1
|
Chen K, Qin YR, Liu SQ, Chen RL. Remission of iron overload in adipose tissue of obese mice by fatty acid-modified polyoxovanadates. RARE METALS 2025; 44:461-471. [DOI: 10.1007/s12598-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 09/11/2024]
|
2
|
Patel NK, David MS, Yang S, Garg R, Zhao H, Cormack BP, Culotta VC. Converging Roles of the Metal Transporter SMF11 and the Ferric Reductase FRE1 in Iron Homeostasis of Candida albicans. Mol Microbiol 2024; 122:879-895. [PMID: 39529282 DOI: 10.1111/mmi.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Pathogenic fungi must appropriately sense the host availability of essential metals such as Fe. In Candida albicans and other yeasts, sensing of Fe involves mitochondrial Fe-S clusters. Yeast mutants for Fe-S cluster assembly sense Fe limitation even when Fe is abundant and hyperaccumulate Fe. We observe this same disrupted Fe sensing with C. albicans mutants of SMF11, a NRAMP transporter of divalent metals. Mutants of smf11 hyperaccumulate both Mn and Fe and the elevated Mn is secondary to Fe overload. As with Fe-S biogenesis mutants, smf11∆/∆ mutants show upregulation of ferric reductases that are normally repressed under high Fe, and Fe import is activated. However, unlike Fe-S biogenesis mutants, smf11∆/∆ mutants show no defects in mitochondrial Fe-S enzymes. Intriguingly, this exact condition of disrupted Fe sensing without inhibiting Fe-S clusters occurs with C. albicans fre1∆/∆ mutants encoding a ferric reductase. Mutants of fre1 and smf11 display similar perturbations in the cell wall, in filamentation and in the ROS burst of morphogenesis, a Fe-dependent process. As with FRE1, SMF11 is important for virulence in a mouse model for disseminated candidiasis. We propose a model in which FRE1 and SMF11 operate outside the mitochondrial Fe-S pathway to donate ferrous Fe for Fe sensing.
Collapse
Affiliation(s)
- Naisargi K Patel
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongyu Zhao
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
4
|
Zhu X, Oldfather LE, Cobine PA. Metal Uptake by Mitochondrial Carrier Family Proteins Using Lactococcus lactis. Methods Mol Biol 2024; 2839:99-110. [PMID: 39008250 DOI: 10.1007/978-1-0716-4043-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion homeostasis in mitochondria is essential to maintaining proper cellular physiology. However, the ability of metals to bind off target or form complexes with multiple metabolites presents major challenges to understanding the mechanisms that govern this homeostasis. Adding further to the complexity, some of the major mitochondrial transporters have shown substrate promiscuity. In many cases, mitochondrial metals are found in the matrix compartment that is surrounded by the impermeable inner membrane. Four major classes of transporters facilitate the movement of solute across the inner membrane. These are mitochondrial carrier family, ATP-binding cassette transporters, mitochondrial pyruvate carriers, and sideroflexins. For iron, the matrix is the site of iron-sulfur clusters and heme synthesis and therefore transport must occur in a coordinated fashion with the cellular needs for these critical cofactors. Iron could be transported in numerous forms as it has been shown to form complexes with abundant metabolites such as citrate, nucleotides, or glutathione. Here, we describe assays to study iron (or any metal) transport by mitochondrial carrier family proteins expressed in Lactococcus lactis using a nisin-controlled expression system.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Laura E Oldfather
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
5
|
Gupta SV, Campos L, Schmidt KH. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress. Genetics 2023; 225:iyad147. [PMID: 37638880 PMCID: PMC10550321 DOI: 10.1093/genetics/iyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress can damage DNA and thereby contribute to genome instability. To avoid an imbalance or overaccumulation of reactive oxygen species (ROS), cells are equipped with antioxidant enzymes that scavenge excess ROS. Cells lacking the RecQ-family DNA helicase Sgs1, which contributes to homology-dependent DNA break repair and chromosome stability, are known to accumulate ROS, but the origin and consequences of this oxidative stress phenotype are not fully understood. Here, we show that the sgs1 mutant exhibits elevated mitochondrial superoxide, increased mitochondrial mass, and accumulation of recombinogenic DNA lesions that can be suppressed by antioxidants. Increased mitochondrial mass in the sgs1Δ mutant is accompanied by increased mitochondrial branching, which was also inducible in wildtype cells by replication stress. Superoxide dismutase Sod2 genetically interacts with Sgs1 in the suppression of nuclear chromosomal rearrangements under paraquat (PQ)-induced oxidative stress. PQ-induced chromosome rearrangements in the absence of Sod2 are promoted by Rad51 recombinase and the polymerase subunit Pol32. Finally, the dependence of chromosomal rearrangements on the Rev1/Pol ζ mutasome suggests that under oxidative stress successful DNA synthesis during DNA break repair depends on translesion DNA synthesis.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lillian Campos
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Sorribes-Dauden R, Jordá T, Peris D, Martínez-Pastor MT, Puig S. Adaptation of Saccharomyces Species to High-Iron Conditions. Int J Mol Sci 2022; 23:13965. [PMID: 36430442 PMCID: PMC9693265 DOI: 10.3390/ijms232213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
7
|
Diessl J, Berndtsson J, Broeskamp F, Habernig L, Kohler V, Vazquez-Calvo C, Nandy A, Peselj C, Drobysheva S, Pelosi L, Vögtle FN, Pierrel F, Ott M, Büttner S. Manganese-driven CoQ deficiency. Nat Commun 2022; 13:6061. [PMID: 36229432 PMCID: PMC9563070 DOI: 10.1038/s41467-022-33641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.
Collapse
Affiliation(s)
- Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Carmela Vazquez-Calvo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Drobysheva
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Ludovic Pelosi
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
8
|
Xu N, Xu Y, Smith N, Chen H, Guo Z, Lee J, Wu X. MTM1 displays a new function in the regulation of nickel resistance in Saccharomyces cerevisiae. Metallomics 2022; 14:6711704. [PMID: 36138538 PMCID: PMC9989664 DOI: 10.1093/mtomcs/mfac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Nickel (Ni) is an essential yet toxic trace element. Although a cofactor for many metalloenzymes, nickel function and metabolism is not fully explored in eukaryotes. Molecular biology and metallomic methods were utilized to explore the new physiological functions of nickel in Saccharomyces cerevisiae. Here we showed that MTM1 knockout cells displayed much stronger nickel tolerance than wild-type cells and mitochondrial accumulations of Ni and Fe of mtm1Δ cells dramatically decreased compared to wild-type cells when exposed to excess nickel. Superoxide dismutase 2 (Sod2p) activity in mtm1Δ cells was severely attenuated and restored through Ni supplementation in media or total protein. SOD2 mRNA level of mtm1Δ cells was significantly higher than that in the wild-type strain but was decreased by Ni supplementation. MTM1 knockout afforded resistance to excess nickel mediated through reactive oxygen species levels. Meanwhile, additional Ni showed no significant effect on the localization of Mtm1p. Our study reveals the MTM1 gene plays an important role in nickel homeostasis and identifies a novel function of nickel in promoting Sod2p activity in yeast cells.
