1
|
Price EA, Sagoo MS, Reddy MA, Onadim Z. An overview of RB1 transcript alterations detected during retinoblastoma genetic screening. Ophthalmic Genet 2024; 45:235-245. [PMID: 37932244 DOI: 10.1080/13816810.2023.2270570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Identification of pathogenic RB1 variants aids in the clinical management of families with retinoblastoma. We routinely screen DNA for RB1 variants, but transcript analysis can also be used for variant screening, and to help decide variant pathogenicity. DNA was screened by conformation analysis followed by Sanger sequencing. Large deletion/insertions were detected by polymorphism analysis, MLPA and quantitative-PCR. Methylation-specific PCR was used to detect hypermethylation. RNA screening was performed when a DNA pathogenic variant was missing, or to determine effects on splicing.Two hundred and thirteen small coding variants were predicted to affect splicing in 207 patients. Splice donor (sd) variants were nearly twice as frequent as splice acceptor (sa) with the most affected positions being sd + 1 and sa-1. Some missense and nonsense codons altered splicing, while some splice consensus variants did not. Large deletion/insertions can disrupt splicing, but RNA analysis showed that some of these are more complex than indicated by DNA testing. RNA screening found pathogenic variants in 53.8% of samples where DNA analysis did not. RB1 splicing is altered by changes at consensus splice sites, some missense and nonsense codons, deep intronic changes and large deletion/insertions. Common alternatively spliced transcripts may complicate analysis. An effective molecular screening strategy would include RNA analysis to help determine pathogenicity.
Collapse
Affiliation(s)
- Elizabeth A Price
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, London, UK
| | - Mandeep S Sagoo
- Retinoblastoma Service, Royal London Hospital, Barts Health NHS Trust, London, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, Institute of Ophthalmology, University College London, London, UK
| | - M Ashwin Reddy
- Retinoblastoma Service, Royal London Hospital, Barts Health NHS Trust, London, UK
- Faculty of Medicine, Queen Mary University of London, London, UK
| | - Zerrin Onadim
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, London, UK
- Faculty of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Le Gall J, Dehainault C, Boutte M, Petitalot A, Caputo SM, Courtois L, Vacher S, Bieche I, Radvanyi F, Pacquement H, Doz F, Lumbroso-Le Rouic L, Gauthier Villars M, Stoppa-Lyonnet D, Lallemand F, Houdayer C, Golmard L. Germline HPF1 retrogene insertion in RB1 gene involved in cancer predisposition. J Med Genet 2023; 61:78-83. [PMID: 37541786 DOI: 10.1136/jmg-2022-109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
About half of the human genome is composed of repeated sequences derived from mobile elements, mainly retrotransposons, generally without pathogenic effect. Familial forms of retinoblastoma are caused by germline pathogenic variants in RB1 gene. Here, we describe a family with retinoblastoma affecting a father and his son. No pathogenic variant was identified after DNA analysis of RB1 gene coding sequence and exon-intron junctions. However, RB1 mRNA analysis showed a chimeric transcript with insertion of 114 nucleotides from HPF1 gene inside RB1 gene. This chimeric transcript led to an insertion of 38 amino acids in functional domain of retinoblastoma protein. Subsequent DNA analysis in RB1 intron 17 revealed the presence of a full-length HPF1 retrogene insertion in opposite orientation. Functional assay shows that this insertion has a deleterious impact on retinoblastoma protein function. This is the first report of a full-length retrogene insertion involved in human Mendelian disease leading to a chimeric transcript and a non-functional chimeric protein. Some retrogene insertions may be missed by standard diagnostic genetic testing, so contribution of retrogene insertions to human disease may be underestimated. The increasing use of whole genome sequencing in diagnostic settings will help to get a more comprehensive view of retrogenes.
Collapse
Affiliation(s)
- Jessica Le Gall
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Catherine Dehainault
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Matteo Boutte
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
- Université de Paris, Paris, France
| | - François Radvanyi
- Department of Genetics, PSL University, Paris, France
- Molecular Oncology Team, UMR144, Paris, France
| | - Hélène Pacquement
- Department of Genetics, PSL University, Paris, France
- Oncology Center SIREDO, Institut Curie, Paris, France
| | - François Doz
- Molecular Oncology Team, UMR144, Paris, France
- Oncology Center SIREDO, Institut Curie, Paris, France
| | - Livia Lumbroso-Le Rouic
- Department of Genetics, PSL University, Paris, France
- Department of Ophthalmology, Institut Curie, Paris, France
| | - Marion Gauthier Villars
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - François Lallemand
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Claude Houdayer
- Department of Genetics, University Hospital Centre Rouen, Rouen, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| |
Collapse
|
3
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Jeyaprakash K, Thirumalairaj K, Kim U, Muthukkaruppan V, Vanniarajan A. RB1 transcript analysis detects novel splicing aberration in retinoblastoma. Pediatr Blood Cancer 2023; 70:e30290. [PMID: 36916769 DOI: 10.1002/pbc.30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Kumar Jeyaprakash
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.,Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kannan Thirumalairaj
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Veerappan Muthukkaruppan
- Department of Stem Cell Biology and Immunology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India.,Department of Molecular Biology, Aravind Medical Research Foundation, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Escudero A, Ferreras C, Rodriguez-Salas N, Corral D, Rodriguez L, Pérez-Martínez A. Cancer predisposing syndrome: a retrospective cohort analysis in a pediatric and multidisciplinary genetic cancer counseling unit. Int J Clin Oncol 2022; 27:992-1000. [PMID: 35190929 DOI: 10.1007/s10147-022-02133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Approximately 10% of pediatric patients with cancer have an inherited, sometimes masked, cancer predisposition syndrome (CPS). Identifying patients with genetic susceptibility to malignant disease is essential for their correct diagnosis and clinical management. MATERIALS AND METHODS Here, we present the workflow and experience of a multidisciplinary cancer predisposition unit focused on pediatric patients with cancer. RESULTS Between July 2018 and July 2020, 214 patients were diagnosed with pediatric cancer in our Hospital. Of all, 49 patients were treated at the CPS unit, 48 of whom were recommended a genetic study. Mutational analysis was performed on DNA from peripheral blood samples, with approximately 45% of the patients (n = 22) receiving a confirmed CPS diagnosis, all of whom underwent genetic counseling. These cases represent 20% of all pediatric cancers diagnosed in the same center during this period. Most of the patients were diagnosed with hereditary retinoblastoma; however, we also identified families with Li-Fraumeni syndrome, multiple endocrine neoplasia type 2, hereditary melanoma, hereditary leiomyomatosis, and Gardner syndrome. CONCLUSION Despite its limitations regarding the type of tumors and number of patients included, this study revealed that implementing a specialized unit focused on children with cancer results in a higher diagnostic rate and better genetic counseling for patients with pediatric cancer predisposition syndromes.
Collapse
Affiliation(s)
- Adela Escudero
- Institute of Medical and Molecular Genetics, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain.
| | - Cristina Ferreras
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Nuria Rodriguez-Salas
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), Madrid, Spain
| | - Dolores Corral
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Laura Rodriguez
- Department of Medical Oncology, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
- Pediatrics Department, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders. Cells 2021; 10:cells10092317. [PMID: 34571966 PMCID: PMC8470284 DOI: 10.3390/cells10092317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Genomic studies are increasingly revealing that neurodevelopmental disorders are caused by underlying genomic alterations. Chromosomal microarray testing has been used to reliably detect minute changes in genomic copy numbers. The genes located in the aberrated regions identified in patients with neurodevelopmental disorders may be associated with the phenotypic features. In such cases, haploinsufficiency is considered to be the mechanism, when the deletion of a gene is related to neurodevelopmental delay. The loss-of-function mutation in such genes may be evaluated using next-generation sequencing. On the other hand, the patients with increased copy numbers of the genes may exhibit different clinical symptoms compared to those with loss-of-function mutation in the genes. In such cases, the additional copies of the genes are considered to have a dominant negative effect, inducing cell stress. In other cases, not the copy number changes, but mutations of the genes are responsible for causing the clinical symptoms. This can be explained by the dominant negative effects of the gene mutations. Currently, the diagnostic yield of genomic alterations using comprehensive analysis is less than 50%, indicating the existence of more subtle alterations or genomic changes in the untranslated regions. Copy-neutral inversions and insertions may be related. Hence, better analytical algorithms specialized for the detection of such alterations are required for higher diagnostic yields.
