1
|
Wolfenson H, Giannone G, Schwartz MA. In Memoriam: Mike Sheetz. J Cell Biol 2025; 224:e202503048. [PMID: 40116783 PMCID: PMC11927584 DOI: 10.1083/jcb.202503048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Michael P. Sheetz made immense contributions to our understanding of motor proteins, membrane biology, cytoskeleton and mechanobiology over his ~50-year career. He started his independent career at the University of Connecticut, after which he moved to Washington University in St. Louis and then to Duke University, where he led the Department of Cell Biology for 10 years. He then moved to Columbia University, where he established a research group focused on mechanobiology, and then founded and led the Mechanobiology Institute at the National University of Singapore for 10 years. He ended his career at the University of Texas Health Center in Galveston, TX, USA. He trained a generation of leading interdisciplinary cell and mechanobiologists whose independent contributions continue to enhance his legacy.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, Bordeaux, France
| | - Martin A Schwartz
- Department of Internal Medicine, Department of Cell Biology and Department of Biomedical Engineering, Yale Cardiovascular Research Center, Cardiovascular Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
3
|
Elefant N, Rouni G, Arapatzi C, Oz-Levi D, Sion-Sarid R, Edwards WJ, Ball NJ, Yanovsky-Dagan S, Cowell AR, Meiner V, Vainstein V, Grammenoudi S, Lancet D, Goult BT, Harel T, Kostourou V. Talin1 dysfunction is genetically linked to systemic capillary leak syndrome. JCI Insight 2024; 9:e173664. [PMID: 39704176 DOI: 10.1172/jci.insight.173664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Systemic capillary leak syndrome (SCLS) is a rare life-threatening disorder due to profound vascular leak. The trigger and the cause of the disease are currently unknown and there is no specific treatment. Here, we identified a rare heterozygous splice-site variant in the TLN1 gene in a familial SCLS case, suggestive of autosomal dominant inheritance with incomplete penetrance. Talin1 has a key role in cell adhesion by activating and linking integrins to the actin cytoskeleton. This variant causes in-frame skipping of exon 54 and is predicted to affect talin's C-terminal actin-binding site (ABS3). Modeling the SCLS-TLN1 variant in TLN1-heterozygous endothelial cells (ECs) disturbed the endothelial barrier function. Similarly, mimicking the predicted actin-binding disruption in TLN1-heterozygous ECs resulted in disorganized endothelial adherens junctions. Mechanistically, we established that the SCLS-TLN1 variant, through the disruption of talin's ABS3, sequestrates talin's interacting partner, vinculin, at cell-extracellular matrix adhesions, leading to destabilization of the endothelial barrier. We propose that pathogenic variants in TLN1 underlie SCLS, providing insight into the molecular mechanism of the disease that can be explored for future therapeutic interventions.
Collapse
Affiliation(s)
- Naama Elefant
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
| | - Georgia Rouni
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Christina Arapatzi
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| | - Danit Oz-Levi
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - William Js Edwards
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Neil J Ball
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | | - Alana R Cowell
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir Vainstein
- Department of Hematology, Hadassah Medical Organization, Jerusalem, Israel
| | - Sofia Grammenoudi
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| | - Doron Lancet
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vassiliki Kostourou
- Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece
| |
Collapse
|
4
|
Zhou K, Chung M, Cheng J, Powell JT, Yan Q, Liu J, Xiong Y, Schwartz MA, Lin C. DNA nanodevice for analysis of force-activated protein extension and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620262. [PMID: 39554144 PMCID: PMC11565787 DOI: 10.1101/2024.10.25.620262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Force-induced changes in protein structure and function mediate cellular responses to mechanical stresses. Existing methods to study protein conformation under mechanical force are incompatible with biochemical and structural analysis. Taking advantage of DNA nanotechnology, including the well-defined geometry of DNA origami and programmable mechanics of DNA hairpins, we built a nanodevice to apply controlled forces to proteins. This device was used to study the R1-R2 segment of the talin1 rod domain as a model protein, which comprises two alpha-helical bundles that reversibly unfold under tension to expose binding sites for the cytoskeletal protein vinculin. Electron microscopy confirmed tension-dependent protein extension while biochemical analysis demonstrated enhanced vinculin binding under tension. The device could also be used in pull down assays with cell lysates, which identified filamins as novel tension-dependent talin binders. The DNA nanodevice is thus a valuable addition to the molecular toolbox for studying mechanosensitive proteins.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Minhwan Chung
- Department of Cell Biology, Yale School of Medicine, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, USA
| | - Jing Cheng
- Department of Biophysics and Biochemistry, Yale University, USA
| | - John T Powell
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Qi Yan
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Jun Liu
- Department of Cell Biology, Yale School of Medicine, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, USA
- Microbial Sciences Institute, Yale University, USA
| | - Yong Xiong
- Department of Biophysics and Biochemistry, Yale University, USA
| | - Martin A Schwartz
- Department of Cell Biology, Yale School of Medicine, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, USA
- Department of Biomedical Engineering, Yale University, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
- Department of Biomedical Engineering, Yale University, USA
| |
Collapse
|
5
|
Azizi L, Otani Y, Mykuliak VV, Goult BT, Hytönen VP, Turkki P. Talin-1 variants associated with spontaneous coronary artery dissection (SCAD) highlight how even subtle changes in multi-functional scaffold proteins can manifest in disease. Hum Mol Genet 2024; 33:1846-1857. [PMID: 39163585 PMCID: PMC11540920 DOI: 10.1093/hmg/ddae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Variants of talin-1 (TLN1) have recently been linked with spontaneous coronary artery dissection (SCAD) a condition where a tear can form in the wall of a heart artery necessitating immediate medical care. One talin-1 variant, A2013T, has an extensive familial pedigree of SCAD, which led to the screening for, and identification of, further talin-1 variants in SCAD patients. Here we evaluated these variants with commonly used pathogenicity prediction tools and found it challenging to reliably classify SCAD-associated variants, even A2013T where the evidence of a causal role is strong. Using biochemical and cell biological methods, we show that SCAD-associated variants in talin-1, which would typically be classified as non-pathogenic, still cause a measurable impact on protein structure and cell behaviour, including cell movement and wound healing capacity. Together, this indicates that even subtle variants in central mechanosensitive adapter proteins, can give rise to significant health impacts at the individual level, suggesting the need for a possible re-evaluation of the scoring criteria for pathogenicity prediction for talin variants.
