1
|
Lu X, Jiang G, Gao Y, Chen Q, Sun S, Mao W, Zhang N, Zhu Z, Wang D, Zhang G, Chen M, Zhang L, Chen S. Platelet-derived extracellular vesicles aggravate septic acute kidney injury via delivering ARF6. Int J Biol Sci 2023; 19:5055-5073. [PMID: 37928258 PMCID: PMC10620832 DOI: 10.7150/ijbs.87165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Circulating plasma extracellular vesicles (EVs) mostly originate from platelets and may promote organ dysfunction in sepsis. However, the role of platelet-derived EVs in sepsis-induced acute kidney injury (AKI) remains poorly understood. The present study extracted EVs from the supernatant of human platelets treated with phosphate buffer saline (PBS) or lipopolysaccharide (LPS). Then, we subjected PBS-EVs or LPS-EVs to cecal ligation and puncture (CLP) mice in vivo or LPS-stimulated renal tubular epithelial cells (RTECs) in vitro. Our results indicated that LPS-EVs aggravate septic AKI via promoting apoptosis, inflammation and oxidative stress. Further, ADP-ribosylation factor 6 (ARF6) was identified as a differential protein between PBS-EVs and LPS-EVs by quantitative proteomics analysis. Mechanistically, ARF6 activated ERK/Smad3/p53 signaling to exacerbate sepsis-induced AKI. LPS upregulated ARF6 in RTECs was dependent on TLR4/MyD88 pathway. Both genetically and pharmacologically inhibition of ARF6 attenuated septic AKI. Moreover, platelets were activated by TLR4 and its downstream mediator IKK controlled platelet secretion during sepsis. Inhibition of platelet secretion alleviated septic AKI. Collectively, our study demonstrated that platelet-derived EVs may be a therapeutic target in septic AKI.
Collapse
Affiliation(s)
- Xun Lu
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Guiya Jiang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Yue Gao
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Qi Chen
- Department of Interventional Radiology and Vascular Surgery, Affiliated Zhongda hospital of Southeast University, Nanjing, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Nieke Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Zepeng Zhu
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Harms J, Lüttgenau SM, Emming C, Guske J, Weber K, Wagner T, Schowe L, Nedvetsky P, Krahn MP. Pals1 functions in redundancy with SMAP1 to inhibit Arf6 in order to prevent Rac1-dependent colorectal cancer cell migration and invasion. Cancer Gene Ther 2023; 30:497-506. [PMID: 36494580 PMCID: PMC10014575 DOI: 10.1038/s41417-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Downregulation of cell-cell adhesion and increased motility are prerequisites for the metastasis of cancer cells. We have recently shown that downregulation of the tight junction adapter protein Pals1 in colorectal cancer cells results in an increase of cell migration, invasion, and metastasis due to the enhanced activation of Arf6 and Rac1. We now reveal a redundancy between the Arf6-GAP SMAP1 and Pals1 in regulating Arf6 activity and thereby Rac1-dependent cell migration. The gene encoding SMAP1 is frequently disrupted in microsatellite instable colorectal cancer specimen and cell lines. In cells expressing SMAP1, deletion of Pals1 leads to disturbed formation of tight junctions but has no impact on Arf6 activity and cell migration. In contrast, inactivation of both SMAP1 and Pals1 results in enhanced Arf6/Rac1 activity and increased cell migration and invasion. Furthermore, analyzing patient cohorts, we found a significant decrease in patient's survival when both genes were downregulated, in contrast to cases, when expression of only one of both genes was affected. Taken together, we identified a redundancy between SMAP1 and Pals1 in the regulation of activation of Arf6/Rac1, thereby controlling cell migration, invasion, and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Julia Harms
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | | | - Christin Emming
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Justine Guske
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Katrin Weber
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Thomas Wagner
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Larissa Schowe
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Pavel Nedvetsky
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Michael P Krahn
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
3
|
Ito A, Fukaya M, Okamoto H, Sakagami H. Physiological and Pathological Roles of the Cytohesin Family in Neurons. Int J Mol Sci 2022; 23:5087. [PMID: 35563476 PMCID: PMC9104363 DOI: 10.3390/ijms23095087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
The cytohesin proteins, consisting of four closely related members (cytohesins-1, -2, -3, and -4), are a subfamily of the Sec7 domain-containing guanine nucleotide exchange factors for ADP ribosylation factors (Arfs), which are critical regulators of membrane trafficking and actin cytoskeleton remodeling. Recent advances in molecular biological techniques and the development of a specific pharmacological inhibitor for cytohesins, SecinH3, have revealed the functional involvement of the cytohesin-Arf pathway in diverse neuronal functions from the formation of axons and dendrites, axonal pathfinding, and synaptic vesicle recycling, to pathophysiological processes including chronic pain and neurotoxicity induced by proteins related to neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we review the physiological and pathological roles of the cytohesin-Arf pathway in neurons and discuss the future directions of this research field.
Collapse
Affiliation(s)
- Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan; (A.I.); (H.O.)
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 252-0374, Kanagawa, Japan;
| |
Collapse
|
4
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
5
|
Control of Intestinal Epithelial Permeability by Lysophosphatidic Acid Receptor 5. Cell Mol Gastroenterol Hepatol 2021; 12:1073-1092. [PMID: 33975030 PMCID: PMC8350072 DOI: 10.1016/j.jcmgh.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Epithelial cells form a monolayer at mucosal surface that functions as a highly selective barrier. Lysophosphatidic acid (LPA) is a bioactive lipid that elicits a broad range of biological effects via cognate G protein-coupled receptors. LPA receptor 5 (LPA5) is highly expressed in intestinal epithelial cells, but its role in the intestine is not well-known. Here we determined the role of LPA5 in regulation of intestinal epithelial barrier. METHODS Epithelial barrier integrity was determined in mice with intestinal epithelial cell (IEC)-specific LPA5 deletion, Lpar5ΔIEC. LPA was orally administered to mice, and intestinal permeability was measured. Dextran sulfate sodium (DSS) was used to induce colitis. Human colonic epithelial cell lines were used to determine the LPA5-mediated signaling pathways that regulate epithelial barrier. RESULTS We observed increased epithelial permeability in Lpar5ΔIEC mice with reduced claudin-4 expression. Oral administration of LPA decreased intestinal permeability in wild-type mice, but the effect was greatly mitigated in Lpar5ΔIEC mice. Serum lipopolysaccharide level and bacterial loads in the intestine and liver were elevated in Lpar5ΔIEC mice. Lpar5ΔIEC mice developed more severe colitis induced with DSS. LPA5 transcriptionally regulated claudin-4, and this regulation was dependent on transactivation of the epidermal growth factor receptor, which induced localization of Rac1 at the cell membrane. LPA induced the translocation of Stat3 to the cell membrane and promoted the interaction between Rac1 and Stat3. Inhibition of Stat3 ablated LPA-mediated regulation of claudin-4. CONCLUSIONS This study identifies LPA5 as a regulator of the intestinal barrier. LPA5 promotes claudin-4 expression in IECs through activation of Rac1 and Stat3.
Collapse
|
6
|
Lei H, Ma F, Jia R, Tan B. Effects of Arf6 downregulation on biological characteristics of human prostate cancer cells. Int Braz J Urol 2020; 46:950-961. [PMID: 32822124 PMCID: PMC7527080 DOI: 10.1590/s1677-5538.ibju.2019.0499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/24/2019] [Indexed: 11/21/2022] Open
Abstract
Objective To evaluate the effects of Arf6 downregulation on human prostate cancer cells. Materials and Methods The effects of Arf6 downregulation on cell proliferation, migration, invasion and apoptosis were assessed by MTT, BrdU, scratch, Transwell assays and flow cytometry respectively. AKT, p-AKT, ERK1/2, p-ERK1/2 and Rac1 protein expressions were detected by Western blot. Results Downregulating Arf6 by siRNA interference suppressed the mRNA and protein expressions of Arf6. The proliferation capacities of siRNA group at 48h, 72h, and 96h were significantly lower than those of control group (P <0.05). The migration distance of siRNA group at 18h was significantly shorter than that of control group (P <0.01). The number of cells penetrating Transwell chamber membrane significantly decreased in siRNA group compared with that of control group (P <0.01). After 24h, negative control and normal control groups had similar apoptotic rates (P >0.05) which were both significantly lower than that of siRNA group (P <0.01). After Arf6 expression was downregulated, p-ERK1/2 and Rac1 protein expressions were significantly lower than those of control group (P <0.05). Conclusion Downregulating Arf6 expression can inhibit the proliferation, migration and invasion of prostate cancer cells in vitro, which may be related to ERK1/2 phosphorylation and Rac1 downregulation.