Collapse
|
8
|
Jiménez I, Frouin É, Chicard M, Dehainault C, Le Gall J, Benoist C, Gauthier A, Lapouble E, Houdayer C, Radvanyi F, Bernard V, Brisse HJ, Gauthier-Villars M, Stoppa-Lyonnet D, Baulande S, Cassoux N, Lumbroso L, Matet A, Aerts I, Renault V, Doz F, Golmard L, Delattre O, Schleiermacher G. Molecular diagnosis of retinoblastoma by circulating tumor DNA analysis. Eur J Cancer 2021; 154:277-287. [PMID: 34298378 DOI: 10.1016/j.ejca.2021.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The analysis of circulating tumor DNA (ctDNA), a fraction of total cell-free DNA (cfDNA), might be of special interest in retinoblastoma patients. Because the accessibility to tumor tissue is very limited in these patients, either for histopathological diagnosis of suspicious intraocular masses (biopsies are proscribed) or for somatic RB1 studies and genetic counseling (due to current successful conservative approaches), we aim to validate the detection of ctDNA in plasma of non-hereditary retinoblastoma patients by molecular analysis of RB1 gene. EXPERIMENTAL DESIGN In a cohort of 19 intraocular unilateral non-hereditary retinoblastoma patients for whom a plasma sample was available at diagnosis, we performed high-deep next-generation sequencing (NGS) of RB1 in cfDNA. Two different bioinformatics/statistics approaches were applied depending on whether the somatic RB1 status was available or not. RESULTS Median plasma sample volume was 600 μL [100-1000]; median cfDNA plasma concentration was 119 [38-1980] and 27 [11-653] ng/mL at diagnosis and after complete remission, respectively. In the subgroup of patients with known somatic RB1 alterations (n = 11), seven of nine somatic mutations were detected (median allele fraction: 6.7%). In patients without identified somatic RB1 alterations (n = 8), six candidate variants were identified for seven patients. CONCLUSIONS Despite small tumor size, blood-ocular barrier, poor ctDNA blood release and limited plasma sample volumes, we confirm that it is possible to detect ctDNA with high-deep NGS in plasma from patients with intraocular non-hereditary retinoblastoma. This may aid in diagnosis of suspicious cases, family genetic counseling or follow-up of residual intraocular disease.
Collapse
Affiliation(s)
- Irene Jiménez
- SiRIC RTOP « Recherche Translationelle en Oncologie Pédiatrique », Translational Research Department, PSL Research University, Institut Curie Research Center, Paris, France; INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, Institut Curie Research Center, Paris, France; SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Éléonore Frouin
- Clinical Bioinformatics, PSL Research University, Institut Curie, Paris, France
| | - Mathieu Chicard
- SiRIC RTOP « Recherche Translationelle en Oncologie Pédiatrique », Translational Research Department, PSL Research University, Institut Curie Research Center, Paris, France; INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, Institut Curie Research Center, Paris, France; SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | | | - Jessica Le Gall
- Department of Genetics, PSL Research University, Institut Curie, Paris, France
| | - Camille Benoist
- Clinical Bioinformatics, PSL Research University, Institut Curie, Paris, France
| | - Arnaud Gauthier
- Pathology Department, PSL Research University, Institut Curie, Paris, France
| | - Eve Lapouble
- Somatic Genetics Unit, PSL Research University, Institut Curie, Paris, France
| | - Claude Houdayer
- INSERM U1245, Normandie University, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine and Rouen University Hospital, Department of Genetics, Rouen, France
| | - François Radvanyi
- CNRS, UMR144, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, Paris, France
| | - Virginie Bernard
- Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | - Hervé J Brisse
- Imaging Department, PSL Research University, Institut Curie, Paris, France
| | | | | | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Research Center, Institut Curie, Paris, France
| | - Nathalie Cassoux
- SiRIC RTOP « Recherche Translationelle en Oncologie Pédiatrique », Translational Research Department, PSL Research University, Institut Curie Research Center, Paris, France; SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France; Université de Paris, Paris, France
| | | | - Alexandre Matet
- Ocular Oncology Service, Institut Curie, Paris, France; Université de Paris, Paris, France
| | - Isabelle Aerts
- SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Victor Renault
- Clinical Bioinformatics, PSL Research University, Institut Curie, Paris, France
| | - François Doz
- SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France; Université de Paris, Paris, France
| | - Lisa Golmard
- Department of Genetics, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France; SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- SiRIC RTOP « Recherche Translationelle en Oncologie Pédiatrique », Translational Research Department, PSL Research University, Institut Curie Research Center, Paris, France; INSERM U830, Equipe Labellisée Ligue Contre le Cancer, PSL Research University, Institut Curie Research Center, Paris, France; Department of Translational Research, Institut Curie Research Center, Paris, France; SIREDO Center: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.
| |
Collapse
|
9
|
Salviat F, Gauthier-Villars M, Carton M, Cassoux N, Lumbroso-Le Rouic L, Dehainault C, Levy C, Golmard L, Aerts I, Doz F, Bonnet-Serrano F, Hayek S, Savignoni A, Stoppa-Lyonnet D, Houdayer C. Association Between Genotype and Phenotype in Consecutive Unrelated Individuals With Retinoblastoma. JAMA Ophthalmol 2021; 138:843-850. [PMID: 32556071 DOI: 10.1001/jamaophthalmol.2020.2100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Retinoblastoma (RB) is the most common pediatric intraocular neoplasm. RB is a complex model in which atypical pathogenic variants, modifier genes, imprinting, and mosaicism are known to be associated with the phenotype. In-depth understanding of RB therefore requires large genotype-phenotype studies. Objective To assess the association between genotype and phenotype in patients with RB. Design, Setting, and Participants This single-center, retrospective cohort study, conducted from January 1, 2000, to September 30, 2017, enrolled 1404 consecutive ascertained patients with RB who consulted an oncogeneticist. All patients had their genotype and phenotype recorded. Statistical analysis was performed from July 1, 2018, to December 31, 2018. Main Outcomes and Measures RB1 germline and somatic pathogenic variant types, family history, and disease presentation characteristics (ie, age at diagnosis, sex, laterality, and International Intraocular Retinoblastoma Classification group). Results Among 1404 patients with RB (734 [52.3%] female; mean [SD] age, 20.2 [21.2] months), 866 cases (61.7%) were unilateral and 538 cases (38.3%) were bilateral. Loss of function variants were found throughout the coding sequence, with 259 of 272 (95.2%) somatic pathogenic variants and 537 of 606 (88.6%) germline pathogenic variants (difference, 6.6%; 95% CI, 4.0%-9.2%; P < .001) after excluding tumor-specific pathogenic variants (ie, promoter methylation and loss of heterozygosity); a novel low-penetrance region was identified in exon 24. Compared with germline pathogenic variants estimated to retain RB protein expression, germline pathogenic variants estimated to abrogate RB protein expression were associated with an earlier mean (SD) age at diagnosis (12.3 [11.3] months among 457 patients vs 16.3 [13.2] months among 55 patients; difference, 4 months; 95% CI, 1.9-6.1 months; P = .01), more frequent bilateral involvement (84.2% among 452 patients vs 65.2% among 45 patients; difference, 18.9%; 95% CI, 14.5%-23.3%; P < .001), and more advanced International Intraocular Retinoblastoma Classification group (85.3% among 339 patients vs 73.9% among 34 patients; difference: 11.4%; 95% CI, 6.5%-16.3%; P = .047). Among the 765 nongermline carriers of an RB1 pathogenic variant, most were female (419 females [54.8%] vs 346 males [45.2%]; P = .008), and males were more likely to have bilateral RB (23 males [71.4%] vs 12 females [34.3%]; P = .01). Conclusions and Relevance These results suggest that RB risk is associated with the germline pathogenic variant and with maintenance of RB protein and that there is a sex-linked mechanism for nongermline carriers.
Collapse
Affiliation(s)
- Flore Salviat
- Department of Biostatistics, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Marion Gauthier-Villars
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France
| | - Matthieu Carton
- Department of Biostatistics, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Nathalie Cassoux
- Faculty of Medicine Paris-Descartes, Paris University, Paris, France.,Service of Ophthalmology, Department of Surgical Oncology, Institut Curie, Paris, France
| | | | - Catherine Dehainault
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France
| | - Christine Levy
- Service of Ophthalmology, Department of Surgical Oncology, Institut Curie, Paris, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France
| | - Isabelle Aerts
- Oncology Center, Soins, Innovation, Recherche en Oncologie de l'Enfant, l'Adolescent et du Jeune Adulte, Institut Curie, Paris, France
| | - François Doz
- Faculty of Medicine Paris-Descartes, Paris University, Paris, France.,Oncology Center, Soins, Innovation, Recherche en Oncologie de l'Enfant, l'Adolescent et du Jeune Adulte, Institut Curie, Paris, France
| | - Fidéline Bonnet-Serrano
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France
| | - Stéphanie Hayek
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France
| | - Alexia Savignoni
- Department of Biostatistics, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France.,Faculty of Medicine Paris-Descartes, Paris University, Paris, France.,Research Center Institut National de la Santé et de la Recherche Médicale, Unit U830, Institut Curie, Paris, France
| | - Claude Houdayer
- Department of Genetics, Institut Curie, PSL Research University, Department of Genetics, Paris, France.,Department of Genetics, Rouen University Hospital, Rouen, France.,University of Rouen Normandy, UNIROUEN, Mont-Saint-Aignan, France.,Institut National de la Santé et de la Recherche Médicale U1245, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
10
|
Canson D, Glubb D, Spurdle AB. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum Mutat 2020; 41:1705-1721. [PMID: 32623769 DOI: 10.1002/humu.24074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre-existing large-scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.
