was unavailable or unclear, the trait was reported as unknown. The 200 Italians families were tested for the PSMD9 T2D risk SNPs rs74421874 (IVS3 + nt460 G>A), rs3825172 (IVS3 +nt437 T>C) and for the T2D risk and anti-depressant response SNP rs1043307/rs2514259 (E197G A>G) for evidence of linkage with generalized anxiety disorder. Non-parametric linkage analysis was executed via Merlin software. One-thousand simulation tests were performed to exclude results due to random chance. In our study, the PSMD9 gene SNPs rs74421874, rs3825172, and rs1043307/rs2514259 result in linkage to generalized anxiety disorder. This is the first report describing PSMD9 gene SNPs in linkage to generalized anxiety disorder in T2D families.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Laboratory of Molecular Genetics of Complex and Monogenic Disorders, Department of Medicine, Penn State University and M. S. Hershey Medical Center, Hershey, Pennsylvania; Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy; Center for Biotechnology and Department of Biology, Temple University's College of Science & Technology, Philadelphia, PA
| |
Collapse
|
22
|
Hollie NI, Konaniah ES, Goodin C, Hui DY. Group 1B phospholipase A₂ inactivation suppresses atherosclerosis and metabolic diseases in LDL receptor-deficient mice. Atherosclerosis 2014; 234:377-80. [PMID: 24747111 PMCID: PMC4037866 DOI: 10.1016/j.atherosclerosis.2014.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis. METHODS AND RESULTS The Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice were fed a low fat chow diet or a hypercaloric diet with 58.5 kcal% fat and 25 kcal% sucrose for 10 weeks. Minimal differences were observed between Pla2g1b(+/+)Ldlr(-/-) and Pla2g1b(-/-)Ldlr(-/-) mice when the animals were maintained on the low fat chow diet. However, when the animals were maintained on the hypercaloric diet, the Pla2g1(+/+)Ldlr(-/-) mice showed the expected body weight gain but the Pla2g1b(-/-)Ldlr(-/-) mice were resistant to diet-induced body weight gain. The Pla2g1b(-/-)Ldlr(-/-) mice also displayed lower fasting glucose, insulin, and plasma lipid levels compared to the Pla2g1b(+/+)Ldlr(-/-) mice, which displayed robust hyperglycemia, hyperinsulinemia, and hyperlipidemia in response to the hypercaloric diet. Importantly, atherosclerotic lesions in the aortic roots were also reduced 7-fold in the Pla2g1b(-/-)Ldlr(-/-) mice. CONCLUSION The effectiveness of Pla2g1b inactivation to suppress diet-induced body weight gain and reduce diabetes and atherosclerosis in LDL receptor-deficient mice suggests that pharmacological inhibition of Pla2g1b may be a viable strategy to decrease diet-induced obesity and the risk of diabetes and atherosclerosis in humans.
Collapse
Affiliation(s)
- Norris I Hollie
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Eddy S Konaniah
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Colleen Goodin
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA.
| |
Collapse
|
23
|
Liu AY, Gu D, Hixson JE, Rao DC, Shimmin LC, Jaquish CE, Liu DP, He J, Kelly TN. Genome-wide linkage and regional association study of obesity-related phenotypes: the GenSalt study. Obesity (Silver Spring) 2014; 22:545-56. [PMID: 23526746 PMCID: PMC3795915 DOI: 10.1002/oby.20469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/11/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To identify chromosomal regions harboring quantitative trait loci for waist circumference (WC) and body mass index (BMI). DESIGN AND METHODS A genome-wide linkage scan and regional association study WC and BMI among 633 Chinese families was conducted. RESULTS A significant linkage signal for WC was observed at 22q13.31-22q13.33 in the overall analysis (LOD = 3.13). Follow-up association study of 22q13.31-13.33 revealed an association between the TBC1D22A gene marker rs16996195 and WC (false discovery rate [FDR]-Q < 0.05). In gender-stratified analysis, suggestive linkage signals were attained for WC at 2p24.3-2q12.2 and 22q13.33 among females (LOD = 2.54 and 2.15, respectively). Among males, 6q12-6q13 was suggestively linked to BMI (LOD = 2.03). Single marker association analyses at these regions identified male-specific relationships of six single nucleotide polymorphisms (SNPs) at 2p24.3-2q12.2 (rs100955, rs13020676, rs13014034, rs12990515, rs17024325, and rs2192712) and five SNPs at 6q12-6q13 (rs7747318, rs7767301, rs12197115, rs12203049, and rs9454847) with the obesity-related phenotypes (all FDR-Q < 0.05). At chromosome 6q12-6q13, markers rs7755450 and rs11758293 predicted BMI in females (both FDR-Q < 0.05). CONCLUSIONS Genomic regions on chromosomes 2, 6, and 22 which may harbor important obesity-susceptibility loci were described. Follow-up study of these regions revealed several novel variants associated with obesity related traits. Future work to confirm these promising findings is warranted.