Collapse
Affiliation(s)
- Naifeng Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yuan Xu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln 68588-0664, Nebraska
| | - Huizhu Chen
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziguo Guo
- Hubei Inspection Center for Quality and Safety of Agricultural Food, Wuhan 430070, China
| | - Jaekwon Lee
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln 68588-0664, Nebraska
| | - Xiaobin Wu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
9
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
10
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|
11
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|
12
|
Molecular Characterization and the Essential Biological Function of the Metal Chaperone Protein MtmA in Aspergillus fumigatus. Appl Environ Microbiol 2022; 88:e0018222. [PMID: 35435716 DOI: 10.1128/aem.00182-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The detoxification system of reactive oxygen species (ROS) plays critical roles in the survival and virulence of fungal pathogens in infected hosts, while superoxide dismutase (SOD) is the primary ROS scavenger. In the model yeast Saccharomyces cerevisiae, the metal chaperone protein Mtm1 is required for mitochondrial Sod2 activation and responses to oxidative stress. However, the function of the S. cerevisiae Mtm1 homolog in the human fungal pathogen Aspergillus fumigatus has not yet been clarified. In this study, we found that mitochondria-localized MtmA in A. fumigatus, a putative homolog of yeast Mtm1, not only has a similar function to Mtm1 in responding to oxidative stress resistance by affecting SodB (MnSOD) activity but is also essential for hyphal growth such that repressed expression of MtmA results in severe growth defects in A. fumigatus. In addition, the chelation of Zn2+ can obviously rescue growth defects caused by repression of MtmA, suggesting that MtmA may be involved in hyphal growth by affecting cellular Zn2+ detoxification. Moreover, MtmA contains four Mito-carr domains, whereas only the first Mito-carr domain is required for the function of MtmA. Therefore, the findings in this study suggest that MtmA in A. fumigatus has an important and unique function that is different from that in yeast. IMPORTANCE Knowledge of the key factors required for the viability of pathogenic fungi can help to explore new antifungal drugs. Here, we demonstrate that MtmA is involved in responding to oxidative stress by activating mitochondrial SodB activity. MtmA, especially for the first Mito-carr domain, is essential for colony growth by regulating cellular Zn2+ equilibrium and responses to oxidative stress in A. fumigatus. This is the first report of the vital and unique role of the MtmA protein in pathogenic fungi, indicating that it might be a potential antifungal drug target.
Collapse
|
13
|
Ogle MM, Trevino R, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants (Basel) 2022; 11:635. [PMID: 35453320 PMCID: PMC9024550 DOI: 10.3390/antiox11040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment. In this regard, it is becoming increasingly clear that the loss or disruption of mitochondrial oxidant scavenging enzymes may be, in specific tumors, either an early event in transformation or exhibit tumor-promoting properties. One example of such an antioxidant enzyme is manganese superoxide dismutase (MnSOD, also referred to as SOD2), which detoxifies superoxide, a ROS that has been shown, when its normal physiological levels are disrupted, to lead to oncogenicity and therapy resistance. Here, we will also discuss how the acetylation of MnSOD leads to a change in detoxification function that leads to a cellular environment permissive for the development of lineage plasticity-like properties that may be one mechanism leading to tumorigenic and therapy-resistant phenotypes.
Collapse
Affiliation(s)
- Meredith M. Ogle
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Hu SH, Jinn TL. Impacts of Mn, Fe, and Oxidative Stressors on MnSOD Activation by AtMTM1 and AtMTM2 in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:619. [PMID: 35270089 PMCID: PMC8912514 DOI: 10.3390/plants11050619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that the mitochondrial carrier family proteins of AtMTM1 and AtMTM2 are necessary for manganese superoxide dismutase (MnSOD) activation in Arabidopsis, and are responsive to methyl viologen (MV)-induced oxidative stress. In this study, we showed that MnSOD activity was enhanced specifically by Mn treatments. By using AtMnSOD-overexpressing and AtMnSOD-knockdown mutant plants treated with the widely used oxidative stressors including MV, NaCl, H2O2, and tert-butyl hydroperoxide (t-BH), we revealed that Arabidopsis MnSOD was crucial for root-growth control and superoxide scavenging ability. In addition, it has been reported that E. coli MnSOD activity is inhibited by Fe and that MTM1-mutated yeast cells exhibit elevated Fe content and decreased MnSOD activity, which can be restored by the Fe2+-specific chelator, bathophenanthroline disulfonate (BPS). However, we showed that BPS inhibited MnSOD activity in AtMTM1 and AtMTM2 single- and double-mutant protoplasts, implying that altered Fe homeostasis affected MnSOD activation through AtMTM1 and AtMTM2. Notably, we used inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis to reveal an abnormal Fe/Mn ratio in the roots and shoots of AtMTM1 and AtMTM2 mutants under MV stress, indicating the importance of AtMTM1 in roots and AtMTM2 in shoots for maintaining Fe/Mn balance.
Collapse
|
15
|
Frye KA, Sendra KM, Waldron KJ, Kehl-Fie TE. Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. J Inorg Biochem 2022; 230:111748. [PMID: 35151099 PMCID: PMC9112591 DOI: 10.1016/j.jinorgbio.2022.111748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
Abstract
Superoxide dismutases (SODs) are ancient enzymes of widespread importance present in all domains of life. Many insights have been gained into these important enzymes over the 50 years since their initial description, but recent studies in the context of microbial pathogenesis have resulted in findings that challenge long established dogmas. The repertoire of SODs that bacterial pathogens encode is diverse both in number and in metal dependencies, including copper, copper and zinc, manganese, iron, and cambialistic enzymes. Other bacteria also possess nickel dependent SODs. Compartmentalization of SODs only partially explains their diversity. The need for pathogens to maintain SOD activity across distinct hostile environments encountered during infection, including those limited for essential metals, is also a driver of repertoire diversity. SOD research using pathogenic microbes has also revealed the apparent biochemical ease with which metal specificity can change within the most common family of SODs. Collectively, these studies are revealing the dynamic nature of SOD evolution, both that of individual SOD enzymes that can change their metal specificity to adapt to fluctuating cellular metal availability, and of a cell's repertoire of SOD isozymes that can be differentially expressed to adapt to fluctuating environmental metal availability in a niche.
