1
|
Wang XS, Jiou J, Cerra A, Cobbold SA, Jochem M, Mak KHT, Corcilius L, Silke J, Payne RJ, Goddard-Borger ED, Komander D, Lechtenberg BC. The RBR E3 ubiquitin ligase HOIL-1 can ubiquitinate diverse non-protein substrates in vitro. Life Sci Alliance 2025; 8:e202503243. [PMID: 40169258 PMCID: PMC11962058 DOI: 10.26508/lsa.202503243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
HOIL-1 is a RING-between-RING-family E3 ubiquitin ligase and a component of the linear ubiquitin chain assembly complex. Although most E3 ubiquitin ligases conjugate ubiquitin to protein lysine sidechains, HOIL-1 has also been reported to ubiquitinate hydroxyl groups in protein serine and threonine sidechains and glucosaccharides, such as glycogen and its building block maltose, in vitro. However, HOIL-1 substrate specificity is currently poorly defined. Here, we show that HOIL-1 is unable to ubiquitinate lysine but can efficiently ubiquitinate serine and a variety of model and physiologically relevant di- and monosaccharides in vitro. We identify a critical catalytic histidine residue, His510, in the flexible catalytic site of HOIL-1 that enables this O-linked ubiquitination and prohibits ubiquitin discharge onto lysine sidechains. We use HOIL-1's in vitro non-proteinaceous ubiquitination activity to produce preparative amounts of different ubiquitinated saccharides that can be used as tool compounds and standards in the rapidly emerging field of non-proteinaceous ubiquitination. Finally, we report an engineered, constitutively active HOIL-1 variant that simplifies in vitro generation of ubiquitinated saccharides.
Collapse
Affiliation(s)
- Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jenny Jiou
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Anthony Cerra
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Simon A Cobbold
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Marco Jochem
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ka Hin Toby Mak
- School of Chemistry, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, Australia
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, Australia
| | - Ethan D Goddard-Borger
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - David Komander
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Wang B, Li C, Zhao F, Shi L, Li X, Liu Y, Sun S, Yuan L, Sun M, Zhang Y, Shi J, Liang LJ. Examining the Role of Threonine Phosphorylation in Ubiquitin's Function Using Chemical Protein Synthesis. JACS AU 2025; 5:2148-2158. [PMID: 40443892 PMCID: PMC12117390 DOI: 10.1021/jacsau.5c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 06/02/2025]
Abstract
The phosphorylation of ubiquitin significantly enhances the complexity of the ubiquitin code. However, the molecular consequences of ubiquitin phosphorylation at threonine residues remain largely uncharacterized. In this study, we present an effective method for the total chemical synthesis of threonine-phosphorylated ubiquitin, producing tens of milligrams of all six in vivo-identified threonine-phosphorylated ubiquitin analogues: pUbT7, pUbT12, pUbT14, pUbT22, pUbT55, and pUbT66. The biochemical activities of phosphorylated ubiquitin analogues were examined in vitro. Our results show that threonine phosphorylation has a differential impact on E2 charging, with phosphorylation at residue Thr7 exhibiting significant inhibition. In addition, threonine phosphorylation significantly affects the E1-E2-E3-mediated assembly and deubiquitinase-mediated disassembly of polyubiquitin chains in a site-specific manner. Collectively, this work provides new insights into the effect of phosphorylation on the ubiquitin code.
Collapse
Affiliation(s)
- Bingji Wang
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Chuntong Li
- Department
of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing100084, China
- Beijing
Institute of Life Science and Technology, Beijing102206, China
| | - Fangyu Zhao
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
- Beijing
Institute of Life Science and Technology, Beijing102206, China
| | - Luyu Shi
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Xu Li
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Yijie Liu
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Shuzhe Sun
- Department
of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing100084, China
- Beijing
Institute of Life Science and Technology, Beijing102206, China
| | - Ligong Yuan
- Department
of Thoracic Surgery, the First Affiliated Hospital of USTC, Division
of Life Sciences and Medicine, University
of Science and Technology of China, Hefei230001, China
| | - Maoshen Sun
- Department
of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts02115-6027, United States
| | - Yingyue Zhang
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Jing Shi
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
| | - Lu-Jun Liang
- Center
for BioAnalytical Chemistry, Hefei National Laboratory of Physical
Science at Microscale, University of Science
and Technology of China, Hefei230026, China
- Beijing
Institute of Life Science and Technology, Beijing102206, China
| |
Collapse
|
3
|
Lim MCC, Maubach G, Naumann M. CYLD-TRAF6 interaction promotes ADP-heptose-induced NF-κB signaling in H. pylori infection. EMBO Rep 2025:10.1038/s44319-025-00480-y. [PMID: 40404856 DOI: 10.1038/s44319-025-00480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
The inflammatory response associated with Helicobacter pylori (H. pylori) infection causes a multitude of alterations in the gastric microenvironment, leading to the slow and steady disruption of the gastric epithelial barrier. Activation of NF-κB during H. pylori infection is crucial to this inflammatory response. Here, we show that CYLD, which interacts constitutively with TRAF6, enhances H. pylori's ADP-heptose-induced activation of the classical NF-κB pathway in gastric epithelial cells. This activating effect of CYLD contrasts with the inhibitory effect of CYLD on receptor-mediated NF-κB activity. Mechanistically, CYLD counteracts the hydrolysis of ubiquitin chains from TRAF6 by deubiquitinylase A20 in a catalytically independent manner, thus supporting the auto-ubiquitinylation of TRAF6 upon activation of NF-κB in early H. pylori infection. In addition, the subsequent classical NF-κB-dependent de novo synthesis of A20 provides a negative feedback loop leading to shutdown not only of the classical but also of the alternative NF-κB pathway. Our findings highlight the regulatory relationship between CYLD and A20 in controlling classical as well as alternative NF-κB signaling in H. pylori infection.
Collapse
Affiliation(s)
- Michelle C C Lim
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gunter Maubach
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Michael Naumann
- Otto von Guericke University, Institute of Experimental Internal Medicine, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
4
|
Körner M, Müller P, Das H, Kraus F, Pfeuffer T, Spielhaupter S, Oeljeklaus S, Schülein-Völk C, Harper JW, Warscheid B, Buchberger A. p97/VCP is required for piecemeal autophagy of aggresomes. Nat Commun 2025; 16:4243. [PMID: 40335532 PMCID: PMC12059050 DOI: 10.1038/s41467-025-59556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Metazoan cells adapt to the exhaustion of protein quality control (PQC) systems by sequestering aggregation-prone proteins in large, pericentriolar structures termed aggresomes. Defects in both aggresome formation and clearance affect proteostasis and have been linked to neurodegenerative diseases, but aggresome clearance pathways are still underexplored. Here we show that aggresomes comprising endogenous proteins are cleared via selective autophagy requiring the cargo receptor TAX1BP1. TAX1BP1 proximitomes reveal the presence of various PQC systems at aggresomes, including Hsp70 chaperones, the 26S proteasome, and the ubiquitin-selective unfoldase p97/VCP. While Hsp70 and p97/VCP with its cofactors UFD1-NPL4 and FAF1 play key roles in aggresome disassembly, the 26S proteasome is dispensable. We identify aggresomal client proteins that are degraded via different routes, in part in a p97/VCP-dependent manner via aggrephagy. Upon acute inhibition of p97/VCP, aggresomes fail to disintegrate and cannot be incorporated into autophagosomes despite the presence of factors critical for aggrephagosome formation, including p62/SQSTM1, TAX1BP1, and WIPI2. We conclude that the p97/VCP-mediated removal of ubiquitylated aggresomal clients is essential for the disintegration and subsequent piecemeal autophagy of aggresomes.
Collapse
Affiliation(s)
- Maria Körner
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Paul Müller
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Hirak Das
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | - Felix Kraus
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Timo Pfeuffer
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Sven Spielhaupter
- Biocenter, Chair of Biochemistry I, University of Würzburg, Würzburg, Germany
| | - Silke Oeljeklaus
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bettina Warscheid
- Biocenter, Chair of Biochemistry II, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
5
|
Spaan AN, Boisson B, Masters SL. Primary disorders of polyubiquitination: Dual roles in autoinflammation and immunodeficiency. J Exp Med 2025; 222:e20241047. [PMID: 40232244 PMCID: PMC11998746 DOI: 10.1084/jem.20241047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
The last decades have brought a rapid expansion of the number of primary disorders related to the polyubiquitination pathways in humans. Most of these disorders manifest with two seemingly contradictory clinical phenotypes: autoinflammation, immunodeficiency, or both. We provide an overview of the molecular pathogenesis of these disorders, and their role in inflammation and infection. By focusing on data from human genetic diseases, we explore the complexities of the polyubiquitination pathways and the corresponding clinical phenotypes of their deficiencies. We offer a road map for the discovery of new genetic etiologies. By considering the triggers that induce inflammation, we propose autoinflammation and immunodeficiency as continuous clinical phenotypes.
