1
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL, Edwards JC. Renin angiotensin system-induced muscle wasting: putative mechanisms and implications for clinicians. Mol Cell Biochem 2025; 480:1935-1949. [PMID: 38811433 PMCID: PMC11961475 DOI: 10.1007/s11010-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Renin angiotensin system (RAS) alters various mechanisms related to muscle wasting. The RAS system consists of classical and non-classical pathways, which mostly function differently. Classical RAS pathway, operates through angiotensin II (AngII) and angiotensin type 1 receptors, is associated with muscle wasting and sarcopenia. On the other hand, the non-classical RAS pathway, which operates through angiotensin 1-7 and Mas receptor, is protective against sarcopenia. The classical RAS pathway might induce muscle wasting by variety of mechanisms. AngII reduces body weight, via reduction in food intake, possibly by decreasing hypothalamic expression of orexin and neuropeptide Y, insulin like growth factor-1 (IGF-1) and mammalian target of rapamycin (mTOR), signaling, AngII increases skeletal muscle proteolysis by forkhead box transcription factors (FOXO), caspase activation and muscle RING-finger protein-1 transcription. Furthermore, AngII infusion in skeletal muscle reduces phospho-Bad (Ser136) expression and induces apoptosis through increased cytochrome c release and DNA fragmentation. Additionally, Renin angiotensin system activation through AT1R and AngII stimulates tumor necrosis factor-α, and interleukin-6 which induces muscle wasting, Last but not least classical RAS pathway, induce oxidative stress, disturb mitochondrial energy metabolism, and muscle satellite cells which all lead to muscle wasting and decrease muscle regeneration. On the contrary, the non-classical RAS pathway functions oppositely to mitigate these mechanisms and protects against muscle wasting. In this review, we summarize the mechanisms of RAS-induced muscle wasting and putative implications for clinical practice. We also emphasize the areas of uncertainties and suggest potential research areas.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Yasar Caliskan
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Krista L Lentine
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - John C Edwards
- Division of Nephrology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
2
|
Mooshayef N, Gilad N, Mohanam MP, Engelberg D. Knocking out p38α+p38β+p38γ is required to abort the myogenic program in C2C12 myoblasts and to impose uncontrolled proliferation. J Biol Chem 2025; 301:108281. [PMID: 39922491 PMCID: PMC11925101 DOI: 10.1016/j.jbc.2025.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 02/10/2025] Open
Abstract
The p38 MAPKs' family includes four isoforms, of which only p38α has been considered essential for numerous important processes including mice embryogenesis. It is also considered essential for myoblast to myotube differentiation, as exposure of myoblasts to p38α/β inhibitors or to siRNA that targets p38α suppresses the process. The functions of p38β and p38γ in myoblast differentiation are not clear. We knocked out p38α in C2C12 myoblasts, assuming that the resulting C2p38α-/- cells would not differentiate. They did, however, form mature fibers. We found elevated levels and activation of the p38 activator MKK6 in the C2p38α-/- cells, leading to activation of p38β and p38γ, which are not active in differentiating parental C2C12 cells. Thus, p38α is an inhibitor of p38β+p38γ, which perhaps replace it in promoting differentiation. To test this notion, we generated C2p38α/γ-/- and C2p38α/β-/- cells and found that in both clones, the myogenic program was induced. C2p38β/γ-/- cells also formed myotubes. These observations could be interpreted in two ways: either each p38 isoform can promote, by itself, the myogenic program, or p38 activity is not required at all for the process. Generating C2p38α/β/γ-/- cells in which the myogenic program was shut-off altogether, showed that p38 activity is critical for differentiation. Notably, C2p38α/β/γ-/- cells proliferate uncontrollably and give rise to foci, reminiscence of oncogenically transformed cells. In summary, our study shows that a crosstalk between p38 isoforms functions in C2C12 cells as a safeguard mechanism that ensures resilience of the p38 activity in promoting the myogenic program and enforcing cell cycle arrest.
Collapse
Affiliation(s)
- Navit Mooshayef
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore
| | - Nechama Gilad
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manju P Mohanam
- CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Engelberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; CREATE-NUS-HUJ Mechanisms of Liver Inflammatory Diseases, National University of Singapore, 1 CREATE WAY, Innovation Wing, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Guan K, Liu X, Lu W, Mao Y, Mao Y, Ma Y, Wang R, Li Q. Bioactive milk-derived nutrient MFG-E8 ameliorates skeletal muscle atrophy induced by mitochondria damage in aging rats via activating the MAPK/ERK signaling pathway. J Dairy Sci 2025; 108:1182-1197. [PMID: 39694250 DOI: 10.3168/jds.2024-25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 12/20/2024]
Abstract
Sarcopenia is the age-related loss of muscle and fiber number and decreased regenerative capacity with increased abundance of reactive oxygen species levels and electron transport chain abnormalities. The aim of this study was to investigate the antisarcopenia effect of MFG-E8 in alleviating skeletal muscle dysfunction induced by D-galactose, and reveal the mechanism promoting myoblast cell proliferation and mediating the cell cycle. This in vivo experiment showed that MFG-E8 can improve the antioxidant status and increase soleus muscle mass (35.61%) and fiber diameter (39.72%) in the aging rats. The western blot assay preliminarily proved that increased ERK phosphorylation determines the repairment of injured skeletal muscle, but not JNK and p38. In vitro experiments further verified that MFG-E8 can increase the number of mitochondria, cell vitality, cell density, and reduce apoptosis rate. Flow cytometry and quantitative real-time PCR proved that MFG-E8 promoted cell proliferation by upregulating mRNA expression of cyclin D1, cyclin E1, CDK, and downregulating mRNA expression of p21 and p27, thereby increasing the S and G2/M phase and decreasing the G0/G1 phase. Molecular level further proved that MFG-E8 mediated cell cycle and promoted cell proliferation by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Kaifang Guan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Xiaolin Liu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yuhao Mao
- College of Architectural Science and Engineering, Yangzhou University, Jiangsu 225000, China
| | - Yirong Mao
- School of Science, Shanghai Maritime University, Shanghai 200135, China
| | - Ying Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Rongchu Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Co. Ltd., Chengdu, Sichuan 610023, China; Chengdu Molecular Power Biotechnology Co. Ltd., Chengdu, Sichuan 611732, China.
| |
Collapse
|
4
|
Cuijpers I, Dohmen CGM, Bouwman FG, Troost FJ, Sthijns MMJPE. Hesperetin but not ellagic acid increases myosin heavy chain expression and cell fusion in C2C12 myoblasts in the presence of oxidative stress. Front Nutr 2024; 11:1377071. [PMID: 39285862 PMCID: PMC11402829 DOI: 10.3389/fnut.2024.1377071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Skeletal muscle regeneration is impaired in elderly. An oxidative stress-induced decrease in differentiation capacity of muscle satellite cells is a key factor in this process. The aim of this study is to investigate whether orange polyphenol hesperetin and pomegranate polyphenol ellagic acid enhance myoblast differentiation in the presence and absence of oxidative stress, and to explore underlying mechanisms. Methods C2C12 myoblasts were proliferated for 24 h and differentiated for 120 h while exposed to hesperetin (5, 20, 50 μM), ellagic acid (0.05, 0.1 μM) or a combination (20 μM hesperetin, 0.05 μM ellagic acid) with and without oxidative stress-inducing compound menadione (9 μM) during 24 h of proliferation and during the first 5 h of differentiation. The number of proliferating cells was assessed using fluorescent labeling of incorporated 5-ethynyl-2'-deoxyuridine. Myosin heavy chain expression was assessed by fluorescence microscopy and cell fusion index was calculated. Furthermore, protein expression of phosphorylated p38 and myomixer were assessed using Western blot. Results None of the compounds induced effects on cell proliferation. Without menadione, 50 μM hesperetin increased fusion index by 12.6% compared to control (p < 0.01), while ellagic acid did not affect measured parameters of differentiation. Menadione treatment did not change myosin heavy chain expression and fusion index. In combination with menadione, 20 μM hesperetin increased myosin heavy chain expression by 35% (p < 0.01) and fusion index by 7% (p = 0.04) compared to menadione. Furthermore, the combination of menadione with hesperetin and ellagic acid increased myosin heavy chain expression by 35% compared to menadione (p = 0.02). Hesperetin and ellagic acid did not change p38 phosphorylation and myomixer expression compared to control, while treatment with menadione increased p38 phosphorylation (p < 0.01) after 5 h and decreased myomixer expression (p = 0.04) after 72 h of differentiation. Conclusion and discussion Hesperetin increased myosin heavy chain expression in the presence of oxidative stress induced by menadione, and increased cell fusion both in the presence and absence of menadione. Ellagic acid did not affect the measured parameters of myoblast differentiation. Therefore, hesperetin should be considered as nutritional prevention or treatment strategy to maintain muscle function in age-related diseases such as sarcopenia. Future research should focus on underlying mechanisms and translation of these results to clinical practice.
