1
|
Wittrien T, Rühle A, Elgert C, Mathar I, Sandner P, Behrends S. Runcaciguat activates soluble guanylyl cyclase via the histidine essential for heme binding and nitric oxide activation. Biochem Pharmacol 2025; 232:116739. [PMID: 39761876 DOI: 10.1016/j.bcp.2025.116739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α1/β1H105F and α1/β1H105A were valuable research tools for studying NO independent sGC activators. These mutants have been used in drug screening and animal models. We confirm that the first generation of sGC activators cinaciguat and BAY 60-2770 activate the α1/β1H105F and α1/β1H105A mutants. In contrast, we show that the second generation sGC activators runcaciguat and BAY 543 only activate heme-free sGC when the β1H105 residue is present. By testing runcaciguat in β1 H105F knock-in mice, we confirm this histidine-dependency in vivo. We propose a novel classification of sGC activators, distinguishing between the histidine-dependent activators runcaciguat and BAY 543 and the histidine-independent activators cinaciguat, BAY 60-2770 and BI703704. The histidine-dependency of some of the sGC activators provides a compelling rationale for a re-evaluation of previous research and drug development programs based on sGC histidine mutants. Whether the classification of sGC activators based on the activation mechanism also makes a therapeutic difference needs to be clarified in the future.
Collapse
Affiliation(s)
- Theresa Wittrien
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Anne Rühle
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Christin Elgert
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Ilka Mathar
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiovascular and Renal Research, Wuppertal, Germany.
| | - Peter Sandner
- Bayer AG, Pharmaceuticals Drug Discovery, Institutes of Cardiovascular and Renal Research, Wuppertal, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
2
|
Xu Y, Huang C, Xu H, Xu J, Cheng KW, Mok HL, Lyu C, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction improved intestinal barrier function of experimental colitis through activation of sGC-mediated cGMP/PKG signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118570. [PMID: 39002824 DOI: 10.1016/j.jep.2024.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
3
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Fujii S, Wilson MT, Adams HR, Mikolajek H, Svistunenko DA, Smyth P, Andrew CR, Sambongi Y, Hough MA. Conformational rigidity of cytochrome c'-α from a thermophile is associated with slow NO binding. Biophys J 2024; 123:2594-2603. [PMID: 38937973 PMCID: PMC11365222 DOI: 10.1016/j.bpj.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding. Electron paramagnetic and resonance Raman spectroscopies reveal the formation of a PhCP-α 5cNO product, with time-resolved (stopped-flow) UV-vis absorbance indicating the involvement of a 6cNO intermediate. Relative to AxCP-α, the rates of 6cNO and 5cNO formation in PhCP-α are ∼11- and ∼13-fold lower, respectively. Notably, x-ray crystal structures of PhCP-α in the presence and absence of NO suggest that the sluggish formation of the proximal 5cNO product results from conformational rigidity: the Arg-132 residue (adjacent to the proximal His ligand) is held in place by a salt bridge between Arg-75 and Glu-135 (an interaction not present in AxCP-α or a psychrophilic counterpart). Overall, our data provide fresh insights into structural factors controlling NO binding in heme proteins, including 5cNO complexes relevant to eukaryotic NO sensors.
Collapse
Affiliation(s)
- Sotaro Fujii
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom; Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Hannah R Adams
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Halina Mikolajek
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | | - Peter Smyth
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Colin R Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon
| | - Yoshihiro Sambongi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michael A Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
5
|
Pan C, Xu R, Chen J, Zhang Q, Deng L, Hong Q. A CO-releasing coating based on carboxymethyl chitosan-functionalized graphene oxide for improving the anticorrosion and biocompatibility of magnesium alloy stent materials. Int J Biol Macromol 2024; 271:132487. [PMID: 38768910 DOI: 10.1016/j.ijbiomac.2024.132487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Due to its biofunctions similar to NO, the CO gas signaling molecule has gradually shown great potential in cardiovascular biomaterials for regulating the in vivo performances after the implantation and has received increasing attention. To construct a bioactive surface with CO-releasing properties on the surface of magnesium-based alloy to augment the anticorrosion and biocompatibility, graphene oxide (GO) was firstly modified using carboxymethyl chitosan (CS), and then CO-releasing molecules (CORM401) were introduced to synthesize a novel biocompatible nanomaterial (GOCS-CO) that can release CO in the physiological environments. The GOCS-CO was further immobilized on the magnesium alloy surface modified by polydopamine coating with Zn2+ (PDA/Zn) to create a bioactive surface capable of releasing CO in the physiological environment. The outcomes showed that the CO-releasing coating can not only significantly enhance the anticorrosion and abate the corrosion degradation rate of the magnesium alloy in a simulated physiological environment, but also endow it with good hydrophilicity and a certain ability to adsorb albumin selectively. Owing to the significant enhancement of anticorrosion and hydrophilicity, coupled with the bioactivity of GOCS, the modified sample not only showed excellent ability to prevent platelet adhesion and activation and reduce hemolysis rate but also can promote endothelial cell (EC) adhesion, proliferation as well as the expression of nitric oxide (NO) and vascular endothelial growth factor (VEGF). In the case of CO release, the hemocompatibility and EC growth behaviors were further significantly improved, suggesting that CO molecules released from the surface can significantly improve the hemocompatibility and EC growth. Consequently, the present study provides a novel surface modification method that can simultaneously augment the anticorrosion and biocompatibility of magnesium-based alloys, which will strongly promote the research and application of CO-releasing bioactive coatings for surface functionalization of cardiovascular biomaterials and devices.
Collapse
Affiliation(s)
- Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China.
| | - Ruiting Xu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linhong Deng
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
6
|
Su M, Ji X, Liu F, Li Z, Yan D. Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters. Mini Rev Med Chem 2024; 24:300-329. [PMID: 37102481 DOI: 10.2174/1389557523666230427152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 04/28/2023]
Abstract
Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.