Collapse
|
16
|
Mitochondrial calcium uniporter affects neutrophil bactericidal activity during Staphylococcus aureus infection. Infect Immun 2021; 90:e0055121. [PMID: 34871043 DOI: 10.1128/iai.00551-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils simultaneously restrict Staphylococcus aureus dissemination and facilitate bactericidal activity during infection through the formation of neutrophil extracellular traps (NETs). Neutrophils that produce higher levels of mitochondrial superoxide undergo enhanced terminal NET formation (suicidal NETosis) in response to S. aureus; however, mechanisms regulating mitochondrial homeostasis upstream of neutrophil antibacterial processes are not fully resolved. Here, we demonstrate that mitochondrial calcium uptake 1 (MICU1)-deficient (MICU1-/-) neutrophils accumulate higher levels of calcium and iron within the mitochondria in a mitochondrial calcium uniporter (MCU)-dependent manner. Corresponding with increased ion flux through the MCU, mitochondrial superoxide production is elevated, thereby increasing the propensity for MICU1-/- neutrophils to undergo suicidal NETosis rather than primary degranulation in response to S. aureus. Increased NET formation augments macrophage killing of bacterial pathogens. Similarly, MICU1-/- neutrophils alone are not more antibacterial towards S. aureus, but rather enhanced suicidal NETosis by MICU1-/- neutrophils facilitates increased bactericidal activity in the presence of macrophages. Similarly, mice with a deficiency in MICU1 restricted to cells expressing LysM exhibit lower bacterial burdens in the heart with increased survival during systemic S. aureus infection. Coinciding with the decrease in S. aureus burdens, MICU1-/- neutrophils in the heart produced higher levels of mitochondrial superoxide and undergo enhanced suicidal NETosis. These results demonstrate that ion flux by the MCU affects the antibacterial function of neutrophils during S. aureus infection.
Collapse
|
17
|
Smethurst DGJ, Shcherbik N. Interchangeable utilization of metals: New perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J Biol Chem 2021; 297:101374. [PMID: 34732319 PMCID: PMC8633580 DOI: 10.1016/j.jbc.2021.101374] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Metal ions provide considerable functionality across biological systems, and their utilization within biomolecules has adapted through changes in the chemical environment to maintain the activity they facilitate. While ancient earth's atmosphere was rich in iron and manganese and low in oxygen, periods of atmospheric oxygenation significantly altered the availability of certain metal ions, resulting in ion replacement within biomolecules. This adaptation mechanism has given rise to the phenomenon of metal cofactor interchangeability, whereby contemporary proteins and nucleic acids interact with multiple metal ions interchangeably, with different coordinated metals influencing biological activity, stability, and toxic potential. The ability of extant organisms to adapt to fluctuating metal availability remains relevant in a number of crucial biomolecules, including the superoxide dismutases of the antioxidant defense systems and ribonucleotide reductases. These well-studied and ancient enzymes illustrate the potential for metal interchangeability and adaptive utilization. More recently, the ribosome has also been demonstrated to exhibit interchangeable interactions with metal ions with impacts on function, stability, and stress adaptation. Using these and other examples, here we review the biological significance of interchangeable metal ions from a new angle that combines both biochemical and evolutionary viewpoints. The geochemical pressures and chemical properties that underlie biological metal utilization are discussed in the context of their impact on modern disease states and treatments.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, New Jersey, USA.
| |
Collapse
|
18
|
Doni D, Meggiolaro M, Santos J, Audran G, Marque SRA, Costantini P, Bortolus M, Carbonera D. A Combined Spectroscopic and In Silico Approach to Evaluate the Interaction of Human Frataxin with Mitochondrial Superoxide Dismutase. Biomedicines 2021; 9:biomedicines9121763. [PMID: 34944579 PMCID: PMC8698469 DOI: 10.3390/biomedicines9121763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Frataxin (FXN) is a highly conserved mitochondrial protein whose deficiency causes Friedreich’s ataxia, a neurodegenerative disease. The precise physiological function of FXN is still unclear; however, there is experimental evidence that the protein is involved in biosynthetic iron–sulfur cluster machinery, redox imbalance, and iron homeostasis. FXN is synthesized in the cytosol and imported into the mitochondria, where it is proteolytically cleaved to the mature form. Its involvement in the redox imbalance suggests that FXN could interact with mitochondrial superoxide dismutase (SOD2), a key enzyme in antioxidant cellular defense. In this work, we use site-directed spin labelling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) and fluorescence quenching experiments to investigate the interaction between human FXN and SOD2 in vitro. Spectroscopic data are combined with rigid body protein–protein docking to assess the potential structure of the FXN-SOD2 complex, which leaves the metal binding region of FXN accessible to the solvent. We provide evidence that human FXN interacts with human SOD2 in vitro and that the complex is in fast exchange. This interaction could be relevant during the assembly of iron-sulfur (FeS) clusters and/or their incorporation in proteins when FeS clusters are potentially susceptible to attacks by reactive oxygen species.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (D.D.); (M.M.); (P.C.)
| | - Marta Meggiolaro
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (D.D.); (M.M.); (P.C.)
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Gérard Audran
- Aix Marseille Universitè, CNRS, ICR, UMR 7273, case 551, Ave Escadrille Normandie Niemen, CEDEX 20, 13397 Marseille, France; (G.A.); (S.R.A.M.)
| | - Sylvain R. A. Marque
- Aix Marseille Universitè, CNRS, ICR, UMR 7273, case 551, Ave Escadrille Normandie Niemen, CEDEX 20, 13397 Marseille, France; (G.A.); (S.R.A.M.)
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (D.D.); (M.M.); (P.C.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
- Correspondence:
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| |
Collapse
|
19
|
Ma S, Fu X, Liu L, Liu Y, Feng H, Jiang H, Liu X, Liu R, Liang Z, Li M, Tian Z, Hu B, Bai Y, Liang B, Liu X. Iron-Dependent Autophagic Cell Death Induced by Radiation in MDA-MB-231 Breast Cancer Cells. Front Cell Dev Biol 2021; 9:723801. [PMID: 34722507 PMCID: PMC8551752 DOI: 10.3389/fcell.2021.723801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
In radiation oncology, ionizing radiation is used to kill cancer cells, in other words, the induction of different types of cell death. To investigate this cellular death and the associated iron accumulation, the transfer, release, and participation of iron after radiation treatment was analyzed. We found that radiation-induced cell death varied in different breast cancer cells and autophagy was induced in MDA-MB-231 and BT549 cells (triple negative breast cancer cell line) rather than in MCF-7 and zr-75 cells. Iron chelator deferoxamine (DFO), the autophagy inhibitor 3MA, silencing of the autophagy-related genes ATG5, and Beclin 1 could decrease radiation induced cell death in MDA-MB-231 cells, while inhibitors of apoptosis such as Z-VAD-FMK, ferroptosis inhibitor ferrostatin-1 (Fer-1), and necroptosis inhibitor Necrostatin-1 showed no change. This suggests the occurrence of autophagic cell death. Furthermore, we found that iron accumulation and iron regulatory proteins, including transferrin (Tf), transferrin receptor (CD71), and Ferritin (FTH), increased after radiation treatment, and the silencing of transferrin decreased radiation-induced cell death. In addition, radiation increased lysosomal membrane permeabilization (LMP) and the release of lysosomal iron and cathepsins, while cathepsins silencing failed to change cell viability. Radiation-induced iron accumulation increased Reactive oxygen species (ROS) generation via the Fenton reaction and increased autophagy in a time-dependent manner. DFO, N-acetylcysteine (NAC), and overexpression of superoxide dismutase 2 (SOD2) decreased ROS generation, autophagy, and cell death. To summarize, for the first time, we found that radiation-induced autophagic cell death was iron-dependent in breast cancer MDA-MB-231 cells. These results provide new insights into the cell death process of cancers and might conduce to the development and application of novel therapeutic strategies for patients with apoptosis-resistant breast cancer.