Collapse
Affiliation(s)
- Daffodil Canson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Dylan Glubb
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Malekkou A, Sevastou I, Mavrikiou G, Georgiou T, Vilageliu L, Moraitou M, Michelakakis H, Prokopiou C, Drousiotou A. A novel mutation deep within intron 7 of the GBA gene causes Gaucher disease. Mol Genet Genomic Med 2020; 8:e1090. [PMID: 31943857 PMCID: PMC7057115 DOI: 10.1002/mgg3.1090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations in the GBA gene that encodes the lysosomal enzyme acid β-glucocerebrosidase cause Gaucher disease (GD), the most common lysosomal storage disorder. Most of the mutations are missense/nonsense, however, a few splicing mutations within or close to conserved consensus donor or acceptor splice sites have also been described. The aim of the study was to identify the mutation(s) in a Cypriot patient with type I GD. METHODS The genomic DNA of the proband was screened for nine common mutations using Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. All exons and exon-intron boundaries, and the 5'UTR and 3'UTR regions of the GBA gene, were investigated by Sanger sequencing. RNA analysis was performed using standard procedures, and the abnormal transcript was further cloned into pGEM-T-Easy plasmid vector and sequenced. The relevant intronic region was further sequenced by the Sanger method to identify the genetic variant. RESULTS A novel point mutation, g.12599C > A (c.999 + 242C > A), was detected deep in intron 7 of the GBA gene. This type of mutation has been previously described for other diseases but this is the first time, as far as we know, that it is described for GD. This mutation creates a new donor splice site leading to aberrant splicing and resulting in the insertion of the first 239nt of intron 7 as a pseudoexon in the mRNA, creating a premature stop codon. CONCLUSION This study expands the mutation spectrum of GD and highlights the importance of RNA sequencing for the molecular diagnosis of patients bearing mutations in nonexonic regions.
Collapse
Affiliation(s)
- Anna Malekkou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Sevastou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Gavriella Mavrikiou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Theodoros Georgiou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Lluisa Vilageliu
- Department of Genetics, Faculty of Biology, Universitat de Barcelona, IBUB, CIBERER, Barcelona, Spain
| | - Marina Moraitou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | | | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
12
|
Rodríguez-Martín C, Robledo C, Gómez-Mariano G, Monzón S, Sastre A, Abelairas J, Sábado C, Martín-Begué N, Ferreres JC, Fernández-Teijeiro A, González-Campora R, Rios-Moreno MJ, Zaballos Á, Cuesta I, Martínez-Delgado B, Posada M, Alonso J. Frequency of low-level and high-level mosaicism in sporadic retinoblastoma: genotype-phenotype relationships. J Hum Genet 2019; 65:165-174. [PMID: 31772335 DOI: 10.1038/s10038-019-0696-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022]
Abstract
Somatic mutational mosaicism is a common feature of monogenic genetic disorders, particularly in diseases such as retinoblastoma, with high rates of de novo mutations. The detection and quantification of mosaicism is particularly relevant in these diseases, since it has important implications for genetic counseling, patient management, and probably also on disease onset and progression. In order to assess the rate of somatic mosaicism (high- and low-level mosaicism) in sporadic retinoblastoma patients, we analyzed a cohort of 153 patients with sporadic retinoblastoma using ultra deep next-generation sequencing. High-level mosaicism was detected in 14 out of 100 (14%) bilateral patients and in 11 out of 29 (38%) unilateral patients in whom conventional Sanger sequencing identified a pathogenic mutation in blood DNA. In addition, low-level mosaicism was detected in 3 out of 16 (19%) unilateral patients in whom conventional screening was negative in blood DNA. Our results also reveal that mosaicism was associated to delayed retinoblastoma onset particularly in unilateral patients. Finally we compared the level of mosaicism in different tissues to identify the best DNA source to identify mosaicism in retinoblastoma patients. In light of these results we recommended analyzing the mosaic status in all retinoblastoma patients using accurate techniques such as next-generation sequencing, even in those cases in which conventional Sanger sequencing identified a pathogenic mutation in blood DNA. Our results suggest that a significant proportion of those cases are truly mosaics that could have been overlooked. This information should be taking into consideration in the management and genetic counseling of retinoblastoma patients and families.
Collapse
Affiliation(s)
- Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Gema Gómez-Mariano
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sara Monzón
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Sastre
- University Hospital La Paz, Madrid, Spain
| | | | - Constantino Sábado
- Pediatric Oncohematology Deparment, Vall d'Hebron Hospital, Barcelona, Spain
| | - Nieves Martín-Begué
- Pediatric Ophthalmology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Joan Carles Ferreres
- Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | | | | | - María José Rios-Moreno
- Department of Anatomic Pathology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Ángel Zaballos
- Genomics Unit, Core Scientific and Technical Units, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Beatriz Martínez-Delgado
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Majadahonda, Madrid, Spain
| | - Manuel Posada
- Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Majadahonda, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CB06/07/1009; CIBERER-ISCIII), Majadahonda, Madrid, Spain.
| |
Collapse
|
13
|
Araújo CET, Oliveira CMC, Barbosa JD, Oliveira-Filho JP, Resende LAL, Badial PR, Araujo-Junior JP, McCue ME, Borges AS. A large intragenic deletion in the CLCN1 gene causes Hereditary Myotonia in pigs. Sci Rep 2019; 9:15632. [PMID: 31666547 PMCID: PMC6821760 DOI: 10.1038/s41598-019-51286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the CLCN1 gene are the primary cause of non-dystrophic Hereditary Myotonia in several animal species. However, there are no reports of Hereditary Myotonia in pigs to date. Therefore, the objective of the present study was to characterize the clinical and molecular findings of Hereditary Myotonia in an inbred pedigree. The clinical, electromyographic, histopathological, and molecular findings were evaluated. Clinically affected pigs presented non-dystrophic recessive Hereditary Myotonia. Nucleotide sequence analysis of the entire coding region of the CLCN1 gene revealed the absence of the exons 15 and 16 in myotonic animals. Analysis of the genomic region flanking the deletion unveiled a large intragenic deletion of 4,165 nucleotides. Interestingly, non-related, non-myotonic pigs expressed transcriptional levels of an alternate transcript (i.e., X2) that was identical to the deleted X1 transcript of myotonic pigs. All myotonic pigs and their progenitors were homozygous recessive and heterozygous, respectively, for the 4,165-nucleotide deletion. This is the first study reporting Hereditary Myotonia in pigs and characterizing its clinical and molecular findings. Moreover, to the best of our knowledge, Hereditary Myotonia has never been associated with a genomic deletion in the CLCN1 gene in any other species.
Collapse
Affiliation(s)
- C E T Araújo
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - C M C Oliveira
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Campus Castanhal, PA, Brazil
| | - J D Barbosa
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Campus Castanhal, PA, Brazil
| | - J P Oliveira-Filho
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - L A L Resende
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
| | - P R Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - J P Araujo-Junior
- São Paulo State University (UNESP), Institute of Bioscience, Botucatu, Brazil
| | - M E McCue
- College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, 55108, USA
| | - A S Borges
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil.
| |
Collapse
|
14
|
Nahon-Esteve S, Martel A, Maschi C, Caujolle JP, Baillif S, Lassalle S, Hofman P. The Molecular Pathology of Eye Tumors: A 2019 Update Main Interests for Routine Clinical Practice. Curr Mol Med 2019; 19:632-664. [DOI: 10.2174/1566524019666190726161044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Over the last few years, we have seen constant development of molecular
pathology for the care of patients with cancer. The information obtained from molecular
data has transformed our thinking about the biological diversity of cancers, particularly in
the field of ophthalmic oncology. It has reoriented the way in which therapeutic decisions
and decisions concerning patient surveillance are made, both in the area of pediatric
cancers, including rhabdomyosarcoma and retinoblastoma, and adult cancers, such as
uveal melanoma and lymphomas. A better definition of the molecular classification of
these cancers and of the different biological pathways involved is essential to the
understanding of both the pathologist and the onco-ophthalmologist. Molecular tests
based on targeted or expanded analysis of gene panels are now available. These tests
can be performed with tumor tissue or biofluids (especially blood) to predict the
prognosis of tumors and, above all, the benefit of targeted therapies, immunotherapy or
even chemotherapy. Looking for the BAP1 mutation in uveal melanoma is essential
because of the associated metastatic risk. When treating retinoblastoma, it is mandatory
to assess the heritable status of RB1. Conjunctival melanoma requires investigation into
the BRAF mutation in the case of a locally advanced tumor. The understanding of
genomic alterations, the results of molecular tests and/or other biological tests predictive
of a therapeutic response, but also of the limits of these tests with respect to the
available biological resources, represents a major challenge for optimal patient
management in ophthalmic oncology. In this review, we present the current state of
knowledge concerning the different molecular alterations and therapeutic targets of
interest in ophthalmic oncology.