Collapse
Affiliation(s)
- Ma Su
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Xingyue Ji
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Feng Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Zhang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Duanyang Yan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| |
Collapse
|
7
|
Yoo BK, Kruglik SG, Lambry JC, Lamarre I, Raman CS, Nioche P, Negrerie M. The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide. Chem Sci 2023; 14:8408-8420. [PMID: 37564404 PMCID: PMC10411614 DOI: 10.1039/d3sc01685d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Sergei G Kruglik
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS 75005 Paris France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - C S Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore Maryland 21201 USA
| | - Pierre Nioche
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, UMR S1124, Centre Universitaire des Saints-Pères, Université Paris Descartes 75006 Paris France
- Structural and Molecular Analysis Platform, BioMedTech Facilities, INSERM US36-CNRS-UMS2009, Paris Université Paris France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| |
Collapse
|
8
|
Adams HR, Svistunenko DA, Wilson MT, Fujii S, Strange RW, Hardy ZA, Vazquez PA, Dabritz T, Streblow GJ, Andrew CR, Hough MA. A Heme Pocket Aromatic Quadrupole Modulates Gas Binding to Cytochrome c'-β: Implications for NO Sensors. J Biol Chem 2023:104742. [PMID: 37100286 DOI: 10.1016/j.jbc.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2, is fundamental to enzymology, biotechnology and human health. Cytochromes c´ (cyts c´) are a group of putative NO-binding heme proteins that fall into two families: the well characterised four alpha helix bundle fold (cyts c´-α) and an unrelated family with a largely beta sheet fold (cyts c´-β) resembling that of cytochromes P460. A recent structure of cyt c´-β from Methylococcus capsulatus Bath (McCP-β) revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas binding site. This feature, dubbed the "Phe cap", is highly conserved within the sequences of other cyts c´-β, but is absent in their close homologues, the hydroxylamine oxidizing cytochromes P460, although some do contain a single Phe residue. Here we report an integrated structural, spectroscopic, and kinetic characterization of McCP-β complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron rich aromatic ring face of Phe 32 towards distally-bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO-sensor, soluble guanylate cyclase (sGC). Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-β, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.
Collapse
Affiliation(s)
- Hannah R Adams
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sotaro Fujii
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Richard W Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Zoe A Hardy
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Priscilla A Vazquez
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Tyler Dabritz
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Gabriel J Streblow
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA
| | - Colin R Andrew
- Department of Chemistry & Biochemistry, Eastern Oregon University, La Grande OR 97850, USA.
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
9
|
Liu R, Kang Y, Chen L. NO binds to the distal site of haem in the fully activated soluble guanylate cyclase. Nitric Oxide 2023; 134-135:17-22. [PMID: 36972843 DOI: 10.1016/j.niox.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO). The binding of NO to the haem of sGC induces a large conformational change in the enzyme and activates its cyclase activity. However, whether NO binds to the proximal site or the distal site of haem in the fully activated state remains under debate. Here, we present cryo-EM maps of sGC in the NO-activated state at high resolutions, allowing the observation of the density of NO. These cryo-EM maps show the binding of NO to the distal site of haem in the NO-activated state.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Sun J, Wang W, Hu X, Zhang X, Zhu C, Hu J, Ma R. Local delivery of gaseous signaling molecules for orthopedic disease therapy. J Nanobiotechnology 2023; 21:58. [PMID: 36810201 PMCID: PMC9942085 DOI: 10.1186/s12951-023-01813-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Over the past decade, a proliferation of research has used nanoparticles to deliver gaseous signaling molecules for medical purposes. The discovery and revelation of the role of gaseous signaling molecules have been accompanied by nanoparticle therapies for their local delivery. While most of them have been applied in oncology, recent advances have demonstrated their considerable potential in diagnosing and treating orthopedic diseases. Three of the currently recognized gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are highlighted in this review along with their distinctive biological functions and roles in orthopedic diseases. Moreover, this review summarizes the progress in therapeutic development over the past ten years with a deeper discussion of unresolved issues and potential clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Sun
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Min Q, Ji X. Strategies toward Metal-Free Carbon Monoxide Prodrugs: An Update. ChemMedChem 2023; 18:e202200500. [PMID: 36251749 DOI: 10.1002/cmdc.202200500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Carbon monoxide is an important gasotransmitter in mammals, with pleiotropic therapeutic potential against a wide range of human diseases. However, clinical translation of CO is severely hampered by the lack of a reliable CO delivery form. The development of metal-free CO prodrugs is the key to resolving such delivery issues. Over the past three years, some new exciting progress has been made in this field. In this review, we highlight these advances and discuss related issues.
Collapse
Affiliation(s)
- Qingqiang Min
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, P. R. China
| |
Collapse
|
12
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
13
|
Design, synthesis and biological evaluation of new 3,4-dihydroquinoxalin-2(1H)-one derivatives as soluble guanylyl cyclase (sGC) activators. Heliyon 2022; 8:e11438. [DOI: 10.1016/j.heliyon.2022.e11438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
14
|
Wu G, Sharina I, Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front Mol Biosci 2022; 9:1007768. [PMID: 36304925 PMCID: PMC9592903 DOI: 10.3389/fmolb.2022.1007768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), oxygen (O2), hydrogen sulfide (H2S) are gaseous molecules that play important roles in the physiology and pathophysiology of eukaryotes. Tissue concentrations of these physiologically relevant gases vary remarkable from nM range for NO to high μM range of O2. Various hemoproteins play a significant role in sensing and transducing cellular signals encoded by gaseous molecules or in transporting them. Soluble guanylyl cyclase (sGC) is a hemoprotein that plays vital roles in a wide range of physiological functions and combines the functions of gaseous sensor and signal transducer. sGC uniquely evolved to sense low non-toxic levels of NO and respond to elevated NO levels by increasing its catalytic ability to generate the secondary signaling messenger cyclic guanosine monophosphate (cGMP). This review discusses sGC's gaseous ligand selectivity and the molecular basis for sGC function as high-affinity and selectivity NO receptor. The effects of other gaseous molecules and small molecules of cellular origin on sGC's function are also discussed.