Collapse
Affiliation(s)
- Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Fu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yi Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Heya Jiang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaomei Liu
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Rui Liu
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, Jilin University, Changchun, China
| | - Mengke Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Boqi Hu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
20
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
21
|
Bian J, Wang L, Wu J, Simth N, Zhang L, Wang Y, Wu X. MTM1 plays an important role in the regulation of zinc tolerance in Saccharomyces cerevisiae. J Trace Elem Med Biol 2021; 66:126759. [PMID: 33872833 DOI: 10.1016/j.jtemb.2021.126759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acquisition and distribution of zinc supports a number of biological processes. Various molecular factors are involved in zinc metabolism but not fully explored. BASIC PROCEDURES Spontaneous mutants were generated in yeast with excess zinc culture followed by whole genome DNA sequencing to discover zinc metabolism related genes by bioinformatics. An identified mutant was characterized through metallomic and molecular biology methods. MAIN FINDINGS Here we reported that MTM1 knockout cells displayed much stronger zinc tolerance than wild type cells on SC medium when exposed to excess zinc. Zn accumulation of mtm1Δ cells was dramatically decreased compared to wild type cells under excessive zinc condition due to MTM1 deletion reduced zinc uptake. ZRC1 mRNA level of mtm1Δ cells was significantly higher than that in the wild-type strain leading to increased vacuolar zinc accumulations in mtm1Δ cells. The mRNA levels of ZRT1 and ZAP1 decreased in mtm1Δ cells contributing to less Zn uptake. The zrc1Δmtm1Δ double knockout strain exhibited Zn sensitivity. MTM1 knockout did not afford resistance to excess zinc through an effect mediated through an influence on levels of ROS. Superoxide dismutase 2 (Sod2p) activity in mtm1Δ cells was severely impaired and not restored through Zn supplementation. Meanwhile, additional Zn showed no significant effect on the localization and expression of Mtm1p. PRINCIPAL CONCLUSIONS Our study reveals the MTM1 gene plays an important role in the regulation of zinc homeostasis in yeast cells via changing zinc uptake and distribution. This discovery provides new insights for better understanding biochemical communication between vacuole and mitochondrial in relation to zinc-metabolism.
Collapse
Affiliation(s)
- Jiang Bian
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Department of Obstetrics and Gynecology, Shanghai Everjoy Medical Polyclinic, 675 Minbei Road, Shanghai, 201107, China
| | - Lingyun Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Nathan Simth
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, United States
| | - Lingzhi Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaobin Wu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
22
|
Smethurst DGJ, Kovalev N, McKenzie ER, Pestov DG, Shcherbik N. Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese. J Biol Chem 2020; 295:17200-17214. [PMID: 33040024 PMCID: PMC7863898 DOI: 10.1074/jbc.ra120.015025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.
Collapse
Affiliation(s)
- Daniel G J Smethurst
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Nikolay Kovalev
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, Pennsylvania, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University, School of Osteopathic Medicine, Stratford, New Jersey, USA.
| |
Collapse
|
23
|
Jain A, Nilatawong P, Mamak N, Jensen LT, Jensen AN. Disruption in iron homeostasis and impaired activity of iron-sulfur cluster containing proteins in the yeast model of Shwachman-Diamond syndrome. Cell Biosci 2020; 10:105. [PMID: 32944219 PMCID: PMC7488397 DOI: 10.1186/s13578-020-00468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is a congenital disease that affects the bone marrow, skeletal system, and pancreas. The majority of patients with SDS have mutations in the SBDS gene, involved in ribosome biogenesis as well as other processes. A Saccharomyces cerevisiae model of SDS, lacking Sdo1p the yeast orthologue of SBDS, was utilized to better understand the molecular pathogenesis in the development of this disease. RESULTS Deletion of SDO1 resulted in a three-fold over-accumulation of intracellular iron. Phenotypes associated with impaired iron-sulfur (ISC) assembly, up-regulation of the high affinity iron uptake pathway, and reduced activities of ISC containing enzymes aconitase and succinate dehydrogenase, were observed in sdo1∆ yeast. In cells lacking Sdo1p, elevated levels of reactive oxygen species (ROS) and protein oxidation were reduced with iron chelation, using a cell impermeable iron chelator. In addition, the low activity of manganese superoxide dismutase (Sod2p) seen in sdo1∆ cells was improved with iron chelation, consistent with the presence of reactive iron from the ISC assembly pathway. In yeast lacking Sdo1p, the mitochondrial voltage-dependent anion channel (VDAC) Por1p is over-expressed and its deletion limits iron accumulation and increases activity of aconitase and succinate dehydrogenase. CONCLUSIONS We propose that oxidative stress from POR1 over-expression, resulting in impaired activity of ISC containing proteins and disruptions in iron homeostasis, may play a role in disease pathogenesis in SDS patients.
Collapse
Affiliation(s)
- Ayushi Jain
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
| | - Phubed Nilatawong
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190 Thailand
| | - Narinrat Mamak
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, 10400 Thailand
- Pathology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok, Thailand
| |
Collapse
|
24
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
25
|
Vásquez-Procopio J, Osorio B, Cortés-Martínez L, Hernández-Hernández F, Medina-Contreras O, Ríos-Castro E, Comjean A, Li F, Hu Y, Mohr S, Perrimon N, Missirlis F. Intestinal response to dietary manganese depletion inDrosophila. Metallomics 2020; 12:218-240. [DOI: 10.1039/c9mt00218a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic adaptations to manganese deficiency.