Collapse
Affiliation(s)
- Iris Cuijpers
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Colin G M Dohmen
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Freek G Bouwman
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Freddy J Troost
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Mireille M J P E Sthijns
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| |
Collapse
|
5
|
Ozturk T, Mignot J, Gattazzo F, Gervais M, Relaix F, Rouard H, Didier N. Dual inhibition of P38 MAPK and JNK pathways preserves stemness markers and alleviates premature activation of muscle stem cells during isolation. Stem Cell Res Ther 2024; 15:179. [PMID: 38902774 PMCID: PMC11191274 DOI: 10.1186/s13287-024-03795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Adult skeletal muscle contains resident muscle stem cells (MuSC) with high myogenic and engraftment potentials, making them suitable for cell therapy and regenerative medicine approaches. However, purification process of MuSC remains a major hurdle to their use in the clinic. Indeed, muscle tissue enzymatic dissociation triggers a massive activation of stress signaling pathways, among which P38 and JNK MAPK, associated with a premature loss of MuSC quiescence. While the role of these pathways in the myogenic progression of MuSC is well established, the extent to which their dissociation-induced activation affects the functionality of these cells remains unexplored. METHODS We assessed the effect of P38 and JNK MAPK induction on stemness marker expression and MuSC activation state during isolation by pharmacological approaches. MuSC functionality was evaluated by in vitro assays and in vivo transplantation experiments. We performed a comparative analysis of the transcriptome of human MuSC purified with pharmacological inhibitors of P38 and JNK MAPK (SB202190 and SP600125, respectively) versus available RNAseq resources. RESULTS We monitored PAX7 protein levels in murine MuSC during muscle dissociation and demonstrated a two-step decline partly dependent on P38 and JNK MAPK activities. We showed that simultaneous inhibition of these pathways throughout the MuSC isolation process preserves the expression of stemness markers and limits their premature activation, leading to improved survival and amplification in vitro as well as increased engraftment in vivo. Through a comparative RNAseq analysis of freshly isolated human MuSC, we provide evidence that our findings in murine MuSC could be relevant to human MuSC. Based on these findings, we implemented a purification strategy, significantly improving the recovery yields of human MuSC. CONCLUSION Our study highlights the pharmacological limitation of P38 and JNK MAPK activities as a suitable strategy to qualitatively and quantitatively ameliorate human MuSC purification process, which could be of great interest for cell-based therapies.
Collapse
Affiliation(s)
- Teoman Ozturk
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | - Julien Mignot
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | | | - Marianne Gervais
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
- EnvA, IMRB, 94700, Maisons-Alfort, France
- AP-HP, Hopital Mondor, Service d'histologie, 94010, Creteil, France
| | - Hélène Rouard
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France
- AP-HP, Hopital Mondor, Service d'histologie, 94010, Creteil, France
| | - Nathalie Didier
- Univ Paris Est Creteil, INSERM, EFS, IMRB, 94010, Creteil, France.
| |
Collapse
|
6
|
Olson LC, Nguyen T, Sabalewski EL, Puetzer JL, Schwartz Z, McClure MJ. S100b treatment overcomes RAGE signaling deficits in myoblasts on advanced glycation end-product cross-linked collagen and promotes myogenic differentiation. Am J Physiol Cell Physiol 2024; 326:C1080-C1093. [PMID: 38314727 DOI: 10.1152/ajpcell.00502.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.
Collapse
Affiliation(s)
- Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Gerontology, College of Health Professionals, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Tri Nguyen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
7
|
Ng GYQ, Loh ZWL, Fann DY, Mallilankaraman K, Arumugam TV, Hande MP. Role of Mitogen-Activated Protein (MAP) Kinase Pathways in Metabolic Diseases. Genome Integr 2024; 15:e20230003. [PMID: 38770527 PMCID: PMC11102075 DOI: 10.14293/genint.14.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Physiological processes that govern the normal functioning of mammalian cells are regulated by a myriad of signalling pathways. Mammalian mitogen-activated protein (MAP) kinases constitute one of the major signalling arms and have been broadly classified into four groups that include extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and ERK5. Each signalling cascade is governed by a wide array of external and cellular stimuli, which play a critical part in mammalian cells in the regulation of various key responses, such as mitogenic growth, differentiation, stress responses, as well as inflammation. This evolutionarily conserved MAP kinase signalling arm is also important for metabolic maintenance, which is tightly coordinated via complicated mechanisms that include the intricate interaction of scaffold proteins, recognition through cognate motifs, action of phosphatases, distinct subcellular localisation, and even post-translational modifications. Aberration in the signalling pathway itself or their regulation has been implicated in the disruption of metabolic homeostasis, which provides a pathophysiological foundation in the development of metabolic syndrome. Metabolic syndrome is an umbrella term that usually includes a group of closely associated metabolic diseases such as hyperglycaemia, hyperlipidaemia, and hypertension. These risk factors exacerbate the development of obesity, diabetes, atherosclerosis, cardiovascular diseases, and hepatic diseases, which have accounted for an increase in the worldwide morbidity and mortality rate. This review aims to summarise recent findings that have implicated MAP kinase signalling in the development of metabolic diseases, highlighting the potential therapeutic targets of this pathway to be investigated further for the attenuation of these diseases.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Tomaz da Silva M, Joshi AS, Castillo MB, Koike TE, Roy A, Gunaratne PH, Kumar A. Fn14 promotes myoblast fusion during regenerative myogenesis. Life Sci Alliance 2023; 6:e202302312. [PMID: 37813488 PMCID: PMC10561765 DOI: 10.26508/lsa.202302312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Skeletal muscle regeneration involves coordinated activation of an array of signaling pathways. Fibroblast growth factor-inducible 14 (Fn14) is a bona fide receptor for the TWEAK cytokine. Levels of Fn14 are increased in the skeletal muscle of mice after injury. However, the cell-autonomous role of Fn14 in muscle regeneration remains unknown. Here, we demonstrate that global deletion of the Fn14 receptor in mice attenuates muscle regeneration. Conditional ablation of Fn14 in myoblasts but not in differentiated myofibers of mice inhibits skeletal muscle regeneration. Fn14 promotes myoblast fusion without affecting the levels of myogenic regulatory factors in the regenerating muscle. Fn14 deletion in myoblasts hastens initial differentiation but impairs their fusion. The overexpression of Fn14 in myoblasts results in the formation of myotubes having an increased diameter after induction of differentiation. Ablation of Fn14 also reduces the levels of various components of canonical Wnt and calcium signaling both in vitro and in vivo. Forced activation of Wnt signaling rescues fusion defects in Fn14-deficient myoblast cultures. Collectively, our results demonstrate that Fn14-mediated signaling positively regulates myoblast fusion and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Aniket S Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Micah B Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Tatiana E Koike
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
9
|
Han JH, Jang SW, Kim YR, Jang H, Shim KS, Choi HW. The fibronectin concentration that optimally maintains porcine satellite cells. Anim Biosci 2023; 36:1889-1897. [PMID: 37592381 PMCID: PMC10623030 DOI: 10.5713/ab.23.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE 'Cultured meat' has been suggested as means of solving the problems associated with overpopulation and gas emissions. Satellite cells are a major component in the production of cultured meat; however, these cells cannot be maintained in vitro over long periods. Fibronectin is a glycoprotein that affects biological processes such as cell adhesion, differentiation, and migration. Unfortunately, the characteristics of porcine satellite cells grown in a long-term culture when exposed to fibronectin-coated dishes are unknown. The objective of this study was to investigate the appropriate concentration of fibronectin coated dishes for proliferation and maintenance of porcine satellite cells at long-term culture. METHODS In this study, we isolated the satellite cells and fibroblast cells with pre-plating method. We next analyzed the cell doubling time, cell cycle, and rate of expressed paired box 7 (Pax7) and myogenic differentiation 1 (MyoD1) in porcine satellite cells cultured with 20 μg/mL of fibronectin-, gelatin-, and non-coated dishes at early and late passage. We then analyzed the proliferation of porcine satellite cells with various concentrations of mixed gelatin/fibronectin. We next determined the optimal concentration of fibronectin that would encourage proliferation and maintenance of porcine satellite cells in a long-term culture. RESULTS Doubling time was lowest when 20 μg/mL of fibronectin was used (as tested during an early and late passage). Levels of expressed Pax7 and MyoD1, assessed using immunocytochemistry, were highest in cells grown using fibronectin-coated dishes. The proliferation of gelatin/fibronectin mixed coatings had no significant effect on porcine satellite cells. The concentration of 5 μg/mL fibronectin coated dishes showed the lowest doubling time and maintained expression of Pax7. CONCLUSION Fibronectin with 5μg/mL effectively maintains porcine satellite cells, a discovery that will be of interest to those developing the next generation of artificial meats.