Collapse
Affiliation(s)
- Angela Y Liu
- Department of Epidemiology, University of North Carolina at Chapel Hill School of Global Public Health, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aslibekyan S, An P, Frazier-Wood AC, Kabagambe EK, Irvin MR, Straka RJ, Tiwari HK, Tsai MY, Hopkins PN, Borecki IB, Ordovas JM, Arnett DK. Preliminary evidence of genetic determinants of adiponectin response to fenofibrate in the Genetics of Lipid Lowering Drugs and Diet Network. Nutr Metab Cardiovasc Dis 2013; 23:987-994. [PMID: 23149075 PMCID: PMC3578131 DOI: 10.1016/j.numecd.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Adiponectin is an adipose-secreted protein that has been linked to changes in insulin sensitivity, high-density lipoprotein cholesterol levels, and inflammatory patterns. Although fenofibrate therapy can raise adiponectin levels, treatment response is heterogeneous and heritable, suggesting a role for genetic mediators. This is the first genome-wide association study of fenofibrate effects on circulating adiponectin. METHODS AND RESULTS Plasma adiponectin was measured in participants of the Genetics of Lipid Lowering Drugs and Diet Network (n = 793) before and after a 3-week daily treatment with 160 mg of fenofibrate. Associations between variants on the Affymetrix Genome-Wide Human SNP Array 6.0 and adiponectin were assessed using mixed linear models, adjusted for age, sex, site, and family. We observed a statistically significant (P = 5 × 10⁻⁸) association between rs2384207 in 12q24, a region previously linked to several metabolic traits, and the fenofibrate-induced change in circulating adiponectin. Additionally, our genome-wide analysis of baseline adiponectin levels replicated the previously reported association with CDH13 and suggested novel associations with markers near the PCK1, ZBP1, TMEM18, and SCUBE1 genes. The findings from the single marker tests were corroborated in gene-based analyses. Biological pathway analyses suggested a borderline significant association between the EGF receptor signaling pathway and baseline adiponectin levels. CONCLUSIONS We present preliminary evidence linking several biologically relevant genetic variants to adiponectin levels at baseline and in response to fenofibrate therapy. Our findings provide support for fine-mapping of the 12q24 region to investigate the shared biological mechanisms underlying levels of circulating adiponectin and susceptibility to metabolic disease.
Collapse
Affiliation(s)
- S Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, RPHB 217G, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kehrer M, Singer S, Grasshoff U, Schäferhoff K, Bonin M, Riess O, Schöning M, Tzschach A. 12q24.33 deletion: Report of a patient with intellectual disability and review of the literature. Am J Med Genet A 2013; 161A:1409-13. [DOI: 10.1002/ajmg.a.35877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Kehrer
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Sylke Singer
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Ute Grasshoff
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Karin Schäferhoff
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Michael Bonin
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Olaf Riess
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| | - Martin Schöning
- University Children's Hospital; University of Tuebingen; Tuebingen; Germany
| | - Andreas Tzschach
- Institute of Human Genetics; University of Tuebingen; Tuebingen; Germany
| |
Collapse
|
26
|
Gragnoli C. Overweight condition and waist circumference and a candidate gene within the 12q24 locus. Cardiovasc Diabetol 2013; 12:2. [PMID: 23282078 PMCID: PMC3583708 DOI: 10.1186/1475-2840-12-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/28/2012] [Indexed: 12/18/2022] Open
Abstract
Aims Obesity and obesity-associated phenotypes are linked to the chromosome12q24 locus, the non-insulin-dependent-diabetes 2 (NIDDM2) locus. The gene of proteasome modulator 9 (PSMD9) lies in the NIDDM2 region and is linked to type 2 diabetes (T2D), microvascular and macrovascular complications of T2D. We aimed at studying whether the PSMD9 T2D risk single nucleotide polymorphisms (SNPs) IVS3+nt460, IVS3+nt437, and 197G are linked to obesity, overweight status and waist circumference in Italian T2D families. Methods and results We screened 200 Italians T2D siblings/families for PSMD9 variants. Using Merlin software, we performed non-parametric linkage analysis to test for linkage with obesity and overweight condition and variance component analysis to test for linkage with waist circumference in our T2D siblings/families dataset. Our study shows that the PSMD9 SNPs IVS3+nt460, IVS3+nt437, and 197G are in linkage with overweight condition and waist circumference in Italians. The statistical power tests performed via simulations on real data confirm that the results are not due to random chance. Conclusions In summary, the linkage strategy using a homogeneous family/subject dataset can identify a gene contributing to a complex trait. PMSD9 may be at least one of the genes responsible for the linkage to obesity and obesity-associated phenotypes at the locus 12q24 in other populations.