Collapse
Affiliation(s)
- Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Yasumi Otani
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
| | - Benjamin T Goult
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United States
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Paula Turkki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu, 33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| |
Collapse
|
6
|
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. SCIENCE ADVANCES 2024; 10:eadi6286. [PMID: 39167642 PMCID: PMC11338229 DOI: 10.1126/sciadv.adi6286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM. Mutation of a mechanosensitive site between talin 1 rod-domain helix bundles R1 and R2 increased cell spreading and tension exertion on compliant substrates. These mutations promote binding of the ARP2/3 complex subunit ARPC5L, which mediates the change in substrate stiffness sensing. Ascending aortas from mice bearing these mutations showed less fibrillar collagen, reduced axial stiffness, and lower rupture pressure. Together, these results demonstrate that cellular stiffness sensing contributes to ECM mechanics, directly supporting the mechanical homeostasis hypothesis and identifying a mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
Affiliation(s)
- Manasa Chanduri
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Igor Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Miusi Shi
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Xinzhe Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Amit Datye
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Florine Collin
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Udo D. Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA
| | - Suxia Bai
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin T Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
8
|
Guo Y, Yan J, Goult BT. Mechanotransduction through protein stretching. Curr Opin Cell Biol 2024; 87:102327. [PMID: 38301379 DOI: 10.1016/j.ceb.2024.102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.
Collapse
Affiliation(s)
- Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein. Proc Natl Acad Sci U S A 2024; 121:e2314947121. [PMID: 38513099 PMCID: PMC10990152 DOI: 10.1073/pnas.2314947121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| | - Yasumi Otani
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| |
Collapse
|
10
|
Chanduri MVL, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Mechanosensing through talin 1 contributes to tissue mechanical homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.03.556084. [PMID: 38328095 PMCID: PMC10849504 DOI: 10.1101/2023.09.03.556084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
|
11
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically-gated A-kinase anchoring protein (AKAP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554038. [PMID: 37645895 PMCID: PMC10462126 DOI: 10.1101/2023.08.20.554038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.
Collapse
|
12
|
Franz F, Tapia-Rojo R, Winograd-Katz S, Boujemaa-Paterski R, Li W, Unger T, Albeck S, Aponte-Santamaria C, Garcia-Manyes S, Medalia O, Geiger B, Gräter F. Allosteric activation of vinculin by talin. Nat Commun 2023; 14:4311. [PMID: 37463895 DOI: 10.1038/s41467-023-39646-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s-1. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The 'allosteric vinculin mutant' is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.
Collapse
Affiliation(s)
- Florian Franz
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK.
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK.
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wenhong Li
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Camilo Aponte-Santamaria
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.
- IMSEAM, Heidelberg University, INF 225, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Gallego-Paez LM, Edwards WJS, Chanduri M, Guo Y, Koorman T, Lee CY, Grexa N, Derksen P, Yan J, Schwartz MA, Mauer J, Goult BT. TLN1 contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity. J Cell Biol 2023; 222:213923. [PMID: 36880935 PMCID: PMC9997659 DOI: 10.1083/jcb.202209010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-β/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.
Collapse
Affiliation(s)
| | | | - Manasa Chanduri
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA
| | - Yanyu Guo
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | | | - Nina Grexa
- Biomed X Institute (GmbH) , Heidelberg, Germany
| | - Patrick Derksen
- Department of Pathology, University Medical Center Utrecht , Utrecht, Netherlands
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore , Singapore, Singapore.,Department of Physics, National University of Singapore , Singapore, Singapore
| | - Martin A Schwartz
- Departments of Internal Medicine (Cardiology) and Yale Cardiovascular Research Center , New Haven, CT, USA.,Departments of Cell Biology and Biomedical Engineering, Yale School of Medicine , New Haven, CT, USA
| | - Jan Mauer
- Biomed X Institute (GmbH) , Heidelberg, Germany.,Department of Immunology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
14
|
Valencia-Gallardo C, Aguilar-Salvador DI, Khakzad H, Cocom-Chan B, Bou-Nader C, Velours C, Zarrouk Y, Le Clainche C, Malosse C, Lima DB, Quenech'Du N, Mazhar B, Essid S, Fontecave M, Asnacios A, Chamot-Rooke J, Malmström L, Tran Van Nhieu G. Shigella IpaA mediates actin bundling through diffusible vinculin oligomers with activation imprint. Cell Rep 2023; 42:112405. [PMID: 37071535 DOI: 10.1016/j.celrep.2023.112405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Upon activation, vinculin reinforces cytoskeletal anchorage during cell adhesion. Activating ligands classically disrupt intramolecular interactions between the vinculin head and tail domains that bind to actin filaments. Here, we show that Shigella IpaA triggers major allosteric changes in the head domain, leading to vinculin homo-oligomerization. Through the cooperative binding of its three vinculin-binding sites (VBSs), IpaA induces a striking reorientation of the D1 and D2 head subdomains associated with vinculin oligomerization. IpaA thus acts as a catalyst producing vinculin clusters that bundle actin at a distance from the activation site and trigger the formation of highly stable adhesions resisting the action of actin relaxing drugs. Unlike canonical activation, vinculin homo-oligomers induced by IpaA appear to keep a persistent imprint of the activated state in addition to their bundling activity, accounting for stable cell adhesion independent of force transduction and relevant to bacterial invasion.
