1
|
Le TT, Ha TS, To LM, Dang QM, Bui HTP, Tran TD, Vu PT, Giang HB, Tran DT, Nguyen XH. Osteosarcoma patient with Li-Fraumeni syndrome: the first case report in Vietnam. Front Oncol 2024; 14:1458232. [PMID: 39439949 PMCID: PMC11493536 DOI: 10.3389/fonc.2024.1458232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary disorder characterized by an increased risk of developing multiple early-onset cancers, primarily due to germline TP53 mutations. Women and men with this mutation face lifetime cancer risks of 90% and 70%, respectively. This report describes the first documented case of LFS with clinical information in Vietnam involving a 9-year-old child diagnosed with osteosarcoma who had multiple first- and second-degree relatives with cancer. Whole-genome sequencing (WGS) revealed a heterozygous, pathogenic, autosomal dominant TP53 variant NM_000546.6:c.733G>A (p.Gly245Ser) and a translocation in the 3'UTR of the ATMIN gene with unknown pathogenicity in both the patient and her mother. Sanger sequencing confirmed the presence of the TP53 c.733G>A mutation, which was subsequently detected in extended family members. Of the 17 family members invited for testing, only 8, none of whom currently have cancer, agreed to participate: all tested negative for the mutation. This case highlights the importance of genetic testing for the early detection and management of cancers in LFS patients. It also underscores significant barriers to genetic screening in Vietnam, including limited access and the psychosocial consequences of testing, which emphasize the need for improved genetic counseling and surveillance strategies that are tailored to local contexts.
Collapse
Affiliation(s)
- Thanh Thien Le
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Tung Sy Ha
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Mai To
- Department of Biology, Hanoi University Science, Hanoi, Vietnam
| | - Quang Minh Dang
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoa Thi Phuong Bui
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Duc Tran
- Sarcoma Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong Thi Vu
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoan Bao Giang
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | | | - Xuan-Hung Nguyen
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
2
|
Seo H, Hirota K, Ohta K. Molecular mechanisms of avian immunoglobulin gene diversification and prospect for industrial applications. Front Immunol 2024; 15:1453833. [PMID: 39346918 PMCID: PMC11427246 DOI: 10.3389/fimmu.2024.1453833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Poultry immunoglobulin genes undergo diversification through homologous recombination (HR) and somatic hypermutation (SHM). Most animals share a similar system in immunoglobulin diversification, with the rare exception that human and murine immunoglobulin genes diversify through V(D)J recombination. Poultry possesses only one functional variable gene for each immunoglobulin heavy (HC) and light chains (LC), with clusters of non-productive pseudogenes upstream. During the B cell development, the functional variable gene is overwritten by sequences from the pseudo-variable genes via a process known as gene conversion (GC), a kind of HR. Point mutations caused in the functional variable gene also contribute to immunoglobulin diversification. This review discusses the latest findings on the molecular mechanisms of antibody gene diversification in poultry, using chickens as a model. Additionally, it will outline how these basic research findings have recently been applied especially in the medical field.
Collapse
Affiliation(s)
- Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Fujii S, Fuchs RP. Accidental Encounter of Repair Intermediates in Alkylated DNA May Lead to Double-Strand Breaks in Resting Cells. Int J Mol Sci 2024; 25:8192. [PMID: 39125763 PMCID: PMC11311527 DOI: 10.3390/ijms25158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.
Collapse
Affiliation(s)
- Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille University, 13273 Marseille, France
| | - Robert P. Fuchs
- SAS bioHalosis, Zone Luminy Biotech, 13009 Marseille, France
| |
Collapse
|
4
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Li YJ, Yang CN, Kuo MYP, Lai WT, Wu TS, Lin BR. ATMIN enhances invasion by altering PARP1 in MSS colorectal cancer. Am J Cancer Res 2022; 12:3799-3810. [PMID: 36119811 PMCID: PMC9441994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023] Open
Abstract
Genomic instability is a key cancer indicator. It results from defects in the DNA damage response (DDR) and increased replication stress. Herein, we examined how ataxia-telangiectasia mutated interactor (ATMIN), a DDR pathway involved in mismatch repair-proficient (microsatellite stability [MSS]), acts in colorectal carcinoma (CRC). Firstly, ATMIN mRNA expression was detected in CRC specimens with MSS characteristics, and the effects of ectopic ATMIN expression and ATMIN knockdown on invasion abilities were gauged in MSS cell lines. To understand the molecular mechanism, co-immunoprecipitation analyses in vitro were employed. Interestingly, ATMIN expression was positively correlated with advanced stages (P < .001), lymph node metastases (P = .002), and deeper invasion (P = .037) in MSS tumors; and significantly changed the cell motility in vitro. In the high-throughput analysis, ATMIN was found to act on the Wnt signaling pathway via PARP1. PAPR1 inhibition, in turn, significantly decreased invasion abilities resulting from ATMIN overexpression in cancer cell. Taken together, ATMIN, which alters the Wnt signaling pathway regulating CRC progression, plays as a crucial prognostic factor in MSS tumors.
Collapse
Affiliation(s)
- Yue-Ju Li
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
- Department of Surgery, National Taiwan University Hospital and College of MedicineTaipei, Taiwan
| | - Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Wei-Ting Lai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Tai-Sheng Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan UniversityTaipei, Taiwan
| | - Been-Ren Lin
- Department of Surgery, National Taiwan University Hospital and College of MedicineTaipei, Taiwan
| |
Collapse
|
6
|
Fujii S, Sobol RW, Fuchs RP. Double-Strand Breaks: when DNA Repair Events Accidentally Meet. DNA Repair (Amst) 2022; 112:103303. [PMID: 35219626 PMCID: PMC8898275 DOI: 10.1016/j.dnarep.2022.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The cellular response to alkylation damage is complex, involving multiple DNA repair pathways and checkpoint proteins, depending on the DNA lesion, the cell type, and the cellular proliferation state. The repair of and response to O-alkylation damage, primarily O6-methylguaine DNA adducts (O6-mG), is the purview of O6-methylguanine-DNA methyltransferase (MGMT). Alternatively, this lesion, if left un-repaired, induces replication-dependent formation of the O6-mG:T mis-pair and recognition of this mis-pair by the post-replication mismatch DNA repair pathway (MMR). Two models have been suggested to account for MMR and O6-mG DNA lesion dependent formation of DNA double-strand breaks (DSBs) and the resulting cytotoxicity - futile cycling and direct DNA damage signaling. While there have been hints at crosstalk between the MMR and base excision repair (BER) pathways, clear mechanistic evidence for such pathway coordination in the formation of DSBs has remained elusive. However, using a novel protein capture approach, Fuchs and colleagues have demonstrated that DSBs result from an encounter between MMR-induced gaps initiated at alkylation induced O6-mG:C sites and BER-induced nicks at nearby N-alkylation adducts in the opposite strand. The accidental encounter between these two repair events is causal in the formation of DSBs and the resulting cellular response, documenting a third model to account for O6-mG induced cell death in non-replicating cells. This graphical review highlights the details of this Repair Accident model, as compared to current models, and we discuss potential strategies to improve clinical use of alkylating agents such as temozolomide, that can be inferred from the Repair Accident model.