Collapse
Affiliation(s)
- Jae Ho Han
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Si Won Jang
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Ye Rim Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896,
Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju 54896,
Korea
| | - Kwan Seob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Animal Science, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
10
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
11
|
Kim R, Kim JW, Choi H, Oh JE, Kim TH, Go GY, Lee SJ, Bae GU. Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling. J Ginseng Res 2023; 47:726-734. [PMID: 38107401 PMCID: PMC10721479 DOI: 10.1016/j.jgr.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 12/19/2023] Open
Abstract
Background Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.
Collapse
Affiliation(s)
- Ryuni Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jee Won Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyerim Choi
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ji-Eun Oh
- Department of Biomedical Laboratory Science, Far East University, Chungbuk-do, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ga-Yeon Go
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, Republic of Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lin JH, Hung CH, Huang YC, Chen CS, Ho DR. The p38-MITOGEN-ACTIVATED PROTEIN KINASE Signaling Pathway Is Involved in Leonurus artemisia Extract-Induced Inhibition of the Proliferation of Human Bladder Cancer BFTC-905 Cells via G1/G0 Arrest and Causes Apoptosis In Vitro. Pharmaceuticals (Basel) 2023; 16:1338. [PMID: 37895809 PMCID: PMC10609973 DOI: 10.3390/ph16101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Bladder cancer is a urothelial malignancy. Bladder cancer starts in the urothelial cells lining the inside of the bladder. The 5-year recurrence rate for bladder cancer ranges from 31% to 78%, and the progression rate is approximately 45%. To treat bladder cancer, intravesical drug therapy is often used. Leonurus artemisia extract (LaE) was obtained from medicinal samples of Chinese motherwort Scientific Chinese Medicine; L. artemisia has various biological effects. This study investigated the impact of LaE on human bladder cancer cells (the BFTC-905 cell line) and the molecular mechanism underlying apoptosis resulting from the activation of cell signal transduction pathways in bladder cancer cells. A cell counting kit-8 (CCK-8) assay was used to determine the effect of LaE on cell growth. The effect of LaE on migration ability was observed using a wound healing assay. The effects of LaE on the cell cycle, reactive oxygen species production, and apoptosis were investigated. Western blot analysis detected apoptosis-related and mitogen-activated protein kinase signaling pathway-related protein concentrations. At non-toxic concentrations, LaE inhibited the proliferation of BFTC-905 cells in a concentration-dependent manner, and the half-maximal inhibitory concentration (IC50) was 24.08172 µg/µL. LaE impaired the migration ability of BFTC-905 cells. LaE arrested the cell cycle in the G1 and G0 phases, increased reactive oxygen species production, and induced apoptosis. LaE increased Bax and p-ERK concentrations and decreased Bcl-2, cleaved caspase-3, and p-p38 concentrations. No differences in PARP, C-PARP, vimentin, e-cadherin, p-JNK, or TNF-alpha concentrations were observed. These results suggest that LaE inhibits the proliferation of human bladder cancer cells. Moreover, the mitogen-activated protein kinase signaling pathway is involved in the inhibition of the proliferation of BFTC-905 cells.
Collapse
Affiliation(s)
- Jian-Hui Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (J.-H.L.); (Y.-C.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chein-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (J.-H.L.); (Y.-C.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chih-Shou Chen
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (J.-H.L.); (Y.-C.H.)
| | - Dong-Ru Ho
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (J.-H.L.); (Y.-C.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
13
|
Hettinger ZR, Hu S, Mamiya H, Sahu A, Iijima H, Wang K, Gilmer G, Miller A, Nasello G, Dâ Amore A, Vorp DA, Rando TA, Xing J, Ambrosio F. Dynamical modeling reveals RNA decay mediates the effect of matrix stiffness on aged muscle stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529950. [PMID: 36865124 PMCID: PMC9980169 DOI: 10.1101/2023.02.24.529950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.
Collapse
|
14
|
Ryu M, Kim M, Jung HY, Kim CH, Jo C. Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat. Anim Biosci 2023; 36:295-306. [PMID: 36108703 PMCID: PMC9834727 DOI: 10.5713/ab.22.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Inhibiting the p38 mitogen-activated protein kinase (MAPK) signaling pathway delays differentiation and increases proliferation of muscle stem cells in most species. Here, we aimed to investigate the effect of p38 inhibitor (p38i) treatment on the proliferation and differentiation of chicken muscle stem cells. METHODS Chicken muscle stem cells were collected from the muscle tissues of Hy-line Brown chicken embryos at embryonic day 18, then isolated by the preplating method. Cells were cultured for 4 days in growth medium supplemented with dimethyl sulfoxide or 1, 10, 20 μM of p38i, then subcultured for up to 4 passages. Differentiation was induced for 3 days with differentiation medium. Each treatment was replicated 3 times. RESULTS The proliferation and mRNA expression of paired box 7 gene and myogenic factor 5 gene, as well as the mRNA expression of myogenic differentiation marker gene myogenin were significantly higher in p38i-treated cultures than in control (p<0.05), but immunofluorescence staining and mRNA expression of myosin heavy chain (MHC) were not significantly different between the two groups. Oil red O staining of accumulated lipid droplets in differentiated cell cultures revealed a higher lipid density in p38i-treated cultures than in control; however, the expression of the adipogenic marker gene peroxisome proliferator activated receptor gamma was not significantly different between the two groups. CONCLUSION p38 inhibition in chicken muscle stem cells improves cell proliferation, but the effects on myogenic differentiation and lipid accumulation require additional analysis. Further studies are needed on the chicken p38-MAPK pathway to understand the muscle and fat development mechanism.