Collapse
Affiliation(s)
- András N. Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Yin M, Li X, Zhang M, Zhao Q, Wang H, Zhang H, Lu Z, Qian P. MARCH8 promotes the proteasomal degradation of foot-and-mouth disease virus VP1, VP2, and VP3 to negatively regulate viral replication. Vet Res 2025; 56:96. [PMID: 40307900 PMCID: PMC12044826 DOI: 10.1186/s13567-025-01521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
The host cell membrane-associated RING-CH8 protein (MARCH8) functions as an antiviral host factor by targeting viral envelope glycoproteins. Foot-and-mouth disease virus (FMDV) is a non-enveloped, positive-sense, single-stranded RNA virus. The potential impact of MARCH8 on FMDV replication remains uncertain. Here, we found that the overexpression of MARCH8 significantly inhibited FMDV replication in a dose-dependent manner. Conversely, the knockdown of MARCH8 facilitated FMDV replication. Specifically, MARCH8 interacted with VP1, VP2, and VP3, mediating their degradation in a proteasome-dependent manner. MARCH8 catalyzed the K33-linked polyubiquitination of VP1, VP2, and VP3. Moreover, the Lys210 residue of VP1, the Lys63 residue of VP2, and the Lys118 residue of VP3 were identified as critical target sites for MARCH8-mediated degradation. Overall, we conclude that MARCH8 is an intrinsic antiviral factor against FMDV.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Qiongqiong Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Haoyuan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Huiyan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
8
|
Dearlove EL, Huang DT. Insights into non-proteinaceous ubiquitination. Biochem Soc Trans 2025; 53:BST20253019. [PMID: 40181599 DOI: 10.1042/bst20253029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Ubiquitination plays a key role in the regulation of numerous diverse cellular functions. This process involves the covalent attachment of ubiquitin to protein substrates by a cascade of enzymes. In recent years, various non-proteinaceous substrates of ubiquitination have been discovered, expanding the potential for the functions of ubiquitination beyond its conventional role as a post-translational modification. Here, we profile the non-proteinaceous substrates of ubiquitination reported to date, the enzymes that regulate these activities, and the mechanistic details of substrate modification. The biological functions linked to these modifications are discussed, and finally, we highlight the challenges hindering further progress in the identification and functional characterization of non-proteinaceous substrates of ubiquitination within cellular contexts.
Collapse
Affiliation(s)
- Emily L Dearlove
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Danny T Huang
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| |
Collapse
|
9
|
Wu CJ. NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease. Cells 2025; 14:304. [PMID: 39996775 PMCID: PMC11854354 DOI: 10.3390/cells14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The IκB kinase (IKK) complex plays a central role in many signaling pathways that activate NF-κB, which turns on a battery of genes important for immune response, inflammation, and cancer development. Ubiquitination is one of the most prevalent post-translational modifications of proteins and is best known for targeting substrates for proteasomal degradation. The investigations of NF-κB signaling pathway primed the unveiling of the non-degradative roles of protein ubiquitination. The NF-κB-essential modulator (NEMO) is the IKK regulatory subunit that is essential for IKK activation by diverse intrinsic and extrinsic stimuli. The studies centered on NEMO as a polyubiquitin-binding protein have remarkably advanced understandings of how NEMO transmits signals to NF-κB activation and have laid a foundation for determining the molecular events demonstrating non-degradative ubiquitination as a major driving element in IKK activation. Furthermore, these studies have largely solved the enigma that IKK can be activated by diverse pathways that employ distinct sets of intermediaries in transmitting signals. NEMO and NEMO-related proteins that include optineurin, ABIN1, ABIN2, ABIN3, and CEP55, as non-degradative ubiquitin chain receptors, play a key role in sensing and transmitting ubiquitin signals embodied in different topologies of polyubiquitin chains for a variety of cellular processes and body responses. Studies of these multifaceted proteins in ubiquitin sensing have promoted understanding about the functions of non-degradative ubiquitination in intracellular signaling, protein trafficking, proteostasis, immune response, DNA damage response, and cell cycle control. In this review, I will also discuss how dysfunction in the NEMO family of protein-mediated non-degradative ubiquitin signaling is associated with various diseases, including immune disorders, neurodegenerative diseases, and cancer, and how microbial virulence factors target NEMO to induce pathogenesis or manipulate host response. A profound understanding of the molecular bases for non-degradative ubiquitin signaling will be valuable for developing tailored approaches for therapeutic purposes.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zeng X, Xu J, Liu J, Liu Y, Yang S, Huang J, Fan C, Guo M, Sun G. DYRK4 upregulates antiviral innate immunity by promoting IRF3 activation. EMBO Rep 2025; 26:690-719. [PMID: 39702801 PMCID: PMC11811199 DOI: 10.1038/s44319-024-00352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Viral infection activates the transcription factors IRF3 and NF-κB, which induce type I interferon (IFN) and antiviral innate immune responses. Here, we identify dual-specific tyrosine phosphorylation-regulated kinase 4 (DYRK4) as an important regulator of virus-triggered IFN-β induction and antiviral innate immunity. Overexpression of DYRK4 enhances virus-triggered activation of IRF3 and type I IFN induction, whereas knockdown or knockout of DYRK4 impairs virus-induced activation of IRF3 and NF-κB. Moreover, Dyrk4-knockout mice are more susceptible to viral infection. The underlying mechanism involves DYRK4 acting as a scaffold protein to recruit TRIM71 and LUBAC to IRF3, increasing IRF3 linear ubiquitination, maintaining IRF3 stability and activation during viral infection, and promoting the IRF3-mediated antiviral response. Our findings provide new insights into the molecular mechanisms underlying viral infection-triggered IRF3 stabilization and activation.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Chengpeng Fan
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.
- School of Ecology and Environment, Tibet University, 850000, Lhasa, Xizang, China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, 430071, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, 430071, Wuhan, China.
| |
Collapse
|
11
|
Huang S, Shi D, Dai S, Jiang X, Wang R, Yang M, Chen B, Chen X, Kong L, He L, Deng P, Chen X, Lin C, Li Y, Li J, Song L, Shi Y, Wei W. RNF31 induces paclitaxel resistance by sustaining ALYREF cytoplasmic-nuclear shuttling in human triple-negative breast cancer. Clin Transl Med 2025; 15:e70203. [PMID: 39915011 PMCID: PMC11802238 DOI: 10.1002/ctm2.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Resistance to paclitaxel-based chemotherapy is the major obstacle in triple-negative breast cancer (TNBC) treatment. However, overcoming paclitaxel resistance remains an unsolved problem. The present study aimed to determine whether paclitaxel treatment impairs Aly/REF export factor (ALYREF) cytoplasmic-nuclear shuttling, its mechanism, and the role of ubiquitinated ALYREF in paclitaxel resistance. METHODS The subcellular proportion of ALYREF was detected in samples from patients with TNBC using immunohistochemistry to analyze the relationship between ALYREF distribution and paclitaxel response. Cell viability assays, immunofluorescence assays, quantitative real-time reverse transcription PCR assays, western blotting, and terminal deoxynucleotidyl transferase nick-end-labelling assays were conducted to measure the biological function of the subcellular proportion of ALYREF and E3 ligase ring finger protein 31 (RNF31) on paclitaxel sensitivity in TNBC. The synergistic effects of an RNF31 inhibitor plus paclitaxel on TNBC were evaluated. Cox regression models were adopted to assess the prognostic role of RNF31 in TNBC. RESULTS Herein, we showed that regulation of ALYREF cytoplasmic-nuclear shuttling is associated with the paclitaxel response in TNBC. In paclitaxel-sensitive TNBC, ALYREF was trapped in the cytoplasm by paclitaxel, while in paclitaxel-resistant TNBC, ALYREF was efficiently transported into the nucleus to exert its function, allowing the export of the mRNAs encoding paclitaxel-resistance-related factors, including tubulin beta 3 class III (TUBB3), stathmin 1 (STMN1), and microtubule-associated protein Tau (TAU), ultimately inducing paclitaxel resistance in TNBC. Mechanistically, we found that RNF31 interacts with and ubiquitinates ALYREF, which facilitates ALYREF nuclear transportation via importin 13 (IPO13) under paclitaxel treatment. Notably, the RNF31 inhibitor and paclitaxel synergistically repressed tumour growth in vivo and in TNBC patient-derived organoids. In addition, analysis of patients with TNBC showed that elevated RNF31 levels correlated with poor prognosis. CONCLUSION These data indicated that RNF31-mediated ALYREF ubiquitylation could represent a potent target to reverse paclitaxel resistance in TNBC. KEY POINTS RNF31 facilitated ALYREF-mediated PTX resistance in TNBC. RNF31 promoted ALYREF nuclear transport via IPO13 in response to PTX treatment, subsequently enhancing the export of mRNAs encoding PTX resistance-related factors, including TUBB3, STMN1, and TAU. Blocking RNF31 trapped ALYREF in the cytoplasm and induced TNBC cell death upon PTX treatment. Inhibiting RNF31 activity re-sensitized PTX-resistant TNBC to PTX treatment.