Collapse
Affiliation(s)
| | - Arnaud Martel
- Department of Ophthalmology, University Cote d'Azur, Nice, France
| | - Célia Maschi
- Department of Ophthalmology, University Cote d'Azur, Nice, France
| | | | | | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology, University Cote d'Azur, Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, University Cote d'Azur, Nice, France
| |
Collapse
|
15
|
Hamanaka K, Miyatake S, Koshimizu E, Tsurusaki Y, Mitsuhashi S, Iwama K, Alkanaq AN, Fujita A, Imagawa E, Uchiyama Y, Tawara N, Ando Y, Misumi Y, Okubo M, Nakashima M, Mizuguchi T, Takata A, Miyake N, Saitsu H, Iida A, Nishino I, Matsumoto N. RNA sequencing solved the most common but unrecognized NEB pathogenic variant in Japanese nemaline myopathy. Genet Med 2018; 21:1629-1638. [PMID: 30467404 DOI: 10.1038/s41436-018-0360-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The diagnostic rate for Mendelian diseases by exome sequencing (ES) is typically 20-40%. The low rate is partly because ES misses deep-intronic or synonymous variants leading to aberrant splicing. In this study, we aimed to apply RNA sequencing (RNA-seq) to efficiently detect the aberrant splicings and their related variants. METHODS Aberrant splicing in biopsied muscles from six nemaline myopathy (NM) cases unresolved by ES were analyzed with RNA-seq. Variants related to detected aberrant splicing events were analyzed with Sanger sequencing. Detected variants were screened in NM patients unresolved by ES. RESULTS We identified a novel deep-intronic NEB pathogenic variant, c.1569+339A>G in one case, and another novel synonymous NEB pathogenic variant, c.24684G>C (p.Ser8228Ser) in three cases. The c.24684G>C variant was observed to be the most frequent among all NEB pathogenic variants in normal Japanese populations with a frequency of 1 in 178 (20 alleles in 3552 individuals), but was previously unrecognized. Expanded screening of the variant identified it in a further four previously unsolved nemaline myopathy cases. CONCLUSION These results indicated that RNA-seq may be able to solve a large proportion of previously undiagnosed muscle diseases.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ahmed N Alkanaq
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
16
|
Verrier F, Dubois d'Enghien C, Gauthier-Villars M, Bonadona V, Faure-Conter C, Dijoud F, Stoppa-Lyonnet D, Houdayer C, Golmard L. Mutiple DICER1-related lesions associated with a germline deep intronic mutation. Pediatr Blood Cancer 2018; 65:e27005. [PMID: 29469200 DOI: 10.1002/pbc.27005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/23/2017] [Accepted: 01/13/2018] [Indexed: 01/09/2023]
Abstract
Germline DICER1 pathogenic variants predispose to numerous benign and malignant tumors. In this report, we describe DICER1 gene analysis in an adolescent diagnosed with multinodular goiter, ovarian Sertoli-Leydig cell tumor, and lung cyst. DICER1 mutational screening at the DNA level failed to detect any pathogenic variant. Subsequent messenger RNA (mRNA) analysis revealed a 132 nucleotide intronic sequence exonization. This truncating event was caused by a deep intronic mutation generating a de novo acceptor splice site. This study demonstrates that some undetected DICER1 mutations should be investigated at the mRNA level.
Collapse
Affiliation(s)
| | | | | | - Valérie Bonadona
- Unité Clinique d'Oncologie génétique, Centre Léon Bérard, Lyon, France.,Faculte de Medecine et de Maieutique, Université Lyon 1, Lyon, France
| | - Cécile Faure-Conter
- Department of Pediatry, Institut d'Hématologie et d'Oncologie pédiatrique, Lyon, France
| | | | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France.,INSERM U830, Institut Curie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Claude Houdayer
- Service de Génétique, Institut Curie, Paris, France.,INSERM U830, Institut Curie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Lisa Golmard
- Service de Génétique, Institut Curie, Paris, France
| |
Collapse
|
17
|
Pezeshkpoor B, Pavlova A, Oldenburg J, El-Maarri O. F8 genetic analysis strategies when standard approaches fail. Hamostaseologie 2017; 34:167-73. [DOI: 10.5482/hamo-13-08-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryHaemophilia A is a common X-linked recessive disorder caused by mutations in F8 leading to deficiency or dysfunction of coagulant factor VIII (FVIII). Despite tremendous improvements in mutation screening methods, in a small group of patients with FVIII deficiency suffering from haemophilia A, no DNA change can be found. In these patients, analysis reveals no causal mutations even after sequencing the whole coding region of F8 including the flanking splice sites, as well as the promoter and the 3’ untranslated region (UTR). After excluding the mutations mimicking the haemophilia A phenotype in interacting partners of the FVIII protein affecting the half life and transport of the protein, mutations or rearrangements in non-coding regions of F8 have to be considered responsible for the haemophilia A phenotype.In this review, we present the experiences with molecular diagnosis of such cases and approaches to be applied for mutation negative patients.
Collapse
|
18
|
Soliman SE, Racher H, Lambourne M, Matevski D, MacDonald H, Gallie B. A novel deep intronic low penetrance RB1 variant in a retinoblastoma family. Ophthalmic Genet 2017; 39:288-290. [PMID: 29099630 DOI: 10.1080/13816810.2017.1393828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sameh E Soliman
- a The Department of Ophthalmology and Vision Sciences , Hospital for Sick Children, University of Toronto , Toronto , Ontario , Canada.,b The Department of Ophthalmology, Faculty of Medicine , University of Alexandria , Alexandria , Egypt
| | | | | | | | - Heather MacDonald
- a The Department of Ophthalmology and Vision Sciences , Hospital for Sick Children, University of Toronto , Toronto , Ontario , Canada
| | - Brenda Gallie
- a The Department of Ophthalmology and Vision Sciences , Hospital for Sick Children, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
19
|
Rath M, Jenssen SE, Schwefel K, Spiegler S, Kleimeier D, Sperling C, Kaderali L, Felbor U. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1 , CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations. Eur J Med Genet 2017. [DOI: 10.1016/j.ejmg.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
21
|
Soliman SE, Racher H, Zhang C, MacDonald H, Gallie BL. Genetics and Molecular Diagnostics in Retinoblastoma--An Update. Asia Pac J Ophthalmol (Phila) 2017; 6:197-207. [PMID: 28399338 DOI: 10.22608/apo.201711] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/09/2017] [Indexed: 11/08/2022] Open
Abstract
Retinoblastoma is the prototype genetic cancer: in one or both eyes of young children, most retinoblastomas are initiated by biallelic mutation of the retinoblastoma tumor suppressor gene, RB1, in a developing retinal cell. All those with bilateral retinoblastoma have heritable cancer, although 95% have not inherited the RB1 mutation. Non-heritable retinoblastoma is always unilateral, with 98% caused by loss of both RB1 alleles from the tumor, whereas 2% have normal RB1 in tumors initiated by amplification of the MYCN oncogene. Good understanding of retinoblastoma genetics supports optimal care for retinoblastoma children and their families. Retinoblastoma is the first cancer to officially acknowledge the seminal role of genetics in cancer, by incorporating "H" into the eighth edition of cancer staging (2017): those who carry the RB1 cancer-predisposing gene are H1; those proven to not carry the familial RB1 mutation are H0; and those at unknown risk are HX. We suggest H0* be used for those with residual <1% risk to carry a RB1 mutation due to undetectable mosaicism. Loss of RB1 from a susceptible developing retinal cell initiates the benign precursor, retinoma. Progressive genomic changes result in retinoblastoma, and cancer progression ensues with increasing genomic disarray. Looking forward, novel therapies are anticipated from studies of retinoblastoma and metastatic tumor cells and the second primary cancers that the carriers of RB1 mutations are at high risk to develop. Here, we summarize the concepts of retinoblastoma genetics for ophthalmologists in a question/answer format to assist in the care of patients and their families.
Collapse
Affiliation(s)
- Sameh E Soliman
- Department of Ophthalmology and Vision Sciences, University of Toronto, Ontario, Canada
- Department of Ophthalmology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Chengyue Zhang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Heather MacDonald
- Department of Ophthalmology and Vision Sciences, University of Toronto, Ontario, Canada
| | - Brenda L Gallie
- Department of Ophthalmology and Vision Sciences, University of Toronto, Ontario, Canada
- Departments of Ophthalmology, Molecular Genetics, and Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Ewens KG, Bhatti TR, Moran KA, Richards-Yutz J, Shields CL, Eagle RC, Ganguly A. Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 2017; 6:619-630. [PMID: 28211617 PMCID: PMC5345671 DOI: 10.1002/cam4.1010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
A small, but unique subgroup of retinoblastoma has been identified with no detectable mutation in the retinoblastoma gene (RB1) and with high levels of MYCN gene amplification. This manuscript investigated alternate pathways of inactivating pRb, the encoded protein in these tumors. We analyzed the mutation status of the RB1 gene and MYCN copy number in a series of 245 unilateral retinoblastomas, and the phosphorylation status of pRb in a subset of five tumors using immunohistochemistry. There were 203 tumors with two mutations in RB1 (RB1-/- , 83%), 29 with one (RB1+/- , 12%) and 13 with no detectable mutations (RB1+/+ , 5%). Eighteen tumors carried MYCN amplification between 29 and 110 copies: 12 had two (RB1-/- ) or one RB1 (RB1+/- ) mutations, while six had no mutations (RB1+/+ ). Immunohistochemical staining of tumor sections with antibodies against pRb and phosphorylated Rb (ppRb) displayed high levels of pRb and ppRb in both RB1+/+ and RB1+/- tumors with MYCN amplification compared to no expression of these proteins in a classic RB1-/- , MYCN-low tumor. These results establish that high MYCN amplification can be present in retinoblastoma with or without coding sequence mutations in the RB1 gene. The functional state of pRb is inferred to be inactive due to phosphorylation of pRb in the MYCN-amplified retinoblastoma without coding sequence mutations. This makes inactivation of RB1 by gene mutation or its protein product, pRb, by protein phosphorylation, a necessary condition for initiating retinoblastoma tumorigenesis, independent of MYCN amplification.
