1
|
Hodgkinson-Bean J, Ayala R, Jayawardena N, Rutter GL, Watson BNJ, Mayo-Muñoz D, Keal J, Fineran PC, Wolf M, Bostina M. Global structural survey of the flagellotropic myophage φTE infecting agricultural pathogen Pectobacterium atrosepticum. Nat Commun 2025; 16:3257. [PMID: 40188083 PMCID: PMC11972413 DOI: 10.1038/s41467-025-58514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Bacteriophages offer a promising alternative to drug-based treatments due to their effectiveness and host specificity. This is particularly important in agriculture as a biocontrol agent of plant diseases. Phage engineering is facilitated by structural knowledge. However, structural information regarding bacteriophages infecting plant pathogens is limited. Here, we present the cryo-EM structure of bacteriophage φTE that infects plant pathogen Pectobacterium atrosepticum. The structure reveals a distinct neck topology compared with other myophages, where tail terminator proteins compensate for reduced connectivity between sheath subunits. A contact network between tail fibers, the sheath initiator, and baseplate wedge proteins provides insights into triggers that transduce conformational changes from the baseplate to the sheath to orchestrate contraction. We observe two distinct oligomeric states of the tape measure protein (TMP), which is six-fold in regions proximal to the N-terminus and throughout most of the tail, while three-fold at the C-terminus, indicating that the TMP may be proteolytically cleaved. Our results provide a structural atlas of the model bacteriophage φTE, enhancing future interpretation of phage host interactions in pectobacteria. We anticipate that our structure will inform rational design of biocontrol agents against plant pathogens that cause diseases such as soft rot and blackleg disease in potatoes.
Collapse
Affiliation(s)
- James Hodgkinson-Bean
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Rafael Ayala
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Nadishka Jayawardena
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan
| | - Georgia L Rutter
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Bridget N J Watson
- Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - James Keal
- School of Physical Sciences, University of Adelaide, Adelaide, Australia
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, Japan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
2
|
Papayova K, Bocanova L, Bauerova V, Bauer J, Halgasova N, Kajsikova M, Bukovska G. From sequence to function: Exploring biophysical properties of bacteriophage BFK20 lytic transglycosylase domain from the minor tail protein gp15. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141044. [PMID: 39218139 DOI: 10.1016/j.bbapap.2024.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Bacteriophages have evolved different mechanisms of infection and penetration of bacterial cell walls. In Siphoviridae-like viruses, the inner tail proteins have a pivotal role in these processes and often encode lytic protein domains which increase infection efficiency. A soluble lytic transglycosylase (SLT) domain was identified in the minor tail protein gp15 from the BFK20 bacteriophage. Six fragments containing this SLT domain with adjacent regions of different lengths were cloned, expressed and purified. The biophysical properties of the two best expressing fragments were characterized by nanoDSF and CD spectroscopy, which showed that both fragments had a high refolding ability of 90 %. 3D modeling indicated that the bacteriophage BFK20 SLT domain is structurally similar to lysozyme. The degradation activity of these SLT proteins was evaluated using a lysozyme activity assay. BFK20 might use its transglycosylase activity to allow efficient phage DNA entry into the host cell by degrading bacterial peptidoglycan.