Collapse
Affiliation(s)
- Cesar Valencia-Gallardo
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France
| | - Daniel-Isui Aguilar-Salvador
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France; Laboratoire de biologie et Pharmacie Appliquée (LBPA), CNRS UMR8113/INSERM U1282, Team "Ca(2+) Signaling and Microbial Infections," Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Hamed Khakzad
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France; Laboratoire de biologie et Pharmacie Appliquée (LBPA), CNRS UMR8113/INSERM U1282, Team "Ca(2+) Signaling and Microbial Infections," Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Benjamin Cocom-Chan
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France; Laboratoire de biologie et Pharmacie Appliquée (LBPA), CNRS UMR8113/INSERM U1282, Team "Ca(2+) Signaling and Microbial Infections," Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198/INSERM U1280, Team "Ca(2+) Signaling and Microbial Infections," CEA, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, Collège De France, CNRS UMR8229, 75005 Paris, France
| | - Christophe Velours
- Fundamental Microbiology and Pathogenicity Laboratory, UMR 5234 CNRS-University of Bordeaux, SFR TransBioMed, 33076 Bordeaux, France
| | - Yosra Zarrouk
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198/INSERM U1280, Team "Ca(2+) Signaling and Microbial Infections," CEA, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Christophe Le Clainche
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Team "Cytoskeletal Dynamics and Motility", CEA, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Christian Malosse
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, F-75015 Paris
| | - Diogo Borges Lima
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, F-75015 Paris
| | - Nicole Quenech'Du
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France
| | - Bilal Mazhar
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France
| | - Sami Essid
- Laboratoire de biologie et Pharmacie Appliquée (LBPA), CNRS UMR8113/INSERM U1282, Team "Ca(2+) Signaling and Microbial Infections," Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège De France, CNRS UMR8229, 75005 Paris, France
| | - Atef Asnacios
- Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, F-75015 Paris
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Guy Tran Van Nhieu
- Center for Interdisciplinary Research in Biology (CIRB), Team "Ca(2+) Signaling and Microbial Infections," Collège de France, CNRS UMR7241/INSERM U1050, PSL Research University, 75005 Paris, France; Laboratoire de biologie et Pharmacie Appliquée (LBPA), CNRS UMR8113/INSERM U1282, Team "Ca(2+) Signaling and Microbial Infections," Ecole Normale Supérieure Paris-Saclay, Université Paris Saclay, 91190 Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198/INSERM U1280, Team "Ca(2+) Signaling and Microbial Infections," CEA, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
16
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Abstract
Talins are cytoskeletal linker proteins that consist of an N-terminal head domain, a flexible neck region and a C-terminal rod domain made of 13 helical bundles. The head domain binds integrin β-subunit cytoplasmic tails, which triggers integrin conformational activation to increase affinity for extracellular matrix proteins. The rod domain links to actin filaments inside the cell to transmit mechanical loads and serves as a mechanosensitive signalling hub for the recruitment of many other proteins. The α-helical bundles function as force-dependent switches - proteins that interact with folded bundles are displaced when force induces unfolding, exposing previously cryptic binding sites for other ligands. This leads to the notion of a talin code. In this Cell Science at a Glance article and the accompanying poster, we propose that the multiple switches within the talin rod function to process and store time- and force-dependent mechanical and chemical information.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Nicholas H. Brown
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
19
|
Azizi L, Cowell AR, Mykuliak VV, Goult BT, Turkki P, Hytönen VP. Cancer associated talin point mutations disorganise cell adhesion and migration. Sci Rep 2021; 11:347. [PMID: 33431906 PMCID: PMC7801617 DOI: 10.1038/s41598-020-77911-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, adhesion and integrin signalling and has been linked to cancer in several studies. We analysed talin-1 mutations reported in the Catalogue of Somatic Mutations in Cancer database and developed a bioinformatics pipeline to predict the severity of each mutation. These predictions were then assessed using biochemistry and cell biology experiments. With this approach we were able to identify several talin-1 mutations affecting integrin activity, actin recruitment and Deleted in Liver Cancer 1 localization. We explored potential changes in talin-1 signalling responses by assessing impact on migration, invasion and proliferation. Altogether, this study describes a pipeline approach of experiments for crude characterization of talin-1 mutants in order to evaluate their functional effects and potential pathogenicity. Our findings suggest that cancer related point mutations in talin-1 can affect cell behaviour and so may contribute to cancer progression.
Collapse
Affiliation(s)
- Latifeh Azizi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alana R Cowell
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Vasyl V Mykuliak
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK.
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Vesa P Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
20
|
Boujemaa-Paterski R, Martins B, Eibauer M, Beales CT, Geiger B, Medalia O. Talin-activated vinculin interacts with branched actin networks to initiate bundles. eLife 2020; 9:e53990. [PMID: 33185186 PMCID: PMC7682986 DOI: 10.7554/elife.53990] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Vinculin plays a fundamental role in integrin-mediated cell adhesion. Activated by talin, it interacts with diverse adhesome components, enabling mechanical coupling between the actin cytoskeleton and the extracellular matrix. Here we studied the interactions of activated full-length vinculin with actin and the way it regulates the organization and dynamics of the Arp2/3 complex-mediated branched actin network. Through a combination of surface patterning and light microscopy experiments we show that vinculin can bundle dendritic actin networks through rapid binding and filament crosslinking. We show that vinculin promotes stable but flexible actin bundles having a mixed-polarity organization, as confirmed by cryo-electron tomography. Adhesion-like synthetic design of vinculin activation by surface-bound talin revealed that clustered vinculin can initiate and immobilize bundles from mobile Arp2/3-branched networks. Our results provide a molecular basis for coordinate actin bundle formation at nascent adhesions.
Collapse
Affiliation(s)
- Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of ZurichZurichSwitzerland
- Université Grenoble AlpesGrenobleFrance
| | - Bruno Martins
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Charlie T Beales
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ohad Medalia
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Mykuliak VV, Sikora M, Booth JJ, Cieplak M, Shalashilin DV, Hytönen VP. Mechanical Unfolding of Proteins-A Comparative Nonequilibrium Molecular Dynamics Study. Biophys J 2020; 119:939-949. [PMID: 32822586 PMCID: PMC7474207 DOI: 10.1016/j.bpj.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/02/2023] Open
Abstract
Mechanical signals regulate functions of mechanosensitive proteins by inducing structural changes that are determinant for force-dependent interactions. Talin is a focal adhesion protein that is known to extend under mechanical load, and it has been shown to unfold via intermediate states. Here, we compared different nonequilibrium molecular dynamics (MD) simulations to study unfolding of the talin rod. We combined boxed MD (BXD), steered MD, and umbrella sampling (US) techniques and provide free energy profiles for unfolding of talin rod subdomains. We conducted BXD, steered MD, and US simulations at different detail levels and demonstrate how these different techniques can be used to study protein unfolding under tension. Unfolding free energy profiles determined by BXD suggest that the intermediate states in talin rod subdomains are stabilized by force during unfolding, and US confirmed these results.
