1
|
Kozyreva ZV, Demina PA, Sapach AY, Terentyeva DA, Gusliakova OI, Abramova AM, Goryacheva IY, Trushina DB, Sukhorukov GB, Sindeeva OA. Multiple dyes applications for fluorescent convertible polymer capsules as macrophages tracking labels. Heliyon 2024; 10:e30680. [PMID: 38813172 PMCID: PMC11133507 DOI: 10.1016/j.heliyon.2024.e30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types. For instance, genetic modification often leads to the death of macrophages. This study aims to develop an alternative method for labeling macrophages by utilizing photoconvertible micron-sized capsules capable of easy internalization and prolonged retention within cells. Thermal treatment in a polyvinyl alcohol gel medium is employed for the scalable synthesis of capsules with a wide range of fluorescent dyes, including rhodamine 6G, pyronin B, fluorescein, acridine yellow, acridine orange, thiazine red, and previously reported rhodamine B. The fluorescence brightness, photostability, and photoconversion ability of the capsules are evaluated using confocal laser scanning microscopy. Viability, uptake, mobility, and photoconversion studies are conducted on RAW 264.7 and bone marrow-derived macrophages, serving as model cell lines. The production yield of the capsules is increased due to the use of polyvinyl alcohol gel, eliminating the need for conventional filtration steps. Capsules entrapping rhodamine B and rhodamine 6G meet all requirements for intracellular use in individual cell tracking. Mass spectrometry analysis reveals a sequence of deethylation steps that result in blue shifts in the dye spectra upon irradiation. Cellular studies on macrophages demonstrate robust uptake of the capsules. The capsules exhibit minimal cytotoxicity and have a negligible impact on cell motility. The successful photoconversion of RhB-containing capsules within cells highlights their potential as alternatives to photoconvertible proteins for individual cell labeling, with promising applications in personalized medicine.
Collapse
Affiliation(s)
- Zhanna V. Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Polina A. Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anastasiia Yu Sapach
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Daria A. Terentyeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Olga I. Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anna M. Abramova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Irina Yu Goryacheva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov University, 8-2 Trubetskaya Str., 119991, Moscow, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025, Moscow, Russia
| | - Olga A. Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| |
Collapse
|
2
|
Basak US, Sattari S, Hossain MM, Horikawa K, Toda M, Komatsuzaki T. Comparison of particle image velocimetry and the underlying agents dynamics in collectively moving self propelled particles. Sci Rep 2023; 13:12566. [PMID: 37532878 PMCID: PMC10397335 DOI: 10.1038/s41598-023-39635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
Collective migration of cells is a fundamental behavior in biology. For the quantitative understanding of collective cell migration, live-cell imaging techniques have been used using e.g., phase contrast or fluorescence images. Particle tracking velocimetry (PTV) is a common recipe to quantify cell motility with those image data. However, the precise tracking of cells is not always feasible. Particle image velocimetry (PIV) is an alternative to PTV, corresponding to Eulerian picture of fluid dynamics, which derives the average velocity vector of an aggregate of cells. However, the accuracy of PIV in capturing the underlying cell motility and what values of the parameters should be chosen is not necessarily well characterized, especially for cells that do not adhere to a viscous flow. Here, we investigate the accuracy of PIV by generating images of simulated cells by the Vicsek model using trajectory data of agents at different noise levels. It was found, using an alignment score, that the direction of the PIV vectors coincides with the direction of nearby agents with appropriate choices of PIV parameters. PIV is found to accurately measure the underlying motion of individual agents for a wide range of noise level, and its condition is addressed.
Collapse
Affiliation(s)
- Udoy S Basak
- Pabna University of Science and Technology, Pabna, 6600, Bangladesh
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Md Motaleb Hossain
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
- University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Kuramoto-cho 3-18-15, Tokushima, Tokushima, 770-8503, Japan
| | - Mikito Toda
- Faculty Division of Natural Sciences, Research Group of Physics, Nara Women's University, Kita-Uoya-Nishimachi, Nara, 630-8506, Japan
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Tamiki Komatsuzaki
- Pabna University of Science and Technology, Pabna, 6600, Bangladesh.
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
- Graduate School of Chemical Sciences and Engineering Materials Chemistry and Engineering Course, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, 060-0812, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, 8-1, Osaka, Ibaraki, 567-0047, Japan.
| |
Collapse
|
3
|
New definitions of human lymphoid and follicular cell entities in lymphatic tissue by machine learning. Sci Rep 2022; 12:18991. [PMID: 36347879 PMCID: PMC9643435 DOI: 10.1038/s41598-022-18097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Histological sections of the lymphatic system are usually the basis of static (2D) morphological investigations. Here, we performed a dynamic (4D) analysis of human reactive lymphoid tissue using confocal fluorescent laser microscopy in combination with machine learning. Based on tracks for T-cells (CD3), B-cells (CD20), follicular T-helper cells (PD1) and optical flow of follicular dendritic cells (CD35), we put forward the first quantitative analysis of movement-related and morphological parameters within human lymphoid tissue. We identified correlations of follicular dendritic cell movement and the behavior of lymphocytes in the microenvironment. In addition, we investigated the value of movement and/or morphological parameters for a precise definition of cell types (CD clusters). CD-clusters could be determined based on movement and/or morphology. Differentiating between CD3- and CD20 positive cells is most challenging and long term-movement characteristics are indispensable. We propose morphological and movement-related prototypes of cell entities applying machine learning models. Finally, we define beyond CD clusters new subgroups within lymphocyte entities based on long term movement characteristics. In conclusion, we showed that the combination of 4D imaging and machine learning is able to define characteristics of lymphocytes not visible in 2D histology.