Collapse
Affiliation(s)
- Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Vladena Bauerova
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Jacob Bauer
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Nora Halgasova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| |
Collapse
|
3
|
Iglesias SM, Li F, Briani F, Cingolani G. Viral Genome Delivery Across Bacterial Cell Surfaces. Annu Rev Microbiol 2024; 78:125-145. [PMID: 38986128 DOI: 10.1146/annurev-micro-041222-124727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In 1952, Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Over 70 years later, our understanding of bacteriophage structure has grown dramatically, mainly thanks to the cryogenic electron microscopy revolution. In stark contrast, phage genome delivery in prokaryotes remains poorly understood, mainly due to the inherent challenge of studying such a transient and complex process. Here, we review the current literature on viral genome delivery across bacterial cell surfaces. We focus on icosahedral bacterial viruses that we arbitrarily sort into three groups based on the presence and size of a tail apparatus. We inventory the building blocks implicated in genome delivery and critically analyze putative mechanisms of genome ejection. Bacteriophage genome delivery into bacteria is a topic of growing interest, given the renaissance of phage therapy in Western medicine as a therapeutic alternative to face the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Stephano M Iglesias
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
4
|
Valentová L, Füzik T, Nováček J, Hlavenková Z, Pospíšil J, Plevka P. Structure and replication of Pseudomonas aeruginosa phage JBD30. EMBO J 2024; 43:4384-4405. [PMID: 39143239 PMCID: PMC11445458 DOI: 10.1038/s44318-024-00195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Bacteriophages are the most abundant biological entities on Earth, but our understanding of many aspects of their lifecycles is still incomplete. Here, we have structurally analysed the infection cycle of the siphophage Casadabanvirus JBD30. Using its baseplate, JBD30 attaches to Pseudomonas aeruginosa via the bacterial type IV pilus, whose subsequent retraction brings the phage to the bacterial cell surface. Cryo-electron microscopy structures of the baseplate-pilus complex show that the tripod of baseplate receptor-binding proteins attaches to the outer bacterial membrane. The tripod and baseplate then open to release three copies of the tape-measure protein, an event that is followed by DNA ejection. JBD30 major capsid proteins assemble into procapsids, which expand by 7% in diameter upon filling with phage dsDNA. The DNA-filled heads are finally joined with 180-nm-long tails, which bend easily because flexible loops mediate contacts between the successive discs of major tail proteins. It is likely that the structural features and replication mechanisms described here are conserved among siphophages that utilize the type IV pili for initial cell attachment.
Collapse
Affiliation(s)
- Lucie Valentová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Hlavenková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Pospíšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. Nat Commun 2024; 15:7057. [PMID: 39152109 PMCID: PMC11329794 DOI: 10.1038/s41467-024-51038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria, engineering precision bactericidal contractile nanomachines requires atomic-level understanding of their structures; however, only those killing Gram-negative bacteria are currently known. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with target envelope differences. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, CA, 94080, USA
| | - Jeff F Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
6
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Kobakhidze S, Koulouris S, Kakabadze N, Kotetishvili M. Genetic recombination-mediated evolutionary interactions between phages of potential industrial importance and prophages of their hosts within or across the domains of Escherichia, Listeria, Salmonella, Campylobacter, and Staphylococcus. BMC Microbiol 2024; 24:155. [PMID: 38704526 PMCID: PMC11069274 DOI: 10.1186/s12866-024-03312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The in-depth understanding of the role of lateral genetic transfer (LGT) in phage-prophage interactions is essential to rationalizing phage applications for human and animal therapy, as well as for food and environmental safety. This in silico study aimed to detect LGT between phages of potential industrial importance and their hosts. METHODS A large array of genetic recombination detection algorithms, implemented in SplitsTree and RDP4, was applied to detect LGT between various Escherichia, Listeria, Salmonella, Campylobacter, Staphylococcus, Pseudomonas, and Vibrio phages and their hosts. PHASTER and RAST were employed respectively to identify prophages across the host genome and to annotate LGT-affected genes with unknown functions. PhageAI was used to gain deeper insights into the life cycle history of recombined phages. RESULTS The split decomposition inferences (bootstrap values: 91.3-100; fit: 91.433-100), coupled with the Phi (0.0-2.836E-12) and RDP4 (P being well below 0.05) statistics, provided strong evidence for LGT between certain Escherichia, Listeria, Salmonella, and Campylobacter virulent phages and prophages of their hosts. The LGT events entailed mainly the phage genes encoding for hypothetical proteins, while some of these genetic loci appeared to have been affected even by intergeneric recombination in specific E. coli and S. enterica virulent phages when interacting with their host prophages. Moreover, it is shown that certain L. monocytogenes virulent phages could serve at least as the donors of the gene loci, involved in encoding for the basal promoter specificity factor, for L. monocytogenes. In contrast, the large genetic clusters were determined to have been simultaneously exchanged by many S. aureus prophages and some Staphylococcus temperate phages proposed earlier as potential therapeutic candidates (in their native or modified state). The above genetic clusters were found to encompass multiple genes encoding for various proteins, such as e.g., phage tail proteins, the capsid and scaffold proteins, holins, and transcriptional terminator proteins. CONCLUSIONS It is suggested that phage-prophage interactions, mediated by LGT (including intergeneric recombination), can have a far-reaching impact on the co-evolutionary trajectories of industrial phages and their hosts especially when excessively present across microbially rich environments.