Collapse
Affiliation(s)
- Gang Wu
- Hematology-Oncology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| | - Iraida Sharina
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States
| | - Emil Martin
- Cardiology Division, Department of Internal Medicine, The University of Texas—McGovern Medical School, Houston, TX, United States,*Correspondence: Gang Wu, ; Emil Martin,
| |
Collapse
|
15
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 PMCID: PMC9553107 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Makrynitsa GI, Argyriou AI, Zompra AA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA. Mapping of the sGC Stimulator BAY 41-2272 Binding Site on H-NOX Domain and Its Regulation by the Redox State of the Heme. Front Cell Dev Biol 2022; 10:925457. [PMID: 35784456 PMCID: PMC9247194 DOI: 10.3389/fcell.2022.925457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The β1 subunit of the most abundant, α1β1 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension. Enhancement of sGC enzymatic function can be effected by a class of drugs called sGC “stimulators,” which depend on reduced heme and synergize with low NO concentrations. Until recently, our knowledge about the binding mode of stimulators relied on low resolution cryo-EM structures of human sGC in complex with known stimulators, while information about the mode of synergy with NO is still limited. Herein, we couple NMR spectroscopy using the H-NOX domain of the Nostoc sp. cyanobacterium with cGMP determinations in aortic smooth muscle cells (A7r5) to study the impact of the redox state of the heme on the binding of the sGC stimulator BAY 41-2272 to the Ns H-NOX domain and on the catalytic function of the sGC. BAY 41-2272 binds on the surface of H-NOX with low affinity and this binding is enhanced by low NO concentrations. Subsequent titration of the heme oxidant ODQ, fails to modify the conformation of H-NOX or elicit loss of the heme, despite its oxidation. Treatment of A7r5 cells with ODQ following the addition of BAY 41-2272 and an NO donor can still inhibit cGMP synthesis. Overall, we describe an analysis in real time of the interaction of the sGC stimulator, BAY 41-2272, with the Ns H-NOX, map the amino acids that mediate this interaction and provide evidence to explain the characteristic synergy of BAY 41-2272 with NO. We also propose that ODQ can still oxidize the heme in the H-NOX/NO complex and inhibit sGC activity, even though the heme remains associated with H-NOX. These data provide a more-in-depth understanding of the molecular mode of action of sGC stimulators and can lead to an optimized design and development of novel sGC agonists.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Salagiannis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Vassiliki Vazoura
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, Patras, Greece
- *Correspondence: Georgios A. Spyroulias,
| |
Collapse
|
17
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Liu B, Zhang X, Li J, Yao S, Lu Y, Cao B, Liu Z. X-ray-Triggered CO Release Based on GdW 10/MnBr(CO) 5 Nanomicelles for Synergistic Radiotherapy and Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7636-7645. [PMID: 35109649 DOI: 10.1021/acsami.1c22575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon monoxide (CO) therapy has become a hot topic in the field of gas therapy because of its application prospect in the treatment of various diseases. Due to the high affinity for human hemoglobin, the main challenge of CO-loaded nanomedicine is the lack of selectivity and toxicity in the delivery process. Although many commercial CO-releasing molecules (CORMs) have been widely developed because of their ability to deliver CO, CORMs still have some disadvantages, including difficult on-demand controlled CO release, poor solubility, and potential toxicity, which are limiting their further application. Herein, an X-ray-triggered CO-releasing nanomicelle system (GW/MnCO@PLGA) based on GdW10 nanoparticles (NPs) (GW) and MnBr(CO)5 (MnCO) encapsulating in the poly(lactic-co-glycolic acid) (PLGA) polymer was constructed for synergistic CO radiotherapy (RT). The production of strongly oxidative superoxide anion (O2-•) active species can lead to cell apoptosis under the X-ray sensitization of GW. Moreover, strongly oxidative O2-• radicals further oxidize and compete with the Mn center, resulting in the on-demand release of CO. The radio/gas therapy synergy to enhance the efficient tumor inhibition of the nanomicelles was investigated in vivo and in vitro. Therefore, the establishment of an X-ray-triggered controlled CO release system has great application potential for further synergistic RT CO therapy in deep tumor sites.
Collapse
Affiliation(s)
- Bin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaolei Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jinkai Li
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bingqiang Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Zongming Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
19
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
20
|
Patterson DC, Liu Y, Das S, Yennawar NH, Armache JP, Kincaid JR, Weinert EE. Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein. Biochemistry 2021; 60:3801-3812. [PMID: 34843212 DOI: 10.1021/acs.biochem.1c00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.
Collapse
Affiliation(s)
- Dayna C Patterson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yilin Liu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Sayan Das
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James R Kincaid
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
21
|
Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity. Curr Res Struct Biol 2021; 3:324-336. [PMID: 34901882 PMCID: PMC8640258 DOI: 10.1016/j.crstbi.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a β1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC “activators” aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC's activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme's redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules. When the heme of Ns H-NOX is replaced by the sGC activators, the protein’s flexibility is significantly reduced. Heme causes the conformational exchange of Ns H-NOX, as many residues around the heme adopt invisible conformation. L-ascorbate prevents the proper action of BAY 58-2667 and BAY 60-2770 from forming a stable complex with the Ns H-NOX. In A7r5 cells, L-ascorbate does not affect cGMP formation induced by BAY 58-2667 and it inhibits the effect of BAY 60-2770. BAY molecules act on the H-NOX or the sGC in a bi-directional way, depending on the redox state of the heme.
Collapse
|
22
|
de Oliveira Neto J, Marinho MM, Silveira JADM, Rocha DG, Lima NCB, Gouveia Júnior FS, Lopes LGDF, de Sousa EHS, Martins AMC, Marinho AD, Jorge RJB, Monteiro HSA. Synthesis and potential vasorelaxant effect of a novel ruthenium-based nitro complex. J Inorg Biochem 2021; 228:111666. [PMID: 34923187 DOI: 10.1016/j.jinorgbio.2021.111666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the synthesis and potential vasodilator effect of a novel ruthenium complex, cis-[Ru(bpy)2(2-MIM)(NO2)]PF6 (bpy = 2,2'-bipyridine and 2-MIM = 2-methylimidazole) (FOR711A), containing an imidazole derivative via an in silico molecular docking model using β1 H-NOX (Heme-nitric oxide/oxygen binding) domain proteins of reduced and oxidized soluble guanylate cyclase (sGC). In addition, pharmacokinetic properties in the human organism were predicted through computational simulations and the potential for acute irritation of FOR711A was also investigated in vitro using the hen's egg chorioallantoic membrane (HET-CAM). FOR711A interacted with sites of the β1 H-NOX domain of reduced and oxidized sGC, demonstrating shorter bond distances to several residues and negative values of total energy. The predictive study revealed molar refractivity (RM): 127.65; Log Po/w = 1.29; topological polar surface area (TPSA): 86.26 Å2; molar mass (MM) = 541.55 g/mol; low solubility, high unsaturation index, high gastrointestinal absorption; toxicity class 4; failure to cross the blood-brain barrier and to react with cytochrome P450 (CYP) enzymes CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. After the HET-CAM assay, the FOR711A complex was classified as non-irritant (N.I.) and its vasodilator effect was confirmed through greater evidence of blood vessels after the administration and ending of the observation period of 5 min. These results suggest that FOR711A presented a potential stimulator/activator effect of sGC via NO/sGC/cGMP. However, results indicate it needs a vehicle for oral administration.
Collapse
Affiliation(s)
- Joselito de Oliveira Neto
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Márcia Machado Marinho
- State University of Ceará, Iguatu Faculty of Education, Science and Letters, Iguatu, CE, Brazil
| | - João Alison de Moraes Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil.
| | - Danilo Galvão Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Natália Cavalcante Barbosa Lima
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | | | | | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Diogo Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| | - Helena Serra Azul Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Coronel Nunes de Melo St., 1127, 60.430-275 Fortaleza, CE, Brazil; Drug Research and Development Center (NPDM), Federal University of Ceará, Coronel Nunes de Melo St., 1000, 60.430-275 Fortaleza, CE, Brazil
| |
Collapse
|
23
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
24
|
Wong A, Hu N, Tian X, Yang Y, Gehring C. Nitric oxide sensing revisited. TRENDS IN PLANT SCIENCE 2021; 26:885-897. [PMID: 33867269 DOI: 10.1016/j.tplants.2021.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China.