Collapse
|
4
|
Belotti Y, McGloin D, Weijer CJ. Effects of spatial confinement on migratory properties of Dictyostelium discoideum cells. Commun Integr Biol 2021; 14:5-14. [PMID: 33552382 PMCID: PMC7849737 DOI: 10.1080/19420889.2021.1872917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migratory environments of various eukaryotic cells, such as amoeba, leukocytes and cancer cells, typically involve spatial confinement. Numerous studies have recently emerged, aimed to develop experimental platforms that better recapitulate the characteristics of the cellular microenvironment. Using microfluidic technologies, we show that increasing confinement of Dictyostelium discoideum cells into narrower micro-channels resulted in a significant change in the mode of migration and associated arrangement of the actomyosin cytoskeleton. We observed that cells tended to migrate at constant speed, the magnitude of which was dependent on the size of the channels, as was the locomotory strategy adopted by each cell. Two different migration modes were observed, pseudopod-based and bleb-based migration, with bleb based migration being more frequent with increasing confinement and leading to slower migration. Beside the migration mode, we found that the major determinants of cell speed are its protrusion rate, the amount of F-actin at its leading edge and the number of actin foci. Our results highlighted the impact of the microenvironments on cell behavior. Furthermore, we developed a novel quantitative movement analysis platform for mono-dimensional cell migration that allows for standardization and simplification of the experimental conditions and aids investigation of the complex and dynamic processes occurring at the single-cell level.
Collapse
Affiliation(s)
- Yuri Belotti
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - David McGloin
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
5
|
Analysis of barotactic and chemotactic guidance cues on directional decision-making of Dictyostelium discoideum cells in confined environments. Proc Natl Acad Sci U S A 2020; 117:25553-25559. [PMID: 32999070 DOI: 10.1073/pnas.2000686117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neutrophils and dendritic cells when migrating in confined environments have been shown to actuate a directional choice toward paths of least hydraulic resistance (barotaxis), in some cases overriding chemotactic responses. Here, we investigate whether this barotactic response is conserved in the more primitive model organism Dictyostelium discoideum using a microfluidic chip design. This design allowed us to monitor the behavior of single cells via live imaging when confronted with bifurcating microchannels, presenting different combinations of hydraulic and chemical stimuli. Under the conditions employed we find no evidence in support of a barotactic response; the cells base their directional choices on the chemotactic cues. When the cells are confronted by a microchannel bifurcation, they often split their leading edge and start moving into both channels, before a decision is made to move into one and retract from the other channel. Analysis of this decision-making process has shown that cells in steeper nonhydrolyzable adenosine- 3', 5'- cyclic monophosphorothioate, Sp- isomer (cAMPS) gradients move faster and split more readily. Furthermore, there exists a highly significant strong correlation between the velocity of the pseudopod moving up the cAMPS gradient to the total velocity of the pseudopods moving up and down the gradient over a large range of velocities. This suggests a role for a critical cortical tension gradient in the directional decision-making process.
Collapse
|
6
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
7
|
Singer G, Araki T, Weijer CJ. Oscillatory cAMP cell-cell signalling persists during multicellular Dictyostelium development. Commun Biol 2019; 2:139. [PMID: 31044164 PMCID: PMC6478855 DOI: 10.1038/s42003-019-0371-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Propagating waves of cAMP, periodically initiated in the aggregation centre, are known to guide the chemotactic aggregation of hundreds of thousands of starving individual Dictyostelium discoideum cells into multicellular aggregates. Propagating optical density waves, reflecting cell periodic movement, have previously been shown to exist in streaming aggregates, mounds and migrating slugs. Using a highly sensitive cAMP-FRET reporter, we have now been able to measure periodically propagating cAMP waves directly in these multicellular structures. In slugs cAMP waves are periodically initiated in the tip and propagate backward through the prespore zone. Altered cAMP signalling dynamics in mutants with developmental defects strongly support a key functional role for cAMP waves in multicellular Dictyostelium morphogenesis. These findings thus show that propagating cAMP not only control the initial aggregation process but continue to be the long range cell-cell communication mechanism guiding cell movement during multicellular Dictyostelium morphogenesis at the mound and slugs stages.
Collapse
Affiliation(s)
- Gail Singer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
- Present Address: Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554 Japan
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences University of Dundee, Dundee, DD1 5EH UK
| |
Collapse
|
8
|
Um E, Oh JM, Granick S, Cho YK. Cell migration in microengineered tumor environments. LAB ON A CHIP 2017; 17:4171-4185. [PMID: 28971203 DOI: 10.1039/c7lc00555e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | |
Collapse
|
9
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
10
|
Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol 2016; 26:88-110. [DOI: 10.1016/j.tcb.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
|
11
|
Wöllert T, Langford GM. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration. Methods Mol Biol 2016; 1365:3-23. [PMID: 26498777 DOI: 10.1007/978-1-4939-3124-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live cell imaging systems are provided.
Collapse
Affiliation(s)
- Torsten Wöllert
- Syracuse University, Life Sciences Complex, 107 College Place, Syracuse, NY, 13244, USA
| | - George M Langford
- Syracuse University, Life Sciences Complex, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
12
|
Ishiwata R, Iwasa M. Extracellular and intracellular factors regulating the migration direction of a chemotactic cell in traveling-wave chemotaxis. Phys Biol 2015; 12:026004. [PMID: 25787170 DOI: 10.1088/1478-3975/12/2/026004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This report presents a simple model that describes the motion of a single Dictyostelium discoideum cell exposed to a traveling wave of cyclic adenosine monophosphate (cAMP). The model incorporates two types of responses to stimulation by cAMP: the changes in the polarity and motility of the cell. The periodic change in motility is assumed to be induced by periodic cAMP stimulation on the basis of previous experimental studies. Consequently, the net migration of the cell occurs in a particular direction with respect to wave propagation, which explains the migration of D. discoideum cells in aggregation. The wave period and the difference between the two response times are important parameters that determine the direction of migration. The theoretical prediction compared with experiments presented in another study. The transition from the single-cell state of the population of D. discoideum cells to the aggregation state is understood to be a specific example of spontaneous breakage of symmetry in biology.