Collapse
|
26
|
Ahmad K, Naseem HA, Parveen S, Shah HUR, Shah SSA, Shaheen S, Ashfaq A, Jamil J, Ahmad MM, Ashfaq M. Synthesis and spectroscopic characterization of medicinal azo derivatives and metal complexes of Indandion. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Do E, Park S, Li MH, Wang JM, Ding C, Kronstad JW, Jung WH. The mitochondrial ABC transporter Atm1 plays a role in iron metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Med Mycol 2019; 56:458-468. [PMID: 29420779 DOI: 10.1093/mmy/myx073] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.
Collapse
Affiliation(s)
- Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Seho Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| | - Ming-Hui Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Jia-Mei Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
28
|
Han THL, Camadro JM, Barbault F, Santos R, El Hage Chahine JM, Ha-Duong NT. In Vitro interaction between yeast frataxin and superoxide dismutases: Influence of mitochondrial metals. Biochim Biophys Acta Gen Subj 2019; 1863:883-892. [PMID: 30797804 DOI: 10.1016/j.bbagen.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Friedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood. METHODS Therefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities. RESULTS Yfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal. CONCLUSIONS This work confirms the participation of Yfh1 in cellular defence against oxidative stress.
Collapse
Affiliation(s)
- Thi Hong Lien Han
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Jean-Michel Camadro
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Florent Barbault
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Renata Santos
- Mitochondries, Métaux et Stress Oxydant, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Jean-Michel El Hage Chahine
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Nguyet-Thanh Ha-Duong
- Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Univ Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France.
| |
Collapse
|
29
|
Li Y, Cui G, Farmer R, Jacob K, Pandit H, Li X, Martin RCG. Exposure to bile acids alters the intracellular location and function of MnSOD in Barrett's esophagus. J Surg Res 2018; 229:156-163. [PMID: 29936984 DOI: 10.1016/j.jss.2018.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress secondary to bile-acid exposure has been associated with metaplastic degeneration of normal esophageal mucosa into Barrett's esophagus (BE) cells and eventually esophageal adenocarcinoma. We previously reported that the macromolecular response of BE cells to this stress was largely regulated by the expression of manganese-dependent mitochondrial superoxide dismutase (MnSOD). As the mitochondrion plays a vital role in MnSOD activation, this study sought to determine the location and activity of MnSOD within BE cells after exposure to oxidative stress. METHODS A human BE cell line, BAR-T cell, was exposed 0.4 mM concentrations of taurocholic acid (Tau) or a 0.4 mM 1:1 mixture of bile salts for 4 h. Cell viability was performed with 3-(4, 5-dimthyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays. Proteins were extracted and separated into mitochondrial, nuclear, and cytoplasmic fractions followed by analysis by a western blot and enzymatic activities. RESULTS BAR-T cell showed resistance to the bile-salt insults. Expression of MnSOD was significantly increased in the cells exposed to a mixture of bile acids and Tau versus control. Mitochondria MnSOD is abundant and highly active. Nuclear fraction displayed presence of both MnSOD and Cu/zinc superoxide dismutase secondary to bile-acid exposure; however, the MnSOD was inactive in nuclear fraction. CONCLUSIONS This is the first study to specifically evaluate cellular fraction MnSOD expression, increased in BE cells in response to the oxidative stress of bile exposure. Mitochondrial MnSOD contributes to resistance of BAR-T cells to the bile-salt insults. Further investigation is required to determine the potential correlation between bile exposure and BE to adenocarcinoma progression via MnSOD-mediated cell signaling.
Collapse
Affiliation(s)
- Yan Li
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Guozhen Cui
- Department of Hepatology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Russell Farmer
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Kevin Jacob
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Harshul Pandit
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Xuanyi Li
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky
| | - Robert C G Martin
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
30
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
31
|
Zhu Y, Chen P, Wan H, Wang Y, Hao P, Liu Y, Liu J. Selenium-Chromium(VI) Interaction Regulates the Contents and Correlations of Trace Elements in Chicken Brain and Serum. Biol Trace Elem Res 2018; 181:154-163. [PMID: 28493199 DOI: 10.1007/s12011-017-1038-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the contents of trace elements in the brain and serum of male chickens and the effect of selenium-chromium(VI) interaction. A chronic experimental model was established by supplementing 22.14 mg/kg K2Cr2O7 with 0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg/kg Na2SeO3 mg/kg B.W. to water for chicken daily. After 14, 28, and 42 days of exposure to the solution, the brain and serum of chickens from each group were collected to detect the levels of Ca, Cu, Mn, Fe, Zn, and Mg by inductively coupled plasma mass spectrometer (ICP-MS). Cr(VI) time-dependently accumulated in the brain and serum. The contents of Cr increased both in the brain and serum with prolonged exposure. Cr contents in the brain and serum decreased in all Se groups compared with those in only Cr-treated groups. Ca contents decreased with prolonged exposure and increasing Se dosage. The contents of Cu and Mn increased on the 28th day but decreased on the 42nd day in the brain and serum. Fe and Zn contents decreased in the serum under prolonged exposure and increased on the 28th day but decreased on the 42nd day in the brain. Cr exposure did not significantly affect Mg contents in the brain but slightly decreased those in the serum. Therefore, appropriate doses of Se affected Cr accumulation, leading to adjustments in the contents and correlations of trace elements.
Collapse
Affiliation(s)
- Yiran Zhu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Chen
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Huiyu Wan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Pan Hao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, Castaings L, Briat JF, Mari S, Curie C. Intracellular Distribution of Manganese by the Trans-Golgi Network Transporter NRAMP2 Is Critical for Photosynthesis and Cellular Redox Homeostasis. THE PLANT CELL 2017; 29:3068-3084. [PMID: 29180598 PMCID: PMC5757278 DOI: 10.1105/tpc.17.00578] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 05/18/2023]
Abstract
Plants require trace levels of manganese (Mn) for survival, as it is an essential cofactor in oxygen metabolism, especially O2 production via photosynthesis and the disposal of superoxide radicals. These processes occur in specialized organelles, requiring membrane-bound intracellular transporters to partition Mn between cell compartments. We identified an Arabidopsis thaliana member of the NRAMP family of divalent metal transporters, NRAMP2, which functions in the intracellular distribution of Mn. Two knockdown alleles of NRAMP2 showed decreased activity of photosystem II and increased oxidative stress under Mn-deficient conditions, yet total Mn content remained unchanged. At the subcellular level, these phenotypes were associated with a loss of Mn content in vacuoles and chloroplasts. NRAMP2 was able to rescue the mitochondrial yeast mutant mtm1∆ In plants, NRAMP2 is a resident protein of the trans-Golgi network. NRAMP2 may act indirectly on downstream organelles by building up a cytosolic pool that is used to feed target compartments. Moreover, not only does the nramp2 mutant accumulate superoxide ions, but NRAMP2 can functionally replace cytosolic superoxide dismutase in yeast, indicating that the pool of Mn displaced by NRAMP2 is required for the detoxification of reactive oxygen species.