Collapse
Affiliation(s)
- Vasyl V Mykuliak
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Mateusz Sikora
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
22
|
Kelley CF, Litschel T, Schumacher S, Dedden D, Schwille P, Mizuno N. Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin. eLife 2020; 9:e56110. [PMID: 32657269 PMCID: PMC7384861 DOI: 10.7554/elife.56110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
Focal adhesions (FA) are large macromolecular assemblies which help transmit mechanical forces and regulatory signals between the extracellular matrix and an interacting cell. Two key proteins talin and vinculin connecting integrin to actomyosin networks in the cell. Both proteins bind to F-actin and each other, providing a foundation for network formation within FAs. However, the underlying mechanisms regulating their engagement remain unclear. Here, we report on the results of in vitro reconstitution of talin-vinculin-actin assemblies using synthetic membrane systems. We find that neither talin nor vinculin alone recruit actin filaments to the membrane. In contrast, phosphoinositide-rich membranes recruit and activate talin, and the membrane-bound talin then activates vinculin. Together, the two proteins then link actin to the membrane. Encapsulation of these components within vesicles reorganized actin into higher-order networks. Notably, these observations were made in the absence of applied force, whereby we infer that the initial assembly stage of FAs is force independent. Our findings demonstrate that the local membrane composition plays a key role in controlling the stepwise recruitment, activation, and engagement of proteins within FAs.
Collapse
Affiliation(s)
- Charlotte F Kelley
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Thomas Litschel
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Stephanie Schumacher
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Dirk Dedden
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular BiophysicsMartinsriedGermany
| | - Naoko Mizuno
- Max Planck Institute of Biochemistry, Department of Structural Cell BiologyMartinsriedGermany
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUnited States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
23
|
Rangarajan ES, Primi MC, Colgan LA, Chinthalapudi K, Yasuda R, Izard T. A distinct talin2 structure directs isoform specificity in cell adhesion. J Biol Chem 2020; 295:12885-12899. [PMID: 32605925 DOI: 10.1074/jbc.ra119.010789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/23/2020] [Indexed: 01/25/2023] Open
Abstract
Integrin receptors regulate normal cellular processes such as signaling, cell migration, adhesion to the extracellular matrix, and leukocyte function. Talin recruitment to the membrane is necessary for its binding to and activation of integrin. Vertebrates have two highly conserved talin homologs that differ in their expression patterns. The F1-F3 FERM subdomains of cytoskeletal proteins resemble a cloverleaf, but in talin1, its F1 subdomain and additional F0 subdomain align more linearly with its F2 and F3 subdomains. Here, we present the talin2 crystal structure, revealing that its F0-F1 di-subdomain displays another unprecedented constellation, whereby the F0-F1-F2 adopts a new cloverleaf-like arrangement. Using multiangle light scattering (MALS), fluorescence lifetime imaging (FLIM), and FRET analyses, we found that substituting the corresponding residues in talin2 that abolish lipid binding in talin1 disrupt the binding of talin to the membrane, focal adhesion formation, and cell spreading. Our results provide the molecular details of the functions of specific talin isoforms in cell adhesion.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Marina C Primi
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Lesley A Colgan
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Krishna Chinthalapudi
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, USA.
| |
Collapse
|
24
|
The Architecture of Talin1 Reveals an Autoinhibition Mechanism. Cell 2020; 179:120-131.e13. [PMID: 31539492 PMCID: PMC6856716 DOI: 10.1016/j.cell.2019.08.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/04/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling. The structure of the autoinhibited human full-length talin1 was analyzed by cryo-EM Talin1 reversibly changes between a 15-nm closed and a ∼60-nm open conformation Rod R9/R12 and FERM domains synchronously shield membrane and cytoskeleton binding F-Actin and vinculin binding to talin is regulated by the opening of talin
Collapse
|
25
|
Tapia-Rojo R, Alonso-Caballero A, Fernandez JM. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. SCIENCE ADVANCES 2020; 6:eaaz4707. [PMID: 32494739 PMCID: PMC7244311 DOI: 10.1126/sciadv.aaz4707] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/13/2020] [Indexed: 05/21/2023]
Abstract
Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
26
|
Shigella IpaA Binding to Talin Stimulates Filopodial Capture and Cell Adhesion. Cell Rep 2020; 26:921-932.e6. [PMID: 30673614 DOI: 10.1016/j.celrep.2018.12.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
The Shigella type III effector IpaA contains three binding sites for the focal adhesion protein vinculin (VBSs), which are involved in bacterial invasion of host cells. Here, we report that IpaA VBS3 unexpectedly binds to talin. The 2.5 Å resolution crystal structure of IpaA VBS3 in complex with the talin H1-H4 helices shows a tightly folded α-helical bundle, which is in contrast to the bundle unraveling upon vinculin interaction. High-affinity binding to talin H1-H4 requires a core of hydrophobic residues and electrostatic interactions conserved in talin VBS H46. Remarkably, IpaA VBS3 localizes to filopodial distal adhesions enriched in talin, but not vinculin. In addition, IpaA VBS3 binding to talin was required for filopodial adhesions and efficient capture of Shigella. These results point to the functional diversity of VBSs and support a specific role for talin binding by a subset of VBSs in the formation of filopodial adhesions.
Collapse
|
27
|
Gruber EJ, Leifer CA. Molecular regulation of TLR signaling in health and disease: mechano-regulation of macrophages and TLR signaling. Innate Immun 2020; 26:15-25. [PMID: 31955624 PMCID: PMC6974875 DOI: 10.1177/1753425919838322] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Immune cells encounter tissues with vastly different biochemical and physical characteristics. Much of the research emphasis has focused on the role of cytokines and chemokines in regulating immune cell function, but the role of the physical microenvironment has received considerably less attention. The tissue mechanics, or stiffness, of healthy tissues varies dramatically from soft adipose tissue and brain to stiff cartilage and bone. Tissue mechanics also change due to fibrosis and with diseases such as atherosclerosis or cancer. The process by which cells sense and respond to their physical microenvironment is called mechanotransduction. Here we review mechanotransduction in immunologically important diseases and how physical characteristics of tissues regulate immune cell function, with a specific emphasis on mechanoregulation of macrophages and TLR signaling.