Collapse
Affiliation(s)
- R Ishiwata
- Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Nagoya 4648601, Japan
| | | |
Collapse
|
13
|
CIAPIN1 targets Na⁺/H⁺ exchanger 1 to mediate MDA-MB-231 cells' metastasis through regulation of MMPs via ERK1/2 signaling pathway. Exp Cell Res 2015; 333:60-72. [PMID: 25724898 DOI: 10.1016/j.yexcr.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/13/2022]
Abstract
Cytokine-induced antiapoptotic inhibitor 1 (CIAPIN1) was recently identified as an essential downstream effector of the Ras signaling pathway and has been confirmed to be closely associated with various malignant tumors. However, its potential role in regulating breast cancer metastasis remains unclear. Matrix metalloproteinases (MMPs) are a broad family of zinc-biding endopeptidases that participate in the extracellular matrix (ECM) degradation that accompanies cancer cell invasion, metastasis and angiogenesis. In this study, we found up-regulation of CIAPIN1 by lentiviral expression vector inhibited the migration, invasion and MMPs expression of MDA-MB-231 cells. Further, CIAPIN1 over-expression decreased NHE1 (Na(+)/H(+) exchanger 1) expression and ERK1/2 phosphorylation. Importantly, treating CIAPIN1 over-expressed MDA-MB-231 cells with the NHE1 specific inhibitor, Cariporide, further inhibited the metastatic capacity, MMPs expression and phosphorylated ERK1/2. Treatment with the MEK1 specific inhibitor, PD98059, induced nearly the same suppression of CIAPIN1 over-expression-dependent migration, invasion and MMPs expression as was observed with Cariporide. Further, Cariporide and PD98059 synergistically suppressed migration, invasion and MMPs expression of CIAPIN1 over-expressed MDA-MB-231 cells. Thus, our results revealed the mechanism by which CIAPIN1 targeted NHE1 to mediate migration and invasion of MDA-MB-231 cells through regulation of MMPs via ERK1/2 signaling pathway.
Collapse
|
14
|
Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Böhme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014; 346:1257998. [PMID: 25342811 DOI: 10.1126/science.1257998] [Citation(s) in RCA: 1209] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.
Collapse
Affiliation(s)
- Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kai Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Lin Shao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel E Milkie
- Coleman Technologies, Incorporated, Newtown Square, PA 19073, USA
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA
| | - Xufeng S Wu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hammer
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Brian P English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yuko Mimori-Kiyosue
- Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Daniel P Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Ritter
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, England, UK
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lillian Fritz-Laylin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diana M Mitchell
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Joshua N Bembenek
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Anne-Cecile Reymann
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Ralph Böhme
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
| | - Jennifer T Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - U Serdar Tulu
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
15
|
Yang JR, Ruan S, Zhang J. Determinative developmental cell lineages are robust to cell deaths. PLoS Genet 2014; 10:e1004501. [PMID: 25058586 PMCID: PMC4110091 DOI: 10.1371/journal.pgen.1004501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution.
Collapse
Affiliation(s)
- Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shuxiang Ruan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
16
|
Teshima T, Onoe H, Aonuma H, Kuribayashi-Shigetomi K, Kamiya K, Tonooka T, Kanuka H, Takeuchi S. Magnetically responsive microflaps reveal cell membrane boundaries from multiple angles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2850-2856. [PMID: 24677083 DOI: 10.1002/adma.201305494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/13/2013] [Indexed: 06/03/2023]
Abstract
A microflap system to incline adherent cells in the desired orientation is described. Inclination angles of cell-laden microflaps are precisely controlled by the applied magnetic field, enabling us to observe cell-membrane boundaries from multiple angles. This system is equipped with conventional microscopes, allowing clear focused images of cell-membrane boundaries to be obtained with high magnification.
Collapse
Affiliation(s)
- Tetsuhiko Teshima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chang G, Wang J, Zhang H, Zhang Y, Wang C, Xu H, Zhang H, Lin Y, Ma L, Li Q, Pang T. CD44 targets Na(+)/H(+) exchanger 1 to mediate MDA-MB-231 cells' metastasis via the regulation of ERK1/2. Br J Cancer 2014; 110:916-27. [PMID: 24434427 PMCID: PMC3929887 DOI: 10.1038/bjc.2013.809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/24/2013] [Accepted: 12/04/2013] [Indexed: 12/31/2022] Open
Abstract
Background: CD44, a transmembrane glycoprotein expressed in a variety of cells and tissues, has been implicated in tumour metastasis. But the molecular mechanisms of CD44-mediated tumour cell metastasis remain to be elucidated. Methods: The downregulation of CD44 was determined by immunofluorescence. Moreover, the motility of breast cancer cells was detected by wound-healing and transwell experiments. Then the spontaneous metastasis of CD44-silenced MDA-MB-231 cells was tested by histology with BALB/c nude mice. Results: A positive correlation between CD44 and Na+/H+ exchanger isoform 1 (NHE1) was found in two breast cancer cells. CD44 downregulation could inhibit the metastasis of MDA-MB-231 cells and the expressions of Na+/H+ exchanger 1. Moreover, CD44 overexpression upregulated the metastasis of MCF-7 cells, but the elevated metastatic ability was then inhibited by Cariporide. Interestingly, during these processes only the p-ERK1/2 was suppressed by CD44 downregulation and the expression of matrix metalloproteinases and metastatic capacity of MDA-MB-231 cells were greatly inhibited by the MEK1 inhibitor PD98059, which even had a synergistic effect with Cariporide. Furthermore, CD44 downregulation inhibits breast tumour outgrowth and spontaneous lung metastasis. Conclusions: Taken together, this work indicates that CD44 regulates the metastasis of breast cancer cells through regulating NHE1 expression, which could be used as a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- G Chang
- 1] State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China [2] Department of Neurology, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Anshan Road, Tianjin 300052, China
| | - J Wang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Y Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - C Wang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Xu
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Y Lin
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - L Ma
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Q Li
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - T Pang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| |
Collapse
|
18
|
Yamauchi A, Degawa-Yamauchi M, Kuribayashi F, Kanegasaki S, Tsuchiya T. Systematic single cell analysis of migration and morphological changes of human neutrophils over stimulus concentration gradients. J Immunol Methods 2013; 404:59-70. [PMID: 24370750 DOI: 10.1016/j.jim.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/01/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
To compare the responses of individual neutrophils to chemoattractants, migration pathway data were obtained using TAXIScan, an optically accessible/horizontal apparatus in which a concentration gradient is established reproducibly for a given stimulus. The observed linear-mode trajectory pattern of neutrophils toward N-formyl-methionyl-leucyl-phenylalanine (fMLP) or Interleukin (IL)-8/CXCL8 was distinguished from random migration patterns toward leukotriene (LT) B4 or platelet activating factor (PAF). The median values of velocity and directionality calculated for individual cells toward fMLP and IL-8 were both relatively similar and high, whereas the values toward LTB4 and PAF were widely dispersed over a lower range of directionality and from low to high ranges of velocity. The different patterns between the groups may be explained by unique morphology with single polarity toward fMLP and IL-8, and unstable morphology with multiple polarities toward LTB4 and PAF. Unique morphologies toward fMLP and IL-8 were not affected by coexisting LTB4 or PAF. On the other hand, the addition of suboptimum concentrations of fMLP or IL-8 to LTB4 or PAF induced a nearly maximum chemotactic response in most cells. These data suggest that exogenous formyl peptides and endogenous chemokines augment neutrophil accumulation at inflammation sites, whereas lipid mediators may play a role in supporting activation of the inflammatory cells for recruitment.