Collapse
Affiliation(s)
- Saba Kobakhidze
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia
- Faculty of Medicine, Iv. Javakhishvili Tbilisi State University, 1 Ilia Chavchavadze Ave. 0179, Tbilisi, Georgia
| | - Stylianos Koulouris
- Directorate General for Health and Food Safety (DG-SANTE), European Commission, 1049, Bruxelles/Brussel, Belgium
| | - Nata Kakabadze
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia
| | - Mamuka Kotetishvili
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitary, 78 D. Uznadze St. 0102, Tbilisi, Georgia.
- Scientific Research Institute, School of Science and Technology, the University of Georgia, 77a M. Kostava St., 0171, Tbilisi, Georgia.
| |
Collapse
|
8
|
Cai X, He Y, Yu I, Imani A, Scholl D, Miller JF, Zhou ZH. Atomic structures of a bacteriocin targeting Gram-positive bacteria. RESEARCH SQUARE 2024:rs.3.rs-4007122. [PMID: 38586031 PMCID: PMC10996793 DOI: 10.21203/rs.3.rs-4007122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Due to envelope differences between Gram-positive and Gram-negative bacteria1, engineering precision bactericidal contractile nanomachines2 requires atomic-level understanding of their structures; however, only those killing a Gram-negative bacterium are currently known3,4. Here, we report the atomic structures of an engineered diffocin, a contractile syringe-like molecular machine that kills the Gram-positive bacterium Clostridioides difficile. Captured in one pre-contraction and two post-contraction states, each structure fashions six proteins in the bacteria-targeting baseplate, two proteins in the energy-storing trunk, and a collar protein linking the sheath with the membrane-penetrating tube. Compared to contractile machines targeting Gram-negative bacteria, major differences reside in the baseplate and contraction magnitude, consistent with differences between their targeted envelopes. The multifunctional hub-hydrolase protein connects the tube and baseplate and is positioned to degrade peptidoglycan during penetration. The full-length tape measure protein forms a coiled-coil helix bundle homotrimer spanning the entire length of the diffocin. Our study offers mechanical insights and principles for designing potent protein-based precision antibiotics.
Collapse
Affiliation(s)
- Xiaoying Cai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anthony Imani
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dean Scholl
- Pylum Biosciences, 100 Kimball Way S. San Francisco, CA 94080, USA
| | - Jeff F. Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- The California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
9
|
van Raaij MJ. Bacteriophage Receptor Recognition and Nucleic Acid Transfer. Subcell Biochem 2024; 105:593-628. [PMID: 39738959 DOI: 10.1007/978-3-031-65187-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Correct host cell recognition is important in the replication cycle for any virus, including bacterial viruses. This essential step should occur before the bacteriophage commits to transferring its genomic material into the target bacterium. In this chapter, we will discuss the mechanisms and proteins bacteriophages use for receptor recognition (just before full commitment to infection) and nucleic acid injection, which occurs just after commitment. Some bacteriophages use proteins of the capsid proper for host cell recognition, others use specialised spikes or fibres. Usually, several identical recognition events take place, and the information that a suitable host cell has been encountered is somehow transferred to the part of the bacteriophage capsid involved in nucleic acid transfer. The main part of the capsids of bacteriophages stays on the cell surface after transferring their genome, although a few specialised proteins move with the DNA, either forming a conduit, protecting the nucleic acids after transfer and/or functioning in the process of transcription and translation.
Collapse
Affiliation(s)
- Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Blau K, Gallert C. Prophage Carriage and Genetic Diversity within Environmental Isolates of Clostridioides difficile. Int J Mol Sci 2023; 25:2. [PMID: 38203173 PMCID: PMC10778935 DOI: 10.3390/ijms25010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.