Collapse
Affiliation(s)
- Claudia Gragnoli
- Laboratory of Molecular Genetics of Complex and Monogenic Disorders, Department of Medicine and Cellular & Molecular Physiology and Biostatistics, M, S, Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
27
|
Emerging roles of secreted phospholipase A2 enzymes: An update. Biochimie 2013; 95:43-50. [DOI: 10.1016/j.biochi.2012.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/11/2012] [Indexed: 01/18/2023]
|
28
|
Rejeb J, Omezzine A, Boumaiza I, Rebhi L, Kacem S, Rejeb NB, Nabli N, Abdelaziz AB, Boughzala E, Bouslama A. Association of three polymorphisms of scavenger receptor class BI gene (exon8, exon1, intron5) with coronary stenosis in a coronary Tunisian population. Gene 2012; 511:383-8. [PMID: 23041084 DOI: 10.1016/j.gene.2012.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The potential role of scavenger receptor class BI (gene name SCARB1) in the regulation of lipoproteins metabolism and atherosclerosis has attracted considerable interest. We tested the relationship of SCARB1 polymorphisms with significant coronary stenosis (SCS) and lipid profile in a coronary Tunisian population. METHODS Three SCARB1 polymorphisms (exon8 (C/T), exon1 (G/A), intron5 (C/T)) were studied in 316 Tunisian patients undergoing coronary angiography. SCS was defined as a luminal narrowing of ≥ 50% in at least one major coronary artery. Lipid profile was measured. Genotyping was performed using PCR-RFLP. RESULTS Individuals with TT genotypes of exon8 were associated with higher concentrations of plasma HDL-C and ApoAI in the group without SCS. Carriers of T allele of exon8 were associated with 41% lower risk of SCS. This protective effect seemed to be particularly significant in women, nondiabetics and nonsmokers. Subjects homozygous for the variant allele of intron5 were significantly associated with an increased risk of SCS, particularly in smokers. AA genotype of exon1 was associated with an increased risk of SCS in diabetics and in patients with metabolic syndrome. The (CAT) haplotype was associated with increase in the risk of SCS compared to the wild haplotype and had a 4-fold greater risk of SCS than patients with haplotype (TGC) which seems to be the most protective against SCS. CONCLUSION Carriers of T allele of exon8 in SCARB1 seemed to increase HDL-C and ApoAI concentrations and reduce the risk of SCS. The intron5, exon1 and (CAT) haplotype seemed to have an atherogenic effect.
Collapse
Affiliation(s)
- Jihène Rejeb
- Biochemistry Department, UR MSP 28/04, Sahloul University Hospital, Sousse, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The phospholipase A2 (PLA2) family of proteins includes lipolytic enzymes that liberate the sn-2 fatty acyl chains from phospholipids to yield nonesterified fatty acids and lysophospholipids. The purpose of this review is to discuss recent findings showing distinct roles of several of these PLA2 enzymes in inflammatory metabolic diseases such as diabetes and atherosclerosis. RECENT FINDINGS The group 1B PLA2 digestion of phospholipids in the intestinal lumen facilitates postprandial lysophospholipid absorption, which suppresses hepatic fatty acid oxidation leading to increased VLDL synthesis, decreased glucose tolerance, and promotion of tissue lipid deposition to accentuate diet-induced hyperlipidemia, diabetes, and obesity. Other secretory PLA2s promote inflammatory metabolic diseases by generating bioactive lipid metabolites to induce inflammatory cytokine production, whereas the major intracellular PLA2s, cPLA2α, and iPLA2, generate arachidonic acid and lysophosphatic acid in response to extracellular stimuli to activate leukocyte chemotactic response. SUMMARY Each member of the PLA2 family of enzymes serves a distinct role in generating active lipid metabolites that promote inflammatory metabolic diseases including atherosclerosis, hyperlipidemia, obesity, and diabetes. The development of specific drugs that target one or more of these PLA2 enzymes may be novel strategies for treatment of these chronic inflammatory metabolic disorders.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
30
|
Hollie NI, Hui DY. Group 1B phospholipase A₂ deficiency protects against diet-induced hyperlipidemia in mice. J Lipid Res 2011; 52:2005-11. [PMID: 21908646 DOI: 10.1194/jlr.m019463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excessive absorption of products of dietary fat digestion leads to type 2 diabetes and other obesity-related disorders. Mice deficient in the group 1B phospholipase A₂ (Pla2g1b), a gut digestive enzyme, are protected against diet-induced obesity and type 2 diabetes without displaying dietary lipid malabsorption. This study tested the hypothesis that inhibition of Pla2g1b protects against diet-induced hyperlipidemia. Results showed that the Pla2g1b(-/-) mice had decreased plasma triglyceride and cholesterol levels compared with Pla2g1b(+/+) mice subsequent to feeding a high-fat, high-carbohydrate (hypercaloric) diet. These differences were evident before differences in body weight gains were observed. Injection of Poloxamer 407 to inhibit lipolysis revealed decreased VLDL production in Pla2g1b(-/-) mice. Supplementation with lysophosphatidylcholine, the product of Pla2g1b hydrolysis, restored VLDL production rates in Pla2g1b(-/-) mice and further elevated VLDL production in Pla2g1b(+/+) mice. The Pla2g1b(-/-) mice also displayed decreased postprandial lipidemia compared with Pla2g1b(+/+) mice. These results show that, in addition to dietary fatty acids, gut-derived lysophospholipids derived from Pla2g1b hydrolysis of dietary and biliary phospholipids also promote hepatic VLDL production. Thus, the inhibition of lysophospholipid absorption via Pla2g1b inactivation may prove beneficial against diet-induced hyperlipidemia in addition to the protection against obesity and diabetes.