Collapse
Affiliation(s)
- Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan.
| | | | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan
| | - Shiro Kanegasaki
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea
| | - Tomoko Tsuchiya
- YU-ECI Research Center for Medical Science, Yeungnam University, Gyeongsan-City 712-749, Republic of Korea.
| |
Collapse
|
19
|
Abstract
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
20
|
Grădinaru C, Lopacińska JM, Huth J, Kestler HA, Flyvbjerg H, Mølhave K. Assessment of automated analyses of cell migration on flat and nanostructured surfaces. Comput Struct Biotechnol J 2012; 1:e201207004. [PMID: 24688640 PMCID: PMC3962212 DOI: 10.5936/csbj.201207004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 11/24/2022] Open
Abstract
Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software.
Collapse
Affiliation(s)
- Cristian Grădinaru
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Joanna M Lopacińska
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Johannes Huth
- Neural Information Processing, University of Ulm, Ulm, Germany ; Department of Gastroenterology and Endocrinology, University Hospital of Marburg, Marburg, Germany
| | - Hans A Kestler
- Neural Information Processing, University of Ulm, Ulm, Germany ; Internal Medicine I - Gastroenterology, University Hospital Ulm, Ulm, Germany
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
|
22
|
Cotrufo T, Andrés RM, Ros O, Pérez-Brangulí F, Muhaisen A, Fuschini G, Martínez R, Pascual M, Comella JX, Soriano E. Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. Eur J Neurosci 2012; 36:3152-64. [PMID: 22946563 DOI: 10.1111/j.1460-9568.2012.08259.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Directed cell migration and axonal guidance are essential steps in neural development that share many molecular mechanisms. The guidance of developing axons and migrating neurons is likely to depend on the precise control of plasmalemma turnover in selected regions of leading edges and growth cones, respectively. Previous results provided evidence of a signaling mechanism that couples chemotropic deleted in colorectal cancer (DCC)/Netrin-1 axonal guidance and exocytosis through Syntaxin1(Sytx1)/TI-VAMP SNARE proteins. Here we studied whether Netrin-1-dependent neuronal migration relies on a similar SNARE mechanism. We show that migrating neurons in the lower rhombic lip (LRL) express several SNARE proteins, and that DCC co-associates with Sytx1 and TI-VAMP in these cells. We also demonstrate that cleavage of Sytx1 by botulinum toxin C1 (BoNT/C1) abolishes Netrin-1-dependent chemoattraction of migrating neurons, and that interference of Sytx1 functions with shRNAs or Sytx1-dominant negatives disrupts Netrin-1-dependent chemoattraction of LRL neurons. These findings indicate that a Sytx1/DCC interaction is required for Netrin-1 guidance of migrating neurons, thereby highlighting a relationship between guidance signaling and SNARE proteins that regulate membrane turnover.
Collapse
Affiliation(s)
- Tiziana Cotrufo
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Institute for Research in Biomedicine, Parc Cientific de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li L, Wang JY, Yang CQ, Jiang W. Effect of RhoA on transforming growth factor β1-induced rat hepatic stellate cell migration. Liver Int 2012; 32:1093-1102. [PMID: 22498718 DOI: 10.1111/j.1478-3231.2012.02809.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/15/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although the migration of hepatic stellate cells (HSCs) is essential to the hepatic fibrotic response, the intracellular and extracellular signals that regulate their migration are poorly understood. AIMS To investigate the role of Rho guanosine triphosphatase (Rho GTPase) signalling, specifically via RhoA, in transforming growth factor β1 (TGFβ1)-induced HSC migration. METHODS Both primary rat HSCs and the HSC-T6 rat hepatic stellate cell line were used in this study. Cell migration was evaluated using the Transwell Boyden Chamber assay, whereas cytoskeletal changes were observed using laser confocal microscopy. Western blotting was used to detect the expression of Rho GTPases (RhoA, Rac1 and Cdc42) in HSCs, and their activation was determined using glutathione S-transferase (GST) pull-down assays. Finally, the specific effects of RhoA on TGFβ1-induced cell migration were analysed in HSC-T6 cells stably transfected with constitutively active (CA, Q63L) or dominant-negative (DN, T19N) RhoA mutants. RESULTS Transforming growth factor β1 induced cytoskeletal remodelling and migration of rat HSCs following RhoA activation. The level of RhoA activation determined the motility of the HSCs. CONCLUSIONS These findings broaden our understanding of the intracellular and extracellular signals that regulate HSC migration. Furthermore, RhoA may be a candidate therapeutic target for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
24
|
Tjhung E, Marenduzzo D, Cates ME. Spontaneous symmetry breaking in active droplets provides a generic route to motility. Proc Natl Acad Sci U S A 2012; 109:12381-6. [PMID: 22797894 PMCID: PMC3412043 DOI: 10.1073/pnas.1200843109] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore a generic mechanism whereby a droplet of active matter acquires motility by the spontaneous breakdown of a discrete symmetry. The model we study offers a simple representation of a "cell extract" comprising, e.g., a droplet of actomyosin solution. (Such extracts are used experimentally to model the cytoskeleton). Actomyosin is an active gel whose polarity describes the mean sense of alignment of actin fibres. In the absence of polymerization and depolymerization processes ('treadmilling'), the gel's dynamics arises solely from the contractile motion of myosin motors; this should be unchanged when polarity is inverted. Our results suggest that motility can arise in the absence of treadmilling, by spontaneous symmetry breaking (SSB) of polarity inversion symmetry. Adapting our model to wall-bound cells in two dimensions, we find that as wall friction is reduced, treadmilling-induced motility falls but SSB-mediated motility rises. The latter might therefore be crucial in three dimensions where frictional forces are likely to be modest. At a supracellular level, the same generic mechanism can impart motility to aggregates of nonmotile but active bacteria; we show that SSB in this (extensile) case leads generically to rotational as well as translational motion.