Collapse
Affiliation(s)
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
11
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
12
|
Agnello E, Pajak J, Liu X, Kelch BA. Conformational dynamics control assembly of an extremely long bacteriophage tail tube. J Biol Chem 2023; 299:103021. [PMID: 36791911 PMCID: PMC10034513 DOI: 10.1016/j.jbc.2023.103021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Tail tube assembly is an essential step in the lifecycle of long-tailed bacteriophages. Limited structural and biophysical information has impeded an understanding of assembly and stability of their long, flexible tail tubes. The hyperthermophilic phage P74-26 is particularly intriguing as it has the longest tail of any known virus (nearly 1 μm) and is the most thermostable known phage. Here, we use structures of the P74-26 tail tube along with an in vitro system for studying tube assembly kinetics to propose the first molecular model for the tail tube assembly of long-tailed phages. Our high-resolution cryo-EM structure provides insight into how the P74-26 phage assembles through flexible loops that fit into neighboring rings through tight "ball-and-socket"-like interactions. Guided by this structure, and in combination with mutational, light scattering, and molecular dynamics simulations data, we propose a model for the assembly of conserved tube-like structures across phage and other entities possessing tail tube-like proteins. We propose that formation of a full ring promotes the adoption of a tube elongation-competent conformation among the flexible loops and their corresponding sockets, which is further stabilized by an adjacent ring. Tail assembly is controlled by the cooperative interaction of dynamic intraring and interring contacts. Given the structural conservation among tail tube proteins and tail-like structures, our model can explain the mechanism of high-fidelity assembly of long, stable tubes.
Collapse
Affiliation(s)
- Emily Agnello
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester Massachusetts, USA
| | - Xingchen Liu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester Massachusetts, USA.
| |
Collapse
|
13
|
Delesalle VA, Tomko BE, Vill AC, Lichty KB, Krukonis GP. Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses 2022; 14:2106. [PMID: 36298661 PMCID: PMC9607348 DOI: 10.3390/v14102106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2023] Open
Abstract
SPP1, an extensively studied bacteriophage of the Gram-positive Bacillus subtilis, is a model system for the study of phage-host interactions. Despite progress in the isolation and characterization of Bacillus phages, no previously fully sequenced phages have shared more than passing genetic similarity to SPP1. Here, we describe three virulent phages very similar to SPP1; SPP1 has greater than 80% nucleotide sequence identity and shares more that 85% of its protein coding genes with these phages. This is remarkable, given more than 40 years between the isolation of SPP1 and these phages. All three phages have somewhat larger genomes and more genes than SPP1. We identified a new putative gene in SPP1 based on a conserved sequence found in all phages. Gene conservation connotes purifying selection and is observed in structural genes and genes involved in DNA metabolism, but also in genes of unknown function, suggesting an important role in phage survival independent of the environment. Patterns of divergence point to genes or gene domains likely involved in adaptation to diverse hosts or different environments. Ultimately, comparative genomics of related phages provides insight into the long-term selective pressures that affect phage-bacteria interactions and alter phage genome content.
Collapse
Affiliation(s)
- Véronique A. Delesalle
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
| | - Brianne E. Tomko
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
| | - Albert C. Vill
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd., Ithaca, NY 14850, USA
| | - Katherine B. Lichty
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716, USA
| | - Greg P. Krukonis
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Biology, Angelo State University, Cavness Science Building 101, ASU Station #10890, San Angelo, TX 76909, USA
| |
Collapse
|
14
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
15
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|
16
|
Swanson NA, Hou CFD, Cingolani G. Viral Ejection Proteins: Mosaically Conserved, Conformational Gymnasts. Microorganisms 2022; 10:microorganisms10030504. [PMID: 35336080 PMCID: PMC8954989 DOI: 10.3390/microorganisms10030504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial viruses (or bacteriophages) have developed formidable ways to deliver their genetic information inside bacteria, overcoming the complexity of the bacterial-cell envelope. In short-tailed phages of the Podoviridae superfamily, genome ejection is mediated by a set of mysterious internal virion proteins, also called ejection or pilot proteins, which are required for infectivity. The ejection proteins are challenging to study due to their plastic structures and transient assembly and have remained less characterized than classical components such as the phage coat protein or terminase subunit. However, a spate of recent cryo-EM structures has elucidated key features underscoring these proteins' assembly and conformational gymnastics that accompany their expulsion from the virion head through the portal protein channel into the host. In this review, we will use a phage-T7-centric approach to critically review the status of the literature on ejection proteins, decipher the conformational changes of T7 ejection proteins in the pre- and post-ejection conformation, and predict the conservation of these proteins in other Podoviridae. The challenge is to relate the structure of the ejection proteins to the mechanisms of genome ejection, which are exceedingly complex and use the host's machinery.
Collapse
Affiliation(s)
- Nicholas A. Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Chun-Feng D. Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (N.A.S.); (C.-F.D.H.)