Collapse
Affiliation(s)
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell
University, Ithaca, NY, USA
| |
Collapse
|
28
|
Khan RB, Goult BT. Adhesions Assemble!-Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion. Front Mol Biosci 2019; 6:144. [PMID: 31921890 PMCID: PMC6927945 DOI: 10.3389/fmolb.2019.00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The advent of cell-cell and cell-extracellular adhesion enabled cells to interact in a coherent manner, forming larger structures and giving rise to the development of tissues, organs and complex multicellular life forms. The development of such organisms required tight regulation of dynamic adhesive structures by signaling pathways that coordinate cell attachment. Integrin-mediated adhesion to the extracellular matrix provides cells with support, survival signals and context-dependent cues that enable cells to run different cellular programs. One mysterious aspect of the process is how hundreds of proteins assemble seemingly spontaneously onto the activated integrin. An emerging concept is that adhesion assembly is regulated by autoinhibition of key proteins, a highly dynamic event that is modulated by a variety of signaling events. By enabling precise control of the activation state of proteins, autoinhibition enables localization of inactive proteins and the formation of pre-complexes. In response to the correct signals, these proteins become active and interact with other proteins, ultimately leading to development of cell-matrix junctions. Autoinhibition of key components of such adhesion complexes—including core components integrin, talin, vinculin, and FAK and important peripheral regulators such as RIAM, Src, and DLC1—leads to a view that the majority of proteins involved in complex assembly might be regulated by intramolecular interactions. Autoinhibition is relieved via multiple different signals including post-translation modification and proteolysis. More recently, mechanical forces have been shown to stabilize and increase the lifetimes of active conformations, identifying autoinhibition as a means of encoding mechanosensitivity. The complexity and scope for nuanced adhesion dynamics facilitated via autoinhibition provides numerous points of regulation. In this review, we discuss what is known about this mode of regulation and how it leads to rapid and tightly controlled assembly and disassembly of cell-matrix adhesion.
Collapse
Affiliation(s)
- Rejina B Khan
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
29
|
Chakraborty S, Banerjee S, Raina M, Haldar S. Force-Directed “Mechanointeractome” of Talin–Integrin. Biochemistry 2019; 58:4677-4695. [DOI: 10.1021/acs.biochem.9b00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Manasven Raina
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
30
|
Abstract
![]()
Life is an emergent property of transient
interactions between
biomolecules and other organic and inorganic molecules that somehow
leads to harmony and order. Measurement and quantitation of these
biological interactions are of value to scientists and are major goals
of biochemistry, as affinities provide insight into biological processes.
In an organism, these interactions occur in the context of forces
and the need for a consideration of binding affinities in the context
of a changing mechanical landscape necessitates a new way to consider
the biochemistry of protein–protein interactions. In the past
few decades, the field of mechanobiology has exploded, as both the
appreciation of, and the technical advances required to facilitate
the study of, how forces impact biological processes have become evident.
The aim of this review is to introduce the concept of force dependence
of biomolecular interactions and the requirement to be able to measure
force-dependent binding constants. The focus of this discussion will
be on the mechanotransduction that occurs at the integrin-mediated
adhesions with the extracellular matrix and the major mechanosensors
talin and vinculin. However, the approaches that the cell uses to
sense and respond to forces can be applied to other systems, and this
therefore provides a general discussion of the force dependence of
biomolecule interactions.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Jie Yan
- Department of Physics , National University of Singapore , 117542 Singapore.,Mechanobiology Institute , National University of Singapore , 117411 Singapore
| | - Benjamin T Goult
- School of Biosciences , University of Kent , Canterbury , Kent CT2 7NJ , U.K
| |
Collapse
|
31
|
Chen J, Jiang C, Fu L, Zhu CL, Xiang YQ, Jiang LX, Chen Q, Liu WM, Chen JN, Zhang LY, Liu M, Chen C, Tang H, Wang B, Tsao SW, Kwong DLW, Guan XY. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin β1 and Merlin. Int J Biol Sci 2019; 15:1802-1815. [PMID: 31523184 PMCID: PMC6743306 DOI: 10.7150/ijbs.34785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 01/24/2023] Open
Abstract
Deletion of Chromosome 3p is one of the most frequently detected genetic alterations in nasopharyngeal carcinoma (NPC). We reported the role of a novel 3p26.3 tumor suppressor gene (TSG) CHL1 in NPC. Down-regulation of CHL1 was detected in 4/6 of NPC cell lines and 71/95 (74.7%) in clinical tissues. Ectopic expressions of CHL1 in NPC cells significantly inhibit colony formation and cell motility in functional study. By up-regulating epithelial markers and down-regulating mesenchymal markers CHL1 could induce mesenchymal-epithelial transition (MET), a key step in preventing tumor invasion and metastasis. CHL1 could also cause the inactivation of RhoA/Rac1/Cdc42 signaling pathway and inhibit the formation of stress fiber, lamellipodia, and filopodia. CHL1 could co-localize with adhesion molecule Integrin-β1, the expression of CHL1 was positively correlated with Integrin-β1 and another known tumor suppressor gene (TSG) Merlin. Down-regulation of Integrin-β1 or Merlin was significantly correlated with the poor survival rate of NPC patients. Further mechanistic studies showed that CHL1 could directly interact with integrin-β1 and link to Merlin, leading to the inactivation of integrin β1-AKT pathway. In conclusion, CHL1 is a vital tumor suppressor in the carcinogenesis of NPC.