Collapse
Affiliation(s)
- Shingo Fujii
- Marseille Medical Genetics, UMR1251 Marseille, France
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Dept of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| | | |
Collapse
|
7
|
The role of dancing duplexes in biology and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34656330 DOI: 10.1016/bs.pmbts.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Across species, a common protein assembly arises: proteins containing structured domains separated by long intrinsically disordered regions, and dimerized through a self-association domain or through strong protein interactions. These systems are termed "IDP duplexes." These flexible dimers have roles in diverse pathologies including development of cancer, viral infections, and neurodegenerative disease. Here we discuss the role of disorder in IDP duplexes with similar domain architectures that bind hub protein, LC8. LC8-binding IDP duplexes are categorized into three groups: IDP duplexes that contain a self-association domain that is extended by LC8 binding, IDP duplexes that have no self-association domain and are dimerized through binding several copies of LC8, and multivalent LC8-binders that also have a self-association domain. Additionally, we discuss non-LC8-binding IDP duplexes with similar domain organizations, including the Nucleocapsid protein of SARS-CoV-2. We propose that IDP duplexes have structural features that are essential in many biological processes and that improved understanding of their structure function relationship will provide new therapeutic opportunities.
Collapse
|
8
|
Li YJ, Yang CN, Kuo MYP, Lai WT, Wu TS, Lin BR. ATMIN Suppresses Metastasis by Altering the WNT-Signaling Pathway via PARP1 in MSI-High Colorectal Cancer. Ann Surg Oncol 2021; 28:8544-8554. [PMID: 34148137 DOI: 10.1245/s10434-021-10322-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Constant DNA damage occurs in cells, and the cells are programmed to respond constitutively. This study explored the roles of ataxia-telangiectasia mutated interactor (ATMIN), one of the impaired pathways involving the DNA damage response (DDR) in mismatch repair-deficient [microsatellite instability (MSI)-high] colorectal carcinoma (CRC). METHODS Expression of ATMIN messenger RNA (mRNA) was detected in CRC specimens with microsatellite instability (MSI) characteristics. The effects of ectopic ATMIN expression and ATMIN knockdown on invasion abilities were evaluated in MSI-high cell lines, and liver metastasis ability was investigated in vivo. Protein-protein interactions were assessed by coimmunoprecipitation analyses in vitro. RESULTS Decreased ATMIN expression was positively correlated with advanced stage of disease (P < 0.05), lymph node metastases (P < 0.05), and deeper invasion (P < 0.05) in MSI-high tumors. Transient or stable ATMIN knockdown significantly increased cell motility. Moreover, in the high-throughput microarray and gene set enrichment analysis, ATMIN was shown to act on the Wnt-signaling pathway via PARP1. This cascade influences β-catenin/transcription factor 4 (TCF4) binding affinity in MSI-high tumors, and PARP1 inhibition significantly decreased the number of metastases from ATMIN knockdown cancer cells. CONCLUSIONS The results not only indicated the critical role of ATMIN, but also shed new light on PARP1 inhibitors, providing a basis for further clinical trials of MSI-high CRC.
Collapse
Affiliation(s)
- Yue-Ju Li
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan
| | - Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Lai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Tai-Sheng Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Been-Ren Lin
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
9
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
10
|
Kojima K, Ooka M, Abe T, Hirota K. Pold4, the fourth subunit of replicative polymerase δ, suppresses gene conversion in the immunoglobulin-variable gene in avian DT40 cells. DNA Repair (Amst) 2021; 100:103056. [PMID: 33588156 DOI: 10.1016/j.dnarep.2021.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The replicative polymerase δ (Polδ), consisting of four subunits, plays a pivotal role in chromosomal replication. Pold4, the smallest subunit of Polδ, is believed to contribute to the regulation of replication by facilitating repair in response to DNA damage. However, that contribution has not been fully elucidated. We here show that Pold4 contributes to the suppression of gene conversion in immunoglobulin-variable (IgV) gene diversification in the chicken DT40 lymphocyte cell line, where gene conversion diversifies the IgV gene through intragenic homologous recombination (HR) between diverged pseudo-V segments. IgV gene conversion is initiated by activation-induced cytidine deaminase-mediated uracil formation in the IgV gene, which in turn converts into an abasic site, leading to replication arrest. POLD4-/- cells exhibited an increased rate of IgV gene conversion. Moreover, the gene-conversion tract was lengthened and the usage of pseudo-V segments was altered, showing a preference, to use the diverged sequence as a donor in POLD4-/- cells. These data suggest that Pold4 is involved in the regulation of HR-mediated gene conversion in IgV diversification. By contrast, the rate in HR-mediated, sister-chromatid exchange and gene-targeting induced by an I-SceI endonclease-mediated DNA double-strand break exhibited by POLD4-/- cells was indistinguishable from that by wild-type cells. These findings indicate that the functionality of general HR is preserved in POLD4-/- cells. In conclusion, Pold4 is involved in the suppression of IgV-gene conversion without affecting the general functionality of HR.
Collapse
Affiliation(s)
- Kota Kojima
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
11
|
Murakami-Sekimata A, Sekimata M, Sato N, Hayasaka Y, Nakano A. Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae. Microb Physiol 2020; 30:25-35. [PMID: 32958726 DOI: 10.1159/000509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations.