- Correspondence: ; Tel.: +01-(215)-503-4573
| |
Collapse
|
17
|
Tall tails: cryo-electron microscopy of phage tail DNA ejection conduits. Biochem Soc Trans 2022; 50:459-22W. [PMID: 35129586 PMCID: PMC9022992 DOI: 10.1042/bst20210799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The majority of phages, viruses that infect prokaryotes, inject their genomic material into their host through a tubular assembly known as a tail. Despite the genomic diversity of tailed phages, only three morphological archetypes have been described: contractile tails of Myoviridae-like phages; short non-contractile tails of Podoviridae-like phages; and long and flexible non-contractile tails of Siphoviridae-like phages. While early cryo-electron microscopy (cryo-EM) work elucidated the organisation of the syringe-like injection mechanism of contractile tails, the intrinsic flexibility of the long non-contractile tails prevented high-resolution structural determination. In 2020, four cryo-EM structures of Siphoviridae-like tail tubes were solved and revealed common themes and divergences. The central tube is structurally conserved and homologous to the hexameric rings of the tail tube protein (TTP) also found in contractile tails, bacterial pyocins, and type VI secretion systems. The interior surface of the tube presents analogous motifs of negatively charged amino acids proposed to facilitate ratcheting of the DNA during genome ejection. The lack of a conformational change upon genome ejection implicates the tape measure protein in triggering genome release. A distinctive feature of Siphoviridae-like tails is their flexibility. This results from loose inter-ring connections that can asymmetrically stretch on one side to allow bending and flexing of the tube without breaking. The outer surface of the tube differs greatly and may be smooth or rugged due to additional Ig-like domains in TTP. Some of these variable domains may contribute to adsorption of the phage to prokaryotic and eukaryotic cell surfaces affecting tropism and virulence.
Collapse
|
18
|
White K, Yu JH, Eraclio G, Dal Bello F, Nauta A, Mahony J, van Sinderen D. Bacteriophage-host interactions as a platform to establish the role of phages in modulating the microbial composition of fermented foods. MICROBIOME RESEARCH REPORTS 2022; 1:3. [PMID: 38089066 PMCID: PMC10714293 DOI: 10.20517/mrr.2021.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 02/19/2024]
Abstract
Food fermentation relies on the activity of robust starter cultures, which are commonly comprised of lactic acid bacteria such as Lactococcus and Streptococcus thermophilus. While bacteriophage infection represents a persistent threat that may cause slowed or failed fermentations, their beneficial role in fermentations is also being appreciated. In order to develop robust starter cultures, it is important to understand how phages interact with and modulate the compositional landscape of these complex microbial communities. Both culture-dependent and -independent methods have been instrumental in defining individual phage-host interactions of many lactic acid bacteria (LAB). This knowledge needs to be integrated and expanded to obtain a full understanding of the overall complexity of such interactions pertinent to fermented foods through a combination of culturomics, metagenomics, and phageomics. With such knowledge, it is believed that factory-specific detection and monitoring systems may be developed to ensure robust and reliable fermentation practices. In this review, we explore/discuss phage-host interactions of LAB, the role of both virulent and temperate phages on the microbial composition, and the current knowledge of phageomes of fermented foods.
Collapse
Affiliation(s)
- Kelsey White
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Jun-Hyeok Yu
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Authors contributed equally
| | | | | | - Arjen Nauta
- FrieslandCampina, Amersfoort 3800 BN, The Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
19
|
Major tail proteins of bacteriophages of the order Caudovirales. J Biol Chem 2021; 298:101472. [PMID: 34890646 PMCID: PMC8718954 DOI: 10.1016/j.jbc.2021.101472] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.