Collapse
Affiliation(s)
- Norris I Hollie
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | |
Collapse
|
31
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
32
|
Revelli JP, Smith D, Allen J, Jeter-Jones S, Shadoan MK, Desai U, Schneider M, van Sligtenhorst I, Kirkpatrick L, Platt KA, Suwanichkul A, Savelieva K, Gerhardt B, Mitchell J, Syrewicz J, Zambrowicz B, Hamman BD, Vogel P, Powell DR. Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring) 2011; 19:1010-8. [PMID: 21127480 DOI: 10.1038/oby.2010.282] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.
Collapse
|
33
|
Murakami M, Sato H, Taketomi Y, Yamamoto K. Integrated lipidomics in the secreted phospholipase A(2) biology. Int J Mol Sci 2011; 12:1474-95. [PMID: 21673902 PMCID: PMC3111613 DOI: 10.3390/ijms12031474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022] Open
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A(2)s (PLA(2)s) or related enzymes, which are subdivided into several subgroups based on their structures, catalytic mechanisms, localizations and evolutionary relationships. More than one third of the PLA(2) enzymes belong to the secreted PLA(2) (sPLA(2)) family, which consists of low-molecular-weight, Ca(2+)-requiring extracellular enzymes, with a His-Asp catalytic dyad. Individual sPLA(2) isoforms exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Recent studies using transgenic and knockout mice for several sPLA(2) isoforms, in combination with lipidomics approaches, have revealed their distinct contributions to various biological events. Herein, we will describe several examples of sPLA(2)-mediated phospholipid metabolism in vivo, as revealed by integrated analysis of sPLA(2) transgenic/knockout mice and lipid mass spectrometry. Knowledge obtained from this approach greatly contributes to expanding our understanding of the sPLA(2) biology and pathophysiology.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| | - Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; E-Mails: (H.S.); (Y.T.); and (K.Y.)
| |
Collapse
|
34
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Pancreatic acinar cell-specific overexpression of group 1B phospholipase A2 exacerbates diet-induced obesity and insulin resistance in mice. Int J Obes (Lond) 2010; 35:877-81. [PMID: 20938441 DOI: 10.1038/ijo.2010.215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genome-wide association studies have identified significant association between polymorphisms of the Group 1B phospholipase A(2) (PLA2G1B) gene and central obesity in humans. Previous studies have shown that Pla2g1b inactivation decreases post-prandial lysophospholipid absorption, and as a consequence increases hepatic fatty acid oxidation and protects against diet-induced obesity and glucose intolerance in mice. The present study showed that transgenic mice with pancreatic acinar cell-specific overexpression of the human PLA2G1B gene gained significantly more weight and displayed elevated insulin resistance characteristics, such as impaired glucose tolerance, compared with wild-type (WT) mice, when challenged with a high-fat/carbohydrate diet. Pre- and post-prandial plasma β-hydroxybutyrate levels were also lower, indicative of decreased hepatic fatty acid oxidation, in the hypercaloric diet-fed PLA2G1B transgenic mice. These, along with earlier observations of Pla2g1b-null mice, document that Pla2g1b expression level is an important determinant of susceptibility to diet-induced obesity and diabetes, suggesting that the relationship between PLA2G1B polymorphisms and obesity may be due to differences in PLA2G1B expression levels between these individuals. The ability of pancreas-specific overexpression of PLA2G1B to promote obesity and glucose intolerance suggests that target phospholipase activity in the digestive tract with non-absorbable inhibitors should be considered as a therapeutic option for metabolic disease therapy.