Collapse
Affiliation(s)
- Shumei Huang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Dongni Shi
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shuqin Dai
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medicinal LaboratoryState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xingyu Jiang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rui Wang
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Muwen Yang
- Department of Radiation OncologyShenzhen Key Laboratory of Gastrointestinal Cancer Translational ResearchCancer InstitutePeking University Shenzhen HospitalShenzhen‐Peking University‐Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Boyu Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuwei Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lingzhi Kong
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lixin He
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Pinwei Deng
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiangfu Chen
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chuyong Lin
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yue Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Libing Song
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yawei Shi
- Department of Breast and Thyroid Surgerythe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Weidong Wei
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Breast Oncology DepartmentState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
12
|
Fischer TD, Bunker EN, Zhu PP, Le Guerroué F, Hadjian M, Dominguez-Martin E, Scavone F, Cohen R, Yao T, Wang Y, Werner A, Youle RJ. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NF-κB signaling. EMBO J 2025; 44:141-165. [PMID: 39578541 PMCID: PMC11696098 DOI: 10.1038/s44318-024-00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
STING activation by cyclic dinucleotides induces IRF3- and NF-κB-mediated gene expression in mammals, as well as lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NF-κB activation via STING remain unclear. We report here that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub chains and reduces STING-induced NF-κB and IRF3 signaling in human THP1 monocytes and mouse bone marrow-derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or for immune-related gene expression, but the recently reported STING function in neutralizing Golgi pH may be involved. Thus, LUBAC synthesis of M1-linked ubiquitin chains mediates STING-induced innate immune signaling.
Collapse
Affiliation(s)
- Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Eric N Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peng-Peng Zhu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - François Le Guerroué
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mahan Hadjian
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eunice Dominguez-Martin
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Robert Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Wang
- Mass Spectrometry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Nakano Y, Masuda T, Sakamoto T, Tanaka N, Tobo T, Hashimoto M, Tatsumi T, Saito H, Takahashi J, Koike K, Abe T, Ando Y, Ozato Y, Hosoda K, Hirose K, Higuchi S, Ikehara T, Hisamatsu Y, Toshima T, Yonemura Y, Ogino T, Uemura M, Eguchi H, Doki Y, Mimori K. SHARPIN is a novel gene of colorectal cancer that promotes tumor growth potentially via inhibition of p53 expression. Int J Oncol 2024; 65:113. [PMID: 39450547 PMCID: PMC11542962 DOI: 10.3892/ijo.2024.5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) is widely prevalent and represents a significant contributor to global cancer‑related mortality. There remains a pressing demand for advancements in CRC treatment modalities. The E3 ubiquitin ligase is a critical enzyme involved in modulating protein expression levels via posttranslational ubiquitin‑mediated proteolysis, and it is reportedly involved in the progression of various cancers, making it a target of recent interest in anticancer therapy. In the present study, using comprehensive expression analysis involving spatial transcriptomic analysis with single‑cell RNA sequencing in clinical CRC datasets, the ubiquitin‑associated protein Shank‑associated RH domain interactor (SHARPIN) was identified, located on amplified chromosome 8q, which could promote CRC progression. SHARPIN was found to be upregulated in tumor cells, with elevated expression observed in tumor tissues. This heightened expression of SHARPIN was positively associated with lymphatic invasion and served as an independent predictor of a poor prognosis in patients with CRC. In vitro and in vivo analyses using SHARPIN‑overexpressing or ‑knockout CRC cells revealed that SHARPIN overexpression upregulated MDM2, resulting in the downregulation of p53, while SHARPIN silencing or knockout downregulated MDM2, leading to p53 upregulation, which affects cell cycle progression, tumor cell apoptosis and tumor growth in CRC. Furthermore, SHARPIN was found to be overexpressed in several cancer types, exerting significant effects on survival outcomes. In conclusion, SHARPIN represents a newly identified novel gene with the potential to promote tumor growth following apoptosis inhibition and cell cycle progression in part by inhibiting p53 expression via MDM2 upregulation; therefore, SHARPIN represents a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Breast and Endocrine Surgery, Kochi Medical School, Kochi University, Nankoku 783-8505, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Noritaka Tanaka
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takanari Tatsumi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Kosuke Hirose
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomohiko Ikehara
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| |
Collapse
|
14
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
15
|
Ujevic A, Knizkova D, Synackova A, Pribikova M, Trivic T, Dalinskaya A, Drobek A, Niederlova V, Paprckova D, De Guia R, Kasparek P, Prochazka J, Labaj J, Fedosieieva O, Roeck BF, Mihola O, Trachtulec Z, Sedlacek R, Stepanek O, Draber P. TBK1-associated adapters TANK and AZI2 protect mice against TNF-induced cell death and severe autoinflammatory diseases. Nat Commun 2024; 15:10013. [PMID: 39562788 PMCID: PMC11576971 DOI: 10.1038/s41467-024-54399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
The cytokine TNF can trigger highly proinflammatory RIPK1-dependent cell death. Here, we show that the two adapter proteins, TANK and AZI2, suppress TNF-induced cell death by regulating the activation of TBK1 kinase. Mice lacking either TANK or AZI2 do not show an overt phenotype. Conversely, animals deficient in both adapters are born in a sub-Mendelian ratio and suffer from severe multi-organ inflammation, excessive antibody production, male sterility, and early mortality, which can be rescued by TNFR1 deficiency and significantly improved by expressing a kinase-dead form of RIPK1. Mechanistically, TANK and AZI2 both recruit TBK1 to the TNF receptor signaling complex, but with distinct kinetics due to interaction with different complex components. While TANK binds directly to the adapter NEMO, AZI2 is recruited later via deubiquitinase A20. In summary, our data show that TANK and AZI2 cooperatively sustain TBK1 activity during different stages of TNF receptor assembly to protect against autoinflammation.
Collapse
Affiliation(s)
- Andrea Ujevic
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Daniela Knizkova
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alzbeta Synackova
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tijana Trivic
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Anna Dalinskaya
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ales Drobek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Darina Paprckova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Roldan De Guia
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Juraj Labaj
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Olha Fedosieieva
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Bernhard Florian Roeck
- Institute for Genetics, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Draber
- Laboratory of Immunity & Cell Communication, Division BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
16
|
Toda Y, Fujita H, Mino K, Koyama T, Matsuoka S, Kaizuka T, Agawa M, Matsumoto S, Idei A, Nishikori M, Okuno Y, Osada H, Yoshida M, Takaori-Kondo A, Iwai K. Synergistic involvement of the NZF domains of the LUBAC accessory subunits HOIL-1L and SHARPIN in the regulation of LUBAC function. Cell Death Dis 2024; 15:813. [PMID: 39528476 PMCID: PMC11555115 DOI: 10.1038/s41419-024-07199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) plays crucial roles in NF-κB signaling and protection against cell death by generating linear ubiquitin chains. Its accessory subunits, HOIL-1L and SHARPIN, regulate LUBAC function by binding to ubiquitin chains via their Npl4 zinc finger (NZF) domains. However, the synergistic effects of the two NZF domains on LUBAC function remain unclear. Here, we demonstrate that the ubiquitin-binding activity of the two NZF domains cooperatively regulates LUBAC functions. Simultaneous loss of the ubiquitin-binding activity of the NZF domains profoundly impaired both NF-κB activation and cell death protection functions. HOIL-1L NZF robustly binds to linear ubiquitin chains, whereas SHARPIN NZF binds to Lys(K)63-linked ubiquitin chains in addition to linear chains. Binding of both NZF domains to linear ubiquitin chains regulated NF-κB signaling, whereas SHARPIN NZF predominantly regulated the cell death protection function independently of the ubiquitin chain type, K63-linked or linear ubiquitin. However, concomitant loss of linear ubiquitin binding by HOIL-1L NZF drastically impaired cell death protection. A screen of compounds capable of inhibiting binding between HOIL-1L NZF and linear ubiquitin chains identified a small compound that inhibited SHARPIN NZF as well as HOIL-1L NZF binding to linear ubiquitin chains, supporting the synergistic effect of the two NZF domains on cell death protection and suggesting a potential therapeutic strategy for targeting increased LUBAC activity in diseases such as cancer.