Collapse
|
20
|
Seul A, Brasilès S, Petitpas I, Lurz R, Campanacci V, Cambillau C, Weise F, Zairi M, Tavares P, Auzat I. Biogenesis of a Bacteriophage Long Non-Contractile Tail. J Mol Biol 2021; 433:167112. [PMID: 34153288 DOI: 10.1016/j.jmb.2021.167112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anait Seul
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Sandrine Brasilès
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Isabelle Petitpas
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Valérie Campanacci
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Marseille, France
| | - Frank Weise
- Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| | - Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
21
|
Structure, function and assembly of the long, flexible tail of siphophages. Curr Opin Virol 2020; 45:34-42. [DOI: 10.1016/j.coviro.2020.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
|
22
|
Huang L, Xiang Y. Structures of the tailed bacteriophages that infect Gram-positive bacteria. Curr Opin Virol 2020; 45:65-74. [DOI: 10.1016/j.coviro.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/07/2020] [Accepted: 09/06/2020] [Indexed: 01/04/2023]
|
23
|
Lavelle K, Goulet A, McDonnell B, Spinelli S, van Sinderen D, Mahony J, Cambillau C. Revisiting the host adhesion determinants of Streptococcus thermophilus siphophages. Microb Biotechnol 2020; 13:1765-1779. [PMID: 32525270 PMCID: PMC7533335 DOI: 10.1111/1751-7915.13593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Available 3D structures of bacteriophage modules combined with predictive bioinformatic algorithms enabled the identification of adhesion modules in 57 siphophages infecting Streptococcus thermophilus (St). We identified several carbohydrate-binding modules (CBMs) in so-called evolved distal tail (Dit) and tail-associated lysozyme (Tal) proteins of St phage baseplates. We examined the open reading frame (ORF) downstream of the Tal-encoding ORF and uncovered the presence of a putative p2-like receptor-binding protein (RBP). A 21 Å resolution electron microscopy structure of the baseplate of cos-phage STP1 revealed the presence of six elongated electron densities, surrounding the core of the baseplate, that harbour the p2-like RBPs at their tip. To verify the functionality of these modules, we expressed GFP- or mCherry-coupled Tal and putative RBP CBMs and observed by fluorescence microscopy that both modules bind to their corresponding St host, the putative RBP CBM with higher affinity than the Tal-associated one. The large number of CBM functional domains in St phages suggests that they play a contributory role in the infection process, a feature that we previously described in lactococcal phages and beyond, possibly representing a universal feature of the siphophage host-recognition apparatus.
Collapse
Affiliation(s)
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| | | | - Silvia Spinelli
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| | - Douwe van Sinderen
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Jennifer Mahony
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Christian Cambillau
- School of MicrobiologyUniversity College CorkCorkIreland
- Architecture et Fonction des Macromolécules BiologiquesAix‐Marseille UniversitéCampus de LuminyMarseilleFrance
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Campus de LuminyMarseilleFrance
| |
Collapse
|
24
|
Goulet A, Spinelli S, Mahony J, Cambillau C. Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. Viruses 2020; 12:E512. [PMID: 32384698 PMCID: PMC7291167 DOI: 10.3390/v12050512] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteriophages can play beneficial roles in phage therapy and destruction of food pathogens. Conversely, they play negative roles as they infect bacteria involved in fermentation, resulting in serious industrial losses. Siphoviridae phages possess a long non-contractile tail and use a mechanism of infection whose first step is host recognition and binding. They have evolved adhesion devices at their tails' distal end, tuned to recognize specific proteinaceous or saccharidic receptors on the host's surface that span a large spectrum of shapes. In this review, we aimed to identify common patterns beyond this apparent diversity. To this end, we analyzed siphophage tail tips or baseplates, evaluating their known structures, where available, and uncovering patterns with bioinformatics tools when they were not. It was thereby identified that a triad formed by three proteins in complex, i.e., the tape measure protein (TMP), the distal tail protein (Dit), and the tail-associated lysozyme (Tal), is conserved in all phages. This common scaffold may harbor various functional extensions internally while it also serves as a platform for plug-in ancillary or receptor-binding proteins (RBPs). Finally, a group of siphophage baseplates involved in saccharidic receptor recognition exhibits an activation mechanism reminiscent of that observed in Myoviridae.
Collapse
Affiliation(s)
- Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland;
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
25
|
Campbell PL, Duda RL, Nassur J, Conway JF, Huet A. Mobile Loops and Electrostatic Interactions Maintain the Flexible Tail Tube of Bacteriophage Lambda. J Mol Biol 2019; 432:384-395. [PMID: 31711962 DOI: 10.1016/j.jmb.2019.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
The long flexible tail tube of bacteriophage lambda connects its capsid to the tail tip. On infection, a DNA ejection signal is passed from the tip, along the tube to the capsid that triggers passage of the DNA down the tube and into the host bacterium. The tail tube is built from repeating units of the major tail protein, gpV, which has two distinctive domains. Its N-terminal domain has the same fold as proteins that form the rigid inner tubes of contractile tail phages, such as T4, and its C-terminal domain adopt an Ig-like fold of unknown function. We determined structures of the lambda tail tube in free tails and in virions before and after DNA ejection using cryoelectron microscopy. Modeling of the density maps reveals how electrostatic interactions and a mobile loop participate in assembly and also impart flexibility to the tube while maintaining its integrity. We also demonstrate how a common protein fold produces rigid tubes in some phages but flexible tubes in others.