Collapse
Affiliation(s)
- Haiming Lei
- School of Clinical Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, China
| | - Fujun Ma
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Renfeng Jia
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Bo Tan
- Department of Urology, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| |
Collapse
|
7
|
Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ, Thomas PM, Kelleher NL, Fromme JC, Lin H. NMT1 and NMT2 are lysine myristoyltransferases regulating the ARF6 GTPase cycle. Nat Commun 2020; 11:1067. [PMID: 32103017 PMCID: PMC7044312 DOI: 10.1038/s41467-020-14893-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Lysine fatty acylation in mammalian cells was discovered nearly three decades ago, yet the enzymes catalyzing it remain unknown. Unexpectedly, we find that human N-terminal glycine myristoyltransferases (NMT) 1 and 2 can efficiently myristoylate specific lysine residues. They modify ADP-ribosylation factor 6 (ARF6) on lysine 3 allowing it to remain on membranes during the GTPase cycle. We demonstrate that the NAD+-dependent deacylase SIRT2 removes the myristoyl group, and our evidence suggests that NMT prefers the GTP-bound while SIRT2 prefers the GDP-bound ARF6. This allows the lysine myrisotylation-demyristoylation cycle to couple to and promote the GTPase cycle of ARF6. Our study provides an explanation for the puzzling dissimilarity of ARF6 to other ARFs and suggests the existence of other substrates regulated by this previously unknown function of NMT. Furthermore, we identified a NMT/SIRT2-ARF6 regulatory axis, which may offer new ways to treat human diseases.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ian R Price
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Chengliang Zhu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Kayla N Johnson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shuai Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steve L Halaby
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Garrison P Komaniecki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Paul M Thomas
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Neil L Kelleher
- National Resource for Translational and Developmental Proteomics, Departments of Chemistry and Molecular Biosciences and the Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Ni P, Su Z. Deciphering epigenomic code for cell differentiation using deep learning. BMC Genomics 2019; 20:709. [PMID: 31510916 PMCID: PMC6739944 DOI: 10.1186/s12864-019-6072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background Although DNA sequence plays a crucial role in establishing the unique epigenome of a cell type, little is known about the sequence determinants that lead to the unique epigenomes of different cell types produced during cell differentiation. To fill this gap, we employed two types of deep convolutional neural networks (CNNs) constructed for each of differentially related cell types and for each of histone marks measured in the cells, to learn the sequence determinants of various histone modification patterns in each cell type. Results We applied our models to four differentially related human CD4+ T cell types and six histone marks measured in each cell type. The cell models can accurately predict the histone marks in each cell type, while the mark models can also accurately predict the cell types based on a single mark. Sequence motifs learned by both the cell or mark models are highly similar to known binding motifs of transcription factors known to play important roles in CD4+ T cell differentiation. Both the unique histone mark patterns in each cell type and the different patterns of the same histone mark in different cell types are determined by a set of motifs with unique combinations. Interestingly, the level of sharing motifs learned in the different cell models reflects the lineage relationships of the cells, while the level of sharing motifs learned in the different histone mark models reflects their functional relationships. These models can also enable the prediction of the importance of learned motifs and their interactions in determining specific histone mark patterns in the cell types. Conclusion Sequence determinants of various histone modification patterns in different cell types can be revealed by comparative analysis of motifs learned in the CNN models for multiple cell types and histone marks. The learned motifs are interpretable and may provide insights into the underlying molecular mechanisms of establishing the unique epigenomes in different cell types. Thus, our results support the hypothesis that DNA sequences ultimately determine the unique epigenomes of different cell types through their interactions with transcriptional factors, epigenome remodeling system and extracellular cues during cell differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-6072-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC, 28223, USA.
| |
Collapse
|
9
|
Musi E, Schwartz GK, Yoo JH, Odelberg SJ, Li DY, Bonner MY, Selvakumar P, Rao S, Gilbert LC, Elsey J, Arbiser JL. Tris DBA palladium is an orally available inhibitor of GNAQ mutant uveal melanoma in vivo. Oncotarget 2019; 10:4424-4436. [PMID: 31320995 PMCID: PMC6633893 DOI: 10.18632/oncotarget.27040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Uveal melanoma is a rare but often lethal malignancy and is the leading cause of death due to an ophthalmic condition. Uveal melanoma is often diagnosed at a late stage and has a strong propensity to hepatic metastasis. Recently, the most common driver mutations in uveal melanoma have been identified, predominantly in the G-proteins GNAQ. This pattern differs from that of cutaneous melanoma in which Braf and Nras predominate. There are no current clinically used agents that target GNAQ mutations, unlike the use of Braf inhibitors in cutaneous melanoma. We tested the novel agent Tris DBA palladium and found that it was markedly more effective against GNAQ mutant melanomas than wild type uveal melanomas. Given that ARF6 has recently been discovered as a node in GNAQ mutations, we evaluated the efficacy of Tris DBA palladium on ARF6 signaling and found that it was effective in inhibiting ARF6 activation. Finally, Tris DBA palladium was orally effective against GNAQ mutant melanoma in vivo. Tris DBA Palladium deserves further evaluation as a systemic agent for uveal melanoma.
Collapse
Affiliation(s)
- Elgilda Musi
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Gary K. Schwartz
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University College of Medicine, New York, New York, USA
| | - Jae Hyuk Yoo
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Shannon J. Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Dean Y. Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Michael Y. Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shikha Rao
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda C. Gilbert
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Justin Elsey
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jack L. Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
10
|
Zuinen T, Tsutsumi K, Ohta Y. FilGAP regulates distinct stages of epithelial tubulogenesis. Biochem Biophys Res Commun 2019; 514:742-749. [PMID: 31078260 DOI: 10.1016/j.bbrc.2019.04.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/27/2019] [Indexed: 11/28/2022]
Abstract
Epithelial cells form a globular organ-like multi-cellular structure called cyst when cultured in extracellular matrix. The cyst generates extension followed by cell chains and tubules in response to hepatocyte growth factor (HGF). The Rho family small GTPases play essential roles for tubulogenesis. FilGAP, a Rac specific Rho GTPase-activating protein, is highly expressed in kidney. In this study, we examined the role of FilGAP in the tubulogenesis of Madin-Darby Canine Kidney (MDCK) epithelial cells. HGF induces basolateral extensions from cysts. Depletion of FilGAP by siRNA increased the number of extensions in response to HGF, whereas forced expression of FilGAP decreased the number of the extensions. FilGAP is phosphorylated and activated downstream of Rho-ROCK-signaling. Overexpression of phospho-mimic FilGAP (ST/D) mutant blocked formation of the membrane extensions induced by HGF in the presence of ROCK inhibitor, Y-27632. On the other hand, treatment of the tubules with Y27632 induced scattering of the cells, but FilGAP (ST/D) blocked cell scattering and promoted lumen formation. Taken together, our study suggests that FilGAP may suppress formation of extensions whereas stabilize tubule formation downstream of Rho-ROCK-signaling.
Collapse
Affiliation(s)
- Takuya Zuinen
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan.
| |
Collapse
|
11
|
Phuong TTT, Walker AE, Henson GD, Machin DR, Li DY, Donato AJ, Lesniewski LA. Deletion of Robo4 prevents high-fat diet-induced adipose artery and systemic metabolic dysfunction. Microcirculation 2019; 26:e12540. [PMID: 30825241 DOI: 10.1111/micc.12540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/22/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Accumulating evidence suggests the vascular endothelium plays a fundamental role in the pathophysiology of obesity by regulating the functional status of white adipose and systemic metabolism. Robo4 is expressed specifically in endothelial cells and increases vascular stability and inhibits angiogenesis. We sought to determine the role of Robo4 in modulating cardiometabolic function in response to high-fat feeding. METHODS We examined exercise capacity, glucose tolerance, and white adipose tissue artery gene expression, endothelium-dependent dilation (EDD), and angiogenesis in wild type and Robo4 knockout (KO) mice fed normal chow (NC) or a high-fat diet (HFD). RESULTS We found Robo4 deletion enhances exercise capacity in NC-fed mice and HFD markedly increased the expression of the Robo4 ligand, Slit2, in white adipose tissue. Deletion of Robo4 increased angiogenesis in white adipose tissue and protected against HFD-induced impairments in white adipose artery vasodilation and glucose intolerance. CONCLUSIONS We demonstrate a novel functional role for Robo4 in endothelial cell function and metabolic homeostasis in white adipose tissue, with Robo4 deletion protecting against endothelial and metabolic dysfunction associated with a HFD. Our findings suggest that Robo4-dependent signaling pathways may be a novel target in anti-obesity therapy.