Collapse
Affiliation(s)
- Minkyung Ryu
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Minsu Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Hyun Young Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826,
Korea,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Cheorun Jo, Tel: +82-2-880-4804, Fax: +82-2-873-2271, E-mail:
| |
Collapse
|
15
|
Kinnunen PC, Luker GD, Luker KE, Linderman JJ. Computational modeling implicates protein scaffolding in p38 regulation of Akt. J Theor Biol 2022; 555:111294. [PMID: 36195198 PMCID: PMC10394737 DOI: 10.1016/j.jtbi.2022.111294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Gary D Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Kathryn E Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States.
| |
Collapse
|
16
|
Cho HJ, Lee YS, Kim DA, Moon SA, Lee SE, Lee SH, Koh JM. Lumican, an Exerkine, Protects against Skeletal Muscle Loss. Int J Mol Sci 2022; 23:ijms231710031. [PMID: 36077426 PMCID: PMC9456076 DOI: 10.3390/ijms231710031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exerkines are soluble factors secreted by exercised muscles, mimicking the effects of exercise in various organs, including the muscle itself. Lumican is reportedly secreted from muscles; however, its roles in skeletal muscle remain unknown. Herein, we found that lumican mRNA expression in the extensor digitorum longus was significantly higher in exercised mice than in unloading mice, and lumican stimulated myogenesis in vitro. Additionally, lumican knockdown significantly decreased muscle mass and cross-sectional area (CSA) of the muscle fiber in the gastrocnemius muscle of exercised mice. Lumican upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and a p38 inhibitor near completely blocked lumican-stimulated myogenesis. Inhibitors for integrin α2β1 and integrin ανβ3 also prevented lumican-stimulated myogenesis. Systemic lumican treatment, administered via the tail vein for 4 weeks, significantly increased relative muscle masses by 36.1% in ovariectomized mice. In addition, intramuscular lumican injection into unloaded muscles for 2 weeks significantly increased muscle mass by 8.5%. Both intravenous and intramuscular lumican treatment significantly increased muscle CSA. Our in vitro and in vivo experiments indicate that lumican is a muscle-secreted exerkine that affords protection against muscle loss by activating p38 MAPK via integrin receptors.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-3247
| |
Collapse
|
17
|
Targeting the p38α pathway in chronic inflammatory diseases: Could activation, not inhibition, be the appropriate therapeutic strategy? Pharmacol Ther 2022; 235:108153. [DOI: 10.1016/j.pharmthera.2022.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
18
|
Noda Y, Okada S, Suzuki T. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nat Commun 2022; 13:2503. [PMID: 35523818 PMCID: PMC9076623 DOI: 10.1038/s41467-022-30181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein N (SELENON), a selenocysteine (Sec)-containing protein with high reductive activity, maintains redox homeostasis, thereby contributing to skeletal muscle differentiation and function. Loss-of-function mutations in SELENON cause severe neuromuscular disorders. In the early-to-middle stage of myoblast differentiation, SELENON maintains redox homeostasis and modulates endoplasmic reticulum (ER) Ca2+ concentration, resulting in a gradual reduction from the middle-to-late stages due to unknown mechanisms. The present study describes post-transcriptional mechanisms that regulate SELENON expression during myoblast differentiation. Part of an Alu element in the second intron of SELENON pre-mRNA is frequently exonized during splicing, resulting in an aberrant mRNA that is degraded by nonsense-mediated mRNA decay (NMD). In the middle stage of myoblast differentiation, ADAR1-mediated A-to-I RNA editing occurs in the U1 snRNA binding site at 5' splice site, preventing Alu exonization and producing mature mRNA. In the middle-to-late stage of myoblast differentiation, the level of Sec-charged tRNASec decreases due to downregulation of essential recoding factors for Sec insertion, thereby generating a premature termination codon in SELENON mRNA, which is targeted by NMD.
Collapse
Affiliation(s)
- Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
19
|
Bao Z, Wang J, He M, Zhang P, Shan L, Yao Y, Wang Q, Zheng L, Ge H, Zhou J. Benzo[a]pyrene inhibits myoblast differentiation through downregulating the Hsp70-K2-p38MAPK complex. Toxicol In Vitro 2022; 82:105356. [PMID: 35427736 DOI: 10.1016/j.tiv.2022.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Cigarette smoking causes skeletal muscle dysfunction and worse prognosis for patients with diverse systemic diseases. Benzo[a]pyrene (BaP), one major constituent that is inhaled during smoking, is particularly known for its ability to impair neurodevelopment, impede reproductivity, or reduce birth weight. Here, we found that BaP exposure led to the inhibition of C2C12 myoblasts differentiation in a dose-dependent manner and reduced the expression of both early and late myogenic differentiation markers. BaP exposure significantly decreased the expression of p38 mitogen-activated protein kinase (p38MAPK), but not AKT, which are both critical during myogenic differentiation. Mechanistically, BaP deregulated the expression levels of MAPK-activated protein kinase 2 (MK2) and heat shock protein 70 (Hsp70), both of which stabilize p38MAPK. Interestingly, treatment of proteasome inhibitor MG132 was able to reverse BaP-induced degradation of Hsp70/ MK2 and p38MAPK in myoblasts, implying BaP-mediated p38MAPK degradation is proteasome-dependent. Overexpression of p38MAPK also rescued the defective differentiation phenotype of C2C12 induced by BaP. Taken together, we suggest that BaP exposure induces MK2/Hsp70/p38MAPK complex degradation in C2C12 myoblasts and impairs myogenic differentiation by proteasomal-dependent mechanisms. As application of the proteasome inhibitor MG132 or overexpression of p38MAPK could reverse impaired differentiation of myoblasts induced by BaP, this may suggest potential related strategies for preventing tobacco-related skeletal muscle diseases or for respiratory rehabilitation.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianfeng Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mingjie He
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lu Shan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yinan Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liling Zheng
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiqing Ge
- Department of Respiratory Care, Regional Medical Center for the National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Jianying Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
20
|
Chen W, Liang R, Yi Y, Zhu J, Zhang J. P38α deficiency in macrophages ameliorates murine experimental colitis by regulating inflammation and immune process. Pathol Res Pract 2022; 233:153881. [DOI: 10.1016/j.prp.2022.153881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
|
21
|
Xiong Z, Wang M, You S, Chen X, Lin J, Wu J, Shi X. Transcription Regulation of Tceal7 by the Triple Complex of Mef2c, Creb1 and Myod. BIOLOGY 2022; 11:biology11030446. [PMID: 35336819 PMCID: PMC8945367 DOI: 10.3390/biology11030446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary We have previously reported a striated muscle-specific gene during embryogenesis, Tceal7. Our studies have characterized the 0.7 kb promoter of the Tceal7 gene, which harbors important E-box motifs driving the LacZ reporter in the myogenic lineage. However, the underlying mechanism regulating the dynamic expression of Tceal7 during skeletal muscle regeneration is still elusive. In the present work, we have defined a cluster of Mef2#3–CRE#3–E#4 motifs through bioinformatic analysis and transcription assays. Our studies suggested that the triple complex of Mef2c, Creb1 and Myod binds to the Mef2#3–CRE#3–E#4 cluster region, therefore driving the dynamic expression of Tceal7 during skeletal muscle regeneration. The novel mechanism may throw new light on understanding transcription regulation in skeletal muscle myogenesis. Abstract Tceal7 has been identified as a direct, downstream target gene of MRF in the skeletal muscle. The overexpression of Tceal7 represses myogenic proliferation and promotes cell differentiation. Previous studies have defined the 0.7 kb upstream fragment of the Tceal7 gene. In the present study, we have further determined two clusters of transcription factor-binding motifs in the 0.7 kb promoter: CRE#2–E#1–CRE#1 in the proximal region and Mef2#3–CRE#3–E#4 in the distal region. Utilizing transcription assays, we have also shown that the reporter containing the Mef2#3–CRE#3–E#4 motifs is synergistically transactivated by Mef2c and Creb1. Further studies have mapped out the protein–protein interaction between Mef2c and Creb1. In summary, our present studies support the notion that the triple complex of Mef2c, Creb1 and Myod interacts with the Mef2#3–CRE#3–E#4 motifs in the distal region of the Tceal7 promoter, thereby driving Tceal7 expression during skeletal muscle development and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Mengni Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Shanshan You
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaoyan Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China;
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jianhua Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
| | - Xiaozhong Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.X.); (M.W.); (S.Y.); (X.C.); (J.W.)