Collapse
Affiliation(s)
- Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan,
| | - Masayuki Sekimata
- Radioisotope Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Natsumi Sato
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuto Hayasaka
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Japan
| |
Collapse
|
12
|
Zalmas LP, Lu WT, Kanu N. An emerging regulatory network of NHEJ via DYNLL1-mediated 53BP1 redistribution. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S93. [PMID: 31576301 DOI: 10.21037/atm.2019.04.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Wei-Ting Lu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Nnennaya Kanu
- Cancer Evolution and Genome Instability Laboratory, UCL Cancer Institute, London, UK
| |
Collapse
|
13
|
Clark S, Myers JB, King A, Fiala R, Novacek J, Pearce G, Heierhorst J, Reichow SL, Barbar EJ. Multivalency regulates activity in an intrinsically disordered transcription factor. eLife 2018; 7:36258. [PMID: 29714690 PMCID: PMC5963919 DOI: 10.7554/elife.36258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| | - Janette B Myers
- Department of Chemistry, Portland State University, Oregon, United States
| | - Ashleigh King
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Oregon, United States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| |
Collapse
|
14
|
King A, Li L, Wong DM, Liu R, Bamford R, Strasser A, Tarlinton DM, Heierhorst J. Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genet 2017; 13:e1007010. [PMID: 28922373 PMCID: PMC5619840 DOI: 10.1371/journal.pgen.1007010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHELIgm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. Antibody-producing B cells can be segregated into two major populations: The better known conventional B-2 cells typically produce high-affinity and mono-specific antibodies, but only after they encounter a particular pathogen or in response to vaccines. In contrast, the B-1a cells constitutively produce lower-affinity broad-specificity “natural” antibodies that serve as a preemptive defense against a wide range of microbes. Here we reveal that the transcription factor ASCIZ and its target DYNLL1 are essential for mice to have a normally sized pool of B-1a cells in place shortly after birth. We show that these two factors function in a single linear pathway during the development of B-1a cells. This interaction represents a rare example where the activity of a transcription factor, in this case ASCIZ, can be explained by the effects of a single target gene, in this case Dynll1. While ASCIZ and DYNLL1 are also required for producing normal numbers of B-2 cells, we discovered that they regulate B-1a cells and B-2 cells by distinct genetic mechanisms. Finally, we found that ASCIZ also contributes to the early onset of B-1a B cell-derived lymphoid cancers in juvenile mice. The results provide insight into the development of an important cell population of the immune system.
Collapse
Affiliation(s)
- Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - Lingli Li
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - David M. Wong
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rebecca Bamford
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
15
|
Novel biomarkers in kidney disease: roles for cilia, Wnt signalling and ATMIN in polycystic kidney disease. Biochem Soc Trans 2017; 44:1745-1751. [PMID: 27913685 DOI: 10.1042/bst20160124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
Biomarkers, the measurable indicators of biological conditions, are fast becoming a popular approach in providing information to track disease processes that could lead to novel therapeutic interventions for chronic conditions. Inherited, chronic kidney disease affects millions of people worldwide and although pharmacological treatments exist for some conditions, there are still patients whose only option is kidney dialysis and kidney transplantation. In the past 10 years, certain chronic kidney diseases have been reclassified as ciliopathies. Cilia in the kidney are antenna-like, sensory organelles that are required for signal transduction. One of the signalling pathways that requires the primary cilium in the kidney is Wnt signalling and it has three components such as canonical Wnt, non-canonical Wnt/planar cell olarity (PCP) and non-canonical Wnt/Ca2+ signalling. Identification of the novel role of ATM INteractor (ATMIN) as an effector molecule in the non-canonical Wnt/PCP pathway has intrigued us to investigate its potential role in chronic kidney disease. ATMIN could thus be an important biomarker in disease prognosis and treatment that might lighten the burden of chronic kidney disease and also affect on its progression.
Collapse
|
16
|
Abstract
ASCIZ/ATMIN is not required for ATM activation by replication stress in MEFs. ATM activation is normal in human ASCIZ/ATMIN KO cells. ASCIZ/ATMIN is dispensable for aphidicolin-induced 53BP1 focus formation.
The ATM kinase plays critical roles in the response to DNA double-strand breaks, and can also be activated by prolonged DNA replication blocks. It has recently been proposed that replication stress-dependent ATM activation is mediated by ASCIZ (also known as ATMIN, ZNF822), an essential developmental transcription factor. In contrast, we show here that ATM activation, and phosphorylation of its substrates KAP1, p53 and H2AX in response to the replication blocking agent aphidicolin was unaffected in both immortalized and primary ASCIZ/ATMIN-deficient murine embryonic fibroblasts compared to control cells. Similar results were also obtained in human ASCIZ/ATMIN-deleted lymphoma cells. The results demonstrate that ASCIZ/ATMIN is dispensable for ATM activation, and contradict the previously reported dependence of ATM on ASCIZ/ATMIN.
Collapse
|
17
|
Ataxia-telangiectasia mutated interactor regulates head and neck cancer metastasis via KRas expression. Oral Oncol 2016; 66:100-107. [PMID: 28012797 DOI: 10.1016/j.oraloncology.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Relapse is the most serious problem affecting the morbidity and mortality rates of patients with head and neck squamous cell carcinoma (HNSCC). Although HNSCC has been studied for several decades, the exact mechanism of cancer recurrence remains unclear. MATERIALS AND METHODS ataxia-telangiectasia mutated interactor (ATMIN) messenger RNA(mRNA) expression was detected in HNSCC samples by quantitative RT-PCR, and was analyzed with patients' clinical outcomes by Kaplan-Meier analyses. The ectopic ATMIN expression or ATMIN silencing on invasion ability was evaluated in HNSCC cell lines. Lymph node metastasis ability was investigated by buccal orthotopic implantation in vivo. All statistical tests were two-sided. RESULTS ATMIN mRNA expression was positively correlated with patients' clinical outcomes. ATMIN blockage reduced invasion, migration, and metastasis abilities both in vitro and in vivo. Evidence from a buccal orthotopic implantation mice model showed that silenced ATMIN expression prolongs mice survival and reduced lymph node metastasis. In high-throughput microarray and bioinformative analyses, KRas was identified as a crucial downstream effector in ATMIN-mediated HNSCC metastasis and was positively associated with patients' clinical stages and ATMIN mRNA expression. CONCLUSIONS The role of ATMIN and its regulatory mechanisms in HNSCC progression are reported for the first time. The study results improve our understanding of the ATMIN-KRas axis leading to HNSCC migration or invasion and metastasis and facilitates the identification of possible therapy targets of downstream genes for designing effective therapeutic strategies in personalized medicine.