Collapse
Affiliation(s)
- Patricia L Campbell
- Department of Biological Sciences, Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA
| | - Jamie Nassur
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Alexis Huet
- Department of Biological Sciences, Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Dunne M, Rupf B, Tala M, Qabrati X, Ernst P, Shen Y, Sumrall E, Heeb L, Plückthun A, Loessner MJ, Kilcher S. Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Rep 2019; 29:1336-1350.e4. [DOI: 10.1016/j.celrep.2019.09.062] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
|
27
|
Ji Z, Guo P. Channel from bacterial virus T7 DNA packaging motor for the differentiation of peptides composed of a mixture of acidic and basic amino acids. Biomaterials 2019; 214:119222. [PMID: 31158604 DOI: 10.1016/j.biomaterials.2019.119222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Protein mutations can result in dysfunctional cell signaling pathways; therefore it is of significance to develop a robust platform for the detection of protein mutations. Here, we report that the channel of bacterial virus T7 DNA packaging motor is able to discriminate peptides containing a mixture of acidic (negatively charged) and basic (positively charged) amino acids. Peptides were differentiated based on their current signatures created by their unique charge compositions. In combination with protease digestion, peptides with the locational differences of single amino acid were also identified. The results suggest that the T7 motor channel has the potential for peptide differentiation, mutation verification, and analysis of protein sequence.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center; The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
The Revisited Genome of Bacillus subtilis Bacteriophage SPP1. Viruses 2018; 10:v10120705. [PMID: 30544981 PMCID: PMC6316719 DOI: 10.3390/v10120705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis bacteriophage SPP1 is a lytic siphovirus first described 50 years ago [1]. Its complete DNA sequence was reported in 1997 [2]. Here we present an updated annotation of the 44,016 bp SPP1 genome and its correlation to different steps of the viral multiplication process. Five early polycistronic transcriptional units encode phage DNA replication proteins and lysis functions together with less characterized, mostly non-essential, functions. Late transcription drives synthesis of proteins necessary for SPP1 viral particles assembly and for cell lysis, together with a short set of proteins of unknown function. The extensive genetic, biochemical and structural biology studies on the molecular mechanisms of SPP1 DNA replication and phage particle assembly rendered it a model system for tailed phages research. We propose SPP1 as the reference species for a new SPP1-like viruses genus of the Siphoviridae family.
Collapse
|
29
|
Hayes S, Vincentelli R, Mahony J, Nauta A, Ramond L, Lugli GA, Ventura M, van Sinderen D, Cambillau C. Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gram-positive bacteria. Mol Microbiol 2018; 110:777-795. [DOI: 10.1111/mmi.14124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Stephen Hayes
- School of Microbiology; University College Cork; Cork Ireland
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| | - Jennifer Mahony
- School of Microbiology; University College Cork; Cork Ireland
| | - Arjen Nauta
- FrieslandCampina; Amersfoort The Netherlands
| | - Laurie Ramond
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | - Douwe van Sinderen
- School of Microbiology; University College Cork; Cork Ireland
- APC Microbiome Ireland, University College Cork; Cork Ireland
| | - Christian Cambillau
- School of Microbiology; University College Cork; Cork Ireland
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Campus de Luminy Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS); Campus de Luminy Marseille France
| |
Collapse
|
30
|
Ji Z, Kang X, Wang S, Guo P. Nano-channel of viral DNA packaging motor as single pore to differentiate peptides with single amino acid difference. Biomaterials 2018; 182:227-233. [PMID: 30138785 DOI: 10.1016/j.biomaterials.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022]
Abstract
Detection, differentiation, mapping, and sequencing of proteins are important in proteomics for the assessment of cell development such as protein methylation or phosphorylation as well as the diagnosis of diseases including metabolic disorder, mental illness, immunological ailments, and malignant cancers. Nanopore technology has demonstrated the potential for the sequencing or sensing of DNA, RNA, chemicals, or other macromolecules. Due to the diversity of protein in shape, structure and charge and the composition versatility of 20 amino acids, the sequencing of proteins remains challenging. Herein, we report the application of the channel of bacteriophage T7 DNA packaging motor for the differentiation of an assortment of peptides of a single amino acid difference. Explicit fingerprints or signatures were obtained based on current blockage and dwell time of individual peptide. Data from the clear mapping of small proteins after protease digestion suggests the potential of using T7 motor channel for proteomics including protein sequencing.