Collapse
Affiliation(s)
- Santiago Alejandro
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Rémy Cailliatte
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Carine Alcon
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Léon Dirick
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Frédéric Domergue
- Laboratoire de Biogénèse Membranaire CNRS, Université de Bordeaux, UMR 5200, F-33140 Villenave d'Ornon, France
| | - David Correia
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Loren Castaings
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Jean-François Briat
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Stéphane Mari
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| | - Catherine Curie
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, F-34060 Montpellier, France
| |
Collapse
|
33
|
Anzovino A, Chiang S, Brown BE, Hawkins CL, Richardson DR, Huang MLH. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia: An Impaired Nrf2 Response Mediated via Upregulation of Keap1 and Activation of the Gsk3β Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2858-2875. [PMID: 28935570 DOI: 10.1016/j.ajpath.2017.08.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione/oxidized glutathione ratio were observed, but the opposite was found in skeletal muscle. Decreased total and nuclear Nrf2 and increased levels of its inhibitor, Kelch-like ECH-associated protein 1, were evident in the KO heart, but not in skeletal muscle. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling was demonstrated in the KO heart. This process involved the following: i) increased Gsk3β activation, ii) β-transducin repeat containing E3 ubiquitin protein ligase nuclear accumulation, and iii) Fyn phosphorylation. A corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA were observed in KO hearts. Paradoxically, protein levels of some Nrf2 antioxidant targets were significantly increased in KO mice. Collectively, cardiac frataxin deficiency reduces Nrf2 levels via two potential mechanisms: increased levels of cytosolic Kelch-like ECH-associated protein 1 and activation of Gsk3β signaling, which decreases nuclear Nrf2. These findings are in contrast to the frataxin-deficient skeletal muscle, where Nrf2 was not decreased.
Collapse
Affiliation(s)
- Amy Anzovino
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Bronwyn E Brown
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Clare L Hawkins
- Inflammation Group, Heart Research Institute, Newtown, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
34
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|
35
|
Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics 2017; 8:679-91. [PMID: 27172123 DOI: 10.1039/c6mt00063k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Kim J, Kim J, Kook H, Park WJ. PICOT alleviates myocardial ischemia-reperfusion injury by reducing intracellular levels of reactive oxygen species. Biochem Biophys Res Commun 2017; 485:807-813. [PMID: 28257842 DOI: 10.1016/j.bbrc.2017.02.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Excessive generation of reactive oxygen species (ROS) is one of the main causes of myocardial ischemia-reperfusion (I/R) injury. In this study, we investigated the role of protein kinase C-interacting cousin of thioredoxin (PICOT; Grx3) during myocardial I/R using PICOT transgenic (TG) and knockdown (KD) mice. Infarction and apoptosis were attenuated in PICOT TG mice but exacerbated in PICOT KD mice upon I/R. In parallel, I/R-induced generation of ROS was attenuated in PICOT TG mice but exacerbated in PICOT KD mice. Angiotensin II (AngII)-mediated increases in ROS and free iron levels were also attenuated in cardiomyocytes isolated from PICOT TG mice but exacerbated in cardiomyocytes from PICOT KD mice. Accordingly, H2O2-mediated cell death was attenuated in cardiomyocytes isolated from PICOT TG mice but exacerbated in cardiomyocytes from PICOT KD mice. Taken together, these data show that PICOT alleviates myocardial I/R injury by regulating intracellular ROS and free iron levels. We suggest that PICOT presents a novel therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Jihwa Kim
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jooyeon Kim
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology and Medical Research Center for Gene Regulation, Chonnam National University Medical School, 160 Baekseo-ro, Dong-ku, Gwangju 61469, Republic of Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
37
|
Dong Y, Zhang D, Yu Q, Zhao Q, Xiao C, Zhang K, Jia C, Chen S, Zhang B, Zhang B, Li M. Loss of Ssq1 leads to mitochondrial dysfunction, activation of autophagy and cell cycle arrest due to iron overload triggered by mitochondrial iron-sulfur cluster assembly defects in Candida albicans. Int J Biochem Cell Biol 2017; 85:44-55. [PMID: 28163187 DOI: 10.1016/j.biocel.2017.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/30/2016] [Accepted: 01/29/2017] [Indexed: 01/10/2023]
Abstract
Iron-sulfur clusters perform essential functions in enzymatic catalysis and homeostatic regulation. Here we for the first time identified Ssq1 as an essential component for iron-sulfur cluster assembly in Candida albicans. Ssq1 played an important role in cell growth. Shutting off SSQ1 led to accumulation of intracellular iron, especially in mitochondria, and disorder of intracellular iron regulation. In tetO-SSQ1, iron overloading triggered the oxidative damage of mitochondrial function. Surprisingly, disruption of SSQ1 activated autophagic pathway. The mitochondrial dysfunction was further aggravated when CCZ1 (which is essential for autophagy) and SSQ1 was simultaneously deleted, suggesting that autophagy played a critical role in maintenance of mitochondrial function in tetO-SSQ1. In addition, double deletion of SSQ1 and CCZ1 further elevated cellular iron levels in comparison with tetO-SSQ1, indicating that autophagy participated in maintenance of iron homeostasis. Furthermore, we found that loss of SSQ1 led to increasing protein expression of Rnr1 and redistribution of Rnr2 from the nucleus to cytoplasm, and further resulted in cell cycle arrest. The results implied that cell cycle arrest was caused by activating the checkpoint pathway because of impairing the iron-sulfur cluster assembly in tetO-SSQ1. Shutting off SSQ1 led to a significant defect in filamentous development. Interestingly, the tetO-SSQ1ccz1Δ/Δ growth was inhibited on hyphae-inducing solid media. Both tetO-SSQ1 and tetO-SSQ1ccz1Δ/Δ exhibited extremely attenuated virulence, indicating that Ssq1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of iron-sulfur cluster assembly-related gene in C. albicans.
Collapse
Affiliation(s)
- Yijie Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China; The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Dan Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chenpeng Xiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Kai Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chang Jia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Sijia Chen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
38
|
Smith MR, Fernandes J, Go YM, Jones DP. Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 2017; 482:388-398. [PMID: 28212723 PMCID: PMC5382988 DOI: 10.1016/j.bbrc.2016.10.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022]
Abstract
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause "manganism", a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jolyn Fernandes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Lindahl PA, Moore MJ. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field. Biochemistry 2016; 55:4140-53. [PMID: 27433847 DOI: 10.1021/acs.biochem.6b00216] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States.,Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843-2128, United States
| | - Michael J Moore
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
40
|
Shawn, the Drosophila Homolog of SLC25A39/40, Is a Mitochondrial Carrier That Promotes Neuronal Survival. J Neurosci 2016; 36:1914-29. [PMID: 26865615 DOI: 10.1523/jneurosci.3432-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.