Collapse
Affiliation(s)
- Kathryn G Ewens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tricia R Bhatti
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly A Moran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Richards-Yutz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carol L Shields
- Oncology Services, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Department of Pathology, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Li WL, Buckley J, Sanchez-Lara PA, Maglinte DT, Viduetsky L, Tatarinova TV, Aparicio JG, Kim JW, Au M, Ostrow D, Lee TC, O'Gorman M, Judkins A, Cobrinik D, Triche TJ. A Rapid and Sensitive Next-Generation Sequencing Method to Detect RB1 Mutations Improves Care for Retinoblastoma Patients and Their Families. J Mol Diagn 2016; 18:480-93. [PMID: 27155049 DOI: 10.1016/j.jmoldx.2016.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma is a childhood eye malignancy that can lead to the loss of vision, eye(s), and sometimes life. The tumors are initiated by inactivating mutations in both alleles of the tumor-suppressor gene, RB1, or, rarely, by MYCN amplification. Timely identification of a germline RB1 mutation in blood samples or either somatic RB1 mutation or MYCN amplification in tumors is important for effective care and management of retinoblastoma patients and their families. However, current procedures to thoroughly test RB1 mutations are complicated and lengthy. Herein, we report a next-generation sequencing-based method capable of detecting point mutations, small indels, and large deletions or duplications across the entire RB1 gene and amplification of MYCN gene on a single platform. From DNA extraction to clinical interpretation requires only 3 days, enabling early molecular diagnosis of retinoblastoma and optimal treatment outcomes. This method can also detect low-level mosaic mutations in blood samples that can be missed by routine Sanger sequencing. In addition, it can differentiate between RB1 mutation- and MYCN amplification-driven retinoblastomas. This rapid, comprehensive, and sensitive method for detecting RB1 mutations and MYCN amplification can readily identify RB1 mutation carriers and thus improve the management and genetic counseling for retinoblastoma patients and their families.
Collapse
Affiliation(s)
- Wenhui L Li
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California.
| | - Jonathan Buckley
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Pedro A Sanchez-Lara
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California; Department of Pediatrics, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Dennis T Maglinte
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Lucy Viduetsky
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Tatiana V Tatarinova
- Department of Pediatrics, USC Roski Eye Institute, University of Southern California, Los Angeles, California; Spatial Sciences Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | | | - Jonathan W Kim
- Vision Center, Children's Hospital Los Angeles, Los Angeles, California; Department of Opthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Margaret Au
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Thomas C Lee
- Vision Center, Children's Hospital Los Angeles, Los Angeles, California; Department of Opthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Maurice O'Gorman
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Alexander Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California
| | - David Cobrinik
- Vision Center, Children's Hospital Los Angeles, Los Angeles, California; Department of Opthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, California; Division of Ophthalmology and Department of Surgery, and Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Biochemistry & Molecular Biology, USC Roski Eye Institute, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy J Triche
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Department of Pathology, USC Roski Eye Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
24
|
Villacis RAR, Abreu FB, Miranda PM, Domingues MAC, Carraro DM, Santos EMM, Andrade VP, Rossi BM, Achatz MI, Rogatto SR. ROBO1 deletion as a novel germline alteration in breast and colorectal cancer patients. Tumour Biol 2016; 37:3145-53. [PMID: 26427657 DOI: 10.1007/s13277-015-4145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
Despite one third of breast (BC) and colorectal cancer (CRC) cases having a hereditary component, only a small proportion can be explained by germline mutations. The aim of this study was to identify potential genomic alterations related to cancer predisposition. Copy number variations (CNVs) were interrogated in 113 unrelated cases fulfilling the criteria for hereditary BC/CRC and presenting non-pathogenic mutations in BRCA1, BRCA2, MLH1, MSH2, TP53, and CHEK2 genes. An identical germline deep intronic deletion of ROBO1 was identified in three index patients using two microarray platforms (Agilent 4x180K and Affymetrix CytoScan HD). The ROBO1 deletion was confirmed by quantitative PCR (qPCR). Six relatives were also evaluated by CytoScan HD Array. Genomic analysis confirmed a co-segregation of the ROBO1 deletion with the occurrence of cancer in two families. Direct sequencing revealed no pathogenic ROBO1 point mutations. Transcriptomic analysis (HTA 2.0, Affymetrix) in two breast carcinomas from a single patient revealed ROBO1 down-expression with no splicing events near the intronic deletion. Deeper in silico analysis showed several enhancer regions and a histone methylation mark in the deleted region. The ROBO1 deletion in a putative transcriptional regulatory region, its down-expression in tumor samples, and the results of the co-segregation analysis revealing the presence of the alteration in affected individuals suggest a pathogenic effect of the ROBO1 in cancer predisposition.
Collapse
Affiliation(s)
- Rolando A R Villacis
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Francine B Abreu
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Priscila M Miranda
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | - Maria A C Domingues
- Department of Pathology, Faculty of Medicine, University of São Paulo State (UNESP), Botucatu, SP, Brazil
| | - Dirce M Carraro
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil
| | | | - Victor P Andrade
- Department of Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Maria I Achatz
- Department of Oncogenetics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Silvia R Rogatto
- International Research Center (CIPE), A.C. Camargo Cancer Center, Rua Taguá 440, São Paulo, CEP: 01508-010, SP, Brazil.
- Department of Urology, Faculty of Medicine, University of São Paulo State (UNESP), CEP: 18618-970, Botucatu, SP, Brazil.
| |
Collapse
|
25
|
Rodríguez-Martín C, Cidre F, Fernández-Teijeiro A, Gómez-Mariano G, de la Vega L, Ramos P, Zaballos Á, Monzón S, Alonso J. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J Hum Genet 2016; 61:463-6. [PMID: 26763876 DOI: 10.1038/jhg.2015.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/21/2015] [Accepted: 12/25/2015] [Indexed: 01/31/2023]
Abstract
Retinoblastoma (RB, MIM 180200) is the paradigm of hereditary cancer. Individuals harboring a constitutional mutation in one allele of the RB1 gene have a high predisposition to develop RB. Here, we present the first case of familial RB caused by a de novo insertion of a full-length long interspersed element-1 (LINE-1) into intron 14 of the RB1 gene that caused a highly heterogeneous splicing pattern of RB1 mRNA. LINE-1 insertion was inferred by mRNA studies and full-length sequenced by massive parallel sequencing. Some of the aberrant mRNAs were produced by noncanonical acceptor splice sites, a new finding that up to date has not been described to occur upon LINE-1 retrotransposition. Our results clearly show that RNA-based strategies have the potential to detect disease-causing transposon insertions. It also confirms that the incorporation of new genetic approaches, such as massive parallel sequencing, contributes to characterize at the sequence level these unique and exceptional genetic alterations.
Collapse
Affiliation(s)
- Carlos Rodríguez-Martín
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Florencia Cidre
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Fernández-Teijeiro
- Unidad de Gestión Clínica Intercentros de Oncología Pediátricas, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, National Reference Unit for Retinoblastoma, Sevilla, Spain
| | - Gema Gómez-Mariano
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Leticia de la Vega
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Patricia Ramos
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Monzón
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U758), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
26
|
Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism. Eur J Hum Genet 2015; 23:1523-30. [PMID: 25712084 DOI: 10.1038/ejhg.2015.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/03/2014] [Accepted: 12/25/2014] [Indexed: 11/08/2022] Open
Abstract
In about 50% of sporadic cases of retinoblastoma, no constitutive RB1 mutations are detected by conventional methods. However, recent research suggests that, at least in some of these cases, there is somatic mosaicism with respect to RB1 normal and mutant alleles. The increased availability of next generation sequencing improves our ability to detect the exact percentage of patients with mosaicism. Using this technology, we re-tested a series of 40 patients with sporadic retinoblastoma: 10 of them had been previously classified as constitutional heterozygotes, whereas in 30 no RB1 mutations had been found in lymphocytes. In 3 of these 30 patients, we have now identified low-level mosaic variants, varying in frequency between 8 and 24%. In 7 out of the 10 cases previously classified as heterozygous from testing blood cells, we were able to test additional tissues (ocular tissues, urine and/or oral mucosa): in three of them, next generation sequencing has revealed mosaicism. Present results thus confirm that a significant fraction (6/40; 15%) of sporadic retinoblastoma cases are due to postzygotic events and that deep sequencing is an efficient method to unambiguously distinguish mosaics. Re-testing of retinoblastoma patients through next generation sequencing can thus provide new information that may have important implications with respect to genetic counseling and family care.