Collapse
|
18
|
Sengupta S, Rath U, Yao C, Zavortink M, Wang C, Girton J, Johansen KM, Johansen J. Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS One 2016; 11:e0166829. [PMID: 27861562 PMCID: PMC5115829 DOI: 10.1371/journal.pone.0166829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 12/02/2022] Open
Abstract
In this study we provide evidence that the spindle matrix protein Skeletor in Drosophila interacts with the human ASCIZ (also known as ATMIN and ZNF822) ortholog, Digitor/dASCIZ. This interaction was first detected in a yeast two-hybrid screen and subsequently confirmed by pull-down assays. We also confirm a previously documented function of Digitor/dASCIZ as a regulator of Dynein light chain/Cut up expression. Using transgenic expression of a mCitrine-labeled Digitor construct, we show that Digitor/dASCIZ is a nuclear protein that is localized to interband and developmental puff chromosomal regions during interphase but redistributes to the spindle region during mitosis. Its mitotic localization and physical interaction with Skeletor suggest the possibility that Digitor/dASCIZ plays a direct role in mitotic progression as a member of the spindle matrix complex. Furthermore, we have characterized a P-element insertion that is likely to be a true null Digitor/dASCIZ allele resulting in complete pupal lethality when homozygous, indicating that Digitor/dASCIZ is an essential gene. Phenotypic analysis of the mutant provided evidence that Digitor/dASCIZ plays critical roles in regulation of metamorphosis and organogenesis as well as in the DNA damage response. In the Digitor/dASCIZ null mutant larvae there was greatly elevated levels of γH2Av, indicating accumulation of DNA double-strand breaks. Furthermore, reduced levels of Digitor/dASCIZ decreased the resistance to paraquat-induced oxidative stress resulting in increased mortality in a stress test paradigm. We show that an early developmental consequence of the absence of Digitor/dASCIZ is reduced third instar larval brain size although overall larval development appeared otherwise normal at this stage. While Digitor/dASCIZ mutant larvae initiate pupation, all mutant pupae failed to eclose and exhibited various defects in metamorphosis such as impaired differentiation, incomplete disc eversion, and faulty apoptosis. Altogether we provide evidence that Digitor/dASCIZ is a nuclear protein that performs multiple roles in Drosophila larval and pupal development.
Collapse
Affiliation(s)
- Saheli Sengupta
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Uttama Rath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Michael Zavortink
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Chao Wang
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jack Girton
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Kristen M. Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (JJ); (KMJ)
| |
Collapse
|
19
|
Anjos-Afonso F, Loizou JI, Bradburn A, Kanu N, Purewal S, Da Costa C, Bonnet D, Behrens A. Perturbed hematopoiesis in mice lacking ATMIN. Blood 2016; 128:2017-2021. [PMID: 27581360 PMCID: PMC5147016 DOI: 10.1182/blood-2015-09-672980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
The ataxia telangiectasia mutated (ATM)-interacting protein ATMIN mediates noncanonical ATM signaling in response to oxidative and replicative stress conditions. Like ATM, ATMIN can function as a tumor suppressor in the hematopoietic system: deletion of Atmin under the control of CD19-Cre results in B-cell lymphomas in aging mice. ATM signaling is essential for lymphopoiesis and hematopoietic stem cell (HSC) function; however, little is known about the role of ATMIN in hematopoiesis. We thus sought to investigate whether the absence of ATMIN would affect primitive hematopoietic cells in an ATM-dependent or -independent manner. Apart from its role in B-cell development, we show that ATMIN has an ATM-independent function in the common myeloid progenitors (CMPs) by deletion of Atmin in the entire hematopoietic system using Vav-Cre. Despite the lack of lymphoma formation, ATMIN-deficient mice developed chronic leukopenia as a result of high levels of apoptosis in B cells and CMPs and induced a compensatory mechanism in which HSCs displayed enhanced cycling. Consequently, ATMIN-deficient HSCs showed impaired regeneration ability with the induction of the DNA oxidative stress response, especially when aged. ATMIN, therefore, has multiple roles in different cell types, and its absence results in perturbed hematopoiesis, especially during stress conditions and aging.
Collapse
Affiliation(s)
- Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Haematopoietic Signalling Group, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Joanna I Loizou
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amy Bradburn
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Nnennaya Kanu
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Translational Cancer Therapeutics Laboratory, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sukhveer Purewal
- Flow Cytometry Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom; and
| | - Clive Da Costa
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
| | - Axel Behrens
- Mammalian Genetics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London, United Kingdom
- Diabetes & Nutritional Sciences Division, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Kanu N, Zhang T, Burrell RA, Chakraborty A, Cronshaw J, Da Costa C, Grönroos E, Pemberton HN, Anderton E, Gonzalez L, Sabbioneda S, Ulrich HD, Swanton C, Behrens A. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene 2016; 35:4009-19. [PMID: 26549024 PMCID: PMC4842010 DOI: 10.1038/onc.2015.427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
The DNA replication machinery invariably encounters obstacles that slow replication fork progression, and threaten to prevent complete replication and faithful segregation of sister chromatids. The resulting replication stress activates ATR, the major kinase involved in resolving impaired DNA replication. In addition, replication stress also activates the related kinase ATM, which is required to prevent mitotic segregation errors. However, the molecular mechanism of ATM activation by replication stress is not defined. Here, we show that monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA), a marker of stalled replication forks, interacts with the ATM cofactor ATMIN via WRN-interacting protein 1 (WRNIP1). ATMIN, WRNIP1 and RAD18, the E3 ligase responsible for PCNA monoubiquitination, are specifically required for ATM signalling and 53BP1 focus formation induced by replication stress, not ionising radiation. Thus, WRNIP1 connects PCNA monoubiquitination with ATMIN/ATM to activate ATM signalling in response to replication stress and contribute to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Nnennaya Kanu
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Tianyi Zhang
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Rebecca A. Burrell
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Atanu Chakraborty
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Janet Cronshaw
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Clive Da Costa
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Helen N. Pemberton
- Molecular Oncology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Emma Anderton
- Molecular Oncology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Laure Gonzalez
- DNA Damage Tolerance Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare-CNR, Via Abbiategrasso, 207 - 27100 Pavia, Italy
| | - Helle D. Ulrich
- DNA Damage Tolerance Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK and UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, The Francis Crick Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- School of Medicine, King’s College London, Guy’s Campus, London, SE1 1UL, UK
| |
Collapse
|
21
|
Leszczynska KB, Göttgens EL, Biasoli D, Olcina MM, Ient J, Anbalagan S, Bernhardt S, Giaccia AJ, Hammond EM. Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1. Sci Rep 2016; 6:21698. [PMID: 26875667 PMCID: PMC4753685 DOI: 10.1038/srep21698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/29/2016] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-induced replication stress is one of the most physiologically relevant signals known to activate ATM in tumors. Recently, the ATM interactor (ATMIN) was identified as critical for replication stress-induced activation of ATM in response to aphidicolin and hydroxyurea. This suggests an essential role for ATMIN in ATM regulation during hypoxia, which induces replication stress. However, ATMIN also has a role in base excision repair, a process that has been demonstrated to be repressed and less efficient in hypoxic conditions. Here, we demonstrate that ATMIN is dispensable for ATM activation in hypoxia and in contrast to ATM, does not affect cell survival and radiosensitivity in hypoxia. Instead, we show that in hypoxic conditions ATMIN expression is repressed. Repression of ATMIN in hypoxia is mediated by both p53 and HIF-1α in an oxygen dependent manner. The biological consequence of ATMIN repression in hypoxia is decreased expression of the target gene, DYNLL1. An expression signature associated with p53 activity was negatively correlated with DYNLL1 expression in patient samples further supporting the p53 dependent repression of DYNLL1. Together, these data demonstrate multiple mechanisms of ATMIN repression in hypoxia with consequences including impaired BER and down regulation of the ATMIN transcriptional target, DYNLL1.