Collapse
Affiliation(s)
- Juan Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Chen Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Research Centre, Shenzhen University school of Medicine, Shenzhen, China
| | - Cai-Lei Zhu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal, Sun Yat-Sen Cancer Center, Guangzhou, China
| | - Ling-Xi Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Man Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin-Na Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Yi Zhang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Science and Technology of Huazhong University, Wuhan, China
| | - Hong Tang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Wang
- Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Sai Wah Tsao
- Departments of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China;,✉ Corresponding author: Xin-Yuan Guan, Department of Clinical Oncology, The University of Hong Kong, Room L10-56, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, Tel: 852-3917-9782, E-Mail: ; or Dora Lai-Wan Kwong, Department of Clinical Oncology, University of Hong Kong, 1/F, Professorial Block, Queen Mary Hospital, Hong Kong, Tel: 852-28554521, E-mail:
| |
Collapse
|
32
|
Davey NE. The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 2019; 56:155-163. [DOI: 10.1016/j.sbi.2019.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
33
|
The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Proc Natl Acad Sci U S A 2018; 115:10339-10344. [PMID: 30254158 DOI: 10.1073/pnas.1806275115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multicellular organisms have well-defined, tightly regulated mechanisms for cell adhesion. Heterodimeric αβ integrin receptors play central roles in this function and regulate processes for normal cell functions, including signaling, cell migration, and development, binding to the extracellular matrix, and senescence. They are involved in hemostasis and the immune response, participate in leukocyte function, and have biological implications in angiogenesis and cancer. Proper control of integrin activation for cellular communication with the external environment requires several physiological processes. Perturbation of these equilibria may lead to constitutive integrin activation that results in bleeding disorders. Furthermore, integrins play key roles in cancer progression and metastasis in which certain tumor types exhibit higher levels of various integrins. Thus, the integrin-associated signaling complex is important for cancer therapy development. During inside-out signaling, the cytoskeletal protein talin plays a key role in regulating integrin affinity whereby the talin head domain activates integrin by binding to the cytoplasmic tail of β-integrin and acidic membrane phospholipids. To understand the mechanism of integrin activation by talin, we determined the crystal structure of the talin head domain bound to the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), allowing us to design a lipid-binding-deficient talin mutant. Our confocal microscopy with talin knockout cells suggests that the talin-cell membrane interaction seems essential for focal adhesion formation and stabilization. Basal integrin activation in Chinese hamster ovary cells suggests that the lipid-binding-deficient talin mutant inhibits integrin activation. Thus, membrane attachment of talin seems necessary for integrin activation and focal adhesion formation.
Collapse
|
34
|
Gough RE, Goult BT. The tale of two talins - two isoforms to fine-tune integrin signalling. FEBS Lett 2018; 592:2108-2125. [PMID: 29723415 PMCID: PMC6032930 DOI: 10.1002/1873-3468.13081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022]
Abstract
Talins are cytoplasmic adapter proteins essential for integrin-mediated cell adhesion to the extracellular matrix. Talins control the activation state of integrins, link integrins to cytoskeletal actin, recruit numerous signalling molecules that mediate integrin signalling and coordinate recruitment of microtubules to adhesion sites via interaction with KANK (kidney ankyrin repeat-containing) proteins. Vertebrates have two talin genes, TLN1 and TLN2. Although talin1 and talin2 share 76% protein sequence identity (88% similarity), they are not functionally redundant, and the differences between the two isoforms are not fully understood. In this Review, we focus on the similarities and differences between the two talins in terms of structure, biochemistry and function, which hint at subtle differences in fine-tuning adhesion signalling.
Collapse
|
35
|
Whitewood AJ, Singh AK, Brown DG, Goult BT. Chlamydial virulence factor TarP mimics talin to disrupt the talin-vinculin complex. FEBS Lett 2018; 592:1751-1760. [PMID: 29710402 PMCID: PMC6001692 DOI: 10.1002/1873-3468.13074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 11/12/2022]
Abstract
Vinculin is a central component of mechanosensitive adhesive complexes that form between cells and the extracellular matrix. A myriad of infectious agents mimic vinculin binding sites (VBS), enabling them to hijack the adhesion machinery and facilitate cellular entry. Here, we report the structural and biochemical characterisation of VBS from the chlamydial virulence factor TarP. Whilst the affinities of isolated VBS peptides from TarP and talin for vinculin are similar, their behaviour in larger fragments is markedly different. In talin, VBS are cryptic and require mechanical activation to bind vinculin, whereas the TarP VBS are located in disordered regions, and so are constitutively active. We demonstrate that the TarP VBS can uncouple talin:vinculin complexes, which may lead to adhesion destabilisation.
Collapse
Affiliation(s)
| | | | - David G Brown
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
36
|
Mykuliak VV, Haining AWM, von Essen M, del Río Hernández A, Hytönen VP. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin. PLoS Comput Biol 2018; 14:e1006126. [PMID: 29698481 PMCID: PMC5940241 DOI: 10.1371/journal.pcbi.1006126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD) simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM) to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins.
Collapse
Affiliation(s)
- Vasyl V. Mykuliak
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Alexander William M. Haining
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Magdaléna von Essen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
| | - Armando del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail: (AdRH); (VPH)
| | - Vesa P. Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland
- * E-mail: (AdRH); (VPH)
| |
Collapse
|
37
|
Hirano Y, Amano Y, Yonemura S, Hakoshima T. The force‐sensing device region of α‐catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form. Genes Cells 2018. [DOI: 10.1111/gtc.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yoshinori Hirano
- Structural Biology Laboratory Nara Institute of Science and Technology Ikoma Nara Japan
| | - Yu Amano
- Electron Microscope Laboratory RIKEN Center for Developmental Biology Kobe Hyogo Japan
- Department of Bioscience Kwansei Gakuin University Sanda Hyogo Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory RIKEN Center for Developmental Biology Kobe Hyogo Japan
- Department of Cell Biology Tokushima University Graduate School of Medical Science Tokushima Tokushima Japan
- CREST, JST Kawaguchi Saitama Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory Nara Institute of Science and Technology Ikoma Nara Japan
- CREST, JST Kawaguchi Saitama Japan
| |
Collapse
|
38
|
Shao X, Kang H, Loveless T, Lee GR, Seok C, Weis WI, Choi HJ, Hardin J. Cell-cell adhesion in metazoans relies on evolutionarily conserved features of the α-catenin·β-catenin-binding interface. J Biol Chem 2017; 292:16477-16490. [PMID: 28842483 DOI: 10.1074/jbc.m117.795567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Stable tissue integrity during embryonic development relies on the function of the cadherin·catenin complex (CCC). The Caenorhabditis elegans CCC is a useful paradigm for analyzing in vivo requirements for specific interactions among the core components of the CCC, and it provides a unique opportunity to examine evolutionarily conserved mechanisms that govern the interaction between α- and β-catenin. HMP-1, unlike its mammalian homolog α-catenin, is constitutively monomeric, and its binding affinity for HMP-2/β-catenin is higher than that of α-catenin for β-catenin. A crystal structure shows that the HMP-1·HMP-2 complex forms a five-helical bundle structure distinct from the structure of the mammalian α-catenin·β-catenin complex. Deletion analysis based on the crystal structure shows that the first helix of HMP-1 is necessary for binding HMP-2 avidly in vitro and for efficient recruitment of HMP-1 to adherens junctions in embryos. HMP-2 Ser-47 and Tyr-69 flank its binding interface with HMP-1, and we show that phosphomimetic mutations at these two sites decrease binding affinity of HMP-1 to HMP-2 by 40-100-fold in vitro. In vivo experiments using HMP-2 S47E and Y69E mutants showed that they are unable to rescue hmp-2(zu364) mutants, suggesting that phosphorylation of HMP-2 on Ser-47 and Tyr-69 could be important for regulating CCC formation in C. elegans Our data provide novel insights into how cadherin-dependent cell-cell adhesion is modulated in metazoans by conserved elements as well as features unique to specific organisms.