Collapse
|
41
|
Maouche N, Meskine D, Alamir B, Koceir EA. Trace elements profile is associated with insulin resistance syndrome and oxidative damage in thyroid disorders: Manganese and selenium interest in Algerian participants with dysthyroidism. J Trace Elem Med Biol 2015; 32:112-21. [PMID: 26302919 DOI: 10.1016/j.jtemb.2015.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/19/2015] [Accepted: 07/05/2015] [Indexed: 10/23/2022]
Abstract
The relationship between dysthyroidism and antioxidant trace elements (ATE) status is very subtle during oxidative stress (OS). This relationship is mediated by thyroid hormone (TH) disorder, insulin resistance syndrome (IRS) and inflammation. The aim of this study was to investigate ATE such as selenium (Se), manganese (Mn), zinc (Zn) and copper (Cu) status on thyroid dysfunction, and their interaction with antioxidant enzyme activities, mainly, superoxide dismutase (SOD) and glutathione peroxidase (GPx), TH profile (TSH, T(3), T(4)) and IRS clusters. The study was undertaken on 220 Algerian adults (30-50 years), including 157 women and 63 men who were divided to 4 groups: subclinical hypothyroidism (n = 50), overt hypothyroidism (n = 60), Graves's disease hyperthyroidism (n = 60) and euthyroid controls (n = 50). The IRS was confirmed according to NCEP (National Cholesterol Education Program). Insulin resistance was evaluated by HOMA-IR model. Trace elements were determined by the Flame Atomic Absorption Spectrometry (Flame-AAS) technique. The antioxidant enzymes activity and metabolic parameters were determined by biochemical methods. The TH profile and anti-Thyroperoxidase Antibodies (anti-TPO-Ab) were evaluated by radioimmunoassay. Results showed that the plasma manganese levels were significantly increased in all dysthyroidism groups (p ≤ 0.01). However, the plasma copper and zinc concentrations were maintained normal or not very disturbed vs control group. In contrast, the plasma selenium levels were highly decreased (p ≤ 0.001) and positively correlated with depletion of glutathione peroxidase activity; and associated both with anti-TPO-Ab overexpression and fulminant HS-CRP levels. This study confirms the oxidative stress-inflammation relationship in the dysthyroidism. The thyroid follicles antioxidant protection appears preserved in the cytosol (Cu/Zn-SOD), while it is altered in the mitochondria (Mn-SOD), which gives this cell organelle, a status of real target therapy in thyroid dysfunction. The publisher would like to apologise for any inconvenience caused. [corrected].
Collapse
Affiliation(s)
- Naima Maouche
- Bioenergetics and Intermediary Metabolism team, Biology and Organisms Physiology laboratory, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), El Alia, Bab Ezzouar, 16123, Algiers, Algeria; Endocrinology exploration unit, Endocrinology department, Ibnou Ziri Bologhine University Hospital Center, Bainem, 16090, Algiers, Algeria.
| | - Djamila Meskine
- Endocrinology exploration unit, Endocrinology department, Ibnou Ziri Bologhine University Hospital Center, Bainem, 16090, Algiers, Algeria.
| | - Barkahoum Alamir
- National Toxicology Center, Bab El Oued University Hospital Center, 16009, Algiers, Algeria.
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Biology and Organisms Physiology laboratory, Biological Sciences Faculty, University of Sciences and Technology Houari Boumediene (USTHB), El Alia, Bab Ezzouar, 16123, Algiers, Algeria.
| |
Collapse
|
42
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Kazarjan J, Vaher M, Hunter T, Kulp M, Hunter GJ, Bonetta R, Farrugia D, Kaljurand M. Determination of metal content in superoxide dismutase enzymes by capillary electrophoresis†. J Sep Sci 2015; 38:1042-5. [DOI: 10.1002/jssc.201400925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Jana Kazarjan
- Department of Chemistry; Tallinn University of Technology; Tallinn Estonia
| | - Merike Vaher
- Department of Chemistry; Tallinn University of Technology; Tallinn Estonia
| | - Thérèse Hunter
- Department of Physiology and Biochemistry; University of Malta; Msida Malta
| | - Maria Kulp
- Department of Chemistry; Tallinn University of Technology; Tallinn Estonia
| | - Gary James Hunter
- Department of Physiology and Biochemistry; University of Malta; Msida Malta
| | - Rosalin Bonetta
- Department of Physiology and Biochemistry; University of Malta; Msida Malta
| | - Diane Farrugia
- Department of Physiology and Biochemistry; University of Malta; Msida Malta
| | - Mihkel Kaljurand
- Department of Chemistry; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
44
|
Whittaker MM, Penmatsa A, Whittaker JW. The Mtm1p carrier and pyridoxal 5'-phosphate cofactor trafficking in yeast mitochondria. Arch Biochem Biophys 2015; 568:64-70. [PMID: 25637770 DOI: 10.1016/j.abb.2015.01.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/23/2022]
Abstract
Biochemical communication between the cytoplasmic and mitochondrial subsystems of the cell depends on solute carriers in the mitochondrial inner membrane that transport metabolites between the two compartments. We have expressed and purified a yeast mitochondrial carrier protein (Mtm1p, YGR257cp), originally identified as a manganese ion carrier, for biochemical characterization aimed at resolving its function. High affinity, stoichiometric pyridoxal 5'-phosphate (PLP) cofactor binding was characterized by fluorescence titration and calorimetry, and the biochemical effects of mtm1 gene deletion on yeast mitochondria were investigated. The PLP status of the mitochondrial proteome (the mitochondrial 'PLP-ome') was probed by immunoblot analysis of mitochondria isolated from wild type (MTM1(+)) and knockout (MTM1(-)) yeast, revealing depletion of mitochondrial PLP in the latter. A direct activity assay of the enzyme catalyzing the first committed step of heme biosynthesis, the PLP-dependent mitochondrial enzyme 5-aminolevulinate synthase, extends these results, providing a specific example of PLP cofactor limitation. Together, these experiments support a role for Mtm1p in mitochondrial PLP trafficking and highlight the link between PLP cofactor transport and iron metabolism, a remarkable illustration of metabolic integration.
Collapse
Affiliation(s)
- Mei M Whittaker
- Institute of Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Aravind Penmatsa
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - James W Whittaker
- Institute of Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
45
|
Nahon P, Sutton A, Ziol M, Zucman-Rossi J, Trinchet JC, Ganne-Carrié N. Genetic risk markers for hepatocellular carcinoma in patients with alcoholic liver disease. Hepat Oncol 2015; 2:63-78. [PMID: 30190987 DOI: 10.2217/hep.14.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various single nucleotide polymorphisms have been reported to be associated with a higher risk of hepatocellular carcinoma in alcoholic cirrhotic patients. Until now, only common variants conferring a small increase in liver cancer risk have been identified. These inherited factors are able to modulate several biological pathways involved in alcohol-induced hepatocarcinogenesis, such as ethanol metabolism, inflammation, oxidative stress, or iron and lipid homeostasis. How the combination of these variants might collectively define an individual genomic risk prediction is currently being investigated. The other challenge in clinical practice lies in defining how to integrate this genetic information with other clinical parameters so as to refine selection of alcoholic cirrhotic patients according to various classes of hepatocellular carcinoma risk.