Collapse
Affiliation(s)
- Yusuke Toda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
| | - Koshiki Mino
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takuto Koyama
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toshie Kaizuka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Mari Agawa
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Shigeyuki Matsumoto
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Akiko Idei
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, 422-8526, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan.
| |
Collapse
|
17
|
Nuga O, Richardson K, Patel NC, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear poly-ubiquitin remodels the proteome and influences hundreds of regulators in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkae209. [PMID: 39325835 PMCID: PMC11540324 DOI: 10.1093/g3journal/jkae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Ubiquitin controls many cellular processes via its posttranslational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin chains with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express noncleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins, such as the circadian factor Cryptochrome. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin chains with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
Affiliation(s)
- Oluwademilade Nuga
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kristin Richardson
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Nikhil C Patel
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
- Department of Neurology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
19
|
Koyano F, Yamano K, Hoshina T, Kosako H, Fujiki Y, Tanaka K, Matsuda N. AAA+ ATPase chaperone p97/VCP FAF2 governs basal pexophagy. Nat Commun 2024; 15:9347. [PMID: 39472561 PMCID: PMC11522385 DOI: 10.1038/s41467-024-53558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Peroxisomes are organelles that are central to lipid metabolism and chemical detoxification. Despite advances in our understanding of peroxisome biogenesis, the mechanisms maintaining peroxisomal membrane proteins remain to be fully elucidated. We show here that mammalian FAF2/UBXD8, a membrane-associated cofactor of p97/VCP, maintains peroxisomal homeostasis by modulating the turnover of peroxisomal membrane proteins such as PMP70. In FAF2-deficient cells, PMP70 accumulation recruits the autophagy adaptor OPTN (Optineurin) to peroxisomes and promotes their autophagic clearance (pexophagy). Pexophagy is also induced by p97/VCP inhibition. FAF2 functions together with p97/VCP to negatively regulate pexophagy rather than as a factor for peroxisome biogenesis. Our results strongly suggest that p97/VCPFAF2-mediated extraction of ubiquitylated peroxisomal membrane proteins (e.g., PMP70) prevents peroxisomes from inducing nonessential autophagy under steady state conditions. These findings provide insight into molecular mechanisms underlying the regulation of peroxisomal integrity by p97/VCP and its associated cofactors.
Collapse
Affiliation(s)
- Fumika Koyano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tomoyuki Hoshina
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, 816-8580, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Noriyuki Matsuda
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU) (Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
20
|
Fischer TD, Bunker EN, Zhu PP, Guerroué FL, Hadjian M, Dominguez-Martin E, Scavone F, Cohen R, Yao T, Wang Y, Werner A, Youle RJ. STING induces HOIP-mediated synthesis of M1 ubiquitin chains to stimulate NFκB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.14.562349. [PMID: 37873486 PMCID: PMC10592814 DOI: 10.1101/2023.10.14.562349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
STING activation by cyclic dinucleotides in mammals induces IRF3- and NFκB -mediated gene expression, and the lipidation of LC3B at Golgi-related membranes. While mechanisms of the IRF3 response are well understood, the mechanisms of NFκB activation mediated by STING remain unclear. We report that STING activation induces linear/M1-linked ubiquitin chain (M1-Ub) formation and recruitment of the LUBAC E3 ligase, HOIP, to LC3B-associated Golgi membranes where ubiquitin is also localized. Loss of HOIP prevents formation of M1-Ub ubiquitin chains and reduces STING-induced NFκB and IRF3-mediated signaling in human monocytic THP1 cells and mouse bone marrow derived macrophages, without affecting STING activation. STING-induced LC3B lipidation is not required for M1-Ub chain formation or the immune-related gene expression, however the recently reported function of STING to neutralize the pH of the Golgi may be involved. Thus, LUBAC synthesis of M1 ubiquitin chains mediates STING-induced innate immune signaling.
Collapse
Affiliation(s)
- Tara D. Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Eric N. Bunker
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Peng-Peng Zhu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - François Le Guerroué
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Mahan Hadjian
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Eunice Dominguez-Martin
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| | - Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Robert Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO, USA
| | - Yan Wang
- Mass Spectrometry, National Institute of Dental and Craniofacial Research, National Institutes of Health; Bethesda, MD, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health; Bethesda, MD, USA
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Bethesda, MD, USA
| |
Collapse
|
21
|
Wang M, Bai Y, Jiang D, Wang Y, Zhao F, Zhou Y, Zhou M, Chen Y, Yu C, Wang X, Guo Q, Zha L, Li Q, Cao Z, Wu J, Shi S, Wang Q, Xu C, Kong X, Tu X. A novel HOIP frameshift variant alleviates NF-kappaB signalling and sensitizes cells to TNF-induced death. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167355. [PMID: 39009172 DOI: 10.1016/j.bbadis.2024.167355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND HOIP is the catalytic subunit of the E3 ligase complex (linear ubiquitin chain assembly complex), which is able to generate linear ubiquitin chains. However, the role of rare HOIP functionally deficient variants remains unclear. The pathogenic mechanism and the relationship with immune deficiency phenotypes remain to be clarified. METHODS Based on a next-generation sequencing panel of 270 genes, we identified a HOIP deletion variant that causes common variable immunodeficiency disease. Bioinformatics analysis and cell-based experiments were performed to study the molecular mechanism by which the variant causes immunodeficiency diseases. FINDINGS A homozygous loss-of-function variant in HOIP was identified. The variant causes a frameshift and generates a premature termination codon in messenger RNA, resulting in a C-terminal truncated HOIP mutant, that is, the loss of the linear ubiquitin chain-specific catalytic domain. The truncated HOIP mutant has impaired E3 ligase function in linear ubiquitination, leading to the suppression of canonical NF-κB signalling and increased TNF-induced multiple forms of cell death. INTERPRETATION The loss-of-function HOIP variant accounts for the immune deficiencies. The canonical NF-κB pathway and cell death are involved in the pathogenesis of the disease. FUNDING This study was funded by the National Natural Science Foundation of China (No. 82270444 and 81501851). RESEARCH IN CONTEXT Evidence before this study LUBAC is the only known linear ubiquitin chain assembly complex for which HOIP is an essential catalytic subunit. Three HOIP variants have now been identified in two immunodeficient patients and functionally characterised. However, there have been no reports on the pathogenicity of only catalytic domain deletion variants in humans, or the pathogenic mechanisms of catalytic domain deletion variants. Added value of this study We report the first case of an autosomal recessive homozygous deletion variant that results in deletion of the HOIP catalytic structural domain. We demonstrate that this variant is a loss-of-function variant using a heterologous expression system. The variant has impaired E3 ligase function. It can still bind to other subunits of LUBAC, but it fails to generate linear ubiquitin chains. We also explored the underlying mechanisms by which this variant leads to immunodeficiency. The variant attenuates the canonical NF-κB and MAPK signalling cascades and increases the sensitivity of TNFα-induced diverse cell death and activation of mitochondrial apoptosis pathways. These findings provide support for the treatment and drug development of patients with inborn errors of immunity in HOIP and related signalling pathways. Implications of all the available evidence First, this study expands the HOIP pathogenic variant database and phenotypic spectrum. Furthermore, studies on the biological functions of pathogenic variants in relation to the NF-κB signalling pathway and cell death provided new understanding into the genetic basis and pathogenesis of HOIP-deficient immune disease, indicating the necessity of HOIP and related signalling pathway variants as diagnostic targets in patients with similar genetic deficiency phenotypes..
Collapse
Affiliation(s)
- Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ying Bai
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Dan Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feifei Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingchao Zhou
- Genetic Testing Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Mengchen Zhou
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yilin Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiang Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Li
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhubing Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shumei Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
22
|
Saavedra-Sanchez L, Dickinson MS, Apte S, Zhang Y, de Jong M, Skavicus S, Heaton NS, Alto NM, Coers J. The Shigella flexneri effector IpaH1.4 facilitates RNF213 degradation and protects cytosolic bacteria against interferon-induced ubiquitylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611450. [PMID: 39282383 PMCID: PMC11398459 DOI: 10.1101/2024.09.05.611450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A central signal that marshals host defense against many infections is the lymphocyte-derived cytokine interferon-gamma (IFNγ). The IFNγ receptor is expressed on most human cells and its activation leads to the expression of antimicrobial proteins that execute diverse cell-autonomous immune programs. One such immune program consists of the sequential detection, ubiquitylation, and destruction of intracellular pathogens. Recently, the IFNγ-inducible ubiquitin E3 ligase RNF213 was identified as a pivotal mediator of such a defense axis. RNF213 provides host protection against viral, bacterial, and protozoan pathogens. To establish infections, potentially susceptible intracellular pathogens must have evolved mechanisms that subdue RNF213-controlled cell-autonomous immunity. In support of this hypothesis, we demonstrate here that a causative agent of bacillary dysentery, Shigella flexneri, uses the type III secretion system (T3SS) effector IpaH1.4 to induce the degradation of RNF213. S. flexneri mutants lacking IpaH1.4 expression are bound and ubiquitylated by RNF213 in the cytosol of IFNγ-primed host cells. Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC). We find that ubiquitylation of S. flexneri is insufficient to kill intracellular bacteria, suggesting that S. flexneri employs additional virulence factors to escape from host defenses that operate downstream from RNF213-driven ubiquitylation. In brief, this study identified the bacterial IpaH1.4 protein as a direct inhibitor of mammalian RNF213 and highlights evasion of RNF213-driven immunity as a characteristic of the human-tropic pathogen Shigella.