Collapse
Affiliation(s)
| | | | - Timothy Loveless
- Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gyu Rie Lee
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - Chaok Seok
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - William I Weis
- the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | | | - Jeff Hardin
- From the Program in Genetics, .,Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
39
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
40
|
|
41
|
Maki K, Nakao N, Adachi T. Nano-mechanical characterization of tension-sensitive helix bundles in talin rod. Biochem Biophys Res Commun 2017; 484:372-377. [PMID: 28131835 DOI: 10.1016/j.bbrc.2017.01.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Abstract
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Nobuhiko Nakao
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto 606-8507, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
42
|
von Essen M, Rahikainen R, Oksala N, Raitoharju E, Seppälä I, Mennander A, Sioris T, Kholová I, Klopp N, Illig T, Karhunen PJ, Kähönen M, Lehtimäki T, Hytönen VP. Talin and vinculin are downregulated in atherosclerotic plaque; Tampere Vascular Study. Atherosclerosis 2016; 255:43-53. [PMID: 27816808 DOI: 10.1016/j.atherosclerosis.2016.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Focal adhesions (FA) play an important role in the tissue remodeling and in the maintenance of tissue integrity and homeostasis. Talin and vinculin proteins are among the major constituents of FAs contributing to cellular well-being and intercellular communication. METHODS Microarray analysis (MA) and qRT-PCR low-density array were implemented to analyze talin-1, talin-2, meta-vinculin and vinculin gene expression in circulating blood and arterial plaque. RESULTS All analyzed genes were significantly and consistently downregulated in plaques (carotid, abdominal aortic and femoral regions) compared to left internal thoracic artery (LITA) control. The use of LITA samples as controls for arterial plaque samples was validated using immunohistochemistry by comparing LITA samples with healthy arterial samples from a cadaver. Even though the differences in expression levels between stable and unstable plaques were not statistically significant, we observed further negative tendency in the expression in unstable atherosclerotic plaques. The confocal tissue imaging revealed gradient of talin-1 expression in plaque with reduction close to the vessel lumen. Similar gradient was observed for talin-2 expression in LITA controls but was not detected in plaques. This suggests that impaired tissue mechanostability affects the tissue remodeling and healing capabilities leading to development of unstable plaques. CONCLUSIONS The central role of talin and vinculin in cell adhesions suggests that the disintegration of the tissue in atherosclerosis could be partially driven by downregulation of these genes, leading to loosening of cell-ECM interactions and remodeling of the tissue.
Collapse
Affiliation(s)
- Magdaléna von Essen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Rolle Rahikainen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
| | - Niku Oksala
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland; Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Emma Raitoharju
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Ari Mennander
- Heart Center, Tampere University Hospital, Tampere, Finland
| | - Thanos Sioris
- Heart Center, Tampere University Hospital, Tampere, Finland
| | - Ivana Kholová
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany; Institute of Human Genetics, Hannover Medical School, Hannover, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Pekka J Karhunen
- School of Medicine, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Terho Lehtimäki
- Dep. of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland.
| |
Collapse
|
43
|
Maartens AP, Wellmann J, Wictome E, Klapholz B, Green H, Brown NH. Drosophila vinculin is more harmful when hyperactive than absent, and can circumvent integrin to form adhesion complexes. J Cell Sci 2016; 129:4354-4365. [PMID: 27737911 PMCID: PMC5201009 DOI: 10.1242/jcs.189878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Vinculin is a highly conserved protein involved in cell adhesion and mechanotransduction, and both gain and loss of its activity causes defective cell behaviour. Here, we examine how altering vinculin activity perturbs integrin function within the context of Drosophila development. Whereas loss of vinculin produced relatively minor phenotypes, gain of vinculin activity, through a loss of head–tail autoinhibition, caused lethality. The minimal domain capable of inducing lethality is the talin-binding D1 domain, and this appears to require talin-binding activity, as lethality was suppressed by competition with single vinculin-binding sites from talin. Activated Drosophila vinculin triggered the formation of cytoplasmic adhesion complexes through the rod of talin, but independently of integrin. These complexes contain a subset of adhesion proteins but no longer link the membrane to actin. The negative effects of hyperactive vinculin were segregated into morphogenetic defects caused by its whole head domain and lethality caused by its D1 domain. These findings demonstrate the crucial importance of the tight control of the activity of vinculin. Summary: Development is more sensitive to gain of vinculin activity than its loss, and vinculin can promote cytoplasmic adhesion complexes independently of the usual integrin cue.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Jutta Wellmann
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Emma Wictome
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Hannah Green
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| |
Collapse
|
44
|
Li Z, Lee H, Zhu C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Exp Cell Res 2016; 349:85-94. [PMID: 27720950 DOI: 10.1016/j.yexcr.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation.