Collapse
|
27
|
Ayari-Jeridi H, Moran K, Chebbi A, Bouguila H, Abbes I, Charradi K, Benammar-Elgaaïed A, Ganguly A. Mutation spectrum of RB1 gene in unilateral retinoblastoma cases from Tunisia and correlations with clinical features. PLoS One 2015; 10:e0116615. [PMID: 25602518 PMCID: PMC4300092 DOI: 10.1371/journal.pone.0116615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/01/2014] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma, an embryonic neoplasm of retinal origin, is the most common primary intraocular malignancy in children. Somatic inactivation of both alleles of the RB1 tumor suppressor gene in a retinal progenitor cell through diverse mechanisms including genetic and epigenetic modifications, is the crucial event in initiation of tumorigenesis in most cases of isolated unilateral retinoblastoma. We analyzed DNA from tumor tissue and from peripheral blood to determine the RB1 mutation status and seek correlations with clinical features of 37 unrelated cases of Tunisian origin with sporadic retinoblastoma. All cases were unilateral except one who presented with bilateral disease, in whom no germline coding sequence alteration was identified. A multi-step mutation scanning protocol identified bi-allelic inactivation of RB1 gene in 30 (81%) of the samples tested. A total of 7 novel mutations were identified. There were three tumors without any detectable mutation while a subset contained multiple mutations in RB1 gene. The latter group included tumors collected after treatment with chemotherapy. There were seven individuals with germline mutations and all presented with advanced stage of tumor. There was no difference in age of onset of RB based on the germline mutation status. Thus 20% of the individuals with sporadic unilateral RB in this series carried germline mutations and indicate the importance of genetic testing all children with sporadic retinoblastoma. These findings help to characterize the spectrum of mutations present in the Tunisian population and can improve genetic diagnosis of retinoblastoma.
Collapse
Affiliation(s)
- Hajer Ayari-Jeridi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Kimberly Moran
- Genetic Diagnostic Laboratory, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amel Chebbi
- Institut Hédi Rais d’Ophtalmologie de Tunis, Tunis, Tunisia
| | - Hédi Bouguila
- Institut Hédi Rais d’Ophtalmologie de Tunis, Tunis, Tunisia
| | - Imen Abbes
- Laboratoire d’Anatomie Pathologique, Institut Salah Azaiez de Cancérologie, Tunis, Tunisia
| | - Khaoula Charradi
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Amel Benammar-Elgaaïed
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Université de Tunis EL MANAR, Campus universitaire, Tunis, 2092, Tunisia
| | - Arupa Ganguly
- Genetic Diagnostic Laboratory, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Jaka O, Azpitarte M, Paisán-Ruiz C, Zulaika M, Casas-Fraile L, Sanz R, Trevisiol N, Levy N, Bartoli M, Krahn M, López de Munain A, Sáenz A. Entire CAPN3
gene deletion in a patient with limb-girdle muscular dystrophy type 2A. Muscle Nerve 2014; 50:448-53. [DOI: 10.1002/mus.24263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Oihane Jaka
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Margarita Azpitarte
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, Genetics and Genomic Sciences; Icahn School of Medicine at Mount Sinai; New York New York USA
| | - Miren Zulaika
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Leire Casas-Fraile
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| | - Raúl Sanz
- Molecular Diagnostic Unit; Secugen Madrid Spain
| | - Nathalie Trevisiol
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Nicolas Levy
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Marc Bartoli
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | - Martin Krahn
- Aix Marseille Université; INSERM, GMGF UMR-S 910, and APHM, Hôpital Timone Enfants, Département de Génétique Médicale et de Biologie Cellulaire; Marseille France
| | | | - Amets Sáenz
- Neurosciences Area, Biodonostia Institute; Hospital Universitario Donostia; 20014 San Sebastián Spain
| |
Collapse
|
29
|
Vannier JB, Sarek G, Boulton SJ. RTEL1: functions of a disease-associated helicase. Trends Cell Biol 2014; 24:416-25. [PMID: 24582487 DOI: 10.1016/j.tcb.2014.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
Abstract
DNA secondary structures that arise during DNA replication, repair, and recombination (3R) must be processed correctly to prevent genetic instability. Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles a variety of DNA secondary structures to facilitate 3R processes and to maintain telomere integrity. The past few years have witnessed the emergence of RTEL1 variants that confer increased susceptibility to high-grade glioma, astrocytomas, and glioblastomas. Mutations in RTEL1 have also been implicated in Hoyeraal-Hreidarsson syndrome, a severe form of the bone-marrow failure and cancer predisposition disorder, dyskeratosis congenita. We review these recent findings and highlight its crucial link between DNA secondary-structure metabolism and human disease.
Collapse
Affiliation(s)
- Jean-Baptiste Vannier
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, EN6 3LD, UK
| | - Grzegorz Sarek
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, EN6 3LD, UK.
| |
Collapse
|
30
|
Genetic testing in Tunisian families with heritable retinoblastoma using a low cost approach permits accurate risk prediction in relatives and reveals incomplete penetrance in adults. Exp Eye Res 2014; 124:48-55. [PMID: 24810223 DOI: 10.1016/j.exer.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 01/16/2023]
Abstract
Heritable retinoblastoma is caused by oncogenic mutations in the RB1 tumor suppressor gene. Identification of these mutations in patients is important for genetic counseling and clinical management of relatives at risk. In order to lower analytical efforts, we designed a stepwise mutation detection strategy that was adapted to the spectrum of oncogenic RB1 gene mutations. We applied this strategy on 20 unrelated patients with familial and/or de novo bilateral retinoblastoma from Tunisia. In 19 (95%) patients, we detected oncogenic mutations including base substitutions, small length mutations, and large deletions. Further analyses on the origin of the mutations showed mutational mosaicism in one unilaterally affected father of a bilateral proband and incomplete penetrance in two mothers. In a large family with several retinoblastoma patients, the mutation identified in the index patient was also detected in several non-penetrant relatives. RNA analyses showed that this mutation results in an in-frame loss of exon 9. In summary, our strategy can serve as a model for RB1 mutation identification with high analytical sensitivity. Our results point out that genetic testing is needed to reveal or exclude incomplete penetrance specifically in parents of patients with sporadic disease.
Collapse
|
31
|
|
32
|
Peng XE, Wu YL, Lu QQ, Hu ZJ, Lin X. MTTP polymorphisms and susceptibility to non-alcoholic fatty liver disease in a Han Chinese population. Liver Int 2014; 34:118-28. [PMID: 23738963 DOI: 10.1111/liv.12220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/11/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND The microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein B (ApoB)-containing lipoproteins from the liver and intestine. Previous studies showed that functional polymorphisms in the MTTP gene correspond to lower LDL levels and protect against other traits of the metabolic syndrome. AIMS Here, we aimed to investigate whether MTTP single nucleotide polymorphisms (SNPs) and their predicted haplotypes of linkage disequilibrium blocks contribute to non-alcoholic fatty liver disease (NAFLD) susceptibility in a Han Chinese population. METHODS Seven tag SNPs in the MTTP gene were selected and genotyped in a frequency-matched case-control study in a population from Fuzhou City, China. We enrolled 580 patients with NAFLD and 580 healthy controls. RESULTS In the multivariate logistic regression analysis, the rs1800804 (-164 T/C) was associated with an increased risk of NAFLD, while the rs1057613 A/G and rs3805335 C/T SNPs were associated with a decreased risk of NAFLD. The cumulative effect of the rs1800804 (-164 T/C), rs1057613 and rs3805335 was estimated, and a significant increased trend in the risk of NAFLD with increasing genetic risk score was observed (adjusted P(trend) = 0.014). Furthermore, the results of haplotype analysis suggested that the haplotype GC in block 1 containing the -164 C allele was associated with an increased risk of NAFLD, while haplotype TGTTC in block 2 was associated with a decreased risk of NAFLD. CONCLUSIONS Our data show that MTTP genetic polymorphisms influence the susceptibility to developing NAFLD independently or jointly in the Han Chinese population.