Collapse
|
36
|
Labonté ED, Pfluger PT, Cash JG, Kuhel DG, Roja JC, Magness DP, Jandacek RJ, Tschöp MH, Hui DY. Postprandial lysophospholipid suppresses hepatic fatty acid oxidation: the molecular link between group 1B phospholipase A2 and diet-induced obesity. FASEB J 2010; 24:2516-24. [PMID: 20215528 DOI: 10.1096/fj.09-144436] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Decrease in fat catabolic rate on consuming a high-fat diet contributes to diet-induced obesity. This study used group 1B phospholipase A(2) (Pla2g1b)-deficient mice, which are resistant to hyperglycemia, to test the hypothesis that Pla2g1b and its lipolytic product lysophospholipid suppress hepatic fat utilization and energy metabolism in promoting diet-induced obesity. The metabolic consequences of hypercaloric diet, including body weight gain, energy expenditure, and fatty acid oxidation, were compared between Pla2g1b(+/+) and Pla2g1b(-/-) mice. The Pla2g1b(-/-) mice displayed normal energy balance when fed chow, but were resistant to obesity when challenged with a hypercaloric diet. Obesity resistance in Pla2g1b(-/-) mice is due to their ability to maintain elevated energy expenditure and core body temperature when subjected to hypercaloric diet, which was not observed in Pla2g1b(+/+) mice. The Pla2g1b(-/-) mice also displayed increased postprandial hepatic fat utilization due to increased expression of peroxisome proliferator-activated receptor (PPAR)-alpha, PPAR-delta, PPAR-gamma, cd36/Fat, and Ucp2, which coincided with reduced postprandial plasma lysophospholipid levels. Lysophospholipids produced by Pla2g1b hydrolysis suppress hepatic fat utilization and down-regulate energy expenditure, thereby preventing metabolically beneficial adaptation to a high-fat diet exposure in promoting diet-induced obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Eric D Labonté
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2120 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kettunen J, Perola M, Martin NG, Cornes BK, Wilson SG, Montgomery GW, Benyamin B, Harris JR, Boomsma D, Willemsen G, Hottenga JJ, Slagboom PE, Christensen K, Kyvik KO, Sørensen TIA, Pedersen NL, Magnusson PKE, Andrew T, Spector TD, Widen E, Silventoinen K, Kaprio J, Palotie A, Peltonen L. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci. Int J Obes (Lond) 2009; 33:1235-42. [PMID: 19721450 PMCID: PMC2873558 DOI: 10.1038/ijo.2009.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify common loci and potential genetic variants affecting body mass index (BMI, kg m(-2)) in study populations originating from Europe. DESIGN We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden and the United Kingdom with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated twin families (10,535 individuals) from six countries (Australia, Denmark, the Netherlands, Finland, Sweden and the United Kingdom). RESULTS We found suggestive evidence for a quantitative trait locus on 3q29 and 7q36 in the combined sample of DZ twins (multipoint logarithm of odds score (MLOD) 2.6 and 2.4, respectively). Two individual cohorts showed strong evidence independently for three additional loci: 16q23 (MLOD=3.7) and 2p24 (MLOD=3.4) in the Dutch cohort and 20q13 (MLOD=3.2) in the Finnish cohort. CONCLUSION Linkage analysis of the combined data in this large twin cohort study provided evidence for suggestive linkage to BMI. In addition, two cohorts independently provided significant evidence of linkage to three new loci. The results of our study suggest a smaller environmental variance between DZ twins than full siblings, with a corresponding increase in heritability for BMI as well as an increase in linkage signal in well-replicated regions. The results are consistent with the possibility of locus heterogeneity for some genomic regions, and indicate a lack of major common quantitative trait locus variants affecting BMI in European populations.
Collapse
Affiliation(s)
- J Kettunen
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hui DY, Cope MJ, Labonté ED, Chang HT, Shao J, Goka E, Abousalham A, Charmot D, Buysse J. The phospholipase A(2) inhibitor methyl indoxam suppresses diet-induced obesity and glucose intolerance in mice. Br J Pharmacol 2009; 157:1263-9. [PMID: 19563529 DOI: 10.1111/j.1476-5381.2009.00308.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous results have shown that mice lacking in the group 1B phospholipase A(2) (Pla2g1b) are resistant to obesity and diabetes induced by feeding a diabetogenic high-fat/high-carbohydrate diet. This study examined the potential of using the Pla2g1b inhibitor methyl indoxam as therapy to suppress diet-induced obesity and diabetes. EXPERIMENTAL APPROACH Male C57BL/6 mice were fed the diabetogenic diet with or without methyl indoxam supplementation. Body weight gain, fasting plasma glucose levels, glucose tolerance and postprandial lysophospholipid absorption were compared. KEY RESULTS Wild-type C57BL/6 mice fed the diabetogenic diet without Pla2g1b inhibitor showed 31 and 69% body weight gain after 4 and 10 weeks respectively. These animals also showed elevated plasma glucose levels and were glucose intolerant. In contrast, C57BL/6 mice fed the diabetogenic diet with 90 mg.kg(-1) of methyl indoxam gained only 5% body weight after 10 weeks. These animals were also euglycaemic and displayed normal glucose excursion rates in glucose tolerance test. Methyl indoxam suppression of diet-induced body weight gain and glucose intolerance was correlated with the inhibition of Pla2g1b-mediated postprandial lysophospholipid absorption. CONCLUSIONS AND IMPLICATIONS These results show that oral supplementation of a diabetogenic diet with the Pla2g1b inhibitor methyl indoxam effectively suppresses diet-induced obesity and diabetes in mice. This suggests that Pla2g1b inhibition may be a potentially effective oral therapeutic option for treatment of obesity and diabetes.