Collapse
Affiliation(s)
- Katarzyna B. Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Eva-Leonne Göttgens
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Deborah Biasoli
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Monica M. Olcina
- Division of Cancer and Radiation Oncology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Selvakumar Anbalagan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephan Bernhardt
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Amato J. Giaccia
- Division of Cancer and Radiation Oncology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, USA
| | - Ester M. Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
22
|
Wong D, Li L, Jurado S, King A, Bamford R, Wall M, Walia M, Kelly G, Walkley C, Tarlinton D, Strasser A, Heierhorst J. The Transcription Factor ASCIZ and Its Target DYNLL1 Are Essential for the Development and Expansion of MYC-Driven B Cell Lymphoma. Cell Rep 2016; 14:1488-1499. [DOI: 10.1016/j.celrep.2016.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
|
23
|
Prochazkova J, Sakaguchi S, Owusu M, Mazouzi A, Wiedner M, Velimezi G, Moder M, Turchinovich G, Hladik A, Gurnhofer E, Hayday A, Behrens A, Knapp S, Kenner L, Ellmeier W, Loizou JI. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genet 2015; 11:e1005645. [PMID: 26544571 PMCID: PMC4636180 DOI: 10.1371/journal.pgen.1005645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Adrian Hayday
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Axel Behrens
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
24
|
Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, Hsu HM, Yu JC, Shen CY. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity. PLoS One 2015; 10:e0128472. [PMID: 26115122 PMCID: PMC4482746 DOI: 10.1371/journal.pone.0128472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124) participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs). We then examined which DNA repair–related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair–related genes, encoding ATM interactor (ATMIN) and poly (ADP-ribose) polymerase 1 (PARP1), were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ling Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Ming Hsu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- College of Public Health, China Medical University, Taichong, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Goggolidou P, Stevens JL, Agueci F, Keynton J, Wheway G, Grimes DT, Patel SH, Hilton H, Morthorst SK, DiPaolo A, Williams DJ, Sanderson J, Khoronenkova SV, Powles-Glover N, Ermakov A, Esapa CT, Romero R, Dianov GL, Briscoe J, Johnson CA, Pedersen LB, Norris DP. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development 2014; 141:3966-77. [PMID: 25294941 PMCID: PMC4197704 DOI: 10.1242/dev.107755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jonathan L Stevens
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Francesco Agueci
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jennifer Keynton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel T Grimes
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Saloni H Patel
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Antonella DiPaolo
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Debbie J Williams
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-11, Moscow 119991, Russia
| | - Nicola Powles-Glover
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Alexander Ermakov
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Chris T Esapa
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rosario Romero
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
26
|
Schmidt L, Wiedner M, Velimezi G, Prochazkova J, Owusu M, Bauer S, Loizou JI. ATMIN is required for the ATM-mediated signaling and recruitment of 53BP1 to DNA damage sites upon replication stress. DNA Repair (Amst) 2014; 24:122-130. [PMID: 25262557 PMCID: PMC4251980 DOI: 10.1016/j.dnarep.2014.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 01/15/2023]
Abstract
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.
Collapse
Affiliation(s)
- Luisa Schmidt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Waehringer Strasse 13A, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Sabine Bauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3 1090 Vienna, Austria.
| |
Collapse
|
27
|
Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res 2014; 329:85-93. [PMID: 25281304 DOI: 10.1016/j.yexcr.2014.09.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
28
|
Cremona CA, Behrens A. ATM signalling and cancer. Oncogene 2014; 33:3351-60. [PMID: 23851492 DOI: 10.1038/onc.2013.275] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022]
Abstract
ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.