Collapse
Affiliation(s)
- Elsen Tjhung
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Michael E. Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| |
Collapse
|
25
|
Hashimoto T, Kojima K, Otaka A, Takeda YS, Tomita N, Tamada Y. Quantitative Evaluation of Fibroblast Migration on a Silk Fibroin Surface and TGFBI Gene Expression. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:158-69. [DOI: 10.1163/156856212x629025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tomoko Hashimoto
- a Silk Materials Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences , 1-2 Owashi, Tsukuba , Ibaraki , 305-8634 , Japan
| | - Katsura Kojima
- a Silk Materials Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences , 1-2 Owashi, Tsukuba , Ibaraki , 305-8634 , Japan
| | - Akihisa Otaka
- b Department of Mechanical Engineering , Graduate School of Engineering, Kyoto University , Yoshida-Honmachi, Sakyo-ku , Kyoto , 606-8501 , Japan
| | - Yuji S. Takeda
- b Department of Mechanical Engineering , Graduate School of Engineering, Kyoto University , Yoshida-Honmachi, Sakyo-ku , Kyoto , 606-8501 , Japan
| | - Naohide Tomita
- b Department of Mechanical Engineering , Graduate School of Engineering, Kyoto University , Yoshida-Honmachi, Sakyo-ku , Kyoto , 606-8501 , Japan
| | - Yasushi Tamada
- a Silk Materials Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences , 1-2 Owashi, Tsukuba , Ibaraki , 305-8634 , Japan
| |
Collapse
|
26
|
Abstract
The chick embryo is easily accessible and has therefore been widely used in developmental biology studies. In particular, the early embryo can be removed from the egg and cultured, which allows real-time observations and imaging. Here, we describe ex vivo electroporation followed by long-term time-lapse microscopy, image capture, and processing. We have applied this approach to characterise the migration route of cardiac progenitor cells (CPCs) in live embryos. The heart is the first organ to function during vertebrate development and it is essential for the continued growth and survival of the embryo. In the chick, cardiac progenitors have been mapped to the anterior and mid-primitive streak at Hamburger-Hamilton stage 3. However, until recently it was not possible to observe cell migration trajectories directly. Furthermore, we used grafting of beads or cell pellets or electroporation of expression plasmids to show that Wnt3a acts as a repulsive signal to guide the movement of cardiac progenitors.
Collapse
|
27
|
Abstract
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Special Research Promotion Group, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Japan.
| |
Collapse
|
28
|
Yamada Y, Nuñez-Corcuera B, Williams JG. DIF-1 regulates Dictyostelium basal disc differentiation by inducing the nuclear accumulation of a bZIP transcription factor. Dev Biol 2011; 354:77-86. [PMID: 21458438 PMCID: PMC3107940 DOI: 10.1016/j.ydbio.2011.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/10/2011] [Accepted: 03/23/2011] [Indexed: 11/25/2022]
Abstract
Exposure of monolayer Dictyostelium cells to the signalling polyketide DIF-1 causes DimB, a bZIPtranscription factor, to accumulate in the nucleus where it induces prestalk gene expression. Here we analyse DimB signalling during normal development. In slugs DimB is specifically nuclear enriched in the pstB cells; a cluster of vital dye-staining cells located on the ventral surface of the posterior, prespore region. PstB cells move at culmination, to form the lower cup and the outer basal disc of the fruiting body, and DimB retains a high nuclear concentration in both these tissues. In a dimB null (dimB−) strain there are very few pstB or lower cup cells, as detected by neutral red staining, and it is known that the outer basal disc is absent or much reduced. In the dimB− strain ecmB, a marker of pstB differentiation, is not DIF inducible. Furthermore, ChIP analysis shows that DimB binds to the ecmB promoter in DIF-induced cells. These results suggest that the differentiation of pstB cells is caused by a high perceived level of DIF-1 signalling, leading to nuclear localization of DimB and direct activation of cell type-specific gene expression.
Collapse
|
29
|
Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE, Sun D. Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharm 2010; 7:1283-90. [PMID: 20540527 DOI: 10.1021/mp100073s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The small heat shock protein 27 (Hsp27) is a molecular chaperone that is involved in a variety of cellular functions in cancer cells. The purpose of this research is to study Hsp27 in vitro metastatic behaviors of head and neck squamous cell carcinoma cells (HNSCC). The expression of Hsp27 in primary and metastatic cell lines derived from the primary HNSCC and a synchronous lymph node metastasis in the same patient was determined using real-time PCR and Western blotting. Proliferation of the primary and metastatic HNSCC cell lines was evaluated using the MTS proliferation assay. Metastatic behavior was assessed using migration and invasion assays. SiRNA knockdown of Hsp27 was performed in the highly migratory metastatic HNSCC cell line. MTS assays showed that the primary (UM-SCC-22A) and metastatic (UM-SCC-22B) HNSCC have similar proliferation rates. However, UM-SCC-22B derived from the metastasis showed 2.3- to 3.6-fold higher migration ability and 2-fold higher invasion ability than UM-SCC-22A. Real-time PCR demonstrated that Hsp27 mRNA is 22.4-fold higher in metastatic UM-SCC-22B than primary UM-SCC-22A. Similarly, Western blotting showed that Hsp27 is rarely detectable in UM-SCC-22A whereas UM-SCC-22B expresses a 25-fold higher level of Hsp27 protein. SiRNA-mediated knockdown of Hsp27 in UM-SCC-22B reduced Hsp27 mRNA expression by nearly 6-fold and protein expression by 23-fold. Furthermore, siRNA knockdown of Hsp27 decreased metastatic behaviors of UM-SCC-22B by 3- to 4-fold in migration and 2-fold in cell invasion reducing cell invasion and migration to levels similar to the primary HNSCC UM-SCC-22A. These data indicate that Hsp27 may regulate metastatic potential of HNSCC cancer cells. Targeting Hsp27 may decrease metastasis in head and neck squamous cell cancer cells.