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Yixin Yang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, I-06121 Perugia, Italy
| |
Collapse
|
25
|
Kolpakov AR, Knyazev RA. Endogenous Cardiotonics: Search And Problems. Cardiovasc Hematol Disord Drug Targets 2021; 21:95-103. [PMID: 33874876 DOI: 10.2174/1871529x21666210419121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Medicinal preparations currently used for the treatment of patients with chronic cardiac failure involve those that reduce the heart load (vasodilators, diuretics, beta-blockers, and angiotensin-converting enzyme (ACE) inhibitors). Cardiotonic drugs with the cAMP-dependent mechanism are unsuitable for long-term administration due to the intensification of metabolic processes and an increase in the oxygen demand of the myocardium and all tissues of the body. For many years, digoxin has remained the only preparation enhancing the efficiency of myocardial performance. The detection of digoxin and ouabain in intact animals has initiated a search for other compounds with cardiotonic activity. The review summarizes current data on the effect exerted on the heart performance by endogenous compounds, from simple, such as NO and CO, to steroids, fatty acids, polypeptides, and proteins. Controversial questions and problems with the introduction of scientific achievements into clinical practice are discussed. The results obtained by the authors and their colleagues after many years of studies on the cardiotropic properties of serum lipoproteins are also reported. The experimentally established cardiotonic activity of apoprotein A-1, which is accompanied by a decrease in the relative consumption of oxygen, maybe of great interest.
Collapse
Affiliation(s)
- Arkady R Kolpakov
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| | - Roman A Knyazev
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| |
Collapse
|
26
|
Makrynitsa GI, Argyriou AI, Dalkas G, Georgopoulou DA, Bantzi M, Giannis A, Papapetropoulos A, Spyroulias GA. Backbone and side chain NMR assignments of the H-NOX domain from Nostoc sp. in complex with BAY58-2667 (cinaciguat). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:53-57. [PMID: 33128204 DOI: 10.1007/s12104-020-09982-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Soluble guanylate cyclase (sGC) enzyme is activated by the gaseous signaling agent nitric oxide (NO) and triggers the conversion of GTP (guanosine 5'-triphosphate) to cGMP (cyclic guanylyl monophosphate). It contains the heme binding H-NOX (heme-nitric oxide/oxygen binding) domain which serves as the sensor of NO and it is highly conserved across eukaryotes and bacteria as well. Many research studies focus on the synthesis of chemical compounds bearing possible therapeutic action, which mimic the heme moiety and activate the sGC enzyme. In this study, we report a preliminary solution NMR (Nuclear Magnetic Resonance) study of the H-NOX domain from Nostoc sp. cyanobacterium in complex with the chemical sGC activator cinaciguat (BAY58-2667). An almost complete sequence-specific assignment of its 1H, 15N and 13C resonances was obtained and its secondary structure predicted by TALOS+.
Collapse
Affiliation(s)
| | | | - Georgios Dalkas
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | | | - Marina Bantzi
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Athanassios Giannis
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
27
|
Distinct Pharmacological Properties of Gaseous CO and CO-Releasing Molecule in Human Platelets. Int J Mol Sci 2021; 22:ijms22073584. [PMID: 33808315 PMCID: PMC8037872 DOI: 10.3390/ijms22073584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/26/2023] Open
Abstract
Carbon monoxide (CO)—gaseous or released by CO-RMs—both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO—delivered by gaseous CO–saturated buffer (COG) and generated by CORM-A1—on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.
Collapse
|
28
|
Fu J, Hall S, Boon EM. Recent evidence for multifactorial biofilm regulation by heme sensor proteins NosP and H-NOX. CHEM LETT 2021; 50:1095-1103. [PMID: 36051866 PMCID: PMC9432776 DOI: 10.1246/cl.200945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Heme is involved in signal transduction by either acting as a cofactor of heme-based gas/redox sensors or binding reversely to heme-responsive proteins. Bacteria respond to low concentrations of nitric oxide (NO) to modulate group behaviors such as biofilms through the well-characterized H-NOX family and the newly discovered heme sensor protein NosP. NosP shares functional similarities with H-NOX as a heme-based NO sensor; both regulate two-component systems and/or cyclic-di-GMP metabolizing enzymes, playing roles in processes such as quorum sensing and biofilm regulation. Interestingly, aside from its role in NO signaling, recent studies suggest that NosP may also sense labile heme. In this Highlight Review, we briefly summarize H-NOX-dependent NO signaling in bacteria, then focus on recent advances in NosP-mediated NO signaling and labile heme sensing.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Boon
- To whom correspondence should be addressed: Elizabeth M. Boon: Tel.: (631) 632-7945. Fax: (631) 632-7960.
| |
Collapse
|
29
|
Khalid RR, Maryam A, Çınaroğlu SS, Siddiqi AR, Sezerman OU. A recursive molecular docking coupled with energy-based pose-rescoring and MD simulations to identify hsGC βH-NOX allosteric modulators for cardiovascular dysfunctions. J Biomol Struct Dyn 2021; 40:6128-6150. [PMID: 33522438 DOI: 10.1080/07391102.2021.1877818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modulating the activity of human soluble guanylate cyclase (hsGC) through allosteric regulation of the βH-NOX domain has been considered as an immediate treatment for cardiovascular disorder (CVDs). Currently available βH-NOX domain-specific agonists including cinaciguat are unable to deal with the conundrum raised due to oxidative stress in the case of CVDs and their associated comorbidities. Therefore, the idea of investigating novel compounds for allosteric regulation of hsGC activation has been rekindled to circumvent CVDs. Current study aims to identify novel βH-NOX domain-specific compounds that can selectively turn on sGC functions by modulating the conformational dynamics of the target protein. Through a comprehensive computational drug-discovery approach, we first executed a target-based performance assessment of multiple docking (PLANTS, QVina, LeDock, Vinardo, Smina) scoring functions based on multiple performance metrices. QVina showed the highest capability of selecting true-positive ligands over false positives thus, used to screen 4.8 million ZINC15 compounds against βH-NOX domain. The docked ligands were further probed in terms of contact footprint and pose reassessment through clustering analysis and PLANTS docking, respectively. Subsequently, energy-based AMBER rescoring of top 100 low-energy complexes, per-residue energy decomposition analysis, and ADME-Tox analysis yielded the top three compounds i.e. ZINC000098973660, ZINC001354120371, and ZINC000096022607. The impact of three selected ligands on the internal structural dynamics of the βH-NOX domain was also investigated through molecular dynamics simulations. The study revealed potential electrostatic interactions for better conformational dialogue between βH-NOX domain and allosteric ligands that are critical for the activation of hsGC as compared to the reference compound.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Süleyman Selim Çınaroğlu
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey.,Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, Turkey
| |
Collapse
|
30
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
A new paradigm for gaseous ligand selectivity of hemoproteins highlighted by soluble guanylate cyclase. J Inorg Biochem 2020; 214:111267. [PMID: 33099233 DOI: 10.1016/j.jinorgbio.2020.111267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several μM while [O2] reaching to hundreds of μM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.