Collapse
Affiliation(s)
- Tam T T Phuong
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Ashley E Walker
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Grant D Henson
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Daniel R Machin
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, Utah.,Division of Cardiovascular Medicine Department of Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah
| | - Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Salt Lake City Veteran's Affair Medical Center, Geriatrics Research Education and Clinic Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Salt Lake City Veteran's Affair Medical Center, Geriatrics Research Education and Clinic Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Ratcliffe CDH, Siddiqui N, Coelho PP, Laterreur N, Cookey TN, Sonenberg N, Park M. HGF-induced migration depends on the PI(3,4,5)P 3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J Cell Biol 2018; 218:285-298. [PMID: 30404949 PMCID: PMC6314551 DOI: 10.1083/jcb.201804106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/19/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Splice variants of the Arf6 guanine exchange factor cytohesin-1 display differential affinity for PI(4,5)P2 and PI(3,4,5)P3. Ratcliffe et al. show that the specific lipid binding of the diglycine variant of cytohesin-1 is needed for HGF-dependent cell migration and establishment of the leading edge, thereby regulating cancer cell migration following activation of the proto-oncogenic receptor tyrosine kinase Met. Differential inclusion or skipping of microexons is an increasingly recognized class of alternative splicing events. However, the functional significance of microexons and their contribution to signaling diversity is poorly understood. The Met receptor tyrosine kinase (RTK) modulates invasive growth and migration in development and cancer. Here, we show that microexon switching in the Arf6 guanine nucleotide exchange factor cytohesin-1 controls Met-dependent cell migration. Cytohesin-1 isoforms, differing by the inclusion of an evolutionarily conserved three-nucleotide microexon in the pleckstrin homology domain, display differential affinity for PI(4,5)P2 (triglycine) and PI(3,4,5)P3 (diglycine). We show that selective phosphoinositide recognition by cytohesin-1 isoforms promotes distinct subcellular localizations, whereby the triglycine isoform localizes to the plasma membrane and the diglycine to the leading edge. These data highlight microexon skipping as a mechanism to spatially restrict signaling and provide a mechanistic link between RTK-initiated phosphoinositide microdomains and Arf6 during signal transduction and cancer cell migration.
Collapse
Affiliation(s)
- Colin D H Ratcliffe
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Paula P Coelho
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nancy Laterreur
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Tumini N Cookey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Luo R, Chen PW, Kuo JC, Jenkins L, Jian X, Waterman CM, Randazzo PA. ARAP2 inhibits Akt independently of its effects on focal adhesions. Biol Cell 2018; 110:257-270. [PMID: 30144359 DOI: 10.1111/boc.201800044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND INFORMATION ARAP2, an Arf GTPase-activating protein (Arf GAP) that binds to adaptor protein with PH domain, PTB domain and leucine zipper motifs 1 (APPL1), regulates focal adhesions (FAs). APPL1 affects FA dynamics by regulating Akt. Here, we tested the hypothesis that ARAP2 affects FAs in part by regulating Akt through APPL1. RESULTS We found that ARAP2 controlled FA dynamics dependent on its enzymatic Arf GAP activity. In some cells, ARAP2 also regulated phosphoAkt (pAkt) levels. However, ARAP2 control of FAs did not require Akt and conversely, the effects on pAkt were independent of FAs. Reducing ARAP2 expression reduced the size and number of FAs in U118, HeLa and MDA-MB-231 cells. Decreasing ARAP2 expression increased pAkt in U118 cells and HeLa cells and overexpressing ARAP2 decreased pAkt in U118 cells; in contrast, ARAP2 had no effect on pAkt in MDA-MB-231 cells. An Akt inhibitor did not block the effect of reduced ARAP2 on FAs in U118. Furthermore, the effect of ARAP2 on Akt did not require Arf GAP activity, which is necessary for effects on FAs and integrin traffic. Altering FAs by other means did not induce the same changes in pAkt as those seen by reducing ARAP2 in U118 cells. In addition, we discovered that ARAP2 and APPL1 had co-ordinated effects on pAkt in U118 cells. Reduced APPL1 expression, as for ARAP2, increased pAkt in U118 and the effect of reduced APPL1 expression was reversed by overexpressing ARAP2. Conversely, the effect of reduced ARAP2 expression was reversed by overexpressing APPL1. ARAP2 is an Arf GAP that has previously been reported to affect FAs by regulating Arf6 and integrin trafficking and to bind to the adaptor proteins APPL1. Here, we report that ARAP2 suppresses pAkt levels in cells co-ordinately with APPL1 and independently of GAP activity and its effect on the dynamic behaviour of FAs. CONCLUSIONS We conclude that ARAP2 affects Akt signalling in some cells by a mechanism independent of FAs or membrane traffic. SIGNIFICANCE Our results highlight an Arf GAP-independent function of ARAP2 in regulating Akt activity and distinguish the effect of ARAP2 on Akt from that on FAs and integrin trafficking, which requires regulation of Arf6.
Collapse
Affiliation(s)
- Ruibai Luo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA.,Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Jean-Cheng Kuo
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lisa Jenkins
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institutes, Bethesda, MD, 20892, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Regulation of HGF-induced hepatocyte proliferation by the small GTPase Arf6 through the PIP 2-producing enzyme PIP5K1A. Sci Rep 2017; 7:9438. [PMID: 28842595 PMCID: PMC5572707 DOI: 10.1038/s41598-017-09633-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
HGF and its receptor c-Met are critical molecules in various biological processes. Others and we have previously shown that the small GTPase Arf6 plays a pivotal role in HGF signaling in hepatocytes. However, the molecular mechanism of how Arf6 regulates HGF signaling is unclear. Here, we show that Arf6 plays an important role in HGF-stimulated hepatocyte proliferation and liver regeneration through the phosphatidylinositol 4,5-bisphosphate (PIP2)-producing enzyme PIP5K1A. We find that knockdown of Arf6 and PIP5K1A in HepG2 cells inhibits HGF-stimulated proliferation, Akt activation, and generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its precursor PIP2. Interestingly, PIP5K1A is recruited to c-Met upon HGF stimulation in an Arf6 activity-dependent manner. Finally, we show that hepatocyte proliferation and liver regeneration after partial hepatectomy are suppressed in Pip5k1a knockout mice. These results provide insight into the molecular mechanism for HGF-stimulated hepatocyte proliferation and liver regeneration: Arf6 recruits PIP5K1A to c-Met and activates it upon HGF stimulation to produce PIP2 and subsequently PIP3, which in turn activates Akt to promote hepatocyte proliferation, thereby accelerating liver regeneration after liver injury.
Collapse
|
15
|
Wang P, Ma M, Zhang S. EGF-induced urokinase plasminogen activator receptor promotes epithelial to mesenchymal transition in human gastric cancer cells. Oncol Rep 2017; 38:2325-2334. [PMID: 28849196 DOI: 10.3892/or.2017.5920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/10/2017] [Indexed: 11/05/2022] Open
Abstract
Epidermal growth factor (EGF) signaling has been shown to induce epithelial to mesenchymal transition (EMT) in many types of cancer cells. However, the molecular mechanism of EGF-induced EMT in gastric cancer remains largely unknown. In the present study, we found that human gastric cancer cell lines SGC-7901 and BGC-823 underwent EMT phenotypic changes upon exposure to EGF. The induction of EMT was consistent with aggressive characteristics such as increased cell migration, invasion and clonogenic growth. Additionally, EGF stimulation also led to the upregulation of urokinase plasminogen activator receptor (uPAR) both at mRNA and protein levels. Knockdown of uPAR by siRNA significantly attenuated EMT induction by EGF in SGC-7901 and BGC-823 cells. Furthermore, EGF increased ERK1/2 activity and blocking ERK1/2 signaling with its inhibitor, U0126, markedly inhibited EGF-induced uPAR expression and consequently EMT. Collectively, the present study demonstrated that EGF induced aggressiveness of gastric cancer cells by activating EMT, which involved the activation of the ERK1/2 pathway and, subsequently, uPAR expression.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu 225599, P.R. China
| | - Maoyuan Ma
- Department of Gastroenterology, Taizhou Second People's Hospital, Taizhou, Jiangsu 225599, P.R. China
| | - Shanhui Zhang
- Department of Clinical Laboratory, Taizhou Second People's Hospital, Taizhou, Jiangsu 225599, P.R. China
| |
Collapse
|
16
|
Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, Fukaya M, Sakagami H. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol 2017; 148:577-596. [PMID: 28748255 DOI: 10.1007/s00418-017-1599-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2017] [Indexed: 01/30/2023]
Abstract
ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates endosomal trafficking and actin cytoskeleton remodeling. In the present study, we comprehensively examined the cellular and subcellular localization of Arf6 in adult mouse peripheral tissues by immunofluorescence and immunoelectron microscopy using the heat-induced antigen retrieval method with Tris-EDTA buffer (pH 9.0). Marked immunolabeling of Arf6 was observed particularly in epithelial cells of several tissues including the esophagus, stomach, small and large intestines, trachea, kidney, epididymis, oviduct, and uterus. In most epithelial cells of simple or pseudostratified epithelia, Arf6 exhibited predominant localization to the basolateral membrane and a subpopulation of endosomes. At an electron microscopic level, Arf6 was localized along the basolateral membrane, with dense accumulation at interdigitating processes and infoldings. Arf6 was present in a ring-like appearance at intercellular bridges in spermatogonia and spermatocytes in the testis and at the Flemming body of cytokinetic somatic cells in the ovarian follicle, thymus, and spleen. The present study provides anatomical clues to help understand the physiological roles of Arf6 at the whole animal level.