Collapse
Affiliation(s)
- Luz Saavedra-Sanchez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shruti Apte
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yifeng Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Maarten de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha Skavicus
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
23
|
Guo Y, Zhao Y, Cong YS. Met1-linked ubiquitination in cell signaling regulation. BIOPHYSICS REPORTS 2024; 10:230-240. [PMID: 39281196 PMCID: PMC11399889 DOI: 10.52601/bpr.2024.230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 09/18/2024] Open
Abstract
Met1-linked ubiquitination (Met1-Ub), also known as linear ubiquitination, is a newly identified atypical type of polyubiquitination that is assembled via the N-terminal methionine (Met1) rather than an internal lysine (Lys) residue of ubiquitin. The linear ubiquitin chain assembly complex (LUBAC) composed of HOIP, HOIL-1L and SHARPIN is the sole E3 ubiquitin ligase that specifically generates Met1-linked ubiquitin chains. The physiological role of LUBAC-mediated Met1-Ub has been first described as activating NF-κB signaling through the Met1-Ub modification of NEMO. However, accumulating evidence shows that Met1-Ub is broadly involved in other cellular pathways including MAPK, Wnt/β-Catenin, PI3K/AKT and interferon signaling, and participates in various cellular processes including angiogenesis, protein quality control and autophagy, suggesting that Met1-Ub harbors a potent signaling capacity. Here, we review the formation and cellular functions of Met1-linked ubiquitin chains, with an emphasis on the recent advances in the cellular mechanisms by which Met1-Ub controls signaling transduction.
Collapse
Affiliation(s)
- Yanmin Guo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| | - Yuqin Zhao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou 311121, China
| |
Collapse
|
24
|
Cheng J, Xu L, Xuan Y, Zhou F, Huang A, Zeng S, Wang H, Wang Y, Zhan Y, Yan X, Luo S, Liu Y, Cheng M. Linear polyubiquitylation of Gli protein regulates its protein stability and facilitates tumor growth in colorectal cancer. Cell Death Discov 2024; 10:369. [PMID: 39164252 PMCID: PMC11335874 DOI: 10.1038/s41420-024-02147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) mediates the linear ubiquitination of various proteins and is involved in NF-κB signaling and immune regulation. However, the function and mechanism of linear ubiquitination in regulating oncogenic signaling and tumor growth have remained poorly understood. Herein, we identified Gli proteins, key transcription factors in the Hedgehog (Hh) signaling pathway, as novel substrates of LUBAC. Linear ubiquitination stabilizes Gli proteins, leading to the noncanonical activation of Hh signaling in CRC cells. Furthermore, LUBAC facilitates tumor growth in CRC cells. Additionally, elevated expression of LUBAC components in CRC tissues was observed, and higher expression levels of these components correlated with poor prognosis in CRC patients. Interestingly, inhibition of LUBAC using either a small molecule agonist or RNA silencing specifically suppressed cell growth in CRC cells but had no effect on normal intestinal cells. Taken together, aberrant expression of LUBAC components activates Hh signaling noncanonically by mediating linear ubiquitination, promoting tumor growth in CRC, demonstrating the novel function of linear ubiquitination in regulating the protein stability of its substrates and highlighting the potential of targeting LUBAC as a therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Junyao Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanlu Xuan
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Feifei Zhou
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aidi Huang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hailong Wang
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical Innovation Centre, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Department of Oncology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Zhan
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Pathology and Institute of Molecular Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Minzhang Cheng
- Center for Experimental Medicine, The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
25
|
Chen P, Dong Z, Zhu W, Chen J, Zhou Y, Ye Q, Liao X, Tan Y, Li C, Wang Y, Pang H, Wen C, Jiang Y, Li X, Li B, Aimaier A, Lin L, Sun J, Hou J, Tang L, Hou J, Li Y. Noncanonical regulation of HOIL-1 on cancer stemness and sorafenib resistance identifies pixantrone as a novel therapeutic agent for HCC. Hepatology 2024; 80:330-345. [PMID: 37820061 DOI: 10.1097/hep.0000000000000623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Cancer stem cells (CSCs) contribute to therapy resistance in HCC. Linear ubiquitin chain assembly complex (LUBAC) has been reported to accelerate the progression of cancers, yet its role in the sorafenib response of HCC is poorly defined. Herein, we investigated the impact of LUBAC on sorafenib resistance and the CSC properties of HCC, and explored the potential targeted drugs. APPROACH AND RESULTS We found that HOIL-1, but not the other components of LUBAC, played a contributing role in LUBAC-mediated HCC sorafenib resistance, independent of its ubiquitin ligase activity. Both in vitro and in vivo assays revealed that the upregulated HOIL-1 expression enhanced the CSC properties of HCC. Mechanistically, HOIL-1 promoted sorafenib resistance and the CSC properties of HCC through Notch1 signaling. Mass spectrometry, co-immunoprecipitation, western blot, and immunofluorescence were used to determine that the A64/Q65 residues of HOIL-1 bound with the K78 residue of Numb, resulting in impaired Numb-mediated Notch1 lysosomal degradation. Notably, pixantrone was screened out by Autodock Vina, which was validated to disrupt HOIL-1/Numb interaction to inhibit Notch1 signaling and CSC properties by targeting the Q65 residue of HOIL-1. Moreover, pixantrone exerted synergistic effects with sorafenib for the treatment of HCC in different HCC mouse models. CONCLUSIONS HOIL-1 is critical in promoting sorafenib resistance and CSC properties of HCC through Notch1 signaling. Pixantrone targeting HOIL-1 restrains the sorafenib resistance and provides a potential therapeutic intervention for HCC.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junling Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyue Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxin Liao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongfa Tan
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huajin Pang
- Department of General Surgery, Division of Vascular and Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchuan Jiang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoqing Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aihetaimu Aimaier
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Lin
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Du J, Wang Z. Regulation of RIPK1 Phosphorylation: Implications for Inflammation, Cell Death, and Therapeutic Interventions. Biomedicines 2024; 12:1525. [PMID: 39062098 PMCID: PMC11275223 DOI: 10.3390/biomedicines12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflammation and cell death. Its function is tightly controlled through post-translational modifications, enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphorylation of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound implications for the development of severe inflammatory diseases in humans. This review explores the intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| |
Collapse
|
27
|
Grigoreva TA, Novikova DS, Melino G, Barlev NA, Tribulovich VG. Ubiquitin recruiting chimera: more than just a PROTAC. Biol Direct 2024; 19:55. [PMID: 38978100 PMCID: PMC11232244 DOI: 10.1186/s13062-024-00497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Ubiquitinylation of protein substrates results in various but distinct biological consequences, among which ubiquitin-mediated degradation is most well studied for its therapeutic application. Accordingly, artificially targeted ubiquitin-dependent degradation of various proteins has evolved into the therapeutically relevant PROTAC technology. This tethered ubiquitinylation of various targets coupled with a broad assortment of modifying E3 ubiquitin ligases has been made possible by rational design of bi-specific chimeric molecules that bring these proteins in proximity. However, forced ubiquitinylation inflicted by the binary warheads of a chimeric PROTAC molecule should not necessarily result in protein degradation but can be used to modulate other cellular functions. In this respect it should be noted that the ubiquitinylation of a diverse set of proteins is known to control their transport, transcriptional activity, and protein-protein interactions. This review provides examples of potential PROTAC usage based on non-degradable ubiquitinylation.
Collapse
Affiliation(s)
- Tatyana A Grigoreva
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| | - Daria S Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Nick A Barlev
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia
- Department of Biomedical Studies, School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Vyacheslav G Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013, Russia.
| |
Collapse
|
28
|
Horn-Ghetko D, Hopf LVM, Tripathi-Giesgen I, Du J, Kostrhon S, Vu DT, Beier V, Steigenberger B, Prabu JR, Stier L, Bruss EM, Mann M, Xiong Y, Schulman BA. Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nat Struct Mol Biol 2024; 31:1083-1094. [PMID: 38605244 PMCID: PMC11257990 DOI: 10.1038/s41594-024-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains. Here, cryo-EM, biochemistry and cellular assays elucidate a 1.8-MDa hexameric human CUL9-RBX1 assembly. Within one dimeric subcomplex, an E2-bound RBR domain is activated by neddylation of its own cullin domain and positioning from the adjacent CUL9-RBX1 in trans. Our data show CUL9 as unique among RBX1-bound cullins in dependence on the metazoan-specific UBE2F neddylation enzyme, while the RBR domain protects it from deneddylation. Substrates are recruited to various upstream domains, while ubiquitylation relies on both CUL9's neddylated cullin and RBR domains achieving self-assembled and chimeric cullin-RING/RBR E3 ligase activity.