Collapse
|
32
|
Peng L, Gao DD, Xu JW, Xu JB, Ke LJ, Qiu ZE, Zhu YX, Zhang YL, Zhou WL. Cellular mechanisms underlying carbon monoxide stimulated anion secretion in rat epididymal epithelium. Nitric Oxide 2020; 100-101:30-37. [DOI: 10.1016/j.niox.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|
33
|
Khalid RR, Maryam A, Sezerman OU, Mylonas E, Siddiqi AR, Kokkinidis M. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase. Sci Rep 2020; 10:9488. [PMID: 32528025 PMCID: PMC7289801 DOI: 10.1038/s41598-020-66310-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/04/2020] [Indexed: 01/25/2023] Open
Abstract
In the nitric oxide (NO) signaling pathway, human soluble guanylate cyclase (hsGC) synthesizes cyclic guanosine monophosphate (cGMP); responsible for the regulation of cGMP-specific protein kinases (PKGs) and phosphodiesterases (PDEs). The crystal structure of the inactive hsGC cyclase dimer is known, but there is still a lack of information regarding the substrate-specific internal motions that are essential for the catalytic mechanism of the hsGC. In the current study, the hsGC cyclase heterodimer complexed with guanosine triphosphate (GTP) and cGMP was subjected to molecular dynamics simulations, to investigate the conformational dynamics that have functional implications on the catalytic activity of hsGC. Results revealed that in the GTP-bound complex of the hsGC heterodimer, helix 1 of subunit α (α:h1) moves slightly inwards and comes close to helix 4 of subunit β (β:h4). This conformational change brings loop 2 of subunit β (β:L2) closer to helix 2 of subunit α (α:h2). Likewise, loop 2 of subunit α (α:L2) comes closer to helix 2 of subunit β (β:h2). These structural events stabilize and lock GTP within the closed pocket for cyclization. In the cGMP-bound complex, α:L2 detaches from β:h2 and establishes interactions with β:L2, which results in the loss of global structure compactness. Furthermore, with the release of pyrophosphate, the interaction between α:h1 and β:L2 weakens, abolishing the tight packing of the binding pocket. This study discusses the conformational changes induced by the binding of GTP and cGMP to the hsGC catalytic domain, valuable in designing new therapeutic strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.,Department of Biology, University of Crete, 70013, Heraklion, Greece.,Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, 34752, Turkey
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.,Department of Pharmaceutical Chemistry, Biruni Universitesi, Istanbul, 34010, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem M. A. A. University, Istanbul, 34752, Turkey
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013, Heraklion, Greece
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.
| | - Michael Kokkinidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013, Heraklion, Greece.
| |
Collapse
|
34
|
Rotko D, Bednarczyk P, Koprowski P, Kunz WS, Szewczyk A, Kulawiak B. Heme is required for carbon monoxide activation of mitochondrial BK Ca channel. Eur J Pharmacol 2020; 881:173191. [PMID: 32422186 DOI: 10.1016/j.ejphar.2020.173191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
Abstract
Carbon monoxide (CO) is an endogenously synthesized gaseous mediator and is involved in the regulation of numerous physiological processes. Mitochondria, in which hemoproteins are abundant, are among the targets for CO action. Large-conductance calcium-activated (mitoBKCa) channels in the inner mitochondrial membrane share multiple biophysical similarities with the BKCa channels of the plasma membrane and could be a potential target for CO. To test this hypothesis, the activity of the mitoBKCa channels in human astrocytoma U-87 MG cell mitochondria was assessed with the patch-clamp technique. The effects of CO-releasing molecules (CORMs), such as CORM-2, CORM-401, and CORM-A1, were compared to the application of a CO-saturated solution to the mitoBKCa channels in membrane patches. The applied CORMs showed pleiotropic effects including channel inhibition, while the CO-containing solution did not significantly modulate channel activity. Interestingly, CO applied to the mitoBKCa channels, which were inhibited by exogenously added heme, stimulated the channel. To summarize, our findings indicate a requirement of heme binding to the mitoBKCa channel for channel modulation by CO and suggest that CORMs might have complex unspecific effects on mitoBKCa channels.
Collapse
Affiliation(s)
- Daria Rotko
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pastuera 3, 02-093, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pastuera 3, 02-093, Warsaw, Poland
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Experimental Epileptology and Cognition Research University of Bonn, Sigmund-Freud Strasse 25, 53105, Bonn, Germany
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pastuera 3, 02-093, Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pastuera 3, 02-093, Warsaw, Poland.