- Correspondence: ; Tel.: +86-20-39380620
| |
Collapse
|
22
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
24
|
Darlyuk-Saadon I, Heng CKM, Bai C, Gilad N, Yu WP, Meng Huang Mok M, Wong WSF, Engelberg D. Expression of a constitutively active p38α mutant in mice causes early death, anemia, and accumulation of immunosuppressive cells. FEBS J 2021; 288:3978-3999. [PMID: 33410203 DOI: 10.1111/febs.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The MAP kinase p38α is associated with numerous processes in eukaryotes, and its elevated activity is a prominent feature of inflammatory diseases, allergies, and aging. Since p38α is a nodal component of a complex signaling network, it is difficult to reveal exactly how p38α contributes to disparate outcomes. Identification of p38α -specific effects requires activation of p38α per se in vivo. We generated a transgenic mouse model that meets this requirement by allowing inducible and reversible expression of an intrinsically active p38α molecule (p38αD176A+F327S ). p38α's activation across all murine tissues resulted in a significant loss of body weight and death of about 40% of the mice within 17 weeks of activation, although most tissues were unaffected. Flow cytometric analysis of the lungs and bronchoalveolar lavage fluid detected an accumulation of 'debris' within the airways, suggesting impaired clearance. It also revealed increased numbers of alternatively activated alveolar macrophages and myeloid-derived suppressor cells within the lung, pointing at suppression and resolution of inflammation. Blood count suggested that mice expressing p38αD176A+F327S suffer from hemolytic anemia. Flow cytometry of bone marrow revealed a reduced number of hematopoietic stem cells and abnormalities in the erythroid lineage. Unexpectedly, p38α's substrate MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2 was downregulated in mice expressing p38αD176A+F327S , suggesting that constitutive activity of p38α may impose pathological phenotypes by downregulating downstream components, perhaps via a feedback inhibition mechanism. In summary, this new mouse model shows that induced p38α activity per se is hazardous to mouse vitality and welfare, although pathological parameters are apparent only in blood count, bone marrow, and lungs.
Collapse
Affiliation(s)
- Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chew Kiat Matthew Heng
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Chen Bai
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nechama Gilad
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Israel
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory (AGEL), Biological Resource Centre, Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - W S Fred Wong
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore
| | - David Engelberg
- CREATE-NUS-HUJ, Molecular Mechanisms of Inflammatory Diseases Program, National University of Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
25
|
Brennan CM, Emerson CP, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021; 6:e149915. [PMID: 34156029 PMCID: PMC8262482 DOI: 10.1172/jci.insight.149915] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p38 MAPKs play a central role in orchestrating the cellular response to stress and inflammation and in the regulation of myogenesis. Potent inhibitors of p38 MAPKs have been pursued as potential therapies for several disease indications due to their antiinflammatory properties, although none have been approved to date. Here, we provide a brief overview of p38 MAPKs, including their role in regulating myogenesis and their association with disease progression. Finally, we discuss targeting p38 MAPKs as a therapeutic approach for treating facioscapulohumeral muscular dystrophy and other muscular dystrophies by addressing multiple pathological mechanisms in skeletal muscle.
Collapse
Affiliation(s)
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
26
|
Esteban-Collado J, Corominas M, Serras F. Nutrition and PI3K/Akt signaling are required for p38-dependent regeneration. Development 2021; 148:258580. [PMID: 33913483 DOI: 10.1242/dev.197087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
Regeneration after damage requires early signals to trigger the tissue repair machinery. Reactive oxygen species (ROS) act as early signals that are sensed by the MAP3 kinase Ask1, which in turn activates by phosphorylation the MAP kinases p38 and JNK. The sustained or high activation of these kinases can result in apoptosis, whereas short or low activation can promote regeneration. Using the Ask1-dependent regeneration program, we demonstrate in Drosophila wing that PI3K/Akt signaling is necessary for Ask1 to activate p38, but not JNK. In addition, nutrient restriction or mutations that target Ser83 of the Drosophila Ask1 protein, a PI3K/Akt-sensitive residue, block regeneration. However, these effects can be reversed by the ectopic activation of p38, but not of JNK. Our results demonstrate that Ask1 controls the activation of p38 through Ser83, and that the phosphorylation of p38 during regeneration is nutrient sensitive. This mechanism is important for discriminating between p38 and JNK in the cells involved in tissue repair and regenerative growth.
Collapse
Affiliation(s)
- José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Diagonal 643, 08028 Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Diagonal 643, 08028 Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
27
|
Núñez-Álvarez Y, Hurtado E, Muñoz M, García-Tuñon I, Rech GE, Pluvinet R, Sumoy L, Pendás AM, Peinado MA, Suelves M. Loss of HDAC11 accelerates skeletal muscle regeneration in mice. FEBS J 2021; 288:1201-1223. [PMID: 32602219 DOI: 10.1111/febs.15468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11-deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL-10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage. DATABASE: Data were deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession number GSE147423.
Collapse
Affiliation(s)
- Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Ignacio García-Tuñon
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Gabriel E Rech
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Raquel Pluvinet
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Lauro Sumoy
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer (CSIC-USAL), Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| |
Collapse
|
28
|
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12:692. [PMID: 33514709 PMCID: PMC7846784 DOI: 10.1038/s41467-020-20760-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- F. Relaix
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France ,grid.50550.350000 0001 2175 4109AP-HP, Hopital Mondor, Service d’histologie, 94010 Creteil, France
| | - M. Bencze
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - M. J. Borok
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Der Vartanian
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - F. Gattazzo
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France
| | - D. Mademtzoglou
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - S. Perez-Diaz
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Prola
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France
| | - P. C. Reyes-Fernandez
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Rotini
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - Taglietti
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| |
Collapse
|
29
|
Sin TK, Zhang G, Zhang Z, Zhu JZ, Zuo Y, Frost JA, Li M, Li YP. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300. Cancer Res 2020; 81:885-897. [PMID: 33355181 DOI: 10.1158/0008-5472.can-19-3219] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
Cancer-associated cachexia, characterized by muscle wasting, is a lethal metabolic syndrome without defined etiology or established treatment. We previously found that p300 mediates cancer-induced muscle wasting by activating C/EBPβ, which then upregulates key catabolic genes. However, the signaling mechanism that activates p300 in response to cancer is unknown. Here, we show that upon cancer-induced activation of Toll-like receptor 4 in skeletal muscle, p38β MAPK phosphorylates Ser-12 on p300 to stimulate C/EBPβ acetylation, which is necessary and sufficient to cause muscle wasting. Thus, p38β MAPK is a central mediator and therapeutic target of cancer-induced muscle wasting. In addition, nilotinib, an FDA-approved kinase inhibitor that preferentially binds p38β MAPK, inhibited p300 activation 20-fold more potently than the p38α/β MAPK inhibitor, SB202190, and abrogated cancer cell-induced muscle protein loss in C2C12 myotubes without suppressing p38α MAPK-dependent myogenesis. Systemic administration of nilotinib at a low dose (0.5 mg/kg/day, i.p.) in tumor-bearing mice not only alleviated muscle wasting, but also prolonged survival. Therefore, nilotinib appears to be a promising treatment for human cancer cachexia due to its selective inhibition of p38β MAPK. SIGNIFICANCE: These findings demonstrate that prevention of p38β MAPK-mediated activation of p300 by the FDA-approved kinase inhibitor, nilotinib, ameliorates cancer cachexia, representing a potential therapeutic strategy against this syndrome.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James Z Zhu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yan Zuo
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeffrey A Frost
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
30
|
Webster JM, Kempen LJAP, Hardy RS, Langen RCJ. Inflammation and Skeletal Muscle Wasting During Cachexia. Front Physiol 2020; 11:597675. [PMID: 33329046 PMCID: PMC7710765 DOI: 10.3389/fphys.2020.597675] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cachexia is the involuntary loss of muscle and adipose tissue that strongly affects mortality and treatment efficacy in patients with cancer or chronic inflammatory disease. Currently, no specific treatments or interventions are available for patients developing this disorder. Given the well-documented involvement of pro-inflammatory cytokines in muscle and fat metabolism in physiological responses and in the pathophysiology of chronic inflammatory disease and cancer, considerable interest has revolved around their role in mediating cachexia. This has been supported by association studies that report increased levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in some, but not all, cancers and in chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and rheumatoid arthritis (RA). In addition, preclinical studies including animal disease models have provided a substantial body of evidence implicating a causal contribution of systemic inflammation to cachexia. The presence of inflammatory cytokines can affect skeletal muscle through several direct mechanisms, relying on activation of the corresponding receptor expressed by muscle, and resulting in inhibition of muscle protein synthesis (MPS), elevation of catabolic activity through the ubiquitin-proteasomal system (UPS) and autophagy, and impairment of myogenesis. Additionally, systemic inflammatory mediators indirectly contribute to muscle wasting through dysregulation of tissue and organ systems, including GCs via the hypothalamus-pituitary-adrenal (HPA) axis, the digestive system leading to anorexia-cachexia, and alterations in liver and adipocyte behavior, which subsequently impact on muscle. Finally, myokines secreted by skeletal muscle itself in response to inflammation have been implicated as autocrine and endocrine mediators of cachexia, as well as potential modulators of this debilitating condition. While inflammation has been shown to play a pivotal role in cachexia development, further understanding how these cytokines contribute to disease progression is required to reveal biomarkers or diagnostic tools to help identify at risk patients, or enable the design of targeted therapies to prevent or delay the progression of cachexia.