Collapse
Affiliation(s)
- Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Kostrhon
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Elias M Bruss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany.
| |
Collapse
|
29
|
Luan Y, Long W, Dai L, Tao P, Deng Z, Xia Z. Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection. Nat Commun 2024; 15:5515. [PMID: 38951495 PMCID: PMC11217414 DOI: 10.1038/s41467-024-49887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenying Long
- Center for Clinical Research, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lisi Dai
- Department of Pathology & Pathophysiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panfeng Tao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Davidson S, Shibata Y, Collard S, Zheng H, Kong K, Sun JM, Laohamonthonkul P, Cerra A, Kratina T, CIRCA, AADRY, Li MW, Russell C, van Beek A, Kirk EP, Walsh R, Alqanatish J, Almojali A, Alsuwairi W, Alrasheed A, Lalaoui N, Gray PE, Komander D, Masters SL. Dominant negative OTULIN-related autoinflammatory syndrome. J Exp Med 2024; 221:e20222171. [PMID: 38630025 PMCID: PMC11022884 DOI: 10.1084/jem.20222171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/19/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
OTU deubiquitinase with linear linkage specificity (OTULIN) regulates inflammation and cell death by deubiquitinating linear ubiquitin chains generated by the linear ubiquitin chain assembly complex (LUBAC). Biallelic loss-of-function mutations causes OTULIN-related autoinflammatory syndrome (ORAS), while OTULIN haploinsuffiency has not been associated with spontaneous inflammation. However, herein, we identify two patients with the heterozygous mutation p.Cys129Ser in OTULIN. Consistent with ORAS, we observed accumulation of linear ubiquitin chains, increased sensitivity to TNF-induced death, and dysregulation of inflammatory signaling in patient cells. While the C129S mutation did not affect OTULIN protein stability or binding capacity to LUBAC and linear ubiquitin chains, it did ablate OTULIN deubiquitinase activity. Loss of activity facilitated the accumulation of autoubiquitin chains on LUBAC. Altered ubiquitination of LUBAC inhibits its recruitment to the TNF receptor signaling complex, promoting TNF-induced cell death and disease pathology. By reporting the first dominant negative mutation driving ORAS, this study expands our clinical understanding of OTULIN-associated pathology.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Yuri Shibata
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sophie Collard
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hongyu Zheng
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Klara Kong
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - June M. Sun
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Anthony Cerra
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Tobias Kratina
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | | | - Margaret W.Y. Li
- School of Clinical Medicine, University of New South Wales, Randwick, Australia
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Randwick, Australia
| | - Carolyn Russell
- Department of Paediatric Surgery, Sydney Children’s Hospital, Randwick, Australia
| | - Anna van Beek
- Department of General Paediatrics, Sydney Children’s Hospital, Randwick, Australia
| | - Edwin P. Kirk
- School of Clinical Medicine, University of New South Wales, Randwick, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, Australia
- New South Wales Health Pathology Randwick Genomics Laboratory, Randwick, Australia
| | - Rebecca Walsh
- New South Wales Health Pathology Randwick Genomics Laboratory, Randwick, Australia
| | - Jubran Alqanatish
- Pediatric Rheumatology, King Abdullah Specialist Children’s Hospital, National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdullah Almojali
- Pediatric Rheumatology, King Abdullah Specialist Children’s Hospital, National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Wafaa Alsuwairi
- Pediatric Rheumatology, King Abdullah Specialist Children’s Hospital, National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman Alrasheed
- Pediatric Rheumatology, King Abdullah Specialist Children’s Hospital, National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Najoua Lalaoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Paul E. Gray
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Randwick, Australia
- University of Western Sydney, Sydney, Australia
| | - David Komander
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
31
|
Takeda Y, Ueki M, Matsuhiro J, Walinda E, Tanaka T, Yamada M, Fujita H, Takezaki S, Kobayashi I, Tamaki S, Nagata S, Miyake N, Matsumoto N, Osawa M, Yasumi T, Heike T, Ohtake F, Saito MK, Toguchida J, Takita J, Ariga T, Iwai K. A de novo dominant-negative variant is associated with OTULIN-related autoinflammatory syndrome. J Exp Med 2024; 221:e20231941. [PMID: 38652464 PMCID: PMC11040501 DOI: 10.1084/jem.20231941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
OTULIN-related autoinflammatory syndrome (ORAS), a severe autoinflammatory disease, is caused by biallelic pathogenic variants of OTULIN, a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here, we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells, which confirms that the patient has ORAS. However, although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN, the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Yukiko Takeda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Ueki
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junpei Matsuhiro
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Food and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichiro Takezaki
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Kobayashi
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sakura Tamaki
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
33
|
Nuga O, Richardson K, Patel N, Wang X, Pagala V, Stephan A, Peng J, Demontis F, Todi SV. Linear ubiquitin chains remodel the proteome and influence the levels of hundreds of regulators in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593206. [PMID: 38766269 PMCID: PMC11100727 DOI: 10.1101/2024.05.09.593206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ubiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation. Previous studies in Drosophila melanogaster found that expression of linear poly-ubiquitin that cannot be dismantled into single moieties leads to their own ubiquitination and degradation or, alternatively, to their conjugation onto proteins. However, it remains largely unknown which proteins are sensitive to linear poly-ubiquitin. To address this question, here we expanded the toolkit to modulate linear chains and conducted ultra-deep coverage proteomics from flies that express non-cleavable, linear chains comprising 2, 4, or 6 moieties. We found that these chains regulate shared and distinct cellular processes in Drosophila by impacting hundreds of proteins. Our results provide key insight into the proteome subsets and cellular pathways that are influenced by linear poly-ubiquitin with distinct lengths and suggest that the ubiquitin system is exceedingly pliable.
Collapse
|
34
|
Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol 2024; 223:e202311171. [PMID: 38517379 PMCID: PMC10959754 DOI: 10.1083/jcb.202311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.
Collapse
Affiliation(s)
- Yoshino Akizuki
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Stephanie Kaypee
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Fumiyo Ikeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Kinger S, Jagtap YA, Kumar P, Choudhary A, Prasad A, Prajapati VK, Kumar A, Mehta G, Mishra A. Proteostasis in neurodegenerative diseases. Adv Clin Chem 2024; 121:270-333. [PMID: 38797543 DOI: 10.1016/bs.acc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India
| | - Gunjan Mehta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India.
| |
Collapse
|
36
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
37
|
Kliza KW, Song W, Pinzuti I, Schaubeck S, Kunzelmann S, Kuntin D, Fornili A, Pandini A, Hofmann K, Garnett JA, Stieglitz B, Husnjak K. N4BP1 functions as a dimerization-dependent linear ubiquitin reader which regulates TNF signalling. Cell Death Discov 2024; 10:183. [PMID: 38643192 PMCID: PMC11032371 DOI: 10.1038/s41420-024-01913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/22/2024] Open
Abstract
Signalling through TNFR1 modulates proinflammatory gene transcription and programmed cell death, and its impairment causes autoimmune diseases and cancer. NEDD4-binding protein 1 (N4BP1) is a critical suppressor of proinflammatory cytokine production that acts as a regulator of innate immune signalling and inflammation. However, our current understanding about the molecular properties that enable N4BP1 to exert its suppressive potential remain limited. Here, we show that N4BP1 is a novel linear ubiquitin reader that negatively regulates NFκB signalling by its unique dimerization-dependent ubiquitin-binding module that we named LUBIN. Dimeric N4BP1 strategically positions two non-selective ubiquitin-binding domains to ensure preferential recognition of linear ubiquitin. Under proinflammatory conditions, N4BP1 is recruited to the nascent TNFR1 signalling complex, where it regulates duration of proinflammatory signalling in LUBIN-dependent manner. N4BP1 deficiency accelerates TNFα-induced cell death by increasing complex II assembly. Under proapoptotic conditions, caspase-8 mediates proteolytic processing of N4BP1, resulting in rapid degradation of N4BP1 by the 26 S proteasome, and acceleration of apoptosis. In summary, our findings demonstrate that N4BP1 dimerization creates a novel type of ubiquitin reader that selectively recognises linear ubiquitin which enables the timely and coordinated regulation of TNFR1-mediated inflammation and cell death.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
| | - Wei Song
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Irene Pinzuti
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Simone Schaubeck
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - David Kuntin
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - Benjamin Stieglitz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.
| |
Collapse
|
38
|
Akagi K, Baba S, Fujita H, Fuseya Y, Yoshinaga D, Kubota H, Kume E, Fukumura F, Matsuda K, Tanaka T, Hirata T, Saito MK, Iwai K, Takita J. HOIL-1L deficiency induces cell cycle alteration which causes immaturity of skeletal muscle and cardiomyocytes. Sci Rep 2024; 14:8871. [PMID: 38632277 PMCID: PMC11024103 DOI: 10.1038/s41598-024-57504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
HOIL-1L deficiency was recently reported to be one of the causes of myopathy and dilated cardiomyopathy (DCM). However, the mechanisms by which myopathy and DCM develop have not been clearly elucidated. Here, we sought to elucidate these mechanisms using the murine myoblast cell line C2C12 and disease-specific human induced pluripotent stem cells (hiPSCs). Myotubes differentiated from HOIL-1L-KO C2C12 cells exhibited deteriorated differentiation and mitotic cell accumulation. CMs differentiated from patient-derived hiPSCs had an abnormal morphology with a larger size and were excessively multinucleated compared with CMs differentiated from control hiPSCs. Further analysis of hiPSC-derived CMs showed that HOIL-1L deficiency caused cell cycle alteration and mitotic cell accumulation. These results demonstrate that abnormal cell maturation possibly contribute to the development of myopathy and DCM. In conclusion, HOIL-1L is an important intrinsic regulator of cell cycle-related myotube and CM maturation and cell proliferation.