Collapse
Affiliation(s)
- Osamu Katsumata
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Momoko Mori
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Sawane
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tomoko Niimura
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Akiko Ito
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.,Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
17
|
Milanini J, Fayad R, Partisani M, Lecine P, Borg JP, Franco M, Luton F. EFA6 regulates lumen formation through alpha-actinin 1. J Cell Sci 2017; 131:jcs.209361. [DOI: 10.1242/jcs.209361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/11/2017] [Indexed: 01/07/2023] Open
Abstract
A key step of epithelial morphogenesis is the creation of the lumen. Luminogenesis by hollowing proceeds through the fusion of apical vesicles at cell-cell contact. The small nascent lumens grow through extension, coalescence and enlargement coordinated with cell division to give rise to a single central lumen. Here, using MDCK cells grown in 3D-culture, we show that EFA6A participates in luminogenesis. EFA6A recruits α-actinin 1 (ACTN1) through direct binding. In polarized cells, ACTN1 was found to be enriched at the tight junction where it acts as a primary effector of EFA6A for normal luminogenesis. Both proteins are essential for the lumen extension and enlargement, where they mediate their effect by regulating the cortical acto-myosin contractility. Finally, ACTN1 was also found to act as an effector for the isoform EFA6B in the human mammary tumoral MCF7 cell line. EFA6B restored the glandular morphology of this tumoral cell line in an ACTN1-dependent manner. Thus, we identified new regulators of cyst luminogenesis essential for the proper maturation of a newly-formed lumen into a single central lumen.
Collapse
Affiliation(s)
- Julie Milanini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Racha Fayad
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariagrazia Partisani
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
- present address: BIOASTER, Lyon, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), "Cell Polarity, Cell Signalling and Cancer", Equipe Labellisée Ligue Contre le Cancer, Inserm U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM105, Marseille, F-13284, France
| | - Michel Franco
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Frédéric Luton
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
18
|
Grossmann AH, Zhao H, Jenkins N, Zhu W, Richards JR, Yoo JH, Winter JM, Rich B, Mleynek TM, Li DY, Odelberg SJ. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases 2016; 10:1-12. [PMID: 28001501 DOI: 10.1080/21541248.2016.1259710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.
Collapse
Affiliation(s)
- Allie H Grossmann
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,b Department of Pathology , University of Utah , Salt Lake City , UT , USA.,c ARUP Laboratories, University of Utah , Salt Lake City , UT , USA
| | - Helong Zhao
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Noah Jenkins
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Weiquan Zhu
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Jackson R Richards
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jae Hyuk Yoo
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA
| | - Jacob M Winter
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Bianca Rich
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Tara M Mleynek
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA
| | - Dean Y Li
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,e Department of Oncological Sciences , University of Utah , Salt Lake City , UT , USA.,f Department of Human Genetics , University of Utah , Salt Lake City , UT , USA.,g Sichuan Provincial Key Laboratory for Human Disease Gene Study , Sichuan Provincial People's Hospital, Chinese Academy of Sciences , Chengdu , China.,h Department of Cardiology , VA Salt Lake City Health Care System , Salt Lake City , UT , USA.,i Navigen Inc. , Salt Lake City , UT , USA
| | - Shannon J Odelberg
- a Department of Medicine , Program in Molecular Medicine, University of Utah , Salt Lake City , UT , USA.,d Department of Medicine , Division of Cardiovascular Medicine, University of Utah , Salt Lake City , UT , USA.,j Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
19
|
Mangan AJ, Sietsema DV, Li D, Moore JK, Citi S, Prekeris R. Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells. Nat Commun 2016; 7:12426. [PMID: 27484926 PMCID: PMC4976216 DOI: 10.1038/ncomms12426] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
Coordinated polarization of epithelial cells is a key step during morphogenesis that leads to the formation of an apical lumen. Rab11 and its interacting protein FIP5 are necessary for the targeting of apical endosomes to the midbody and apical membrane initiation site (AMIS) during lumenogenesis. However, the machinery that mediates AMIS establishment and FIP5-endosome targeting remains unknown. Here we identify a FIP5-interacting protein, Cingulin, which localizes to the AMIS and functions as a tether mediating FIP5-endosome targeting. We analysed the machinery mediating AMIS recruitment to the midbody and determined that both branched actin and microtubules are required for establishing the site of the nascent lumen. We demonstrate that the Rac1-WAVE/Scar complex mediates Cingulin recruitment to the AMIS by inducing branched actin formation, and that Cingulin directly binds to microtubule C-terminal tails through electrostatic interactions. We propose a new mechanism for apical endosome targeting and AMIS formation around the midbody during epithelial lumenogenesis. Polarisation of epithelial cells causes lumen formation, which is mediated by apical membrane initiation site (AMIS) and FIP5, but how this is regulated is unclear. Here, the authors identify cingulin as a FIP-5 interacting protein, recruiting the Rac1-WAVE/Scar complex to the AMIS and branched actin formation.
Collapse
Affiliation(s)
- Anthony J Mangan
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Daniel V Sietsema
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Dongying Li
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Sandra Citi
- Cell Biology Department, University of Geneva, CH-1211 GENEVA 4, Switzerland
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| |
Collapse
|
20
|
Patil PU, D'Ambrosio J, Inge LJ, Mason RW, Rajasekaran AK. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR. J Cell Sci 2015; 128:4366-79. [PMID: 26483386 DOI: 10.1242/jcs.173518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial-mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells.
Collapse
Affiliation(s)
- Pratima U Patil
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Julia D'Ambrosio
- Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Landon J Inge
- Thoracic and Esophageal disease, Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Robert W Mason
- Nemours Center for Childhood Cancer Research, Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ayyappan K Rajasekaran
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA Therapy Architects, LLC, 2700, Silverside Road, Wilmington, DE 19810, USA
| |
Collapse
|
21
|
Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling. Nat Commun 2015; 6:7925. [PMID: 26239146 DOI: 10.1038/ncomms8925] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/25/2015] [Indexed: 01/26/2023] Open
Abstract
Anti-angiogenic drugs targeting vascular endothelial cell growth factor receptor have provided modest clinical benefit, in part, owing to the actions of additional angiogenic factors that stimulate tumour neoangiogenesis in parallel. To overcome this redundancy, approaches targeting these other signalling pathways are required. Here we show, using endothelial cell-targeted mice, that the small GTPase Arf6 is required for hepatocyte growth factor (HGF)-induced tumour neoangiogenesis and growth. Arf6 deletion from endothelial cells abolishes HGF-stimulated β1 integrin recycling. Pharmacological inhibition of the Arf6 guanine nucleotide exchange factor (GEF) Grp1 efficiently suppresses tumour vascularization and growth. Grp1 as well as other Arf6 GEFs, such as GEP100, EFA6B and EFA6D, regulates HGF-stimulated β1 integrin recycling. These findings provide insight into the mechanism of HGF-induced tumour angiogenesis and offer the possibility that targeting the HGF-activated Arf6 signalling pathway may synergize with existing anti-angiogenic drugs to improve clinical outcomes.
Collapse
|
22
|
Baldanzi G, Graziani A. Physiological Signaling and Structure of the HGF Receptor MET. Biomedicines 2014; 3:1-31. [PMID: 28536396 PMCID: PMC5344233 DOI: 10.3390/biomedicines3010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022] Open
Abstract
The "hepatocyte growth factor" also known as "scatter factor", is a multifunctional cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, movement and survival. The combination of those proprieties results in the induction of an epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven physiological signaling which coordinates epithelial proliferation, motility and morphogenesis.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Andrea Graziani
- Department Translational Medicine, University Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
23
|
Youngblood V, Wang S, Song W, Walter D, Hwang Y, Chen J, Brantley-Sieders DM. Elevated Slit2 Activity Impairs VEGF-Induced Angiogenesis and Tumor Neovascularization in EphA2-Deficient Endothelium. Mol Cancer Res 2014; 13:524-37. [PMID: 25504371 DOI: 10.1158/1541-7786.mcr-14-0142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate proangiogenic molecules while simultaneously suppressing angiostatic pathways to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit proangiogenic and antiangiogenic signals is a key step in developing new, molecularly targeted antiangiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for VEGF-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. IMPLICATIONS Modulation of angiostatic factor Slit2 by EphA2 receptor regulates endothelial responses to VEGF-mediated angiogenesis and tumor neovascularization.