Collapse
Affiliation(s)
- D Y Hui
- Department of Pathology and Laboratory Medicine, Genome Research Institute, University of Cincinnati College of Medicine, 2120 E. Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McCarthy JJ, Somji A, Weiss LA, Steffy B, Vega R, Barrett-Connor E, Talavera G, Glynne R. Polymorphisms of the scavenger receptor class B member 1 are associated with insulin resistance with evidence of gene by sex interaction. J Clin Endocrinol Metab 2009; 94:1789-96. [PMID: 19276229 PMCID: PMC2684479 DOI: 10.1210/jc.2008-2800] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic variation in diabetes-associated genes cumulatively explain little of the overall heritability of this trait. We sought to determine whether polymorphisms of the scavenger receptor class B, member I (SCARB1), an estrogen-regulated chromosome 12q24 positional candidate diabetes gene, were associated with type 2 diabetes or insulin resistance in a sex-specific fashion. METHODS We evaluated 34 haplotype-tagged single-nucleotide polymorphisms (SNPs) of SCARB1 for their association with type 2 diabetes and measures of insulin resistance in two populations: a clinic-based sample of 444 Mexican-American women from Proyecto SALSA and a community-based sample of 830 white women from the Rancho Bernardo Study. RESULTS We identified significant associations between a tagged SNP in intron 9, rs9919713, and fasting glucose in the SALSA population (P = 2.3 x 10(-4)). In the Rancho Bernardo Study, the same SNP also showed significant association with the related traits homeostasis model assessment for insulin resistance (P = 3.0 x 10(-4)), fasting glucose (P = 1.1 x 10(-3)), and type 2 diabetes (P = 9.0 x 10(-3)). In men from the Rancho Bernardo population, the opposite effect was found (genotype by sex interaction in the Rancho Bernardo population P < 10(-3) for insulin resistance). CONCLUSIONS Our data support an association between SCARB1 variants and insulin resistance, especially in women, with evidence of significant gene by sex interaction. These findings warrant further investigation in additional populations and prompt exploration of a role for SR-BI in the development of insulin resistance.
Collapse
Affiliation(s)
- Jeanette J McCarthy
- Graduate School of Public Health, San Diego State University, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kraja AT, Huang P, Tang W, Hunt SC, North KE, Lewis CE, Devereux RB, de Simone G, Arnett DK, Rice T, Rao DC. QTLs of factors of the metabolic syndrome and echocardiographic phenotypes: the hypertension genetic epidemiology network study. BMC MEDICAL GENETICS 2008; 9:103. [PMID: 19038053 PMCID: PMC2626585 DOI: 10.1186/1471-2350-9-103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 11/27/2008] [Indexed: 01/19/2023]
Abstract
BACKGROUND In a previous study of the Hypertension Genetic Epidemiology Network (HyperGEN) we have shown that metabolic syndrome (MetS) risk factors were moderately and significantly associated with echocardiographic (ECHO) left ventricular (LV) phenotypes. METHODS The study included 1,393 African Americans and 1,133 whites, stratified by type 2 diabetes mellitus (DM) status. Heritabilities of seven factor scores based on the analysis of 15 traits were sufficiently high to pursue QTL discovery in this follow-up study. RESULTS Three of the QTLs discovered relate to combined MetS-ECHO factors of "blood pressure (BP)-LV wall thickness" on chromosome 3 at 225 cM with a 2.8 LOD score, on chromosome 20 at 2.1 cM with a 2.6 LOD score; and for "LV wall thickness" factor on chromosome 16 at 113.5 with a 2.6 LOD score in whites. The remaining QTLs include one for a "body mass index-insulin (BMI-INS)" factor with a LOD score of 3.9 on chromosome 2 located at 64.8 cM; one for the same factor on chromosome 12 at 91.4 cM with a 3.3 LOD score; one for a "BP" factor on chromosome 19 located at 67.8 cM with a 3.0 LOD score. A suggestive linkage was also found for "Lipids-INS" with a 2.7 LOD score located on chromosome 11 at 113.1 cM in African Americans. Of the above QTLs, the one on chromosome 12 for "BMI-INS" is replicated in both ethnicities, (with highest LOD scores in African Americans). In addition, the QTL for "LV wall thickness" on chromosome 16q24.2-q24.3 reached its local maximum LOD score at marker D16S402, which is positioned within the 5th intron of the cadherin 13 gene, implicated in heart and vascular remodeling. CONCLUSION Our previous study and this follow-up suggest gene loci for some crucial MetS and cardiac geometry risk factors that contribute to the risk of developing heart disease.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pinchia Huang