| |
Collapse
|
35
|
Majewski M, Lis B, Olas B, Ognik K, Juśkiewicz J. Dietary supplementation with copper nanoparticles influences the markers of oxidative stress and modulates vasodilation of thoracic arteries in young Wistar rats. PLoS One 2020; 15:e0229282. [PMID: 32084205 PMCID: PMC7034852 DOI: 10.1371/journal.pone.0229282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
We aimed to study the physiological effects of diet supplemented with copper (Cu) nanoparticles (NPs). During the eight weeks of the experiment, young Wistar rats (at seven weeks of age, n = 9) were supplemented with 6.5 mg of Cu either as NPs or carbonate salt (Cu6.5). A diet that was not supplemented with Cu served as a negative control (Cu0). The impact of nano Cu supplementation on lipid (reflected as thiobarbituric acid reactive substances-TBARS) and protein peroxidation (thiol and carbonyl groups) in blood plasma as well as the influence on the vasodilatory mechanism(s) of isolated rat thoracic arteries were studied. Supplementation with Cu enhanced lipid peroxidation (TBARS) in NP6.5 (x2.4) and in Cu6.5 (x1.9) compared to the negative control. Significant increase in TBARS was also observed in NP6.5 (x1.3) compared to the Cu6.5 group. The level of thiol groups increased in NP6.5 (x1.6) compared to Cu6.5. Meanwhile, significant (x0.6) decrease was observed in the Cu6.5 group compared to the negative control. Another marker of protein oxidation, carbonyl groups increased in NP6.5 (x1.4) and Cu6.5 (x2.3) compared to the negative control. However significant difference (x0.6) was observed between NP6.5 and Cu6.5. Arteries from Cu supplemented rats exhibited an enhanced vasodilation to gasotransmitters: nitric oxide (NO) and carbon monoxide (CO). An enhanced vasodilation to NO was reflected in the increased response to acetylcholine (ACh) and calcium ionophore A23187. The observed responses to ACh and CO releasing molecule (CORM-2) were more pronounced in NP6.5. The activator of cGMP-dependent protein kinases (8-bromo-cGMP) induced similar vasodilation of thoracic arteries in NP6.5 and Cu0 groups, while an increased response was observed in the Cu6.5 group. Preincubation with the inducible nitric oxide (iNOS) synthase inhibitor- 1400W, decreased the ACh-induced vasodilation in NP6.5, exclusively. Meanwhile the eicosanoid metabolite of arachidonic acid (20-HETE) synthesis inhibitor-HET0016, enhanced vasodilation of arteries from Cu0 group. In conclusion, this study demonstrates that supplementation with nano Cu influences oxidative stress, which further has modified the vascular response.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Poland
- * E-mail:
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
36
|
Suchland B, Malassa A, Görls H, Krieck S, Westerhausen M. Iron(I)‐Based Carbonyl Complexes with Bridging Thiolate Ligands as Light‐Triggered CO Releasing Molecules (photoCORMs). Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Benedikt Suchland
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Astrid Malassa
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Helmar Görls
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Sven Krieck
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Matthias Westerhausen
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
37
|
Childers KC, Yao XQ, Giannakoulias S, Amason J, Hamelberg D, Garcin ED. Synergistic mutations in soluble guanylyl cyclase (sGC) reveal a key role for interfacial regions in the sGC activation mechanism. J Biol Chem 2019; 294:18451-18464. [PMID: 31645439 PMCID: PMC6885636 DOI: 10.1074/jbc.ra119.011010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) and a central component of the NO-cGMP pathway, critical to cardiovascular function. NO binding to the N-terminal sensor domain in sGC enhances the cyclase activity of the C-terminal catalytic domain. Our understanding of the structural elements regulating this signaling cascade is limited, hindering structure-based drug design efforts that target sGC to improve the management of cardiovascular diseases. Conformational changes are thought to propagate the NO-binding signal throughout the entire sGC heterodimer, via its coiled-coil domain, to reorient the catalytic domain into an active conformation. To identify the structural elements involved in this signal transduction cascade, here we optimized a cGMP-based luciferase assay that reports on heterologous sGC activity in Escherichia coli and identified several mutations that activate sGC. These mutations resided in the dorsal flaps, dimer interface, and GTP-binding regions of the catalytic domain. Combinations of mutations from these different elements synergized, resulting in even greater activity and indicating a complex cross-talk among these regions. Molecular dynamics simulations further revealed conformational changes underlying the functional impact of these mutations. We propose that the interfacial residues play a central role in the sGC activation mechanism by coupling the coiled-coil domain to the active site via a series of hot spots. Our results provide new mechanistic insights not only into the molecular pathway for sGC activation but also for other members of the larger nucleotidyl cyclase family.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Sam Giannakoulias
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Joshua Amason
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Elsa D Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250.
| |
Collapse
|
38
|
Makrynitsa GI, Zompra AA, Argyriou AI, Spyroulias GA, Topouzis S. Therapeutic Targeting of the Soluble Guanylate Cyclase. Curr Med Chem 2019; 26:2730-2747. [PMID: 30621555 DOI: 10.2174/0929867326666190108095851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered. Ongoing investigations, with the critical aid of structural chemistry studies, try to further elucidate the enzyme's structural characteristics that define the association of "stimulators" or "activators" of sGC in the presence or absence of the heme moiety, respectively, as well as the precise conformational attributes that will allow the design of more innovative and effective drugs. This review relates the progress achieved, particularly in the past 10 years, in understanding the function of this enzyme, and focusses on a) the rationale and results of its therapeutic targeting in disease situations, depending on the state of enzyme (oxidized or not, heme-carrying or not) and b) the most recent structural studies, which should permit improved design of future therapeutic molecules that aim to directly upregulate the activity of sGC.
Collapse
Affiliation(s)
| | - Aikaterini A Zompra
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Aikaterini I Argyriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Georgios A Spyroulias
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Stavros Topouzis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| |
Collapse
|
39
|
Cameron MS, Donald JA. Different vasodilator mechanisms in intermediate- and small-sized arteries from the hindlimb vasculature of the toad Rhinella marina. Am J Physiol Regul Integr Comp Physiol 2019; 317:R379-R385. [DOI: 10.1152/ajpregu.00319.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, myography was used to determine the effect of arterial size on nitric oxide (NO) vasodilatory mechanisms in the hindlimb vasculature of the toad Rhinella marina. Immunohistochemical analysis showed NO synthase (NOS) 1 immunoreactivity in perivascular nitrergic nerves in the iliac and sciatic arteries. Furthermore, NOS3 immunoreactivity was observed in the vascular smooth muscle of the sciatic artery, but not the endothelium. Acetylcholine (ACh) was used to facilitate intracellular Ca2+ signaling to activate vasodilatory pathways in the arteries. In the iliac artery, ACh-mediated vasodilation was abolished by blockade of the soluble guanylate cyclase pathway with the soluble guanylate cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, 10−5 M) and blockade of the prostaglandin signaling pathway with indomethacin (10−5 M). Furthermore, disruption of the endothelium had no effect on the ACh-mediated vasodilation in the iliac artery, and generic inhibition of NOS with Nω-nitro-l-arginine (3 × 10−4 M) significantly inhibited the vasodilation, indicating NO signaling. In contrast to the iliac artery, ACh-mediated vasodilation of the sciatic artery had a significant endothelium-dependent component. Interestingly, the vasodilation was not significantly affected by Nω-nitro-l-arginine, but it was significantly inhibited by the specific NOS1 inhibitor N5-(1-imino-3-butenyl)-l-ornithine (vinyl-l-NIO, 10−4 M). ODQ mostly inhibited the ACh-mediated vasodilation. In addition, indomethacin also significantly inhibited the ACh-mediated vasodilation, indicating a role for prostaglandins in the sciatic artery. This study found that the mechanisms of vasodilation in the hindlimb vasculature of R. marina vary with vessel size and that the endothelium is involved in vasodilation in the smaller sciatic artery.