Collapse
Affiliation(s)
- Pierre Nahon
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France
| | - Angela Sutton
- Service de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France.,INSERM U1148, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service de Biochimie, Hôpital Jean Verdier, AP-HP, Bondy, France.,INSERM U1148, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France
| | - Marianne Ziol
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service d'Anatomo-Pathologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Centre de Ressources biologiques GH PSSD, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,Service d'Anatomo-Pathologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Centre de Ressources biologiques GH PSSD, Bondy, France
| | - Jessica Zucman-Rossi
- Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Université Paris Diderot, F-75013, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hopital Europeen Georges Pompidou, F-75015 Paris, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Université Paris Diderot, F-75013, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hopital Europeen Georges Pompidou, F-75015 Paris, France
| | - Jean-Claude Trinchet
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Centre de Ressources biologiques GH PSSD, Bondy, France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Centre de Ressources biologiques GH PSSD, Bondy, France
| | - Nathalie Ganne-Carrié
- Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France.,Service d'Hépatologie, Hôpital Jean Verdier, AP-HP, Bondy, France.,Université Paris 13, Sorbonne Paris Cité, UFR SMBH, F-93000 Bobigny, France.,INSERM, UMR-1162, Génomique fonctionnelle des Tumeurs solides, équipe labellisée "Ligue Contre Le Cancer", Paris, F-75010 France
| |
Collapse
|
46
|
Gromadzka G, Kruszyńska M, Wierzbicka D, Litwin T, Dzieżyc K, Wierzchowska-Ciok A, Chabik G, Członkowska A. Gene variants encoding proteins involved in antioxidant defense system and the clinical expression of Wilson disease. Liver Int 2015; 35:215-22. [PMID: 24517502 DOI: 10.1111/liv.12493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/04/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Wilson disease (WD) is an autosomal recessive disorder of copper metabolism resulting from pathogenic mutations of the ATP7B gene. The basis of phenotypic variability of the disease is not understood. The main mechanism of copper toxicity is probably related to generation of intracellular oxidative stress. To evaluate whether interindividual variability within genes encoding proteins involved in antioxidant defense system may modulate phenotypic expressions of WD. METHODS Variability within genes encoding the cytosolic enzymes: glutathione peroxidase (GPX1 rs1050450) and manganese superoxide dismutase (SOD2 rs4880), and peroxisomal enzyme: catalase (CAT rs1001179) were analysed in 435 patients. Individual genotypes were tested for their relationship with phenotypic features of WD. RESULTS GPX1 genotypes were not related to phenotypic manifestations of WD. Among males homozygocity for the SOD2 rs4880 T allele was related to earlier onset of WD. Patients homozygous for the CAT rs1001179 T allele characterized with later onset of WD [median (interquartile range) age: 29.0 (14.0) years vs. 22.0 (12.0) years, respectively, P < 0.004], later manifestation of hepatic symptoms [34.5 (14.0) years vs. 22.0 (12.0) years, P < 0.0009], and later presentation of neurological symptoms [37.0 (16.0) years vs. 28.0 (13.0) years, P < 0.03] than those having one or two C alleles. CONCLUSION Variability within the CAT gene may be an important modifier of the clinical course of WD. SOD2 genotype may influence WD phenotype among males. These observations indirectly confirm a role of oxidative stress in the pathogenesis of WD, as well as indirectly suggest that peroxisomes impairment may be involved in WD pathophysiology.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gomez M, Pérez-Gallardo RV, Sánchez LA, Díaz-Pérez AL, Cortés-Rojo C, Meza Carmen V, Saavedra-Molina A, Lara-Romero J, Jiménez-Sandoval S, Rodríguez F, Rodríguez-Zavala JS, Campos-García J. Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes. PLoS One 2014; 9:e111585. [PMID: 25356756 PMCID: PMC4214746 DOI: 10.1371/journal.pone.0111585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.
Collapse
Affiliation(s)
- Mauricio Gomez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Rocío V. Pérez-Gallardo
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Luis A. Sánchez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Alma L. Díaz-Pérez
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Christian Cortés-Rojo
- Lab. de Bioquímica, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Victor Meza Carmen
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Alfredo Saavedra-Molina
- Lab. de Bioquímica, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier Lara-Romero
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Sergio Jiménez-Sandoval
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, México
| | - Francisco Rodríguez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Querétaro, México
| | | | - Jesús Campos-García
- Lab. Biotecnología Microbiana, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
48
|
Abstract
Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement.
Collapse
Affiliation(s)
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
49
|
Xu C, Zhao C, Li M, Wu L, Ren J, Qu X. Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1841-1847. [PMID: 24523073 DOI: 10.1002/smll.201302750] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/18/2013] [Indexed: 06/03/2023]
Abstract
It is highly desirable and challenging when the chemzyme can be not only simply duplicating and imitating the properties of natural enzymes, but also introducing additional new features for practical applications. Herein, we report a zinc-finger-protein like α-helical chiral metallo-supramolecular complex ([Fe2L3](4+)) functionalized graphene oxide (GO-COOH) as a peroxidase mimic. This artificial enzyme integrates the characteristics of both chiral metallo-supramolecular complex and GO-COOH, and shows excellent catalytic activity. More intriguingly, the novel chemzyme turn out to have enantioselectivity and near-infrared photothermal effect. To the best of our knowledge, this is the first example that the chemzyme has such new features. Based on these properties, we have demonstrated three examples for the applications of our designed enzyme: 1) Intracellular H2O2 detection in PC12 cells against Alzheimer's disease; 2) Discrimination between the chiral drug, Levodopa (L-dopa), the gold standard for treating Parkinson's disease and its enantiomer, D-dopa. This is important because L-dopa is the most effective drug at present used to combat Parkinson's disease while D-dopa is inactive and can even cause side effects, thus for drug efficacy it must be free of D-dopa in the formulation; 3) Remote control of enzyme cascade biocatalysis reactions using high transparent, bio-friendly near-infrared (NIR) light. NIR allows remote activation with relatively high spatial and temporal precision. Our work will provide new insights into design and construction of novel chemzyme with more advanced features beyond intrinsic enzyme property.
Collapse
Affiliation(s)
- Can Xu
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | | | | | | | |
Collapse
|
50
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 674] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|