Collapse
Affiliation(s)
- Justine M. Webster
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Laura J. A. P. Kempen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Rowan S. Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Institute for Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Ittner A, Asih PR, Tan ARP, Prikas E, Bertz J, Stefanoska K, Lin Y, Volkerling AM, Ke YD, Delerue F, Ittner LM. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol 2020; 140:279-294. [PMID: 32725265 DOI: 10.1007/s00401-020-02191-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-β (Aβ) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aβ-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aβ-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aβ. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.
Collapse
|
32
|
Rojas LA, Valentine E, Accorsi A, Maglio J, Shen N, Robertson A, Kazmirski S, Rahl P, Tawil R, Cadavid D, Thompson LA, Ronco L, Chang AN, Cacace AM, Wallace O. p38 α Regulates Expression of DUX4 in a Model of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2020; 374:489-498. [PMID: 32576599 DOI: 10.1124/jpet.119.264689] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 03/08/2025] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the loss of repression at the D4Z4 locus leading to aberrant double homeobox 4 (DUX4) expression in skeletal muscle. Activation of this early embryonic transcription factor results in the expression of its target genes causing muscle fiber death. Although progress toward understanding the signals driving DUX4 expression has been made, the factors and pathways involved in the transcriptional activation of this gene remain largely unknown. Here, we describe the identification and characterization of p38α as a novel regulator of DUX4 expression in FSHD myotubes. By using multiple highly characterized, potent, and specific inhibitors of p38α/β, we show a robust reduction of DUX4 expression, activity, and cell death across patient-derived FSHD1 and FSHD2 lines. RNA-seq profiling reveals that a small number of genes are differentially expressed upon p38α/β inhibition, the vast majority of which are DUX4 target genes. Our results reveal a novel and apparently critical role for p38α in the aberrant activation of DUX4 in FSHD and support the potential of p38α/β inhibitors as effective therapeutics to treat FSHD at its root cause. SIGNIFICANCE STATEMENT: Using patient-derived facioscapulohumeral muscular dystrophy (FSHD) myotubes, we characterize the pharmacological relationships between p38α/β inhibition, double homeobox 4 (DUX4) expression, its downstream transcriptional program, and muscle cell death. p38α/β inhibition results in potent and specific DUX4 downregulation across multiple genotypes without significant effects in the process of myogenesis in vitro. These findings highlight the potential of p38α/β inhibitors for the treatment of FSHD, a condition that today has no approved therapies.
Collapse
Affiliation(s)
- L Alejandro Rojas
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Erin Valentine
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Anthony Accorsi
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Joseph Maglio
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Ning Shen
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Alan Robertson
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Steven Kazmirski
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Peter Rahl
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Rabi Tawil
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Diego Cadavid
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Lorin A Thompson
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Lucienne Ronco
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Aaron N Chang
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Angela M Cacace
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| | - Owen Wallace
- Fulcrum Therapeutics, Cambridge, Massachusetts (L.A.R., E.V., A.A., J.M., N.S., A.R., S.K., P.R., D.C., L.A.T., L.R., A.N.C., A.M.C., O.W.) and University of Rochester Medical Center, Department of Neurology, Rochester, New York (R.T.)
| |
Collapse
|
33
|
Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis. BIOLOGY 2020; 9:biology9070152. [PMID: 32635263 PMCID: PMC7407365 DOI: 10.3390/biology9070152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Myogenesis is the biological process by which skeletal muscle tissue forms. Regulation of myogenesis involves a variety of conventional, epigenetic, and epigenomic mechanisms that control chromatin remodeling, DNA methylation, histone modification, and activation of transcription factors. Chromatin remodeling enzymes utilize ATP hydrolysis to alter nucleosome structure and/or positioning. The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) family of chromatin remodeling enzymes is essential for myogenesis. Here we review diverse and novel mechanisms of regulation of mSWI/SNF enzymes by kinases and phosphatases. The integration of classic signaling pathways with chromatin remodeling enzyme function impacts myoblast viability and proliferation as well as differentiation. Regulated processes include the assembly of the mSWI/SNF enzyme complex, choice of subunits to be incorporated into the complex, and sub-nuclear localization of enzyme subunits. Together these processes influence the chromatin remodeling and gene expression events that control myoblast function and the induction of tissue-specific genes during differentiation.
Collapse
|
34
|
Bishop PJ, Kinoshita Y, Lopes NN, Ward AS, Kohtz DS. Changes in Nup62 content affect contact-induced differentiation of cultured myoblasts. Differentiation 2020; 114:27-35. [PMID: 32554220 DOI: 10.1016/j.diff.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Differentiation of cultured skeletal myoblasts is induced by extrinsic signals that include reduction in ambient mitogen concentration and increased cell density. Using an established murine myoblast cell line (C2C12), we have found that experimental reduction of the nucleoporin p62 (Nup62) content of myoblasts enhances differentiation in high-mitogen medium, while forced expression of Nup62 inhibits density-induced differentiation. In contrast, differentiation of myoblasts induced by low-mitogen medium was unaffected by ectopic Nup62 expression. Further analyses suggested that Nup62 content affects density-induced myoblast differentiation through a mechanism involving activation of p38 MAP kinase. Nuclear pore complex (NPC) composition, in particular changes in NUP62 content, may be altered during viral infection, differentiation, and in neoplastic growth. The results support a functional role for changes in Nup62 composition in NPCs and density-induced myogenic differentiation, and suggest a link between loss of Nup62 content and induction of an intracellular stress signaling pathways.