Collapse
Affiliation(s)
- Victoria Youngblood
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shan Wang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wenqiang Song
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Debra Walter
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yoonha Hwang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee. Department of Cellular and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Dana M Brantley-Sieders
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee. Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
24
|
Itzstein C, Coxon FP, Rogers MJ. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2014; 2:117-130. [PMID: 21776413 DOI: 10.4161/sgtp.2.3.16453] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts are multinucleated cells that are responsible for resorption of bone, and increased activity of these cells is associated with several common bone diseases, including postmenopausal osteoporosis. Upon adhesion to bone, osteoclasts become polarized and reorganise their cytoskeleton and membrane to form unique domains including the sealing zone (SZ), which is a dense ring of F-actin-rich podosomes delimiting the ruffled border (RB), where protons and proteases are secreted to demineralise and degrade the bone matrix, respectively. These processes are dependent on the activity of small GTPases. Rho GTPases are well known to control the organization of F-actin and adhesion structures of different cell types, affecting subsequently their migration. In osteoclasts, RhoA, Rac, Cdc42, RhoU and also Arf6 regulate podosome assembly and their organization into the SZ. By contrast, the formation of the RB involves vesicular trafficking pathways that are regulated by the Rab family of GTPases, in particular lysosomal Rab7. Finally, osteoclast survival is dependent on the activity of Ras GTPases. The correct function of almost all these GTPases is absolutely dependent on post-translational prenylation, which enables them to localize to specific target membranes. Bisphosphonate drugs, which are widely used in the treatment of bone diseases such as osteoporosis, act by preventing the prenylation of small GTPases, resulting in the loss of the SZ and RB and therefore inhibition of osteoclast activity, as well as inducing osteoclast apoptosis. In this review we summarize current understanding of the role of specific prenylated small GTPases in osteoclast polarization, function and survival.
Collapse
Affiliation(s)
- Cecile Itzstein
- Musculoskeletal Research Programme; Institute of Medical Sciences; University of Aberdeen; Aberdeen, Scotland UK
| | | | | |
Collapse
|
25
|
Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochem Pharmacol 2014; 92:651-60. [PMID: 25450674 DOI: 10.1016/j.bcp.2014.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/14/2023]
Abstract
Preadipocyte migration is vital for the development of adipose tissue, which plays a crucial role in lipid metabolism. ADP-ribosylation factor 6 (ARF6) small GTPase, which regulates membrane trafficking, is activated by GTP-exchange factors (GEFs) such as cytohesin 2. Cytohesin 2 and ARF6 have previously been implicated in the regulation of 3T3-L1 preadipocyte migration. We investigated here the molecular mechanism underlying the cytohesin 2 and ARF6 mediated regulation of preadipocyte migration. Preadipocyte migration and the activation of ARF6 and ERK1/2 were studied by using a number of approaches, including pharmacological inhibitors, siRNA and the inhibitory peptides. The siRNA mediated down regulation of ARF6 and cytohesin 2 expression confirmed the requirement of both for migration of preadipocytes. Phosphatidylinositol 3-kinase (PI3K) and PI 4,5-bisphosphate (PIP2) have also found to be essential for the cytohesin 2/ARF6 induced preadipocyte migration. Pharmacological inhibition of the activation of ARF6, ERK1/2 or dynamin led to significant reduction in migration of 3T3-L1 preadipocytes. Furthermore, our study revealed the activation of ARF6 and ERK1/2 during migration of preadipocytes. In the migrating preadipocytes, ARF6 activation was inhibited with SecinH3 (cytohesin inhibitor) and LY294002 (PI3K inhibitor) whereas the ERK1/2 phosphorylation was inhibited with SecinH3, LY294002, PBP10 (a PIP2 sequester peptide) and PD98059 (MAPKK inhibitor). However, dynosore (dynamin inhibitor) had inhibited neither ARF6 activation nor ERK1/2 phosphorylation during preadipocyte migration. These results together suggest that cytohesin 2 activates ARF6 in a PI3K dependent manner and then the active ARF6 causes phosphorylation of ERK1/2 during preadipocyte migration.
Collapse
|
26
|
Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M, Kikuchi A. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J 2014; 33:702-718. [PMID: 24562386 PMCID: PMC4000088 DOI: 10.1002/embj.201386942] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022] Open
Abstract
Growth factor-dependent epithelial morphological changes and proliferation are essential for the formation of tubular structures, but the underlying molecular mechanisms are poorly understood. Co-stimulation with Wnt3a and epidermal growth factor (Wnt3a/EGF) induced development of tubes consisting of intestinal epithelial cells by inducing expression of Arl4c, an Arf-like small GTP-binding protein, in three-dimensional culture, while stimulation with Wnt3a or EGF alone did not. Arl4c expression resulted in rearrangement of the cytoskeleton through activation of Rac and inactivation of Rho properly, which promoted cell growth by inducing nuclear translocation of Yes-associated protein and transcriptional co-activator with PDZ-binding motif (YAP/TAZ) in leading cells. Arl4c was expressed in ureteric bud tips and pretubular structures in the embryonic kidney. In an organoid culture assay, Wnt and fibroblast growth factor signaling simultaneously induced elongation and budding of kidney ureteric buds through Arl4c expression. YAP/TAZ was observed in the nucleus of extending ureteric bud tips. Thus, Arl4c expression induced by a combination of growth factor signaling mechanisms is involved in tube formation.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Shinsuke Fujii
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Interdisciplinary Program for Biomedical Sciences (IPBS), Institute for Academic Initiatives, Osaka University, Graduate School of MedicineOsaka, Japan
| | - Akira Sato
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Souji Ibuka
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Yoshinori Kagawa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Japan Science and Technology Agency (JST), CRESTTokyo, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Japan Science and Technology Agency (JST), CRESTTokyo, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| |
Collapse
|
27
|
Zegers MM. 3D in vitro cell culture models of tube formation. Semin Cell Dev Biol 2014; 31:132-40. [PMID: 24613912 DOI: 10.1016/j.semcdb.2014.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Department of Cell Biology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
28
|
Virus-induced signaling influences endosome trafficking, virus entry, and replication. Methods Enzymol 2013. [PMID: 24359948 DOI: 10.1016/b978-0-12-397926-1.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Viruses are obligate intracellular pathogens that interact with host cell machinery for enabling entry, replication, and spread. This chapter describes methods for studying the interaction of viruses with host cell signaling pathways and surface receptors during cellular infection, with an emphasis on protein kinases. We also describe how use of immunofluorescence confocal microscopy for imaging virus-host interactions provides a powerful approach for obtaining structural correlations that extend results of immunological and biochemical assays.
Collapse
|
29
|
Hu Z, Xu R, Liu J, Zhang Y, Du J, Li W, Zhang W, Li Y, Zhu Y, Gu L. GEP100 regulates epidermal growth factor-induced MDA-MB-231 breast cancer cell invasion through the activation of Arf6/ERK/uPAR signaling pathway. Exp Cell Res 2013; 319:1932-1941. [PMID: 23747719 DOI: 10.1016/j.yexcr.2013.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
GEP100, a guanine nucleotide exchanging factor (GEF) for Arf6, plays a pivotal role in promoting breast cancer cell invasion both in vitro and in vivo. However, the precise mechanism for GEP100-mediated cell invasion is still poorly understood. In this study, we found that down-regulation of endogenous GEP100 in MDA-MB-231 cells significantly inhibited EGF-induced cell invasion, which was rescued by over-expression of ectopic GEP100. EGF increased Arf6 activity, ERK phosphorylation, and uPAR expression in a time dependent manner. Additionally, blocking Arf6 with Arf6 siRNA largely abolished EGF-induced cell invasion. GEP100 siRNA or Arf6 siRNA suppressed EGF-induced ERK activity and uPAR expression. Furthermore, blocking ERK signaling with U0126, a specific inhibitor for MEK, markedly inhibited EGF-induced uPAR expression and consequently cell invasion. Inhibition of uPAR expression by uPAR siRNA also significantly abolished EGF-induced cell invasion. Taken together, this study illustrates that GEP100 regulates an Arf6/ERK/uPAR signaling cascade in EGF-induced breast cancer cell invasion. These findings could provide a rationale for designing new therapies based on inhibition of breast cancer metastasis.