Collapse
Affiliation(s)
- Zhenhai Li
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
45
|
Calkins S, Youssef NH. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A. PLoS One 2016; 11:e0163553. [PMID: 27685796 PMCID: PMC5042518 DOI: 10.1371/journal.pone.0163553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/11/2016] [Indexed: 12/30/2022] Open
Abstract
Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell's cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results, we propose putative alternative functions for such proteins in the anaerobic gut fungi. Our results highlight the presumed diverse functionalities of FA scaffolding proteins in basal fungi.
Collapse
Affiliation(s)
- Shelby Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, United States of America
| |
Collapse
|
46
|
Zacharchenko T, Qian X, Goult BT, Jethwa D, Almeida TB, Ballestrem C, Critchley DR, Lowy DR, Barsukov IL. LD Motif Recognition by Talin: Structure of the Talin-DLC1 Complex. Structure 2016; 24:1130-41. [PMID: 27265849 PMCID: PMC4938799 DOI: 10.1016/j.str.2016.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/25/2022]
Abstract
Cell migration requires coordination between integrin-mediated cell adhesion to the extracellular matrix and force applied to adhesion sites. Talin plays a key role in coupling integrin receptors to the actomyosin contractile machinery, while deleted in liver cancer 1 (DLC1) is a Rho GAP that binds talin and regulates Rho, and therefore actomyosin contractility. We show that the LD motif of DLC1 forms a helix that binds to the four-helix bundle of the talin R8 domain in a canonical triple-helix arrangement. We demonstrate that the same R8 surface interacts with the paxillin LD1 and LD2 motifs. We identify key charged residues that stabilize the R8 interactions with LD motifs and demonstrate their importance in vitro and in cells. Our results suggest a network of competitive interactions in adhesion complexes that involve LD motifs, and identify mutations that can be used to analyze the biological roles of specific protein-protein interactions in cell migration.
Collapse
Affiliation(s)
- Thomas Zacharchenko
- Institute of Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NJ, UK
| | - Devina Jethwa
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Teresa B Almeida
- Institute of Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor L Barsukov
- Institute of Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
47
|
Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL. Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells. Biophys J 2016; 108:2783-93. [PMID: 26083918 DOI: 10.1016/j.bpj.2015.05.010] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces transduced to cells through the extracellular matrix are critical regulators of tissue development, growth, and homeostasis, and can play important roles in directing stem cell differentiation. In addition to force-sensing mechanisms that reside at the cell surface, there is growing evidence that forces transmitted through the cytoskeleton and to the nuclear envelope are important for mechanosensing, including activation of the Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway. Moreover, nuclear shape, mechanics, and deformability change with differentiation state and have been likewise implicated in force sensing and differentiation. However, the significance of force transfer to the nucleus through the mechanosensing cytoskeletal machinery in the regulation of mesenchymal stem cell mechanobiologic response remains unclear. Here we report that actomyosin-generated cytoskeletal tension regulates nuclear shape and force transmission through the cytoskeleton and demonstrate the differential short- and long-term response of mesenchymal stem cells to dynamic tensile loading based on the contractility state, the patency of the actin cytoskeleton, and the connections it makes with the nucleus. Specifically, we show that while some mechanoactive signaling pathways (e.g., ERK signaling) can be activated in the absence of nuclear strain transfer, cytoskeletal strain transfer to the nucleus is essential for activation of the YAP/TAZ pathway with stretch.
Collapse
Affiliation(s)
- Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian D Cosgrove
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zach E Shurden
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, Pennsylvania.
| |
Collapse
|
48
|
Haining AWM, Lieberthal TJ, Hernández ADR. Talin: a mechanosensitive molecule in health and disease. FASEB J 2016; 30:2073-85. [DOI: 10.1096/fj.201500080r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022]
|
49
|
Lim D, Lu Y, Rudd CE. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1. Immunol Lett 2016; 172:40-6. [PMID: 26905930 PMCID: PMC4860717 DOI: 10.1016/j.imlet.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/09/2022]
Abstract
Skap1−/− T-cells show impaired talin and RIAM localization at the anti-CD3 beads. Talin cleavage is altered in Skap1−/− T-cells. Cleavage resistant talin (L432G) restored normal conjugation of Skap1−/− T-cells. Immune cell adaptor SKAP1 interfaces with regulation of talin and RIAM in T-cells.
While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation.
Collapse
Affiliation(s)
- Daina Lim
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Yuning Lu
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK; Cambridge Institute of Medical Research, Hills Road, CB2 OXY Cambridge, UK.
| |
Collapse
|
50
|
Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer. Proc Natl Acad Sci U S A 2016; 113:1226-31. [PMID: 26787871 DOI: 10.1073/pnas.1521664113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The reaction of peroxides with peroxidases oxidizes the heme iron from Fe(III) to Fe(IV)=O and a porphyrin or aromatic side chain to a cationic radical. X-ray-generated hydrated electrons rapidly reduce Fe(IV), thereby requiring very short exposures using many crystals, and, even then, some reduction cannot be avoided. The new generation of X-ray free electron lasers capable of generating intense X-rays on the tenths of femtosecond time scale enables structure determination with no reduction or X-ray damage. Here, we report the 1.5-Å crystal structure of cytochrome c peroxidase (CCP) compound I (CmpI) using data obtained with the Stanford Linear Coherent Light Source (LCLS). This structure is consistent with previous structures. Of particular importance is the active site water structure that can mediate the proton transfer reactions required for both CmpI formation and reduction of Fe(IV)=O to Fe(III)-OH. The structures indicate that a water molecule is ideally positioned to shuttle protons between an iron-linked oxygen and the active site catalytic His. We therefore have carried out both computational and kinetic studies to probe the reduction of Fe(IV)=O. Kinetic solvent isotope experiments show that the transfer of a single proton is critical in the peroxidase rate-limiting step, which is very likely the proton-coupled reduction of Fe(IV)=O to Fe(III)-OH. We also find that the pKa of the catalytic His substantially increases in CmpI, indicating that this active site His is the source of the proton required in the reduction of Fe(IV)=O to Fe(IV)-OH.
Collapse
|