Collapse
Affiliation(s)
- C A Cremona
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| | - A Behrens
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
29
|
Goggolidou P, Hadjirin NF, Bak A, Papakrivopoulou E, Hilton H, Norris DP, Dean CH. Atmin mediates kidney morphogenesis by modulating Wnt signaling. Hum Mol Genet 2014; 23:5303-16. [PMID: 24852369 PMCID: PMC4168818 DOI: 10.1093/hmg/ddu246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The DNA damage protein and transcription factor Atmin (Asciz) is required for both lung tubulogenesis and ciliogenesis. Like the lungs, kidneys contain a tubular network that is critical for their function and in addition, renal ciliary dysfunction has been implicated in the pathogenesis of cystic kidney disease. Using the Atmin mouse mutant Gasping6 (Gpg6), we investigated kidney development and found it severely disrupted with reduced branching morphogenesis, resulting in fewer epithelial structures being formed. Unexpectedly, transcriptional levels of key cilia associated genes were not altered in AtminGpg6/Gpg6 kidneys. Instead, Gpg6 homozygous kidneys exhibited altered cytoskeletal organization and modulation of Wnt signaling pathway molecules, including β-catenin and non-canonical Wnt/planar cell polarity (PCP) pathway factors, such as Daam2 and Vangl2. Wnt signaling is important for kidney development and perturbation of Wnt signaling pathways can result in cystic, and other, renal abnormalities. In common with other PCP pathway mutants, AtminGpg6/Gpg6 mice displayed a shortened rostral-caudal axis and mis-oriented cell division. Moreover, intercrosses between AtminGpg6/+ and Vangl2Lp/+ mice revealed a genetic interaction between Atmin and Vangl2. Thus we show for the first time that Atmin is critical for normal kidney development and we present evidence that mechanistically, Atmin modifies Wnt signaling pathways, specifically placing it as a novel effector molecule in the non-canonical Wnt/PCP pathway. The identification of a novel modulator of Wnt signaling has important implications for understanding the pathobiology of renal disease.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Nazreen F Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Aggie Bak
- College of Nursing, Midwifery & Healthcare, University of West London, Middlesex TW8 9GB, UK
| | | | - Helen Hilton
- Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| | | | - Charlotte H Dean
- Leukocyte Biology, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK Mammalian Genetics Unit, Medical Research Council, Harwell, UK
| |
Collapse
|
30
|
The novel zinc finger protein dASCIZ regulates mitosis in Drosophila via an essential role in dynein light-chain expression. Genetics 2013; 196:443-53. [PMID: 24336747 DOI: 10.1534/genetics.113.159541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.
Collapse
|
31
|
Jurado S, Gleeson K, O'Donnell K, Izon DJ, Walkley CR, Strasser A, Tarlinton DM, Heierhorst J. The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim. ACTA ACUST UNITED AC 2012; 209:1629-39. [PMID: 22891272 PMCID: PMC3428950 DOI: 10.1084/jem.20120785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn(2+)-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination. Instead, ASCIZ-deficient B cell precursors contain highly reduced levels of DYNLL1 (dynein light chain 1; LC8), a recently identified transcriptional target of ASCIZ, and normal B cell development can be restored by ectopic Dynll1 expression. Remarkably, the B cell lymphopenia in the absence of ASCIZ can also be fully suppressed by deletion of the proapoptotic DYNLL1 target Bim. Our findings demonstrate a key role for ASCIZ in regulating the survival of developing B cells by activating DYNLL1 expression, which may then modulate Bim-dependent apoptosis.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jurado S, Conlan LA, Baker EK, Ng JL, Tenis N, Hoch NC, Gleeson K, Smeets M, Izon D, Heierhorst J. ATM substrate Chk2-interacting Zn2+ finger (ASCIZ) Is a bi-functional transcriptional activator and feedback sensor in the regulation of dynein light chain (DYNLL1) expression. J Biol Chem 2011; 287:3156-64. [PMID: 22167198 DOI: 10.1074/jbc.m111.306019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved DYNLL1 (LC8) protein was originally discovered as a light chain of the dynein motor complex, but is increasingly emerging as a sequence-specific regulator of protein dimerization with hundreds of targets and wide-ranging cellular functions. Despite its important roles, DYNLL1's own regulation remains poorly understood. Here we identify ASCIZ (ATMIN/ZNF822), an essential Zn(2+) finger protein with dual roles in the DNA base damage response and as a developmental transcription factor, as a conserved regulator of Dynll1 gene expression. DYNLL1 levels are reduced by ∼10-fold in the absence of ASCIZ in human, mouse and chicken cells. ASCIZ binds directly to the Dynll1 promoter and regulates its activity in a Zn(2+) finger-dependent manner. DYNLL1 protein in turn interacts with ten binding sites in the ASCIZ transcription activation domain, and high DYNLL1 levels inhibit the transcriptional activity of ASCIZ. In addition, DYNLL1 was also required for DNA damage-induced ASCIZ focus formation. The dual ability of ASCIZ to activate Dynll1 gene expression and to sense free DYNLL1 protein levels enables a simple dynamic feedback loop to adjust DYNLL1 levels to cellular needs. The ASCIZ-DYNLL1 feedback loop represents a novel mechanism for auto-regulation of gene expression, where the gene product directly inhibits the transcriptional activator while bound at its own promoter.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rapali P, García-Mayoral MF, Martínez-Moreno M, Tárnok K, Schlett K, Albar JP, Bruix M, Nyitray L, Rodriguez-Crespo I. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization. Biochem Biophys Res Commun 2011; 414:493-8. [PMID: 21971545 DOI: 10.1016/j.bbrc.2011.09.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/30/2022]
Abstract
LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1. Thus, our results imply a potential cellular interference between DYNLL1 and ATMIN functions.