Collapse
Affiliation(s)
- Zhenzhen Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Rui Xu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jiaojing Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yujie Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China; Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Weixing Li
- Medicine Technique School, Taizhou Polytechnic College, Taizhou, Jiangsu 225300, PR China
| | - Wanqiu Zhang
- Medicine Technique School, Taizhou Polytechnic College, Taizhou, Jiangsu 225300, PR China
| | - Yueying Li
- School of Medical Sciences and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yichao Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China; Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| | - Luo Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China; Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
30
|
ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol Cell Biol 2013; 33:2963-75. [PMID: 23716594 DOI: 10.1128/mcb.01698-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active β-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in β-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling.
Collapse
|
31
|
Ullmer C, Zoffmann S, Bohrmann B, Matile H, Lindemann L, Flor P, Malherbe P. Functional monoclonal antibody acts as a biased agonist by inducing internalization of metabotropic glutamate receptor 7. Br J Pharmacol 2013; 167:1448-66. [PMID: 22747985 DOI: 10.1111/j.1476-5381.2012.02090.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE The mGlu(7) receptors are strategically located at the site of vesicle fusion where they modulate the release of the main excitatory and inhibitory neurotransmitters. Consequently, they are implicated in the underlying pathophysiology of CNS diseases such as epilepsy and stress-related psychiatric disorders. Here, we characterized a selective, potent and functional anti-mGlu(7) monoclonal antibody, MAB1/28, that triggers receptor internalization. EXPERIMENTAL APPROACH MAB1/28's activity was investigated using Western blot and direct immunofluorescence on live cells, in vitro pharmacology by functional cAMP and [(35) S]-GTPγ binding assays, the kinetics of IgG-induced internalization by image analysis, and the activation of the ERK1/2 by elisa. KEY RESULTS mGlu(7) /mGlu(6) chimeric studies located the MAB1/28 binding site at the extracellular amino-terminus of mGlu(7) . MAB1/28 potently antagonized both orthosteric and allosteric agonist-induced inhibition of cAMP accumulation. The potency of the antagonistic actions was similar to the potency in triggering receptor internalization. The internalization mechanism occurred via a pertussis toxin-insensitive pathway and did not require Gα(i) protein activation. MAB1/28 activated ERK1/2 with potency similar to that for receptor internalization. The requirement of a bivalent receptor binding mode for receptor internalizations suggests that MAB1/28 modulates mGlu(7) dimers. CONCLUSIONS AND IMPLICATIONS We obtained evidence for an allosteric-biased agonist activity triggered by MAB1/28, which activates a novel IgG-mediated GPCR internalization pathway that is not utilized by small molecule, orthosteric or allosteric agonists. Thus, MAB1/28 provides an invaluable biological tool for probing mGlu(7) function and selective activation of its intracellular trafficking.
Collapse
Affiliation(s)
- C Ullmer
- DTA CV and Metabolism, Discovery Research CV & Metabolic Diseases, F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Jayaram B, Kowluru A. Phagocytic NADPH oxidase links ARNO-Arf6 signaling pathway in glucose-stimulated insulin secretion from the pancreatic β-cell. Cell Physiol Biochem 2012; 30:1351-62. [PMID: 23095975 DOI: 10.1159/000343324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Recent findings from our laboratory have demonstrated that glucose-stimulated insulin secretion (GSIS) involves interplay between a variety of small G proteins belonging to the Rho (e.g., Cdc42 and Rac1) and ADP-ribosylation factor (e.g., Arf6) subfamilies. Using immunological, pharmacological and molecular biological approaches, we have also identified guanine nucleotide exchange factors (GEFs) for Rac1 (e.g., Tiam1) and Arf6 (e.g., ARNO) in clonal INS-1 832/13 cells, normal rat islets and human islets. As a logical extension to these studies, we investigated, herein, potential downstream signaling steps involved in Arf6/ARNO-mediated GSIS. METHODS Using a selective pharmacological inhibitor of ARNO/Arf6 signaling axis (e.g., secinH3) we assessed regulatory roles for Arf6/ARNO in promoting phospholipase D (PLD), phagocytic NADPH oxidase (Nox2), reactive oxygen species (ROS), extracellular-regulated kinases (ERK 1/2) and cofilin (actin-severing protein] signaling steps in clonal INS-1 832/13 cells. RESULTS Our data suggested a marked inhibition by secinH3 of glucose-induced PLD activation, ERK1/2 phosphorylation and dephosphorylation of cofilin, suggesting that Arf6/ ARNO signaling mediates PLD, ERK1/2 and cofilin activation in beta-cells. In addition, secinH3 blocked glucose-induced Nox2 activation and associated ROS generation, thus placing Nox downstream to Arf6/ARNO signaling step. Lastly, we also demonstrate a significantly higher cofilin phosphorylation (inactive) in islets derived from type 2 diabetic human donors as well as the Zucker Diabetic Fatty (ZDF) rat, a model for type 2 diabetes. CONCLUSION Together, our current findings identify signaling steps downstream to ARNO/Arf6 axis leading to insulin secretion.
Collapse
Affiliation(s)
- Bhavaani Jayaram
- Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
33
|
Monteleon CL, Sedgwick A, Hartsell A, Dai M, Whittington C, Voytik-Harbin S, D'Souza-Schorey C. Establishing epithelial glandular polarity: interlinked roles for ARF6, Rac1, and the matrix microenvironment. Mol Biol Cell 2012; 23:4495-505. [PMID: 23051733 PMCID: PMC3510012 DOI: 10.1091/mbc.e12-03-0246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The depletion of ARF6 in epithelial cysts causes a striking inversion of glandular orientation. This requires temporal Rac1 inactivation and is accompanied in basement membrane cultures by improperly assembled laminins. In collagen I, these inverted cysts promote integrin-linked fibril linearization reminiscent of matrix remodeling in disease. Epithelial cysts comprise the structural units of the glandular epithelium. Although glandular inversion in epithelial tumors is thought to be a potential mechanism for the establishment of metastatic disease, little is known about the morphogenic cues and signaling pathways that govern glandular polarity and organization. Using organotypic cultures of Madin-Darby canine kidney cells in reconstituted basement membrane, we show that cellular depletion of the small GTP-binding protein ARF6 promotes the formation of inverted cysts, wherein the apical cell membrane faces the cyst exterior, and the basal domain faces the central lumen, while individual cell polarity is maintained. These cysts are also defective in interactions with laminin at the cyst–matrix interface. This inversion of glandular orientation is accompanied by Rac1 inactivation during early cystogenesis, and temporal activation of Rac1 is sufficient to recover the normal cyst phenotype. In an unnatural collagen I microenvironment, ARF6-depleted, inverted epithelial cysts exhibit some loss of cell polarity, a marked increase in Rho activation and Rac1 inactivation, and striking rearrangement of the surrounding collagen I matrix. These studies demonstrate the importance of ARF6 as a critical determinant of glandular orientation and the matrix environment in dictating structural organization of epithelial cysts.
Collapse
Affiliation(s)
- Christine L Monteleon
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Meyer G, Leipprandt J, Xie J, Aupperlee MD, Haslam SZ. A potential role of progestin-induced laminin-5/α6-integrin signaling in the formation of side branches in the mammary gland. Endocrinology 2012; 153:4990-5001. [PMID: 22910029 PMCID: PMC3512027 DOI: 10.1210/en.2012-1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/31/2012] [Indexed: 11/19/2022]
Abstract
Mammary organoids from adult mice produce tubules, analogous to mammary ducts in vivo, in response to hepatocyte growth factor (HGF) when cultured in collagen gels. The combination of HGF plus progestin (R5020) causes reduced tubule number and length. We hypothesized that the inhibitory effect on tubulogenesis was due to progestin-mediated alteration of HGF/c-Met signaling. Using molecular inhibitors and short hairpin RNA, it was determined that HGF activation of Ras-related C3 botulinum toxin substrate (Rac1) was required for the formation of cytoplasmic extensions, the first step of tubulogenesis, and that Rac1 activity was Src kinase (Src) and focal adhesion kinase (FAK) dependent. The highly novel finding was that R5020 reduced tubulogenesis by up-regulating and increasing extracellular laminin and α6-integrin ligation to reduce activation of the Src, focal adhesion kinase, and Rac1 pathway. Receptor activator of nuclear factor-κB ligand, another progesterone-induced paracrine factor, did not replicate this effect of R5020. The inhibitory effect of R5020 on tubulogenesis was likely mediated through progesterone receptor (PR) isoform A (PRA), because PRA is the predominant PR isoform expressed in the organoids, and the progestin-induced effect was prevented by the PR antagonist RU486. These results provide a plausible mechanism that explains progestin/PRA-mediated blunting of HGF-induced tubulogenesis in vitro and is proposed to be relevant to progesterone/PRA-induced side-branching in vivo during pregnancy.