Collapse
Affiliation(s)
- Patrick J Bishop
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine, One Gustave Levy Place, New York, NY, 10029, USA.
| | - N Natalie Lopes
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Avery S Ward
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - D Stave Kohtz
- Foundational Sciences, College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
35
|
The Histone Variant MacroH2A1 Regulates Key Genes for Myogenic Cell Fusion in a Splice-Isoform Dependent Manner. Cells 2020; 9:cells9051109. [PMID: 32365743 PMCID: PMC7290658 DOI: 10.3390/cells9051109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
MacroH2A histone variants have functions in differentiation, somatic cell reprogramming and cancer. However, at present, it is not clear how macroH2As affect gene regulation to exert these functions. We have parted from the initial observation that loss of total macroH2A1 led to a change in the morphology of murine myotubes differentiated ex vivo. The fusion of myoblasts to myotubes is a key process in embryonic myogenesis and highly relevant for muscle regeneration after acute or chronic injury. We have focused on this physiological process, to investigate the functions of the two splice isoforms of macroH2A1. Individual perturbation of the two isoforms in myotubes forming in vitro from myogenic C2C12 cells showed an opposing phenotype, with macroH2A1.1 enhancing, and macroH2A1.2 reducing, fusion. Differential regulation of a subset of fusion-related genes encoding components of the extracellular matrix and cell surface receptors for adhesion correlated with these phenotypes. We describe, for the first time, splice isoform-specific phenotypes for the histone variant macroH2A1 in a physiologic process and provide evidence for a novel underlying molecular mechanism of gene regulation.
Collapse
|
36
|
Jung HJ, Lee KP, Kwon KS, Suh Y. MicroRNAs in Skeletal Muscle Aging: Current Issues and Perspectives. J Gerontol A Biol Sci Med Sci 2020; 74:1008-1014. [PMID: 30215687 DOI: 10.1093/gerona/gly207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the major organs responsible for body movements and metabolism making up approximately 40% of the total body mass. During aging, skeletal muscle exhibits a degenerative age-associated decline in mass and function termed sarcopenia. This age-associated dysfunction of skeletal muscle is a major criterion of morbidity, mortality, and overall declines of quality of life in the elderly people. Therefore, researchers have focused on identifying modulators of muscle aging process including messenger RNAs, proteins, and recently small noncoding RNAs such as microRNAs (miRNAs). In particular, miRNAs have been demonstrated to play a critical role in skeletal muscle development and homeostasis. Recent studies revealed that miRNAs were also involved in muscle aging processes and the rejuvenation of aged muscle by regulating important molecules and pathways of aging including insulin-like growth factors, nicotine-adenine dinucleotide (+)-dependent protein deacetylase sirtuin-1, telomerase reverse transcriptase, and transforming growth factor-β signaling pathway. Over the years, miRNAs have emerged as promising candidates for biomarkers of sarcopenia and targets for interventions to slow muscle aging. Here, we comprehensively review the current knowledge on the role of miRNAs in skeletal muscle aging and highlight their potential as biomarkers or therapeutic targets for skeletal muscle health.
Collapse
Affiliation(s)
- Hwa Jin Jung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Kwang-Pyo Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Bio-Molecular Science, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
37
|
Miura H, Kondo Y, Matsuda M, Aoki K. Cell-to-Cell Heterogeneity in p38-Mediated Cross-Inhibition of JNK Causes Stochastic Cell Death. Cell Rep 2019; 24:2658-2668. [PMID: 30184500 DOI: 10.1016/j.celrep.2018.08.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
The stress-activated protein kinases c-Jun N-terminal kinase (JNK) and p38 are important players in cell-fate decisions in response to environmental stress signals. Crosstalk signaling between JNK and p38 is emerging as an important regulatory mechanism in inflammatory and stress responses. However, it is unknown how this crosstalk affects signaling dynamics, cell-to-cell variation, and cellular responses at the single-cell level. We established a multiplexed live-cell imaging system based on kinase translocation reporters to simultaneously monitor JNK and p38 activities with high specificity and sensitivity at single-cell resolution. Various stresses activated JNK and p38 with various dynamics. In all cases, p38 suppressed JNK activity in a cross-inhibitory manner. We demonstrate that p38 antagonizes JNK through both transcriptional and post-translational mechanisms. This cross-inhibition generates cellular heterogeneity in JNK activity after stress exposure. Our data indicate that this heterogeneity in JNK activity plays a role in fractional killing in response to UV stress.
Collapse
Affiliation(s)
- Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
38
|
Odeh M, Tamir‐Livne Y, Haas T, Bengal E. P38α MAPK coordinates the activities of several metabolic pathways that together induce atrophy of denervated muscles. FEBS J 2019; 287:73-93. [DOI: 10.1111/febs.15070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Maali Odeh
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Yael Tamir‐Livne
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Tali Haas
- Pre‐Clinical Research Authority Technion‐Israel Institute of Technology Haifa Israel
| | - Eyal Bengal
- Department of Biochemistry Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| |
Collapse
|
39
|
Li Z, Tang X, Luo Y, Chen B, Zhou C, Wu X, Tang Z, Qi X, Cao G, Hao J, Liu Z, Wang Q, Yin Z, Yang H. NK007 helps in mitigating paclitaxel resistance through p38MAPK activation and HK2 degradation in ovarian cancer. J Cell Physiol 2019; 234:16178-16190. [PMID: 30786006 DOI: 10.1002/jcp.28278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Ovarian cancer resistance to available medicines is a huge challenge in dire need of a solution, which makes its recurrence and mortality rate further exacerbated. A promising approach to overcome chemoresistance is drug screening from natural products. Here, we report that NK007, a (±)-tylophorine malate isolated from the Asclepiadaceae family, selectively inhibited the proliferation of A2780 and A2780 (Taxol) cells and migration of paclitaxel-sensitive and -resistant ovarian cancer cells. Interestingly, the decline of cell viability, including cell multiplication, clonality, and migration capacity was independent on cell apoptosis. At the molecular level, NK007 considerably induced G1/S arrest and upregulated the expression of phospho-p38 mitogen-activated protein kinase (p-p38MAPK). In addition, hexokinase 2 (HK2) protein degradation was considerably elevated in the presence of NK007, which resulted in the reduction of oxygen consumption rate and extracellular acidification rate. Altogether, our results indicate that NK007, an analog of tylophorine, can overcome paclitaxel (PTX) resistance through p38MAPK activation and HK2 degradation. As an effective, alternative antiresistance agent, NK007 exhibits a promising potential to treat PTX-resistant ovarian cancer.
Collapse
Affiliation(s)
- Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Yu Luo
- Department of Immunology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Bangyu Chen
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Congcong Zhou
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuqing Wu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenping Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojie Qi
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Guangchao Cao
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Jianlei Hao
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Zonghua Liu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Hengwen Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019; 370:219-230. [PMID: 31189728 PMCID: PMC6652132 DOI: 10.1124/jpet.119.259663] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the β-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38β suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38β isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.
Collapse
Affiliation(s)
- Jonathan Oliva
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Scott Galasinski
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amelia Richey
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amy E Campbell
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Marvin J Meyers
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Neal Modi
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Jun Wen Zhong
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Rabi Tawil
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Stephen J Tapscott
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Francis M Sverdrup
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| |
Collapse
|
42
|
Harish P, Mareco E, Garcia de la serrana D. A pilot study to elucidate effects of artificial selection by size on the zebrafish (Danio rerio) fast skeletal muscle transcriptome. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:65-73. [DOI: 10.1016/j.cbpa.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
|
43
|
Hsp70 Interacts with Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinase 2 To Regulate p38MAPK Stability and Myoblast Differentiation during Skeletal Muscle Regeneration. Mol Cell Biol 2018; 38:MCB.00211-18. [PMID: 30275345 DOI: 10.1128/mcb.00211-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
The regenerative process of injured muscle is dependent on the fusion and differentiation of myoblasts derived from muscle stem cells. Hsp70 is important for maintaining skeletal muscle homeostasis and regeneration, but the precise cellular mechanism remains elusive. In this study, we found that Hsp70 was upregulated during myoblast differentiation. Depletion or inhibition of Hsp70/Hsc70 impaired myoblast differentiation. Importantly, overexpression of p38 mitogen-activated protein kinase α (p38MAPKα) but not AKT1 rescued the impairment of myogenic differentiation in Hsp70- or Hsc70-depleted myoblasts. Moreover, Hsp70 interacted with MK2, a substrate of p38MAPK, to regulate the stability of p38MAPK. Knockdown of Hsp70 also led to downregulation of both MK2 and p38MAPK in intact muscles and during cardiotoxin-induced muscle regeneration. Hsp70 bound MK2 to regulate MK2-p38MAPK interaction in myoblasts. We subsequently identified the essential regions required for Hsp70-MK2 interaction. Functional analyses showed that MK2 is essential for both myoblast differentiation and skeletal muscle regeneration. Taken together, our findings reveal a novel role of Hsp70 in regulating myoblast differentiation by interacting with MK2 to stabilize p38MAPK.