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Steven C Hunt
- Divison of Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cora E Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard B Devereux
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Giovanni de Simone
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - Donna K Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Treva Rice
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - DC Rao
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
41
|
Han DH, Kim SK, Kang S, Choe BK, Kim KS, Chung JH. Matrix Metallopeptidase 2 Gene Polymorphism is Associated with Obesity in Korean Population. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:125-9. [PMID: 20157405 DOI: 10.4196/kjpp.2008.12.3.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of matrix metallopeptidase 2 (MMP2) are associated with obesity. MMP2 is an enzyme with proteolytic activity against matrix and nonmatrix proteins, particularly basement membrane constituents. To identify the relationship between polymorphisms of MMP2 and overweight/obese, we genotyped 5 SNPs (rs17242319, rs1053605, rs243849, rs2287074, and rs10775332) of the coding region of MMP2 using the Golden Gate assay on an Illumina BeadStation 500 GX. One hundred and forty two overweight/obese (BMI >/=23) and 145 normal (BMI 18 to <23) subjects were analyzed. SNPStats, Haploview, HapAnalyzer, SNPAnalyzer, and Helixtree programs were used for the analysis of genetic data. A linkage disequilibrium (LD) block was discovered among the 5 SNPs selected, including rs17242319, rs1053605, rs243849, and rs2287074. Of the 5 polymorphisms, 2 synonymous SNPs [rs17242319 (Gly226Gly) and rs10775332 (Phe602Phe)] were found significant associations with overweight/obese. Recently, rs1132896 replaced rs17242319 as a new number (SNP database, BUILD 129). In haplotype analysis using Haploview, a haplotype (haplotype: CCCA) containing a meaningful polymorphism (rs17242319) was found to be significantly different. The results suggest that MMP2 may be associated with overweight/obese in Korean population.
Collapse
Affiliation(s)
- Dong Hee Han
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Magnusson PKE, Boman M, de Faire U, Perola M, Peltonen L, Pedersen NL. Genome-wide search for QTLs for apolipoprotein A-I level in elderly Swedish DZ twins: evidence of female-specific locus on 15q11-13. Eur J Hum Genet 2008; 16:1103-10. [PMID: 18322452 DOI: 10.1038/ejhg.2008.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effect of genetic variants underlying atherosclerosis is thought to be mediated through intermediate phenotypes such as serum cholesterol levels. Localization of quantitative trait loci influencing levels of serum lipids and (apo)lipoproteins may aid in the search for determinants of susceptibility to atherosclerotic diseases. Since apolipoprotein A-I is the primary protein constituent of high-density lipoprotein, it is considered to be critical for the antiatherogenic effect of high-density lipoproteins. We describe here an effort to map loci influencing apolipoprotein A-I levels. Measurements of apolipoprotein A-I levels and genome scans with more than 1000 microsatellite markers were successfully performed in both members of 501 pairs of fraternal twins from Sweden. Variance component linkage analysis was undertaken to map quantitative trait loci. In the total study sample, two loci showed comparable suggestive evidence of linkage, 6p21-12 (LOD=2.4) and 12q23 (LOD=2.4). Sex-limited analyses revealed significant female-specific linkage at marker D15S156 on 15q11-13 (LOD=4.1). The loci on 12q and 15q in the present study confirm previously reported loci for apolipoprotein A-I, while the peak on chromosome 6p lends further support to a locus influencing several phenotypes related to atherosclerosis. Intriguingly, the presence of genes belonging to the phospholipase A2 superfamily under three out of four observed linkage peaks would lend some support to the view that this group of genes might collectively represent candidates as apolipoprotein A-I level regulators.