Collapse
Affiliation(s)
- Kentaro Akagi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan.
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Daisuke Yoshinaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Hirohito Kubota
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Eitaro Kume
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Fumiaki Fukumura
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Koichi Matsuda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Takuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| |
Collapse
|
39
|
Fu Y, Li L, Zhang X, Deng Z, Wu Y, Chen W, Liu Y, He S, Wang J, Xie Y, Tu Z, Lyu Y, Wei Y, Wang S, Cui CP, Liu CH, Zhang L. Systematic HOIP interactome profiling reveals critical roles of linear ubiquitination in tissue homeostasis. Nat Commun 2024; 15:2974. [PMID: 38582895 PMCID: PMC10998861 DOI: 10.1038/s41467-024-47289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
Linear ubiquitination catalyzed by HOIL-1-interacting protein (HOIP), the key component of the linear ubiquitination assembly complex, plays fundamental roles in tissue homeostasis by executing domain-specific regulatory functions. However, a proteome-wide analysis of the domain-specific interactome of HOIP across tissues is lacking. Here, we present a comprehensive mass spectrometry-based interactome profiling of four HOIP domains in nine mouse tissues. The interaction dataset provides a high-quality HOIP interactome resource with an average of approximately 90 interactors for each bait per tissue. HOIP tissue interactome presents a systematic understanding of linear ubiquitination functions in each tissue and also shows associations of tissue functions to genetic diseases. HOIP domain interactome characterizes a set of previously undefined linear ubiquitinated substrates and elucidates the cross-talk among HOIP domains in physiological and pathological processes. Moreover, we show that linear ubiquitination of Integrin-linked protein kinase (ILK) decreases focal adhesion formation and promotes the detachment of Shigella flexneri-infected cells. Meanwhile, Hoip deficiency decreases the linear ubiquitination of Smad ubiquitination regulatory factor 1 (SMURF1) and enhances its E3 activity, finally causing a reduced bone mass phenotype in mice. Overall, our work expands the knowledge of HOIP-interacting proteins and provides a platform for further discovery of linear ubiquitination functions in tissue homeostasis.
Collapse
Affiliation(s)
- Yesheng Fu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Lei Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Xin Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Zhikang Deng
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Ying Wu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Wenzhe Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Shan He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Zhiwei Tu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yadi Lyu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Yange Wei
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Shujie Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.
| |
Collapse
|
40
|
Cheng D, Zhu J, Liu G, Gack MU, MacDuff DA. HOIL1 mediates MDA5 activation through ubiquitination of LGP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587772. [PMID: 38617308 PMCID: PMC11014604 DOI: 10.1101/2024.04.02.587772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The RIG-I-like receptors (RLRs), RIG-I and MDA5, are innate sensors of RNA virus infections that are critical for mounting a robust antiviral immune response. We have shown previously that HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex (LUBAC), is essential for interferon (IFN) induction in response to viruses sensed by MDA5, but not for viruses sensed by RIG-I. LUBAC contains two unusual E3 ubiquitin ligases, HOIL1 and HOIP. HOIP generates methionine-1-linked polyubiquitin chains, whereas HOIL1 has recently been shown to conjugate ubiquitin onto serine and threonine residues. Here, we examined the differential requirement for HOIL1 and HOIP E3 ligase activities in RLR-mediated IFN induction. We determined that HOIL1 E3 ligase activity was critical for MDA5-dependent IFN induction, while HOIP E3 ligase activity played only a modest role in promoting IFN induction. HOIL1 E3 ligase promoted MDA5 oligomerization, its translocation to mitochondrial-associated membranes, and the formation of MAVS aggregates. We identified that HOIL1 can interact with and facilitate the ubiquitination of LGP2, a positive regulator of MDA5 oligomerization. In summary, our work identifies LGP2 ubiquitination by HOIL1 in facilitating the activation of MDA5 and the induction of a robust IFN response.
Collapse
Affiliation(s)
- Deion Cheng
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Junji Zhu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Michaela U. Gack
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Donna A. MacDuff
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
41
|
Zhang C, Wang H, Tian X, Lin X, Han Y, Han Z, Sha H, Liu J, Liu J, Zhang J, Bu Q, Fang J. A transposon insertion in the promoter of OsUBC12 enhances cold tolerance during japonica rice germination. Nat Commun 2024; 15:2211. [PMID: 38480722 PMCID: PMC10937917 DOI: 10.1038/s41467-024-46420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Low-temperature germination (LTG) is an important agronomic trait for rice (Oryza sativa). Japonica rice generally has greater capacity for germination at low temperatures than the indica subpopulation. However, the genetic basis and molecular mechanisms underlying this complex trait are poorly understood. Here, we report that OsUBC12, encoding an E2 ubiquitin-conjugating enzyme, increases low-temperature germinability in japonica, owing to a transposon insertion in its promoter enhancing its expression. Natural variation analysis reveals that transposon insertion in the OsUBC12 promoter mainly occurs in the japonica lineage. The variation detected in eight representative two-line male sterile lines suggests the existence of this allele introgression by indica-japonica hybridization breeding, and varieties carrying the japonica OsUBC12 locus (transposon insertion) have higher low-temperature germinability than varieties without the locus. Further molecular analysis shows that OsUBC12 negatively regulate ABA signaling. OsUBC12-regulated seed germination and ABA signaling mainly depend on a conserved active site required for ubiquitin-conjugating enzyme activity. Furthermore, OsUBC12 directly associates with rice SUCROSE NON-FERMENTING 1-RELATED PROTEIN KINASE 1.1 (OsSnRK1.1), promoting its degradation. OsSnRK1.1 inhibits LTG by enhancing ABA signaling and acts downstream of OsUBC12. These findings shed light on the underlying mechanisms of UBC12 regulating LTG and provide genetic reference points for improving LTG in indica rice.
Collapse
Affiliation(s)
- Chuanzhong Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Xinyan Lin
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yunfei Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Zhongmin Han
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Hanjing Sha
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 150081, Harbin, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
42
|
Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Nat Chem Biol 2024; 20:190-200. [PMID: 37620400 PMCID: PMC10830417 DOI: 10.1038/s41589-023-01414-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Ubiquitin (Ub) chain formation by homologous to E6AP C-terminus (HECT)-family E3 ligases regulates vast biology, yet the structural mechanisms remain unknown. We used chemistry and cryo-electron microscopy (cryo-EM) to visualize stable mimics of the intermediates along K48-linked Ub chain formation by the human E3, UBR5. The structural data reveal a ≈ 620 kDa UBR5 dimer as the functional unit, comprising a scaffold with flexibly tethered Ub-associated (UBA) domains, and elaborately arranged HECT domains. Chains are forged by a UBA domain capturing an acceptor Ub, with its K48 lured into the active site by numerous interactions between the acceptor Ub, manifold UBR5 elements and the donor Ub. The cryo-EM reconstructions allow defining conserved HECT domain conformations catalyzing Ub transfer from E2 to E3 and from E3. Our data show how a full-length E3, ubiquitins to be adjoined, E2 and intermediary products guide a feed-forward HECT domain conformational cycle establishing a highly efficient, broadly targeting, K48-linked Ub chain forging machine.
Collapse
Affiliation(s)
- Laura A Hehl
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David A Pérez Berrocal
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
43
|
Rahman S, Wolberger C. Breaking the K48-chain: linking ubiquitin beyond protein degradation. Nat Struct Mol Biol 2024; 31:216-218. [PMID: 38366227 PMCID: PMC11730971 DOI: 10.1038/s41594-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
The discovery of ubiquitin conjugation to lysines and the role of K48-linked polyubiquitin in targeting substrates for proteasomal degradation was followed by revelation of non-degradative roles of ubiquitination and, more recently, of non-canonical covalent ubiquitin linkages. Here we summarize findings of the ever-expanding array of ubiquitin signals and their biological roles.