Collapse
Affiliation(s)
- Gabriele Meyer
- Department of Physiology and Breast Cancer and the Environment Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
35
|
Hu Z, Du J, Yang L, Zhu Y, Yang Y, Zheng D, Someya A, Gu L, Lu X. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells. PLoS One 2012; 7:e38777. [PMID: 22701712 PMCID: PMC3372492 DOI: 10.1371/journal.pone.0038777] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/10/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Epidermal growth factor (EGF) signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH) domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N) also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.
Collapse
Affiliation(s)
- ZhenZhen Hu
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Suzhou University, Suzhou, China
| | - YiChao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu Yang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - DaTong Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Akimasa Someya
- Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Tokyo, Japan
| | - Luo Gu
- Cancer Center, Nanjing Medical University, Nanjing, China
- * E-mail: (LG); (XL)
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (LG); (XL)
| |
Collapse
|
36
|
Smyth D, McKay CM, Gulbransen BD, Phan VC, Wang A, McKay DM. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol 2012; 14:1257-70. [PMID: 22463716 DOI: 10.1111/j.1462-5822.2012.01796.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The barrier function of the epithelium lining the intestine is essential for health by preventing the free passage of colonic bacteria into the mucosa. Epithelia treated with interferon (IFN)-γ display increased bacteria transcytosis. Much is known of how IFNγ affects the tight junction and paracellular permeability, yet its role in modifying transcellular traffic of commensal bacteria remains poorly understood. Using immunoblotting, ELISA and immunolocalization, IFNγ was found to activate extracellular regulated kinase (ERK)1/2 in the human colon-like T84 epithelial cell line. Pharmacological inhibition of MEK/ERK1/2 signalling with U0126 significantly inhibited IFNγ-induced increases in the transcytosis of non-invasive Escherichia coli (strain HB101). IFNγ treatment enhanced epithelial internalization of E. coli, some of which subsequently escaped the enterocyte. Molecular analyses revealed that ERK1/2 inhibition prevented activation of the ADP-ribosylation factor (ARF)-6, a protein associated with endocytosis, and that siRNA knock-down of ARF6 expression reduced IFNγ-induced E. coli internalization into T84 cells. None of these interventions affected the drop in transepithelial resistance caused by IFNγ. Thus, increased transcellular passage may be a major component of IFNγ-induced increases in epithelial permeability, and ERK1/2 and ARF6 are presented as important molecules in IFNγ-evoked transcytosis of bacteria across gut epithelia.
Collapse
Affiliation(s)
- David Smyth
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Dong C, Li C, Wu G. Regulation of α(2B)-adrenergic receptor-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ADP-ribosylation factor 1. J Biol Chem 2011; 286:43361-9. [PMID: 22025613 DOI: 10.1074/jbc.m111.267286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A number of signaling molecules are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway by G protein-coupled receptors. In this study, we have demonstrated that α(2B)-adrenergic receptor (α(2B)-AR) interacts with ADP-ribosylation factor 1 (ARF1), a small GTPase involved in vesicle-mediated trafficking, in an agonist activation-dependent manner and that the interaction is mediated through a unique double Trp motif in the third intracellular loop of the receptor. Interestingly, mutation of the double Trp motif and siRNA-mediated depletion of ARF1 attenuate α(2B)-AR-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) without altering receptor intracellular trafficking, whereas expression of the constitutively active mutant ARF1Q71L and ARNO, a GDP-GTP exchange factor of ARF1, markedly enhances the activation of Raf1, MEK1, and ERK1/2. These data strongly demonstrate that the small GTPase ARF1 modulates ERK1/2 activation by α(2B)-AR and provide the first evidence indicating a novel function for ARF1 in regulating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
38
|
Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75. [PMID: 21587297 PMCID: PMC3245550 DOI: 10.1038/nrm3117] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Collapse
Affiliation(s)
- Julie G. Donaldson
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, 20892 Maryland USA
| | - Catherine L. Jackson
- Laboratoire d'Enzymologie et Biochimie Structurales Centre de Recherche de Gif, Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette France
- Present Address: Present address: Institut Jacques Monod — UMR 7592 CNRS, Université Paris Diderot-Paris 7, 15 rue Hélène Brion, 75205 Paris, France.,
| |
Collapse
|
39
|
Jayaram B, Syed I, Kyathanahalli CN, Rhodes CJ, Kowluru A. Arf nucleotide binding site opener [ARNO] promotes sequential activation of Arf6, Cdc42 and Rac1 and insulin secretion in INS 832/13 β-cells and rat islets. Biochem Pharmacol 2011; 81:1016-27. [PMID: 21276423 PMCID: PMC3073812 DOI: 10.1016/j.bcp.2011.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/07/2011] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
Abstract
Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide-exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated β-cells. SecinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. SecinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated β-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS.
Collapse
Affiliation(s)
| | | | | | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL 60637, USA
| | - Anjaneyulu Kowluru
- Address Correspondence to: A. Kowluru, Ph.D., Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, Tel: 313-576-4478, Fax: 313-576-1112,
| |
Collapse
|
40
|
Kwon SH, Nedvetsky PI, Mostov KE. Transcriptional profiling identifies TNS4 function in epithelial tubulogenesis. Curr Biol 2011; 21:161-6. [PMID: 21236678 PMCID: PMC3031161 DOI: 10.1016/j.cub.2010.12.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/22/2010] [Accepted: 12/16/2010] [Indexed: 12/21/2022]
Abstract
Hepatocyte growth factor (HGF) plays central roles in tubulogenesis and metastasis [1-4]. HGF treatment of Madin-Darby canine kidney (MDCK) cells grown as cysts in three-dimensional culture induces tubulogenesis [5, 6], which like most tubulogenic processes proceeds through distinct intermediate phases. Identification of genes associated with these phases is central to understanding the molecular mechanisms of tubulogensis; however, because of inefficient, asynchronous tubule formation, isolating such genes has been unfeasible. Here we developed a synchronous, efficient tubulogenesis system and used time-course transcriptional profiling to identify genes temporally regulated in developmental intermediates. Knockdown (KD) of tensin 4 (TNS4), a particularly highly upregulated gene, leads to a decrease in formation of extensions and tubules, two sequential intermediates in tubulogenesis. Exogenous expression of TNS4 marks invasive cells in an epithelial sheet. A mutation in the SH2 domain of TNS4 prevents the transition from extension formation to invasive migration during tubule formation and leads to increased basal activation of STAT3. Exogenous expression of a constitutively active STAT3 mimics the defect by the mutation. Our study highlights the role of the TNS4-STAT3 axis in epithelial sheet invasion and tubulogenesis.
Collapse
Affiliation(s)
- Sang-Ho Kwon
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-2140, USA
| | | | | |
Collapse
|
41
|
Akiyama M, Zhou M, Sugimoto R, Hongu T, Furuya M, Funakoshi Y, Kato M, Hasegawa H, Kanaho Y. Tissue- and development-dependent expression of the small GTPase Arf6 in mice. Dev Dyn 2010; 239:3416-35. [DOI: 10.1002/dvdy.22481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Schweitzer JK, Sedgwick AE, D'Souza-Schorey C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin Cell Dev Biol 2010; 22:39-47. [PMID: 20837153 DOI: 10.1016/j.semcdb.2010.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 01/19/2023]
Abstract
A wide range of cellular activities depends upon endocytic recycling. ARF6, a small molecular weight GTPase, regulates the processes of endocytosis and endocytic recycling in concert with various effector molecules and other small GTPases. This review highlights three critical processes that involve ARF6-mediated endosomal membrane trafficking-cell motility, cytokinesis, and cholesterol homeostasis. In each case, the function of ARF6-mediated trafficking varies-including localization of specific protein and lipid cargo, regulation of bulk membrane movement, and modulation of intracellular signaling. As described in this review, mis-regulation of endocytic traffic can result in human disease when it compromises the cell's ability to regulate cell movement and invasion, cell division, and lipid homeostasis.