Collapse
Affiliation(s)
- Zhenkun Zhu
- College of Stomatology, Key Lab of Oral Biomedicine of Shandong Province, Shandong University, Jinan, P. R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Le Dévédec SE, Yan K, de Bont H, Ghotra V, Truong H, Danen EH, Verbeek F, van de Water B. Systems microscopy approaches to understand cancer cell migration and metastasis. Cell Mol Life Sci 2010; 67:3219-40. [PMID: 20556632 PMCID: PMC2933849 DOI: 10.1007/s00018-010-0419-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/21/2010] [Accepted: 05/14/2010] [Indexed: 01/15/2023]
Abstract
Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration.
Collapse
Affiliation(s)
- Sylvia E. Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kuan Yan
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Veerander Ghotra
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Hoa Truong
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Erik H. Danen
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Fons Verbeek
- Imaging and BioInformatics, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Leiden/Amsterdam Center for Drug Research, Gorleaus Laboratories, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
31
|
Salipante SJ, Kas A, McMonagle E, Horwitz MS. Phylogenetic analysis of developmental and postnatal mouse cell lineages. Evol Dev 2010; 12:84-94. [PMID: 20156285 DOI: 10.1111/j.1525-142x.2009.00393.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fate maps depict how cells relate together through past lineage relationships, and are useful tools for studying developmental and somatic processes. However, with existing technologies, it has not been possible to generate detailed fate maps of complex organisms such as the mouse. We and others have therefore proposed a novel approach, "phylogenetic fate mapping," where patterns of somatic mutation carried by the individual cells of an animal are used to retrospectively deduce lineage relationships through phylogenetic inference. Here, we have cataloged genomic polymorphisms at 324 mutation-prone polyguanine tracts for nearly 300 cells isolated from a single mouse, and have explored the cells' lineage relationships both phylogenetically and through a network-based approach. We present a model of mouse embryogenesis, where an early period of substantial cell mixing is followed by more coherent growth of clones later. We find that cells from certain tissues have greater numbers of close relatives in other specific tissues than expected from chance, suggesting that those populations arise from a similar pool of ancestral lineages. Finally, we have investigated the dynamics of cell turnover (the frequency of cell loss and replacement) in postnatal tissues. This work offers a longitudinal study of developmental lineages, from conception to adulthood, and provides insight into basic questions of mouse embryology as well as the somatic processes that occur after birth.
Collapse
Affiliation(s)
- Stephen J Salipante
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
32
|
Jbireal JMA, Strell C, Niggemann B, Zänker K, Entschladen F. The selective role of myosin VI in lymphoid leukemia cell migration. Leuk Res 2010; 34:1656-62. [PMID: 20493527 DOI: 10.1016/j.leukres.2010.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Several myosin isotypes are discussed to be involved in the migration of various cells ranging from tumor cells to leukocytes. We investigated the involvement of myosins II and VI in the lymphoid leukemia cells lines Jurkat, NB4, Dohh-2, and Molt-4 by a three-dimensional, collagen-based migration assay. Down-regulation of myosin VI by siRNA significantly reduced the migratory activity of all cells, whereas the pharmacological inhibition of non-muscle myosin II using blebbistatin had only marginal influence. Therefore, in contrast to differentiated leukocytes and cells from solid tumors, myosin VI plays a crucial role in the migration of leukemic cells.
Collapse
|
33
|
Volpe S, Thelen S, Pertel T, Lohse MJ, Thelen M. Polarization of migrating monocytic cells is independent of PI 3-kinase activity. PLoS One 2010; 5:e10159. [PMID: 20419163 PMCID: PMC2855346 DOI: 10.1371/journal.pone.0010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Background Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. Methodology/Principal Findings We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the α2A-adrenoceptor (α2AAR) display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homlogue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microcopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET) of α2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinse activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes – in contrast to neutrophils – rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. Conclusions/Significance Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the attractant cue. Polarized monocytes, which display typical amoeboid like motility, can rapidly develop a new leading edge facing the highest chemoattractant concentration at any site of the plasma membrane, including the uropod. The process appears to be independent of PI 3-kinase activity.
Collapse
Affiliation(s)
- Silvia Volpe
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Martin J. Lohse
- Rudolf Virchow Center and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Huth J, Buchholz M, Kraus JM, Schmucker M, von Wichert G, Krndija D, Seufferlein T, Gress TM, Kestler HA. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biol 2010; 11:24. [PMID: 20377897 PMCID: PMC2858025 DOI: 10.1186/1471-2121-11-24] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 04/08/2010] [Indexed: 11/30/2022] Open
Abstract
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures.
Collapse
Affiliation(s)
- Johannes Huth
- Research group of Bioinformatics and Systems Biology, Institute of Neural Information Processing, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dzyubachyk O, van Cappellen WA, Essers J, Niessen WJ, Meijering E. Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:852-867. [PMID: 20199920 DOI: 10.1109/tmi.2009.2038693] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell segmentation and tracking in time-lapse fluorescence microscopy images is a task of fundamental importance in many biological studies on cell migration and proliferation. In recent years, level sets have been shown to provide a very appropriate framework for this purpose, as they are well suited to capture topological changes occurring during mitosis, and they easily extend to higher dimensional image data. This model evolution approach has also been extended to deal with many cells concurrently. Notwithstanding its high potential, the multiple-level-set method suffers from a number of shortcomings, which limit its applicability to a larger variety of cell biological imaging studies. In this paper, we propose several modifications and extensions to the coupled-active-surfaces algorithm, which considerably improve its robustness and applicability. Our algorithm was validated by comparing it to the original algorithm and two other cell segmentation algorithms. For the evaluation, four real fluorescence microscopy image datasets were used, involving different cell types and labelings that are representative of a large range of biological experiments. Improved tracking performance in terms of precision (up to 11%), recall (up to 8%), ability to correctly capture all cell division events, and computation time (up to nine times reduction) is achieved.