Collapse
Affiliation(s)
- Xian E Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | | | | | | | | |
Collapse
|
33
|
Cheng G, Wang Y, Bin L, Shi J, Zhao J, Jonas JB. Genetic and Epigenetic Profile of Retinoblastoma in a Chinese Population: Analysis of 47 Patients. Asia Pac J Ophthalmol (Phila) 2013; 2:414-7. [PMID: 26107153 DOI: 10.1097/apo.0000000000000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To report genetic findings of retinoblastoma gene RB1 in a Chinese ethnic group with retinoblastoma. DESIGN A retrospective noncomparative case series. METHODS Genomic DNA was extracted from peripheral blood samples, and tumor tissue samples were collected from 47 patients (37 patients with unilateral retinoblastoma). The 27 known RB1 coding exons, splicing boundaries, and promoters were screened for point mutations or small mutations by polymerase chain reaction-single-strand conformation polymorphism-DNA sequencing. Microsatellite analysis was applied to 30 patients with both blood samples and retinoblastoma tumor tissues available to examine loss of heterozygosity according to microsatellite markers within or adjacent to the RB1 locus. Methylation of the RB1 gene was investigated in retinoblastoma tissue samples of 40 patients by methylation-specific polymerase chain reaction. RESULTS Mutations in the RB1 gene were identified in 10 patients (21%). A loss of heterozygosity was detected at locus D13S153 in 14 of 26 patients, at locus D13S262 in 13 of 28 patients, and at locus D13S284 in 8 of 27 patients. Altogether, loss of heterozygosity was detected in 18 (60%) of 30 patients. Loss of heterozygosity at the RB1 locus was associated with a loss of pRb expression (P = 0.01). Hypermethylation in the promoter CpG island in the RB1 gene was found in 4 (10%) of 40 examined patients. CONCLUSIONS The localization and type of mutations identified in Chinese patients with retinoblastoma fit well into the pattern observed in previous studies on other ethnic groups. No new mutations were found. Future studies may examine whether these results are helpful for genetic counseling of Chinese patients.
Collapse
Affiliation(s)
- Guangyin Cheng
- From the *Beijing Institute of Ophthalmology, Beijing TongRen Hospital, Capital Medical University, Beijing, China; and †Department of Ophthalmology, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Role of pseudoexons and pseudointrons in human cancer. Int J Cell Biol 2013; 2013:810572. [PMID: 24204383 PMCID: PMC3800588 DOI: 10.1155/2013/810572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In all eukaryotic organisms, pre-mRNA splicing and alternative splicing processes play an essential role in regulating the flow of information required to drive complex developmental and metabolic pathways. As a result, eukaryotic cells have developed a very efficient macromolecular machinery, called the spliceosome, to correctly recognize the pre-mRNA sequences that need to be inserted in a mature mRNA (exons) from those that should be removed (introns). In healthy individuals, alternative and constitutive splicing processes function with a high degree of precision and fidelity in order to ensure the correct working of this machinery. In recent years, however, medical research has shown that alterations at the splicing level play an increasingly important role in many human hereditary diseases, neurodegenerative processes, and especially in cancer origin and progression. In this minireview, we will focus on several genes whose association with cancer has been well established in previous studies, such as ATM, BRCA1/A2, and NF1. In particular, our objective will be to provide an overview of the known mechanisms underlying activation/repression of pseudoexons and pseudointrons; the possible utilization of these events as biomarkers of tumor staging/grading; and finally, the treatment options for reversing pathologic splicing events.
Collapse
|
35
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Houdayer C, Caux-Moncoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, Bronner M, Buisson M, Coulet F, Gaildrat P, Lefol C, Léone M, Mazoyer S, Muller D, Remenieras A, Révillion F, Rouleau E, Sokolowska J, Vert JP, Lidereau R, Soubrier F, Sobol H, Sevenet N, Bressac-de Paillerets B, Hardouin A, Tosi M, Sinilnikova OM, Stoppa-Lyonnet D. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat 2012; 33:1228-38. [DOI: 10.1002/humu.22101] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/15/2012] [Accepted: 03/30/2012] [Indexed: 01/05/2023]
|
37
|
Spier I, Horpaopan S, Vogt S, Uhlhaas S, Morak M, Stienen D, Draaken M, Ludwig M, Holinski-Feder E, Nöthen MM, Hoffmann P, Aretz S. Deep intronic APC mutations explain a substantial proportion of patients with familial or early-onset adenomatous polyposis. Hum Mutat 2012; 33:1045-50. [PMID: 22431159 DOI: 10.1002/humu.22082] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/05/2012] [Indexed: 01/13/2023]
Abstract
To uncover pathogenic deep intronic variants in patients with colorectal adenomatous polyposis, in whom no germline mutation in the APC or MUTYH genes can be identified by routine diagnostics, we performed a systematic APC messenger RNA analysis in 125 unrelated mutation-negative cases. Overall, we identified aberrant transcripts in 8% of the patients (familial cases 30%; early-onset manifestation 21%). In eight of them, two different out-of-frame pseudoexons were found consisting of a 167-bp insertion from intron 4 in five families with a shared founder haplotype and a 83-bp insertion from intron 10 in three patients. The pseudoexon formation was caused by three different heterozygous germline mutations, which are supposed to activate cryptic splice sites. In conclusion, a few deep intronic mutations contribute substantially to the APC mutation spectrum. Complementary DNA analysis and/or target sequencing of intronic regions should be considered as an additional mutation discovery approach in polyposis patients.
Collapse
Affiliation(s)
- Isabel Spier
- Institute of Human Genetics, University of Bonn, Sigmund-Freud-Strasse 25,Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Analysis of RB1 mRNA from blood leukocytes of patients with retinoblastoma identified the effects of mutations involving consensus splice site, exonic substitution and whole-exon deletions identified in genomic DNA of these patients. In addition, this study identified mutations in cases in which no mutations were detectable in the genomic DNA. One proband had mutation at the canonical splice site at +5 position of IVS22, and analysis of the transcripts in this family revealed skipping of exon 22 in three members of this family. In one proband, a missense substitution of c.652T greater than G (g.56897T greater than G; Leu218Val) in exon 7 led to splicing aberrations involving deletions of exons 7 and 8, suggesting the formation of a cryptic splice site. In two probands with no detectable changes in the genomic DNA upon screening of RB1 exons and flanking intronic sequences, transcripts were found to have deletions of exon 6 in one, and exons 21 and 22 in another family. In two probands, RNA analysis confirmed genomic deletions involving one or more exons. This study reveals novel effects of RB1 mutations on splicing and suggests the utility of RNA analysis as an adjunct to mutational screening of genomic DNA in retinoblastoma.
Collapse
|
39
|
Tosca L, Brisset S, Petit FM, Metay C, Latour S, Lautier B, Lebas A, Druart L, Picone O, Mas AE, Prévot S, Tardieu M, Goossens M, Tachdjian G. Genotype-phenotype correlation in 13q13.3-q21.3 deletion. Eur J Med Genet 2011; 54:e489-94. [PMID: 21741501 DOI: 10.1016/j.ejmg.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
Pure interstitial deletions of the long arm of chromosome 13 are correlated with variable phenotypes according to the size and the location of the deleted region. Deletions involving the 13q13q21 region are rare. In order to establish interstitial 13q genotype-phenotype correlation, we used high resolution 244K oligonucleotide array in addition to conventional karyotype and molecular (fluorescent in situ hybridization, microsatellite markers analysis) techniques in two independent probands carrying a deletion 13q13 to 13q21. First patient was a 3-year-old girl with mental retardation and dysmorphy carrying a 13q13.3q21.31 de novo deletion diagnosed post-natally. The second one was a fetus with de novo del(13)(q14q21.2) associated with first trimester increased nuchal translucency. We showed that specific dysmorphic features (macrocephaly, high forehead, hypertelorism, large nose, large and malformed ears and retrognathia) were correlated to the common 13q14q21 chromosomal segment. Physical examination revealed overgrowth with global measurement up to the 95th percentile in both probands. This is the second description of overgrowth in patients carrying a 13q deletion. Haploinsufficiency of common candidates genes such as CKAP2, SUGT1, LECT1, DCLK1 and SMAD9, involved in cell division and bone development, is a possible mechanism that could explain overgrowth in both patients. This study underlines also that cytogenetic analysis could be performed in patients with overgrowth.
Collapse
Affiliation(s)
- Lucie Tosca
- AP-HP, Histologie-Embryologie-Cytogénétique, Hôpital Antoine Béclère, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gallardo E, Saenz A, Illa I. Limb-girdle muscular dystrophy 2A. HANDBOOK OF CLINICAL NEUROLOGY 2011; 101:97-110. [PMID: 21496626 DOI: 10.1016/b978-0-08-045031-5.00006-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the gene CAPN3 located in the chromosome region 15q15.1-q21.1. To date more than 300 mutations have been described. This gene encodes for a 94-kDa nonlysosomal calcium-dependent cysteine protease and its function in skeletal muscle is not fully understood. It seems that calpain-3 has an unusual zymogenic activation that involves, among other substrates, cytoskeletal proteins. Calpain-3 is thought to interact with titin and dysferlin. Calpain-3 deficiency produces abnormal sarcomeres that lead eventually to muscle fiber death. Hip adductors and gluteus maximus are the earliest clinically affected muscles. No clinical differences have been reported depending on the type of mutation in the CAPN3 gene. The muscle biopsy shows variability of fiber size, interstitial fibrosis, internal nuclei, lobulated fibers, and, in some cases, presence of eosinophils. Recent gene expression profiling studies have shown upregulation of interleukin-32 and immunoglobulin genes, which may explain the eosinophilic infiltration. Two mouse knockout models of CAPN3 have been characterized. There are no curative treatments for this disease. However, experimental therapeutics using mouse models conclude that adeno-associated virus (AAV) vectors seem to be one of the best approaches because of their efficiency and persistency of gene transfer.