Collapse
|
44
|
Liu Z, Sin KWT, Ding H, Doan HA, Gao S, Miao H, Wei Y, Wang Y, Zhang G, Li YP. p38β MAPK mediates ULK1-dependent induction of autophagy in skeletal muscle of tumor-bearing mice. Cell Stress 2018; 2:311-324. [PMID: 31225455 PMCID: PMC6551802 DOI: 10.15698/cst2018.11.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle wasting is the key manifestation of cancer-associated cachexia, a lethal metabolic disorder seen in over 50% of cancer patients. Autophagy is activated in cachectic muscle of cancer hosts along with the ubiquitin-proteasome pathway (UPP), contributing to accelerated protein degradation and muscle wasting. However, established signaling mechanism that activates autophagy in response to fasting or denervation does not seem to mediate cancer-provoked autophagy in skeletal myocytes. Here, we show that p38β MAPK mediates autophagy activation in cachectic muscle of tumor-bearing mice via novel mechanisms. Complementary genetic and pharmacological manipulations reveal that activation of p38β MAPK, but not p38α MAPK, is necessary and sufficient for Lewis lung carcinoma (LLC)-induced autophagy activation in skeletal muscle cells. Particularly, muscle-specific knockout of p38β MAPK abrogates LLC tumor-induced activation of autophagy and UPP, sparing tumor-bearing mice from muscle wasting. Mechanistically, p38β MAPK-mediated activation of transcription factor C/EBPβ is required for LLC-induced autophagy activation, and upregulation of autophagy-related genes LC3b and Gabarapl1. Surprisingly, ULK1 activation (phosphorylation at S555) by cancer requires p38β MAPK, rather than AMPK. Activated ULK1 forms a complex with p38β MAPK in myocytes, which is markedly increased by a tumor burden. Overexpression of a constitutively active p38Tbeta; MAPK in HEK293 cells increases phosphorylation at S555 and other amino acid residues of ULK1, but not several of AMPK-mediated sites. Finally, ULK1 activation is abrogated in tumor-bearing mice with muscle-specific knockout of p38β MAPK. Thus, p38β MAPK appears a key mediator of cancer-provoked autophagy activation, and a therapeutic target of cancer-induced muscle wasting.
Collapse
Affiliation(s)
- Zhelong Liu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA.,Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ka Wai Thomas Sin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Hui Ding
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA.,Department of Respiratory Medicine, Yixing Hospital affiliated to Jiangsu University, Yixing, China
| | - HoangAnh Amy Doan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Hongyu Miao
- School of Public Health, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yahui Wei
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yiman Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018; 8:14296. [PMID: 30250211 PMCID: PMC6155170 DOI: 10.1038/s41598-018-32592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander M Volkerling
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
46
|
L'honoré A, Commère PH, Negroni E, Pallafacchina G, Friguet B, Drouin J, Buckingham M, Montarras D. The role of Pitx2 and Pitx3 in muscle stem cells gives new insights into P38α MAP kinase and redox regulation of muscle regeneration. eLife 2018; 7:e32991. [PMID: 30106373 PMCID: PMC6191287 DOI: 10.7554/elife.32991] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.
Collapse
Affiliation(s)
- Aurore L'honoré
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | | | - Elisa Negroni
- Center for Research in MyologySorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Giorgia Pallafacchina
- NeuroscienceInstitute, Department of Biomedical Sciences, Italian National Research CouncilUniversityof PadovaPadovaItaly
| | - Bertrand Friguet
- Biological Adaptation and Aging-IBPS, CNRS UMR 8256, INSERM ERL U1164Sorbonne Universités, Université Pierre et Marie CurieParisFrance
| | - Jacques Drouin
- Laboratory of Molecular GeneticsInstitut de Recherches Cliniques de MontréalMontréalCanada
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| | - Didier Montarras
- Department of Developmental and Stem Cell Biology, CNRS, UMR 3738Institut PasteurParisFrance
| |
Collapse
|
47
|
Yang Z, Wang J, Pan Z, Zhang Y. miR-143-3p regulates cell proliferation and apoptosis by targeting IGF1R and IGFBP5 and regulating the Ras/p38 MAPK signaling pathway in rheumatoid arthritis. Exp Ther Med 2018; 15:3781-3790. [PMID: 29581736 PMCID: PMC5863597 DOI: 10.3892/etm.2018.5907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/12/2018] [Indexed: 01/16/2023] Open
Abstract
It has been demonstrated that the deregulation of microRNAs (miRNAs) affects the development of rheumatoid arthritis (RA). The primary objective of the current study was to determine the role of miR-143-3p in the progression of RA. The expression of miR-143-3p in synovium taken from patients with RA was assessed by reverse transcription-quantitative polymerase chain reaction. The expression of miR-143-3p was higher in synovium tissues of RA than that of osteoarthritis (OA). The decreased expression of miR-143-3p suppressed cell proliferation and promoted apoptosis in vitro. In addition, inhibition of miR-143-3p decreased levels of inflammatory cytokines, as determined by an enzyme-linked immunosorbent assay. IGF1R and IGFBP5 were found to be the target genes of miR-143-3p, and it was demonstrated that miR-143-3p regulated the proliferation and apoptosis of MH7A cells by targeting IGF1R and IGFBP5. Furthermore, TNF-α treatment stimulated the Ras/p38 mitogen activated protein kinase (MAPK) signaling pathway, whereas miR-143-3p inhibition suppressed it. The results of the current study indicate that miR-143-3p may regulate cell proliferation and apoptosis by targeting IGF1R and IGFBP5 expression and regulating the Ras/p38 MAPK signaling pathways. Therefore, miR-143-3p may be a novel therapeutic target in RA.
Collapse
Affiliation(s)
- Zhenguo Yang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Orthopaedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, P.R. China
| | - Jifu Wang
- Department of Orthopaedics, East Courtyard Area of General Hospital of Shandong Yankuang Group, Zoucheng, Shandong 273500, P.R. China
| | - Zhuangzhuang Pan
- Department of Surgery, Lixia District People's Hospital, Jinan, Shandong 250014, P.R. China
| | - Yihang Zhang
- Graduate Student Education Center, Shandong Academy of Medical Science, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
48
|
Contreras O, Villarreal M, Brandan E. Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skelet Muscle 2018; 8:5. [PMID: 29463296 PMCID: PMC5819301 DOI: 10.1186/s13395-018-0150-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. Methods We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. Results We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. Conclusions Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0150-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Maximiliano Villarreal
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile.
| |
Collapse
|
49
|
Li Q, Yoshimura H, Komiya M, Tajiri K, Uesugi M, Hata Y, Ozawa T. A robust split-luciferase-based cell fusion screening for discovering myogenesis-promoting molecules. Analyst 2018; 143:3472-3480. [DOI: 10.1039/c8an00285a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Screening by the luciferase complementation-based cell fusion assay discovered two myogenesis-promoting chemicals.
Collapse
Affiliation(s)
- Qiaojing Li
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Hideaki Yoshimura
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Maki Komiya
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Ken Tajiri
- Institute for Integrated Cell-Material Sciences (iCeMS)/Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (iCeMS)/Institute for Chemical Research (ICR)
- Kyoto University
- Kyoto 611-0011
- Japan
| | - Yutaka Hata
- Graduate School of Medical and Dental Sciences
- Tokyo Medical and Dental University
- Tokyo 113-8510
- Japan
| | - Takeaki Ozawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
50
|
|