Collapse
Affiliation(s)
- Jill Kuglin Schweitzer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | |
Collapse
|
43
|
Tushir JS, Clancy J, Warren A, Wrobel C, Brugge JS, D'Souza-Schorey C. Unregulated ARF6 activation in epithelial cysts generates hyperactive signaling endosomes and disrupts morphogenesis. Mol Biol Cell 2010; 21:2355-66. [PMID: 20462959 PMCID: PMC2893997 DOI: 10.1091/mbc.e09-09-0824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study shows that constitutive ARF6 activation during epithelial cyst morphogenesis promotes the formation of signaling endosomes that serve as platforms for hyperactive receptor signaling and leads to the generation of tumorigenic glandular phenotypes. Tumor development in glandular tissues is associated with structural alterations in the hollow ducts and spherical structures that comprise such tissues. We describe a signaling axis involving sustained activation of the GTP-binding protein, ARF6, that provokes dramatic changes in the organization of epithelial cysts, reminiscent of tumorigenic glandular phenotypes. In reconstituted basement membrane cultures of renal epithelial cysts, enhanced ARF6 activation induces the formation of cell-filled glandular structures with multiple lumens and disassembled cadherin-based cell–cell contacts. All of these alterations are accompanied by growth factor receptor internalization into signaling endosomes and reversed by blocking ARF6 activation or receptor endocytosis. Receptor localization in signaling endosomes results in hyperactive extracellular signal-regulated kinase signaling leading to Bcl-2 stabilization and aberrant cysts. Similarly, formation of hyperproliferative and disorganized mammary acini induced by chronic stimulation of colony-stimulating factor 1 receptor is coupled to endogenous ARF6 activation and constitutive receptor internalization and is reversed by ARF6 inhibition. These findings identify a previously unrecognized link between ARF6-regulated receptor internalization and events that drive dramatic alterations in cyst morphogenesis providing new mechanistic insight into the molecular processes that can promote epithelial glandular disruption.
Collapse
Affiliation(s)
- Jogender S Tushir
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The small GTP-binding protein Arf6 is known to be an important regulator of the actin cytoskeleton and of cell motility associated with metastasis. A recent study identifies yet another role for Arf6 in metastasis - as a regulator of plasma-membrane-derived microvesicle release.
Collapse
Affiliation(s)
- Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
45
|
ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009; 19:1875-85. [PMID: 19896381 DOI: 10.1016/j.cub.2009.09.059] [Citation(s) in RCA: 662] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) signaling, small GTPase activation, cytoskeletal rearrangements, and the directed targeting of proteases to sites of extracellular matrix degradation all accompany the process of tumor cell invasion. Several studies have implicated the small GTP-binding protein ARF6 in tumor cell invasion, although the molecular basis by which ARF6 facilitates this process is unclear. RESULTS We show that the ARF6 GTP/GDP cycle regulates the release of protease-loaded plasma membrane-derived microvesicles from tumor cells into the surrounding environment. To enable microvesicle shedding, ARF6-GTP-dependent activation of phospholipase D promotes the recruitment of the extracellular signal-regulated kinase (ERK) to the plasma membrane where, in turn, ERK phosphorylates and activates myosin light-chain kinase (MLCK). MLCK-mediated MLC phosphorylation is required for microvesicle release. Inhibition of ARF6 activation is accompanied by PKC-mediated phosphorylation of MLC, which blocks microvesicle shedding. Protein cargo appears to be selectively sorted into microvesicles, and adhesion to the extracellular matrix (ECM) is facilitated by microvesicle-associated integrin receptors. CONCLUSIONS Microvesicle shedding in tumor cells occurs via an actomyosin-based membrane abscission mechanism that is regulated by nucleotide cycling on ARF6. Microvesicle shedding appears to release selected cellular components, particularly those involved in cell adhesion and motility, into the surrounding environment. These findings suggest that ARF6 activation and the proteolytic activities of microvesicles, both of which are thought to correlate directly with tumor progression, could potentially serve as biomarkers for disease.
Collapse
|
46
|
Marchant D, Sall A, Si X, Abraham T, Wu W, Luo Z, Petersen T, Hegele RG, McManus BM. ERK MAP kinase-activated Arf6 trafficking directs coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J Gen Virol 2009; 90:854-862. [PMID: 19264606 DOI: 10.1099/vir.0.005868-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie-adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.
Collapse
Affiliation(s)
- David Marchant
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Alhousseynou Sall
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Xiaoning Si
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Thomas Abraham
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Winnie Wu
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Zongshu Luo
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Tamar Petersen
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Richard G Hegele
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce M McManus
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
47
|
Nekhoroshkova E, Albert S, Becker M, Rapp UR. A-RAF kinase functions in ARF6 regulated endocytic membrane traffic. PLoS One 2009; 4:e4647. [PMID: 19247477 PMCID: PMC2645234 DOI: 10.1371/journal.pone.0004647] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 01/13/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking.
Collapse
Affiliation(s)
- Elena Nekhoroshkova
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Stefan Albert
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Matthias Becker
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
| | - Ulf R. Rapp
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
48
|
Hu B, Shi B, Jarzynka MJ, Yiin JJ, D'Souza-Schorey C, Cheng SY. ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res 2009; 69:794-801. [PMID: 19155310 PMCID: PMC2633432 DOI: 10.1158/0008-5472.can-08-2110] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A common pathobiological feature of malignant gliomas is the insidious infiltration of single tumor cells into the brain parenchyma, rendering these deadly tumors virtually incurable with available therapies. In this study, we report that ADP-ribosylation factor 6 (ARF6), a Ras superfamily small GTPase, is abundantly expressed in invasive human glioma cells. Cellular depletion of ARF6 by small interfering RNA decreased Rac1 activation, impaired HGF-stimulated and serum-stimulated glioma cell migration in vitro, and markedly decreased the invasive capacity of invasive glioma in the brain. Furthermore, ectopic expression of ARF6 in glioma cells promoted cell migration via the activation of Rac1. Upon stimulation of glioma cells with HGF, we show that IQ-domain GTPase-activating protein 1 (IQGAP1) is recruited and overlaps with ARF6 at the leading edge of migrating cells. However, cellular depletion of ARF6 abrogated this recruitment of IQGAP1 and attenuated the formation of surface protrusions. ARF6 forms complexes with Rac1 and IQGAP1 in glioma cells upon HGF stimulation, and knockdown of IQGAP1 significantly inhibits ARF6-induced Rac1 activation and cell migration. Taken together, these data suggest that ARF6-mediated Rac1 activation is essential for glioma cell invasion via a signaling pathway that requires IQGAP1.
Collapse
Affiliation(s)
- Bo Hu
- Departments of Medicine and Pathology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Klein S, Partisani M, Franco M, Luton F. EFA6 facilitates the assembly of the tight junction by coordinating an Arf6-dependent and -independent pathway. J Biol Chem 2008; 283:30129-38. [PMID: 18779331 DOI: 10.1074/jbc.m803375200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have previously reported that EFA6, exchange factor for Arf6, is implicated upon E-cadherin engagement in the process of epithelial cell polarization. We had found that EFA6 acts through stabilization of the apical actin ring onto which the tight junction is anchored. Mutagenesis experiments showed that both the catalytic domain of EFA6 and its C-terminal domain were required for full EFA6 function. Here we address the contribution of the specific substrate of EFA6, the small G protein Arf6. Unexpectedly, depletion of Arf6 by RNA interference or expression of the constitutively active fast-cycling mutant (Arf6T157N) revealed that Arf6 plays an opposing role to EFA6 by destabilizing the apical actin cytoskeleton and the associated tight junction. However, in complementation experiments, when the C-terminal domain of EFA6 is co-expressed with Arf6T157N, it reverts the effects of Arf6T157N expressed alone to faithfully mimic the phenotypes induced by EFA6. In addition, we find that the two signaling pathways downstream of EFA6, i.e. the one originating from the activated Arf6GTP and the other one from the EFA6 C-terminal domain, need to be tightly balanced to promote the proper reorganization of the actin cytoskeleton. Altogether, our results indicate that to regulate the tight junction, EFA6 activates Arf6 through its Sec7 catalytic domain as it modulates this activity through its C-terminal domain.
Collapse
Affiliation(s)
- Stéphanie Klein
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR 6097, Université de Nice Sophia-Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | | | | | | |
Collapse
|
50
|
Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 2008; 15:725-37. [PMID: 18468901 DOI: 10.1016/j.jocn.2008.03.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 01/11/2023]
Abstract
Invasion of tissues by malignant tumours is facilitated by tumour cell migration and degradation of extracellular matrix (ECM) barriers. Several invasive neoplasms, including head and neck squamous cell carcinoma, breast carcinoma, melanoma and glioma, contain tumour cells that can form actin-rich protrusions with ECM proteolytic activity called invadopodia. These dynamic organelle-like structures adhere to, and digest, collagens, laminins and fibronectin. Invadopodia are dependent on multiple transmembrane, cytoplasmic and secreted proteins engaged in cell adhesion, signal transduction, actin assembly, membrane regulation and ECM proteolysis. Strategies aimed at disrupting invadopodia could form the basis of novel anti-invasive therapies for treating patients. Here we review the molecular basis of invadopodia formation with particular emphasis on the intracellular signaling networks that are essential for invadopodia activity and examine the potential role of these structures in glioma invasion.
Collapse
|