Collapse
Affiliation(s)
- Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Weinelt N, Wächtershäuser KN, Celik G, Jeiler B, Gollin I, Zein L, Smith S, Andrieux G, Das T, Roedig J, Feist L, Rotter B, Boerries M, Pampaloni F, van Wijk SJL. LUBAC-mediated M1 Ub regulates necroptosis by segregating the cellular distribution of active MLKL. Cell Death Dis 2024; 15:77. [PMID: 38245534 PMCID: PMC10799905 DOI: 10.1038/s41419-024-06447-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Plasma membrane accumulation of phosphorylated mixed lineage kinase domain-like (MLKL) is a hallmark of necroptosis, leading to membrane rupture and inflammatory cell death. Pro-death functions of MLKL are tightly controlled by several checkpoints, including phosphorylation. Endo- and exocytosis limit MLKL membrane accumulation and counteract necroptosis, but the exact mechanisms remain poorly understood. Here, we identify linear ubiquitin chain assembly complex (LUBAC)-mediated M1 poly-ubiquitination (poly-Ub) as novel checkpoint for necroptosis regulation downstream of activated MLKL in cells of human origin. Loss of LUBAC activity inhibits tumor necrosis factor α (TNFα)-mediated necroptosis, not by affecting necroptotic signaling, but by preventing membrane accumulation of activated MLKL. Finally, we confirm LUBAC-dependent activation of necroptosis in primary human pancreatic organoids. Our findings identify LUBAC as novel regulator of necroptosis which promotes MLKL membrane accumulation in human cells and pioneer primary human organoids to model necroptosis in near-physiological settings.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Biological Sciences (IZN), Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Gulustan Celik
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Birte Jeiler
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Isabelle Gollin
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Laura Zein
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Tonmoy Das
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Jens Roedig
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Leonard Feist
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesco Pampaloni
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Biological Sciences (IZN), Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Paediatric Haematology and Oncology (EPHO), Goethe University Frankfurt, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
45
|
Zhang Y, Xu X, Wang Y, Wang Y, Zhou X, Pan L. Mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN. Biochem Biophys Res Commun 2023; 689:149239. [PMID: 37976837 DOI: 10.1016/j.bbrc.2023.149239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
HOIL-1L and SHARPIN are two essential regulatory subunits of the linear ubiquitin chain assembly complex (LUBAC), which is the only known E3 ligase complex generating linear ubiquitin chains. In addition to their LUBAC-dependent functions, HOIL-1L and SHARPIN alone play crucial roles in many LUBAC-independent cellular processes. Importantly, deficiency of HOIL-1L or SHARPIN leads to severe disorders in humans or mice. However, the mechanistic bases underlying the multi-functions of HOIL-1L and SHARPIN are still largely unknown. Here, we uncover that HOIL-1L and SHARPIN alone can form homo-dimers through their LTM motifs. We solve two crystal structures of the dimeric LTM motifs of HOIL-1L and SHARPIN, which not only elucidate the detailed molecular mechanism underpinning the dimer formations of HOIL-1L and SHARPIN, but also reveal a general mode shared by the LTM motifs of HOIL-1L and SHARPIN for forming homo-dimer or hetero-dimer. Furthermore, we elucidate that the polyglucosan body myopathy-associated HOIL-1L A18P mutation disturbs the structural folding of HOIL-1L LTM, and disrupts the dimer formation of HOIL-1L. In summary, our study provides mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN mediated by their LTM motifs, and expands our understandings of the multi-functions of HOIL-1L and SHARPIN as well as the etiology of relevant human disease caused by defective HOIL-1L.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaolong Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
46
|
Furthmann N, Bader V, Angersbach L, Blusch A, Goel S, Sánchez-Vicente A, Krause LJ, Chaban SA, Grover P, Trinkaus VA, van Well EM, Jaugstetter M, Tschulik K, Damgaard RB, Saft C, Ellrichmann G, Gold R, Koch A, Englert B, Westenberger A, Klein C, Jungbluth L, Sachse C, Behrends C, Glatzel M, Hartl FU, Nakamura K, Christine CW, Huang EJ, Tatzelt J, Winklhofer KF. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Nat Commun 2023; 14:8368. [PMID: 38114471 PMCID: PMC10730909 DOI: 10.1038/s41467-023-44033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.
Collapse
Affiliation(s)
- Nikolas Furthmann
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Simran Goel
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ana Sánchez-Vicente
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Laura J Krause
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Sarah A Chaban
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Eva M van Well
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Kristina Tschulik
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten/Herdecke, 44135, Dortmund, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Englert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, 81377, Munich, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lisa Jungbluth
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Chadwick W Christine
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany.
- Cluster of Excellence RESOLV, 44801, Bochum, Germany.
| |
Collapse
|
47
|
Hartley VL, Qaqish AM, Wood MJ, Studnicka BT, Iwai K, Liu TC, MacDuff DA. HOIL1 Regulates Group 3 Innate Lymphoid Cells in the Colon and Protects against Systemic Dissemination, Colonic Ulceration, and Lethality from Citrobacter rodentium Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1823-1834. [PMID: 37902285 PMCID: PMC10841105 DOI: 10.4049/jimmunol.2300351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.
Collapse
Affiliation(s)
- Victoria L. Hartley
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Arwa M. Qaqish
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Matthew J. Wood
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Brian T. Studnicka
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Donna A. MacDuff
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
48
|
Vela-Rodríguez C, Scarpulla I, Ashok Y, Lehtiö L. Discovery of DTX3L inhibitors through a homogeneous FRET-based assay that monitors formation and removal of poly-ubiquitin chains. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:365-375. [PMID: 37579950 DOI: 10.1016/j.slasd.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Ubiquitination is a reversible protein post-translational modification in which consequent enzymatic activity results in the covalent linking of ubiquitin to a target protein. Once ubiquitinated, a protein can undergo multiple rounds of ubiquitination on multiple sites or form poly-ubiquitin chains. Ubiquitination regulates various cellular processes, and dysregulation of ubiquitination has been associated with more than one type of cancer. Therefore, efforts have been carried out to identify modulators of the ubiquitination cascade. Herein, we present the development of a FRET-based assay that allows us to monitor ubiquitination activity of DTX3L, a RING-type E3 ubiquitin ligase. Our method shows a good signal window with a robust average Z' factor of 0.76 on 384-well microplates, indicating a good assay for screening inhibitors in a high-throughput setting. From a validatory screening experiment, we have identified the first molecules that inhibit DTX3L with potencies in the low micromolar range. We also demonstrate that the method can be expanded to study deubiquitinases, such as USP28, that reduce FRET due to hydrolysis of fluorescent poly-ubiquitin chains.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ilaria Scarpulla
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.
| |
Collapse
|
49
|
McElrath CJ, Benzow S, Zhuo Y, Marchese A. β-arrestin1 is an E3 ubiquitin ligase adaptor for substrate linear polyubiquitination. J Biol Chem 2023; 299:105474. [PMID: 37981209 PMCID: PMC10755771 DOI: 10.1016/j.jbc.2023.105474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to βarrestins. In addition, βarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that βarrestin1 (βarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that βarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the βarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Chandler J McElrath
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
50
|
Purser N, Tripathi-Giesgen I, Li J, Scott DC, Horn-Ghetko D, Baek K, Schulman BA, Alpi AF, Kleiger G. Catalysis of non-canonical protein ubiquitylation by the ARIH1 ubiquitin ligase. Biochem J 2023; 480:1817-1831. [PMID: 37870100 PMCID: PMC10657180 DOI: 10.1042/bcj20230373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Protein ubiquitylation typically involves isopeptide bond formation between the C-terminus of ubiquitin to the side-chain amino group on Lys residues. However, several ubiquitin ligases (E3s) have recently been identified that ubiquitylate proteins on non-Lys residues. For instance, HOIL-1 belongs to the RING-in-between RING (RBR) class of E3s and has an established role in Ser ubiquitylation. Given the homology between HOIL-1 and ARIH1, an RBR E3 that functions with the large superfamily of cullin-RING E3 ligases (CRLs), a biochemical investigation was undertaken, showing ARIH1 catalyzes Ser ubiquitylation to CRL-bound substrates. However, the efficiency of ubiquitylation was exquisitely dependent on the location and chemical environment of the Ser residue within the primary structure of the substrate. Comprehensive mutagenesis of the ARIH1 Rcat domain identified residues whose mutation severely impacted both oxyester and isopeptide bond formation at the preferred site for Ser ubiquitylation while only modestly affecting Lys ubiquitylation at the physiological site. The results reveal dual isopeptide and oxyester protein ubiquitylation activities of ARIH1 and set the stage for physiological investigations into this function of emerging importance.
Collapse
Affiliation(s)
- Nicholas Purser
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jerry Li
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| | - Daniel C. Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, U.S.A
| | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, U.S.A
| | - Arno F. Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, U.S.A
| |
Collapse
|