Collapse
Affiliation(s)
- Eduard Gallardo
- Department of Neurology and Laboratory of Experimental Neurology, Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | | |
Collapse
|
41
|
Abstract
It appears that all types of genomic nucleotide variations can be deleterious by affecting normal pre-mRNA splicing via disruption/creation of splice site consensus sequences. As it is neither pertinent nor realistic to perform functional testing for all of these variants, it is important to identify those that could lead to a splice defect in order to restrict experimental transcript analyses to the most appropriate cases. In silico tools designed to provide this type of prediction are available. In this chapter, we present in silico splice tools integrated in the Alamut (Interactive Biosoftware) application and detail their use in routine diagnostic applications. At this time, in silico predictions are useful for variants that decrease the strength of wild-type splice sites or create a cryptic splice site. Importantly, in silico predictions are not sufficient to classify variants as neutral or deleterious: they should be used as part of the decision-making process to detect potential candidates for splicing anomalies, prompting molecular geneticists to carry out transcript analyses in a limited and pertinent number of cases which could be managed in routine settings.
Collapse
Affiliation(s)
- Claude Houdayer
- Faculty of Pharmacy, Institut Curie, Paris Descartes University, Paris, France.
| |
Collapse
|
42
|
Matkovich SJ, Van Booven DJ, Cappola TP, Dorn GW. Association of an intronic, but not any exonic, FRMD4B sequence variant and heart failure. Clin Transl Sci 2010; 3:134-9. [PMID: 20718813 DOI: 10.1111/j.1752-8062.2010.00220.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Common forms of heart failure (HF) exhibit familial clustering, but specific genetic risk factors have been challenging to identify. A recent single-nucleotide polymorphism (SNP) microarray study implicated a locus within an intron of FRMD4B in Caucasian HF. Here, we used next-generation resequencing of pooled DNA and individual Sequenom genotyping to test for associations between FRMD4B SNPs and ischemic and/or nonischemic cardiomyopathy in two independent populations. Exonic resequencing of Caucasians and African-Americans identified 32 FRMD4B SNPs, 13 of which had allele frequencies greater than 1%. None of these common FRMD4B SNPs were significantly associated with ischemic, nonischemic, or all-cause HF in either of the study populations. We individually genotyped the seminal intronic rs6787362 FRMD4B SNP in the primary study population and compared genotypes between HF cases and controls. The rs6787362 variant allele was more frequent in Caucasians with ischemic cardiomyopathy, and carriers (heterozygous or homozygous) of the variant allele had increased risk of HF (OR 1.437, CI 1.085-1.904; p= 0.0118). No such association was seen for African-American HF. These results confirm an association between the intronic rs6787362 FRMD4B SNP and ischemic cardiomyopathy in a European-derived population, but do not support the proposition that coding FRMD4B variants are susceptibility factors in common HF.
Collapse
Affiliation(s)
- Scot J Matkovich
- The Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
43
|
Kjellström S, Vijayasarathy C, Ponjavic V, Sieving PA, Andréasson S. Long-term 12 year follow-up of X-linked congenital retinoschisis. Ophthalmic Genet 2010; 31:114-25. [PMID: 20569020 DOI: 10.3109/13816810.2010.482555] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the retinal structure and function during the progression of X-linked retinoschisis (XLRS) from childhood to adulthood. METHODS Ten patients clinically diagnosed with XLRS were investigated at 6-15 years of age (mean age 9 years) with a follow-up 8 to 14 years later (mean 12 years). The patients underwent regular ophthalmic examination as well as testing of best corrected visual acuity (BCVA), visual field (VF) and assessment of full-field electroretinography (ERG) during their first visit. During the follow-up, the same clinical protocols were repeated. In addition, macular structure and function was examined with multifocal electroretinography (mfERG) and optical coherence tomography (OCT). The patients were 18-25 years of age (mean age 21 years) at the follow-up examination. All exons and exon-intron boundaries of RS1-gene were sequenced for gene mutations in 9 out of the 10 patients. RESULTS Best corrected VA and VF were stable during this follow-up period. No significant progression in cone or rod function could be measured by full-field ERG. Multifocal electroretinography and OCT demonstrated a wide heterogeneity of macular changes in retinal structure and function at the time of follow-up visit. Three different mutations were detected in these nine patients, including a known nonsense mutation in exon 3, a novel insertion in exon 5 and an intronic mutation at 5' splice site of intron 3. CONCLUSIONS Clinical follow-up (mean 12 years) of ten young XLRS patients (mean age of 9 years) with a typical congenital retinoschisis phenotype revealed no significant decline in retinal function during this time period. MfERG and OCT demonstrated a wide variety of macular changes including structure and dysfunction. The XLRS disease was relatively stable during this period of observation and would afford opportunity for therapy studies to judge benefit against baseline and against the fellow eye.
Collapse
|
44
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Novel molecular diagnostic approaches for X-linked centronuclear (myotubular) myopathy reveal intronic mutations. Neuromuscul Disord 2010; 20:375-81. [DOI: 10.1016/j.nmd.2010.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/20/2010] [Accepted: 03/30/2010] [Indexed: 11/21/2022]
|
46
|
Dhir A, Buratti E. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J 2010; 277:841-55. [PMID: 20082636 DOI: 10.1111/j.1742-4658.2009.07520.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What makes a nucleotide sequence an exon (or an intron) is a question that still lacks a satisfactory answer. Indeed, most eukaryotic genes are full of sequences that look like perfect exons, but which are nonetheless ignored by the splicing machinery (hence the name 'pseudoexons'). The existence of these pseudoexons has been known since the earliest days of splicing research, but until recently the tendency has been to view them as an interesting, but rather rare, curiosity. In recent years, however, the importance of pseudoexons in regulating splicing processes has been steadily revalued. Even more importantly, clinically oriented screening studies that search for splicing mutations are beginning to uncover a situation where aberrant pseudoexon inclusion as a cause of human disease is more frequent than previously thought. Here we aim to provide a review of the mechanisms that lead to pseudoexon activation in human genes and how the various cis- and trans-acting cellular factors regulate their inclusion. Moreover, we list the potential therapeutic approaches that are being tested with the aim of inhibiting their inclusion in the final mRNA molecules.
Collapse
Affiliation(s)
- Ashish Dhir
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|
47
|
Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet 2009; 127:135-54. [PMID: 19823873 DOI: 10.1007/s00439-009-0752-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/27/2009] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon-intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.
Collapse
Affiliation(s)
- Igor Vorechovsky
- Division of Human Genetics, University of Southampton School of Medicine, MP808, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
48
|
A Case of Brooke-Spiegler Syndrome With a Novel Germline Deep Intronic Mutation in the CYLD Gene Leading to Intronic Exonization, Diverse Somatic Mutations, and Unusual Histology. Am J Dermatopathol 2009; 31:664-73. [DOI: 10.1097/dad.0b013e3181a05dad] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Foster CS, Cooper CS. Urgent need to develop independent biomarkers for functional, diagnostic and prognostic application in oncology research. Biomark Med 2009; 3:329-33. [DOI: 10.2217/bmm.09.25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Christopher S Foster
- Division of Pathology, School of Cancer Studies, University of Liverpool, Liverpool, UK
| | - Colin S Cooper
- Molecular Carcinogenesis Group, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
50
|
Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study. Eur J Hum Genet 2009; 17:1471-80. [PMID: 19471317 DOI: 10.1038/ejhg.2009.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nearly one-half of BRCA1 and BRCA2 sequence variations are variants of uncertain significance (VUSs) and are candidates for splice alterations for example, by disrupting/creating splice sites. As out-of-frame splicing defects lead to a marked reduction of the level of the mutant mRNA cleared through nonsense-mediated mRNA decay, a cDNA-based test was developed to show the resulting allelic imbalance (AI). Fifty-four VUSs identified in 53 hereditary breast/ovarian cancer (HBOC) patients without BRCA1/2 mutation were included in the study. Two frequent exonic single-nucleotide polymorphisms on both BRCA1 and BRCA2 were investigated by using a semiquantitative single-nucleotide primer extension approach and the cDNA allelic ratios obtained were corrected using genomic DNA ratios from the same sample. A total of five samples showed AI. Subsequent transcript analyses ruled out the implication of VUS on AI and identified a deletion encompassing BRCA2 exons 12 and 13 in one sample. No sequence abnormality was found in the remaining four samples, suggesting implication of cis- or trans-acting factors in allelic expression regulation that might be disease causative in these HBOC patients. Overall, this study showed that AI screening is a simple way to detect deleterious splicing defects and that a major role for VUSs and deep intronic mutations in splicing anomalies is unlikely in BRCA1/2 genes. Methods to analyze gene expression and identify regulatory elements in BRCA1/2 are now needed to complement standard approaches to mutational analysis.
Collapse
|