Collapse
Affiliation(s)
- Oleh Dzyubachyk
- Biomedical Imaging Group Rotterdam, Department of Medical Informatics, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Mavrakis M, Pourquié O, Lecuit T. Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development 2010; 137:373-87. [DOI: 10.1242/dev.031690] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Embryology and genetics have given rise to a mechanistic framework that explains the architecture of a developing organism. Until recently, however, such studies suffered from a lack of quantification and real-time visualization at the subcellular level, limiting their ability to monitor the dynamics of developmental processes. Live imaging using fluorescent proteins has overcome these limitations, uncovering unprecedented insights that call many established models into question. We review how the study of patterning, cell polarization and morphogenesis has benefited from this technology and discuss the possibilities offered by fluorescence imaging and by the contributions of quantitative disciplines.
Collapse
Affiliation(s)
- Manos Mavrakis
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| | - Olivier Pourquié
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) / Inserm U964 / CNRS UMR7104, 67400 Illkirch, France; and Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas Lecuit
- IBDML (Institut de Biologie du Développement de Marseille Luminy), UMR6216 CNRS—Université de la Méditerranée, Parc Scientifique de Luminy BP 907, 13009 Marseille, France
| |
Collapse
|
37
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
38
|
Chuai M, Dormann D, Weijer CJ. Imaging cell signalling and movement in development. Semin Cell Dev Biol 2009; 20:947-55. [DOI: 10.1016/j.semcdb.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
39
|
The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc Natl Acad Sci U S A 2009; 106:15696-701. [PMID: 19717452 DOI: 10.1073/pnas.0811261106] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Migration of cells is important for tissue maintenance, immune response, and often altered in disease. While biochemical aspects, including cell adhesion, have been studied in detail, much less is known about the role of the mechanical properties of cells. Previous measurement methods rely on contact with artificial surfaces, which can convolute the results. Here, we used a non-contact, microfluidic optical stretcher to study cell mechanics, isolated from other parameters, in the context of tissue infiltration by acute promyelocytic leukemia (APL) cells, which occurs during differentiation therapy with retinoic acid. Compliance measurements of APL cells reveal a significant softening during differentiation, with the mechanical properties of differentiated cells resembling those of normal neutrophils. To interfere with the migratory ability acquired with the softening, differentiated APL cells were exposed to paclitaxel, which stabilizes microtubules. This treatment does not alter compliance but reduces cell relaxation after cessation of mechanical stress six-fold, congruent with a significant reduction of motility. Our observations imply that the dynamical remodeling of cell shape required for tissue infiltration can be frustrated by stiffening the microtubular system. This link between the cytoskeleton, cell mechanics, and motility suggests treatment options for pathologies relying on migration of cells, notably cancer metastasis.
Collapse
|
40
|
Rieu JP, Saito T, Delanoë-Ayari H, Sawada Y, Kay RR. Migration ofDictyosteliumslugs: Anterior-like cells may provide the motive force for the prespore zone. ACTA ACUST UNITED AC 2009; 66:1073-86. [DOI: 10.1002/cm.20411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Meijering E, Dzyubachyk O, Smal I, van Cappellen WA. Tracking in cell and developmental biology. Semin Cell Dev Biol 2009; 20:894-902. [PMID: 19660567 DOI: 10.1016/j.semcdb.2009.07.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/10/2009] [Accepted: 07/28/2009] [Indexed: 11/30/2022]
Abstract
The past decade has seen an unprecedented data explosion in biology. It has become evident that in order to take full advantage of the potential wealth of information hidden in the data produced by even a single experiment, visual inspection and manual analysis are no longer adequate. To ensure efficiency, consistency, and completeness in data processing and analysis, computational tools are essential. Of particular importance to many modern live-cell imaging experiments is the ability to automatically track and analyze the motion of objects in time-lapse microscopy images. This article surveys the recent literature in this area. Covering all scales of microscopic observation, from cells, down to molecules, and up to entire organisms, it discusses the latest trends and successes in the development and application of computerized tracking methods in cell and developmental biology.
Collapse
Affiliation(s)
- Erik Meijering
- Biomedical Imaging Group Rotterdam, Erasmus MC - University Medical Center Rotterdam, Department of Medical Informatics, P. O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Hallett MB, Lebiedz D, Mommer MS, Reble C, Saltmarsh EJ. Fantastic Ca2+ “z-waves” fade out quietly. Cell Calcium 2009; 46:85-6. [DOI: 10.1016/j.ceca.2009.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
43
|
Harris MP, Kim E, Weidow B, Wikswo JP, Quaranta V. Migration of isogenic cell lines quantified by dynamic multivariate analysis of single-cell motility. Cell Adh Migr 2009; 2:127-36. [PMID: 19271355 DOI: 10.4161/cam.2.2.6482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell migration is essential in many physiological and pathological processes. To understand this complex behavior, researchers have turned to quantitative, in vitro, image-based measurements to dissect the steps of cellular motility. With the rise of automated microscopy, the bottleneck in these approaches is no longer data acquisition, but data analysis. Using time-lapse microscopy and computer-assisted image analysis, we have developed a novel, quantitative assay that extracts a multivariate profile for cellular motility. This technique measures three dynamic parameters per single cell: speed, surface area, and an in-dex of cell expansion/contraction activity (DECCA). Our assay can be used in combination with a variety of extracellular matrix components, or other soluble agents, to analyze the effects of the microenvironment on cellular migration dynamics in vitro. Our application was developed and tested using A431 and HT-1080 cell lines plated on laminin-332 or fibronectin substrates. Our results indicate that HT-1080 cells migrate faster, have a greater surface area, and have a higher DECCA index than A431 cells on both matrices (for all parameters, p < 0.05). Spearman's correlation coefficients suggest that for these cell lines and matrices, various combinations of the three measurements display low to medium-high levels of correlation. These findings compare well with previous literature. Our approach provides new tools to measure cellular migration dynamics and address questions on the relationship between cell motility and the microenvironment, using only common microscopy techniques, accessible image analysis applications, and a basic desktop computer for image processing.