Collapse
Affiliation(s)
- Melissa S. Cameron
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria, Australia
- Discipline of Physiology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John A. Donald
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria, Australia
| |
Collapse
|
40
|
Khalid RR, Maryam A, Fadouloglou VE, Siddiqi AR, Zhang Y. Cryo-EM density map fitting driven in-silico structure of human soluble guanylate cyclase (hsGC) reveals functional aspects of inter-domain cross talk upon NO binding. J Mol Graph Model 2019; 90:109-119. [PMID: 31055154 PMCID: PMC7956049 DOI: 10.1016/j.jmgm.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
The human soluble Guanylate Cyclase (hsGC) is a heterodimeric heme-containing enzyme which regulates many important physiological processes. In eukaryotes, hsGC is the only known receptor for nitric oxide (NO) signaling. Improper NO signaling results in various disease conditions such as neurodegeneration, hypertension, stroke and erectile dysfunction. To understand the mechanisms of these diseases, structure determination of the hsGC dimer complex is crucial. However, so far all the attempts for the experimental structure determination of the protein were unsuccessful. The current study explores the possibility to model the quaternary structure of hsGC using a hybrid approach that combines state-of-the-art protein structure prediction tools with cryo-EM experimental data. The resultant 3D model shows close consistency with structural and functional insights extracted from biochemistry experiment data. Overall, the atomic-level complex structure determination of hsGC helps to unveil the inter-domain communication upon NO binding, which should be of important usefulness for elucidating the biological function of this important enzyme and for developing new treatments against the hsGC associated human diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Biostatistics and Medical Informatics, Acibadem Universitesi, Istanbul, 34752, Turkey; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan; Department of Pharmaceutical Chemistry, Biruni Universitesi, Istanbul, 34010, Turkey.
| | - Vasiliki E Fadouloglou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA.
| |
Collapse
|
41
|
Elgert C, Rühle A, Sandner P, Behrends S. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC. Biochem Pharmacol 2019; 163:142-153. [DOI: 10.1016/j.bcp.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
42
|
Khalid RR, Siddiqi AR, Mylonas E, Maryam A, Kokkinidis M. Dynamic Characterization of the Human Heme Nitric Oxide/Oxygen (HNOX) Domain under the Influence of Diatomic Gaseous Ligands. Int J Mol Sci 2019; 20:E698. [PMID: 30736292 PMCID: PMC6387030 DOI: 10.3390/ijms20030698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023] Open
Abstract
Soluble guanylate cyclase (sGC) regulates numerous physiological processes. The β subunit Heme Nitric Oxide/Oxygen (HNOX) domain makes this protein sensitive to small gaseous ligands. The structural basis of the activation mechanism of sGC under the influence of ligands (NO, O₂, CO) is poorly understood. We examine the effect of different ligands on the human sGC HNOX domain. HNOX systems with gaseous ligands were generated and explored using Molecular Dynamics (MD). The distance between heme Fe2+ and histidine in the NO-ligated HNOX (NO-HNOX) system is larger compared to the O₂, CO systems. NO-HNOX rapidly adopts the conformation of the five-group metal coordination system. Loops α, β, γ and helix-f exhibit increased mobility and different hydrogen bond networks in NO-HNOX compared to the other systems. The removal of His from the Fe coordination sphere in NO-HNOX is assisted by interaction of the imidazole ring with the surrounding residues which in turn leads to the release of signaling helix-f and activation of the sGC enzyme. Insights into the conformational dynamics of a human sGC HNOX domain, especially for regions which are functionally critical for signal transduction, are valuable in the understanding of cardiovascular diseases.
Collapse
Affiliation(s)
- Rana Rehan Khalid
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
- Department of Biology, University of Crete, 70013 Heraklion, Greece.
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Greece.
| | - Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan.
| | - Michael Kokkinidis
- Department of Biology, University of Crete, 70013 Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (IMBB-FORTH), 70013 Heraklion, Greece.
| |
Collapse
|
43
|
Rahman FU, Park DR, Joe Y, Jang KY, Chung HT, Kim UH. Critical Roles of Carbon Monoxide and Nitric Oxide in Ca 2+ Signaling for Insulin Secretion in Pancreatic Islets. Antioxid Redox Signal 2019; 30:560-576. [PMID: 29486595 DOI: 10.1089/ars.2017.7380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Glucagon-like peptide-1 (GLP-1) increases intracellular Ca2+ concentrations, resulting in insulin secretion from pancreatic β-cells through the sequential production of Ca2+ mobilizing messengers nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR). We previously found that NAADP activates the neuronal type of nitric oxide (NO) synthase (nNOS), the product of which, NO, activates guanylyl cyclase to produce cyclic guanosine monophosphate (cGMP), which, in turn, induces cADPR formation. Our aim was to explore the relationship between Ca2+ signals and gasotransmitters formation in insulin secretion in β-cells upon GLP-1 stimulation. RESULTS We show that NAADP-induced cGMP production by nNOS activation is dependent on carbon monoxide (CO) formation by heme oxygenase-2 (HO-2). Treatment with exogenous NO and CO amplifies cGMP formation, Ca2+ signal strength, and insulin secretion, whereas this signal is impeded when exposed to combined treatment with NO and CO. Furthermore, CO potentiates cGMP formation in a dose-dependent manner, but higher doses of CO inhibited cGMP formation. Our data with regard to zinc protoporphyrin, a HO inhibitor, and HO-2 knockdown, revealed that NO-induced cADPR formation and insulin secretion are dependent on HO-2. Consistent with this observation, the administration of NO or CO donors to type 2 diabetic mice improved glucose tolerance, but the same did not hold true when both were administered concurrently. INNOVATION Our research reveals the role of two gas transmitters, CO and NO, for Ca2+ second messengers formation in pancreatic β-cells. CONCLUSION These results demonstrate that CO, the downstream regulator of NO, plays a role in bridging the gap between the Ca2+ signaling messengers during insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ryoung Park
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yeonsoo Joe
- 2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Kyu Yun Jang
- 4 Department of Pathology Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hun Taeg Chung
- 3 Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Uh-Hyun Kim
- 1 Department of Biochemistry, Jeonju, Republic of Korea.,2 National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, Republic of Korea.,5 Institute of Cardiovascular Research, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE The molecule nitric oxide (NO) has been shown to regulate behaviors in bacteria, including biofilm formation. NO detection and signaling in bacteria is typically mediated by hemoproteins such as the bis-(3',5')-cyclic dimeric adenosine monophosphate-specific phosphodiesterase YybT, the transcriptional regulator dissimilative nitrate respiration regulator, or heme-NO/oxygen binding (H-NOX) domains. H-NOX domains are well-characterized primary NO sensors that are capable of detecting nanomolar NO and influencing downstream signal transduction in many bacterial species. However, many bacteria, including the human pathogen Pseudomonas aeruginosa, respond to nanomolar concentrations of NO but do not contain an annotated H-NOX domain, indicating the existence of an additional nanomolar NO-sensing protein (NosP). Recent Advances: A newly discovered bacterial hemoprotein called NosP may also act as a primary NO sensor in bacteria, in addition to, or in place of, H-NOX. NosP was first described as a regulator of a histidine kinase signal transduction pathway that is involved in biofilm formation in P. aeruginosa. CRITICAL ISSUES The molecular details of NO signaling in bacteria are still poorly understood. There are still many bacteria that are NO responsive but do encode either H-NOX or NosP domains in their genomes. Even among bacteria that encode H-NOX or NosP, many questions remain. FUTURE DIRECTIONS The molecular mechanisms of NO regulation in many bacteria remain to be established. Future studies are required to gain knowledge about the mechanism of NosP signaling. Advancements on structural and molecular understanding of heme-based sensors in bacteria could lead to strategies to alleviate or control bacterial biofilm formation or persistent biofilm-related infections.