Collapse
Affiliation(s)
- Péter Rapali
- Dept. Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Loizou J, Sancho R, Kanu N, Bolland D, Yang F, Rada C, Corcoran A, Behrens A. ATMIN is required for maintenance of genomic stability and suppression of B cell lymphoma. Cancer Cell 2011; 19:587-600. [PMID: 21575860 PMCID: PMC4452547 DOI: 10.1016/j.ccr.2011.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 01/05/2011] [Accepted: 03/28/2011] [Indexed: 12/03/2022]
Abstract
Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Ataxia Telangiectasia Mutated Proteins
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- DNA Breaks
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin Heavy Chain
- Genes, Immunoglobulin Light Chain
- Genomic Instability
- Immunoglobulin Class Switching
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/prevention & control
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Mice, Nude
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Recombination, Genetic
- Signal Transduction
- Time Factors
- Transcription Factors
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Joanna I. Loizou
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rocio Sancho
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Nnennaya Kanu
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Daniel J. Bolland
- The Babraham Institute, Laboratory of Chromatin and Gene Expression, Cambridge CB22 3AT, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Anne E. Corcoran
- The Babraham Institute, Laboratory of Chromatin and Gene Expression, Cambridge CB22 3AT, UK
| | - Axel Behrens
- Mammalian Genetics Lab, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK
- Corresponding author
| |
Collapse
|
35
|
Affiliation(s)
| | - Shan Zha
- To whom correspondence should be addressed ()
| |
Collapse
|
36
|
Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, Ng JL, McNees CJ, Kozlov SV, Oka H, Kobayashi M, Conlan LA, Cole TJ, Yamamoto KI, Taniguchi Y, Takeda S, Lavin MF, Heierhorst J. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet 2010; 6:e1001170. [PMID: 20975950 PMCID: PMC2958817 DOI: 10.1371/journal.pgen.1001170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. ASCIZ is a DNA damage response protein that has been proposed to be a regulator and stabilizing co-factor of the ATM kinase, mutations of which lead to a syndrome involving neurological and immune dysfunctions, tumour predisposition, and X-ray hypersensitivity. To study Asciz function in vivo, we have generated a knockout mouse model lacking this gene. Here we show that ASCIZ has a specific role in mediating cell survival in response to DNA base damage, but it is not required for stabilization and regulation of ATM. Strikingly, Asciz knockout mice fail to survive to birth and have tissue-specific defects in embryonic development. In particular, Asciz null embryos fail to develop lungs and undergo an early arrest in tracheal development. The precursor cells that normally form the lung are present in our embryos, but they fail to segregate from the foregut. These observations indicate that ASCIZ plays an important and previously unrecognized developmental role that is most likely unrelated to its function in mediating responses to DNA damage. Our study delineates the function of ASCIZ in DNA damage survival and highlights an exciting new function of the protein in controlling the early stages of lung development.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Bryce van Denderen
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Nora Tenis
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew Hammet
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Kimberly Hewitt
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Jane-Lee Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Hayato Oka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Timothy J. Cole
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | | | - Yoshihito Taniguchi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Australia
- Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Herston, Australia
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- * E-mail:
| |
Collapse
|
37
|
Traven A, Lo TL, Pike BL, Friesen H, Guzzo J, Andrews B, Heierhorst J. Dual functions of Mdt1 in genome maintenance and cell integrity pathways in Saccharomyces cerevisiae. Yeast 2010; 27:41-52. [PMID: 19894211 DOI: 10.1002/yea.1730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent evidence indicates considerable cross-talk between genome maintenance and cell integrity control pathways. The RNA recognition motif (RRM)- and SQ/TQ cluster domain (SCD)-containing protein Mdt1 is required for repair of 3'-blocked DNA double-strand breaks (DSBs) and efficient recombinational maintenance of telomeres in budding yeast. Here we show that deletion of MDT1 (PIN4/YBL051C) leads to severe synthetic sickness in the absence of the genes for the central cell integrity MAP kinases Bck1 and Slt2/Mpk1. Consistent with a cell integrity function, mdt1Delta cells are hypersensitive to the cell wall toxin calcofluor white and the Bck1-Slt2 pathway activator caffeine. An RRM-deficient mdt1-RRM0 allele shares the severe bleomycin hypersensitivity, inefficient recombinational telomere maintenance and slt2 synthetic sickness phenotypes, but not the cell wall toxin hypersensitivity with mdt1Delta. However, the mdt1-RRM(3A) allele, where only the RNA-binding site is mutated, behaves similarly to the wild-type, suggesting that the Mdt1 RRM functions as a protein-protein interaction rather than a nucleic acid-binding module. Surprisingly, in a strain background where double mutants are sick but still viable, bck1Deltamdt1Delta and slt2Deltamdt1Delta mutants differ in some of their phenotypes, consistent with the emerging concept of flexible signal entry and exit points in the Bck1-Mkk1/2-Slt2 pathway. Overall, the results indicate that Mdt1 has partially separable functions in both cell wall and genome integrity pathways.
Collapse
Affiliation(s)
- Ana Traven
- St. Vincent's Institute of Medical Research and Department of Medicine SVH, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Yoshizawa K, Jelezcova E, Brown AR, Foley JF, Nyska A, Cui X, Hofseth LJ, Maronpot RM, Wilson SH, Sepulveda AR, Sobol RW. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta. PLoS One 2009; 4:e6493. [PMID: 19654874 PMCID: PMC2716528 DOI: 10.1371/journal.pone.0006493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 07/07/2009] [Indexed: 01/13/2023] Open
Abstract
Background Altered expression of DNA polymerase β (Pol β) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol β over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings We have recently developed a novel transgenic mouse model that over-expresses Pol β. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol β over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol β expression. We observed elevated expression of Pol β in stomach adenomas and thyroid follicular carcinomas, but reduced Pol β expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.
Collapse
Affiliation(s)
- Katsuhiko Yoshizawa
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Department of Pathology II, Kansai Medical University, Moriguchi, Osaka, Japan
| | - Elena Jelezcova
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Ashley R. Brown
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Julie F. Foley
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Abraham Nyska
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Xiangli Cui
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lorne J. Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Robert M. Maronpot
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Antonia R. Sepulveda
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert W. Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, Reyal F, Radvanyi F, Salmon R, Thiery JP, Sastre-Garau X, Sigal-Zafrani B, Fourquet A, Delattre O. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 2008; 14:1956-65. [PMID: 18381933 DOI: 10.1158/1078-0432.ccr-07-1465] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To gain insight into genomic and transcriptomic subtypes of ductal carcinomas in situ of the breast (DCIS). EXPERIMENTAL DESIGN We did a combined phenotypic and genomic analysis of a series of 57 DCIS integrated with gene expression profile analysis for 26 of the 57 cases. RESULTS Thirty-two DCIS exhibited a luminal phenotype; 21 were ERBB2 positive, and 4 were ERBB2/estrogen receptor (ER) negative with 1 harboring a bona fide basal-like phenotype. Based on a CGH analysis, genomic types were identified in this series of DCIS with the 1q gain/16q loss combination observed in 3 luminal DCIS, the mixed amplifier pattern including all ERBB2, 12 luminal and 2 ERBB2(-)/ER(-) DCIS, and the complex copy number alteration profile encompassing 14 luminal and 1 ERBB2(-)/ER(-) DCIS. Eight cases (8 of 57; 14%) presented a TP53 mutation, all being amplifiers. Unsupervised analysis of gene expression profiles of 26 of the 57 DCIS showed that luminal and ERBB2-amplified, ER-negative cases clustered separately. We further investigated the effect of high and low copy number changes on gene expression. Strikingly, amplicons but also low copy number changes especially on 1q, 8q, and 16q in DCIS regulated the expression of a subset of genes in a very similar way to that recently described in invasive ductal carcinomas. CONCLUSIONS These combined approaches show that the molecular heterogeneity of breast ductal carcinomas exists already in in situ lesions and further indicate that DCIS and invasive ductal carcinomas share genomic alterations with a similar effect on gene expression profile.