Collapse
Affiliation(s)
- Mark P Harris
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-6840, USA.
| | | | | | | | | |
Collapse
|
44
|
Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 2009; 6:155-63. [PMID: 19093788 DOI: 10.1089/lrb.2008.1011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The lifelong dedication of Dr. Judah Folkman to understand how tumors co-opt vasculature to promote tumor growth and spread resulted in the development of an astounding body of knowledge and development of new clinical therapeutics for cancer. Angiogenesis is a critical point in the development and dissemination of most human tumors. Tumor-associated lymphangiogenesis also plays an important role in mediating tumor spread to lymph nodes. The molecular regulations of these processes are complex, and many key molecular families have been implicated in the regulation of angiogenesis and lymphangiogenesis. By regulating cell-cell and cell-matrix contacts, integrins participate in blood and lymphatic vessel growth by promoting endothelial cell migration and survival. Understanding the underlying mechanisms by which integrins promote tumor-associated blood and lymphatic vessel development might provide important modalities for the therapeutic intervention of metastatic spread. This review focuses on the role of integrins in angiogenesis and lymphangiogenesis. Integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of malignancies. This article is dedicated to the memory of Dr. Judah Folkman, an amazing and caring teacher, scientist, physician, and friend.
Collapse
|
45
|
Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium. BMC DEVELOPMENTAL BIOLOGY 2009; 9:4. [PMID: 19128502 PMCID: PMC2639382 DOI: 10.1186/1471-213x-9-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/07/2009] [Indexed: 12/19/2022]
Abstract
Background The mouse corneal epithelium is a continuously renewing 5–6 cell thick protective layer covering the corneal surface, which regenerates rapidly when injured. It is maintained by peripherally located limbal stem cells (LSCs) that produce transient amplifying cells (TACs) which proliferate, migrate centripetally, differentiate and are eventually shed from the epithelial surface. LSC activity is required both for normal tissue maintenance and wound healing. Mosaic analysis can provide insights into LSC function, cell movement and cell mixing during tissue maintenance and repair. The present study investigates cell streaming during corneal maintenance and repair and changes in LSC function with age. Results The initial pattern of corneal epithelial patches in XLacZ+/- X-inactivation mosaics was replaced after birth by radial stripes, indicating activation of LSCs. Stripe patterns (clockwise, anticlockwise or midline) were independent between paired eyes. Wound healing in organ culture was analysed by mosaic analysis of XLacZ+/- eyes or time-lapse imaging of GFP mosaics. Both central and peripheral wounds healed clonally, with cells moving in from all around the wound circumference without significant cell mixing, to reconstitute striping patterns. Mosaic analysis revealed that wounds can heal asymmetrically. Healing of peripheral wounds produced stripe patterns that mimicked some aberrant striping patterns observed in unwounded corneas. Quantitative analysis provided no evidence for an uneven distribution of LSC clones but showed that corrected corneal epithelial stripe numbers declined with age (implying declining LSC function) but stabilised after 39 weeks. Conclusion Striping patterns, produced by centripetal movement, are defined independently and stochastically in individual eyes. Little cell mixing occurs during the initial phase of wound healing and the direction of cell movement is determined by the position of the wound and not by population pressure from the limbus. LSC function declines with age and this may reflect reduced LSCs numbers, more quiescent LSCs or a reduced ability of older stem cells to maintain tissue homeostasis. The later plateau of LSC function might indicate the minimum LSC function that is sufficient for corneal epithelial maintenance. Quantitative and temporal mosaic analyses provide new possibilities for studying stem cell function, tissue maintenance and repair.
Collapse
|
46
|
Wöllert T, Langford GM. High resolution multimode light microscopy of cell migration: long-term imaging and analysis. Methods Mol Biol 2009; 586:3-21. [PMID: 19768422 DOI: 10.1007/978-1-60761-376-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell migration is a multi-step process that involves sequential changes in the cytoskeleton, cell-substrate adhesion and components of the extracellular matrix. In multicellular organisms, directional cell migration is important for normal development, wound healing and immune responses and contributes to disease states such as tumor formation and metastasis. Many cells such as fibroblasts migrate as individuals while others, such as keratinocytes, move as groups or sheets of cells.In this chapter, we use human oral keratinocytes (OKF6/TERT-2) to illustrate the complex patterns of cell migration and its regulation. In culture, sheets of keratinocytes migrate and respond to human pathogens such as Candida albicans. The dynamic changes of the cytoskeleton, cell-cell and cell-substrate interactions that change during an infection for example require observation over long periods of time in order to identify the spatio-temporal coordinated regulation of the cytoskeleton and its associated components as well as the signaling pathways that control them.Microscopic techniques for long-term live cell observation and analysis of cell migration require high-resolution imaging systems that maintain perfect focus and optimal growth conditions (temperature, CO(2)) for cells. We describe two multimode digital imaging systems (VEC-DIC and BioStation IM), both with wide-field epifluorescence and transmitted light objectives for long-term time-lapse imaging and motion analysis.
Collapse
Affiliation(s)
- Torsten Wöllert
- Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
47
|
Yu C, Han W, Shi T, Lv B, He Q, Zhang Y, Li T, Zhang Y, Song Q, Wang L, Ma D. PTPIP51, a novel 14–3–3 binding protein, regulates cell morphology and motility via Raf–ERK pathway. Cell Signal 2008; 20:2208-20. [DOI: 10.1016/j.cellsig.2008.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
|
48
|
Yumura S, Ueda M, Sako Y, Kitanishi-Yumura T, Yanagida T. Multiple Mechanisms for Accumulation of Myosin II Filaments at the Equator During Cytokinesis. Traffic 2008; 9:2089-99. [DOI: 10.1111/j.1600-0854.2008.00837.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Gaudet P, Fey P, Chisholm R. Dictyostelium discoideum: The Social Ameba. ACTA ACUST UNITED AC 2008; 2008:pdb.emo109. [PMID: 21356735 DOI: 10.1101/pdb.emo109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a "social ameba" because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeletal organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore nature of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has also been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of drug action and the pathways that lead to resistance to certain therapeutic agents. The availability of a complete genome sequence has further widened the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to discovering new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, makes D. discoideum an easily accessible and powerful model organism to study.
Collapse
Affiliation(s)
- Pascale Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
50
|
Lee JJ, Kwak HJ, Lee YM, Lee JW, Park MJ, Ko YG, Choi HD, Kim N, Pack JK, Hong SI, Lee JS. Acute radio frequency irradiation does not affect cell cycle, cellular migration, and invasion. Bioelectromagnetics 2008; 29:615-25. [DOI: 10.1002/bem.20427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|