Collapse
Affiliation(s)
- Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Windelinckx A, Vlietinck R, Aerssens J, Beunen G, Thomis MAI. Selection of genes and single nucleotide polymorphisms for fine mapping starting from a broad linkage region. Twin Res Hum Genet 2008; 10:871-85. [PMID: 18179400 DOI: 10.1375/twin.10.6.871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fine mapping of linkage peaks is one of the great challenges facing researchers who try to identify genes and genetic variants responsible for the variation in a certain trait or complex disease. Once the trait is linked to a certain chromosomal region, most studies use a candidate gene approach followed by a selection of polymorphisms within these genes, either based on their possibility to be functional, or based on the linkage disequilibrium between adjacent markers. For both candidate gene selection and SNP selection, several approaches have been described, and different software tools are available. However, mastering all these information sources and choosing between the different approaches can be difficult and time-consuming. Therefore, this article lists several of these in silico procedures, and the authors describe an empirical two-step fine mapping approach, in which candidate genes are prioritized using a bioinformatics approach (ENDEAVOUR), and the top genes are chosen for further SNP selection with a linkage disequilibrium based method (Tagger). The authors present the different actions that were applied within this approach on two previously identified linkage regions for muscle strength. This resulted in the selection of 331 polymorphisms located in 112 different candidate genes out of an initial set of 23,300 SNPs.
Collapse
Affiliation(s)
- An Windelinckx
- Research Center for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
44
|
Livshits G, Kato BS, Wilson SG, Spector TD. Linkage of genes to total lean body mass in normal women. J Clin Endocrinol Metab 2007; 92:3171-6. [PMID: 17550956 DOI: 10.1210/jc.2007-0418] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Total lean body mass (LEAN-tot) is one of the three major components of body weight. Its deterioration is a risk factor for frailty. Despite this, there are few studies examining the contribution of genetic factors. OBJECTIVE Our objective was to examine the contribution of genetic factors for LEAN-tot variation, including a genome-wide search for the genes. RESEARCH METHODS Dual-energy x-ray absorptiometry measurements of LEAN-tot were obtained from each of the 3180 United Kingdom females (509 monozygotic and 1081 dizygotic twin pairs). Contribution of genetic factors was assessed using variance component analysis. A genome-wide linkage analysis was performed on the dizygotic twins using a modified version of the Haseman-Elston method. RESULTS Age, body height, total fat, and bone mass were correlated with LEAN-tot, and commonly explained 52% of the LEAN-tot variation. The crude heritability estimate was 74.0 +/- 4.0%, after adjustment for the aforementioned factors; 65.2 +/- 4.6% was attributable to independent genetic effects. Significant (P < 0.001) genetic correlations were found between LEAN-tot and bone mass, and LEAN-tot and total fat. Adjusted only for age, LEAN-tot showed no significant linkage. After adjustment for all covariates, significant linkage (LOD = 4.49 and 3.62) was observed at chromosome 12q24.3 and 14q22.3, respectively. Additional peaks of interest were on 7p15.3-15.1 (LOD = 2.86) and 8p22 (LOD = 2.83). CONCLUSIONS LEAN-tot measured by dual-energy x-ray absorptiometry is highly heritable, independent of other body measures. This first genomic search for genes associated with the lean component of body mass suggests significant linkage to quantitative trait loci on chromosomes 12 and 14.
Collapse
|
45
|
Elbers CC, Onland-Moret NC, Franke L, Niehoff AG, van der Schouw YT, Wijmenga C. A strategy to search for common obesity and type 2 diabetes genes. Trends Endocrinol Metab 2007; 18:19-26. [PMID: 17126559 DOI: 10.1016/j.tem.2006.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/01/2006] [Accepted: 11/14/2006] [Indexed: 12/24/2022]
Abstract
Worldwide, the incidence of type 2 diabetes is rising rapidly, mainly because of the increase in the incidence of obesity, which is an important risk factor for this condition. Both obesity and type 2 diabetes are complex genetic traits but they also share some nongenetic risk factors. Hence, it is tempting to speculate that the susceptibility to type 2 diabetes and obesity might also partly be due to shared genes. By comparing all of the published genome scans for type 2 diabetes and obesity, five overlapping chromosomal regions for both diseases (encompassing 612 candidate genes) have been identified. By analysing these five susceptibility loci for type 2 diabetes and obesity, using six freely available bioinformatics tools for disease gene identification, 27 functional candidate genes have been pinpointed that are involved in eating behaviour, metabolism and inflammation. These genes might reveal a molecular link between the two disorders.
Collapse
Affiliation(s)
- Clara C Elbers
- Complex Genetics Section, Department of Biomedical Genetics, University Medical Centre Utrecht, PO Box 85060, 3508 AB Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Stanley J. Ulijaszek
- Institute of Social and Cultural Anthropology, University of Oxford, Oxford OX2 6PF, United Kingdom; ,
| | - Hayley Lofink
- Institute of Social and Cultural Anthropology, University of Oxford, Oxford OX2 6PF, United Kingdom; ,
| |
Collapse
|