Collapse
Affiliation(s)
| | - Lisa-Marie Nisbett
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Bezalel Bacon
- 2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York
| | - Elizabeth Boon
- 1 Department of Chemistry, Stony Brook University , Stony Brook, New York.,2 Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York.,3 Institute of Chemical Biology and Drug Design, Stony Brook University , Stony Brook, New York
| |
Collapse
|
45
|
Guo Y, Cooper MM, Bromberg R, Marletta MA. A Dual-H-NOX Signaling System in Saccharophagus degradans. Biochemistry 2018; 57:6570-6580. [PMID: 30398342 DOI: 10.1021/acs.biochem.8b01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a critical signaling molecule involved in the regulation of a wide variety of physiological processes across every domain of life. In most aerobic and facultative anaerobic bacteria, heme-nitric oxide/oxygen binding (H-NOX) proteins selectively sense NO and inhibit the activity of a histidine kinase (HK) located on the same operon. This NO-dependent inhibition of the cognate HK alters the phosphorylation of the downstream response regulators. In the marine bacterium Saccharophagus degradans ( Sde), in addition to a typical H-NOX ( Sde 3804)/HK ( Sde 3803) pair, an orphan H-NOX ( Sde 3557) with no associated signaling protein has been identified distant from the H-NOX/HK pair in the genome. The characterization reported here elucidates the function of both H-NOX proteins. Sde 3557 exhibits a weaker binding affinity with the kinase, yet both Sde 3804 and Sde 3557 are functional H-NOXs with proper gas binding properties and kinase inhibition activity. Additionally, Sde 3557 has an NO dissociation rate that is significantly slower than that of Sde 3804, which may confer prolonged kinase inhibition in vivo. While it is still unclear whether Sde 3557 has another signaling partner or shares the histidine kinase with Sde 3804, Sde 3557 is the only orphan H-NOX characterized to date. S. degradans is likely using a dual-H-NOX system to fine-tune the downstream response of NO signaling.
Collapse
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Matthew M Cooper
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Raquel Bromberg
- Department of Biophysics , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Michael A Marletta
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
46
|
Guo Y, Marletta MA. Structural Insight into H‐NOX Gas Sensing and Cognate Signaling Protein Regulation. Chembiochem 2018; 20:7-19. [DOI: 10.1002/cbic.201800478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
| | - Michael A. Marletta
- California Institute for Quantitative BiosciencesUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of Molecular and Cell BiologyUniversity of California, Berkeley Berkeley, CA 94720 USA
- Department of ChemistryUniversity of California, Berkeley Berkeley, CA 94720 USA
| |
Collapse
|
47
|
Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 2018; 77:65-74. [PMID: 29704567 PMCID: PMC6919197 DOI: 10.1016/j.niox.2018.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
48
|
Hespen CW, Bruegger JJ, Guo Y, Marletta MA. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins. ACS Chem Biol 2018; 13:1631-1639. [PMID: 29757599 DOI: 10.1021/acschembio.8b00248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.
Collapse
Affiliation(s)
- Charles W. Hespen
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Joel J. Bruegger
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Yirui Guo
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
| | - Michael A. Marletta
- QB3 Institute, University of California—Berkeley, 356 Stanley Hall, Berkeley, California 94720-3220, United States
- Department of Chemistry, Department of Molecular and Cell Biology, QB3 Institute, University of California—Berkeley, 374B Stanley Hall, Berkeley, California 94720-3220, United States
| |
Collapse
|
49
|
Sömmer A, Behrends S. Methods to investigate structure and activation dynamics of GC-1/GC-2. Nitric Oxide 2018; 78:S1089-8603(17)30348-8. [PMID: 29705716 DOI: 10.1016/j.niox.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme consisting of one α and one β subunit. The α1β1 (GC-1) and α2β1 (GC-2) heterodimers are important for NO signaling in humans and catalyse the conversion from GTP to cGMP. Each sGC subunit consists of four domains. Several crystal structures of the isolated domains are available. However, crystals of full-length sGC have failed to materialise. In consequence, the detailed three dimensional structure of sGC remains unknown to date. Different techniques including stopped-flow spectroscopy, Förster-resonance energy transfer, direct fluorescence, analytical ultracentrifugation, chemical cross-linking, small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and protein thermal shift assays, were used to collect indirect information. Taken together, this circumstantial evidence from different groups brings forth a plausible model of sGC domain arrangement, spatial orientation and dynamic rearrangement upon activation. For analysis of the active conformation the stable binding mode of sGC activators has a significant methodological advantage over the transient, elusive, complex and highly concentration dependent effects of NO in many applications. The methods used and the results obtained are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
50
|
Sömmer A, Behrends S. Synergistic stabilisation of NOsGC by cinaciguat and non-hydrolysable nucleotides: Evidence for sGC activator-induced communication between the heme-binding and catalytic domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:702-711. [PMID: 29653192 DOI: 10.1016/j.bbapap.2018.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 11/29/2022]
Abstract
Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme consisting of one α and one β subunit. Each subunit consists of four domains: the N-terminal heme-nitric oxide oxygen binding (HNOX) domain, a PAS domain, a coiled-coil domain and the C-terminal catalytic domain. Upon activation by the endogenous ligand NO or activating drugs, NOsGC catalyses the conversion of GTP to cGMP. Although several crystal structures of the isolated domains are known, the structure of the full-length enzyme and the interdomain conformational changes during activation remain unsolved to date. In the current study, we performed protein thermal shift assays of purified NOsGC to identify discrete conformational states amenable to further analysis e.g. by crystallisation. A non-hydrolysable substrate analogue binding to the catalytic domain led to a subtle change in melting temperature. An activator drug binding to the HNOX domain led to a small increase. However, the combination of substrate analogue and activator drug led to a marked synergistic increase from 51 °C to 60 °C. This suggests reciprocal communication between HNOX domain and catalytic domain and formation of a stable activated conformation amenable to further biophysical characterization.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|