Collapse
|
40
|
Oka H, Sakai W, Sonoda E, Nakamura J, Asagoshi K, Wilson SH, Kobayashi M, Yamamoto K, Heierhorst J, Takeda S, Taniguchi Y. DNA damage response protein ASCIZ links base excision repair with immunoglobulin gene conversion. Biochem Biophys Res Commun 2008; 371:225-9. [PMID: 18433721 DOI: 10.1016/j.bbrc.2008.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/09/2008] [Indexed: 01/06/2023]
Abstract
ASCIZ (ATMIN) was recently identified as a novel DNA damage response protein. Here we report that ASCIZ-deficient chicken DT40 B lymphocyte lines displayed markedly increased Ig gene conversion rates, whereas overexpression of human ASCIZ reduced Ig gene conversion below wild-type levels. However, neither the efficiency of double-strand break repair nor hypermutation was affected by ASCIZ levels, indicating that ASCIZ does not directly control homologous recombination or formation of abasic sites. Loss of ASCIZ led to mild sensitivity to the base damaging agent methylmethane sulfonate (MMS), yet remarkably, suppressed the dramatic MMS hypersensitivity of polbeta-deficient cells. These data suggest that ASCIZ may affect the choice between competing base repair pathways in a manner that reduces the amount of substrates available for Ig gene conversion.
Collapse
Affiliation(s)
- Hayato Oka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res 2007; 66:8219-26. [PMID: 16912201 DOI: 10.1158/0008-5472.can-05-3945] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal regulation of progression from G(1) to S phase of the cell cycle by altered activity of cyclin-dependent kinases (CDKs) is a hallmark of cancer. However, inhibition of CDKs, particularly CDK2, has not shown selective activity against most cancer cells because the kinase seems to be redundant in control of cell cycle progression. Here, we show a novel role in the DNA damage response and application of CDK inhibitors in checkpoint-deficient cells. CDK2(-/-) mouse fibroblasts and small interfering RNA--mediated or small-molecule--mediated CDK2 inhibition in MCF7 or U2OS cells lead to delayed damage signaling through Chk1, p53, and Rad51. This coincided with reduced DNA repair using the single-cell comet assay and defects observed in both homologous recombination and nonhomologous end-joining in cell-based assays. Furthermore, tumor cells lacking cancer predisposition genes BRCA1 or ATM are 2- to 4-fold more sensitive to CDK inhibitors. These data suggest that inhibitors of CDK2 can be applied to selectively enhance responses of cancer cells to DNA-damaging agents, such as cytotoxic chemotherapy and radiotherapy. Moreover, inhibitors of CDKs may be useful therapeutics in cancers with defects in DNA repair, such as mutations in the familial breast cancer gene BRCA1.
Collapse
Affiliation(s)
- Andrew J Deans
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Pike BL, Heierhorst J. Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol 2007; 27:6532-45. [PMID: 17636027 PMCID: PMC2099617 DOI: 10.1128/mcb.00471-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3'-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Delta also hypersensitizes partially recombination-defective cells to camptothecin-induced 3'-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Delta cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair "clean" endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Delta leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Delta causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Brietta L Pike
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | | |
Collapse
|
43
|
Kanu N, Behrens A. ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO J 2007; 26:2933-41. [PMID: 17525732 PMCID: PMC1894771 DOI: 10.1038/sj.emboj.7601733] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/03/2007] [Indexed: 12/18/2022] Open
Abstract
The checkpoint kinase ATM (ataxia telangiectasia mutated) transduces genomic stress signals to halt cell cycle progression and promote DNA repair in response to DNA damage. Here, we report the characterisation of an essential cofactor for ATM, ATMIN (ATM INteracting protein). ATMIN interacts with ATM through a C-terminal motif, which is also present in Nijmegen breakage syndrome (NBS)1. ATMIN and ATM co-localised in response to ATM activation by chloroquine and hypotonic stress, but not after induction of double-strand breaks by ionising radiation (IR). ATM/ATMIN complex disruption by IR was attenuated in cells with impaired NBS1 function, suggesting competition of NBS1 and ATMIN for ATM binding. ATMIN protein levels were reduced in ataxia telangiectasia cells and ATM protein levels were low in primary murine fibroblasts lacking ATMIN, indicating reciprocal stabilisation. Whereas phosphorylation of Smc1, Chk2 and p53 was normal after IR in ATMIN-deficient cells, basal ATM activity and ATM activation by hypotonic stress and inhibition of DNA replication was impaired. Thus, ATMIN defines a novel NBS1-independent pathway of ATM signalling.
Collapse
Affiliation(s)
- Nnennaya Kanu
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, UK
- Mammalian Genetics Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44, Lincoln's Inn Fields, London WC2A 3PX, UK. Tel.: +44 207 269 3361; Fax: +44 207 269 3581; E-mail:
| |
Collapse
|
44
|
Abstract
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Ukai A, Maruyama T, Mochizuki S, Ouchida R, Masuda K, Kawamura K, Tagawa M, Kinoshita K, Sakamoto A, Tokuhisa T, O-Wang J. Role of DNA polymerase theta in tolerance of endogenous and exogenous DNA damage in mouse B cells. Genes Cells 2006; 11:111-21. [PMID: 16436048 DOI: 10.1111/j.1365-2443.2006.00922.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA polymerase theta (Poltheta) is a family A polymerase that contains an intrinsic helicase domain. To investigate the function of Poltheta in mammalian cells, we have inactivated its polymerase activity in CH12 mouse B lymphoma cells by targeted deletion of the polymerase core domain that contains the catalytic aspartic acid residue. Compared to parental CH12 cells, mutant cells devoid of Poltheta polymerase activity exhibited a slightly reduced growth rate, accompanied by increased spontaneous cell death. In addition, mutant cells showed elevated sensitivity to mitomycin C, cisplatin, etoposide, gamma-irradiation and ultraviolet (UV) radiation. Interestingly, mutant cells were more sensitive to the alkylating agent methyl methanesulfonate (MMS) than parental cells. This elevated MMS sensitivity relative to WT cells persisted in the presence of methoxyamine, an inhibitor of the major base excision repair (BER) pathway, suggesting that Poltheta is involved in tolerance of MMS through a mechanism that appears to be different from BER. These results reveal an important role for Poltheta in preventing spontaneous cell death and in tolerance of not only DNA interstrand cross-links and double strand breaks but also UV adducts and alkylation damage in mammalian lymphocytes.
Collapse
Affiliation(s)
- Akiko Ukai
- Laboratory for Antigen Receptor Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|