Collapse
Affiliation(s)
- Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xinqi Kang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. Viruses 2018; 10:v10080397. [PMID: 30060549 PMCID: PMC6115969 DOI: 10.3390/v10080397] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determinant of bacterial host range, and thus defines the remediative potential of a phage for a given bacterium. Co-evolution of RBPs and their bacterial receptors has forced endless adaptation cycles of phage-host interactions, which in turn has created a diverse array of phage adsorption mechanisms utilizing an assortment of RBPs. Over the last decade, these intricate mechanisms have been studied intensely using electron microscopy and X-ray crystallography, providing atomic-level details of this fundamental stage in the phage infection cycle. This review summarizes current knowledge surrounding the molecular basis of host interaction for various socioeconomically important Gram-positive targeting phage RBPs to their protein- and saccharide-based receptors. Special attention is paid to the abundant and best-characterized Siphoviridae family of tailed phages. Unravelling these complex phage-host dynamics is essential to harness the full potential of phage-based technologies, or for generating novel strategies to combat industrial phage contaminations.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Mario Hupfeld
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Jochen Klumpp
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Martin J Loessner
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
32
|
Recent Advancements in 3-D Structure Determination of Bacteriophages: from Negative Stain to CryoEM. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Abstract
Many icosahedral viruses use a specialized portal vertex for genome encapsidation in the viral capsid (or head). This structure then controls release of the viral genetic information to the host cell at the beginning of infection. In tailed bacteriophages, the portal system is connected to a tail device that delivers their genome to the bacterial cytoplasm. The head-to-tail interface is a multiprotein complex that locks the viral DNA inside the phage capsid correctly positioned for egress and that controls its ejection when the viral particle interacts with the host cell receptor. Here we review the molecular mechanisms how this interface is assembled and how it carries out those two critical steps in the life cycle of tailed phages.
Collapse
Affiliation(s)
- Paulo Tavares
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Wang Z, Hardies SC, Fokine A, Klose T, Jiang W, Cho BC, Rossmann MG. Structure of the Marine Siphovirus TW1: Evolution of Capsid-Stabilizing Proteins and Tail Spikes. Structure 2017; 26:238-248.e3. [PMID: 29290487 DOI: 10.1016/j.str.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/16/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Marine bacteriophage TW1 belongs to the Siphoviridae family and infects Pseudoalteromonas phenolica. Mass spectrometry analysis has identified 16 different proteins in the TW1 virion. Functions of most of these proteins have been predicted by bioinformatic methods. A 3.6 Å resolution cryoelectron microscopy map of the icosahedrally averaged TW1 head showed the atomic structures of the major capsid protein, gp57∗, and the capsid-stabilizing protein, gp56. The gp57∗ structure is similar to that of the phage HK97 capsid protein. The gp56 protein has two domains, each having folds similar to that of the N-terminal part of phage λ gpD, indicating a common ancestry. The first gp56 domain clamps adjacent capsomers together, whereas the second domain is required for trimerization. A 6-fold-averaged reconstruction of the distal part of the tail showed that TW1 has six tail spikes, which are unusual for siphophages but are similar to the podophages P22 and Sf6, suggesting a common evolutionary origin of these spikes.
Collapse
Affiliation(s)
- Zhiqing Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen C Hardies
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 151-742, Korea
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat Commun 2017; 8:1953. [PMID: 29209037 PMCID: PMC5717097 DOI: 10.1038/s41467-017-02049-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022] Open
Abstract
The vast majority of phages, bacterial viruses, possess a tail ensuring host recognition, cell wall perforation and safe viral DNA transfer from the capsid to the host cytoplasm. Long flexible tails are formed from the tail tube protein (TTP) polymerised as hexameric rings around and stacked along the tape measure protein (TMP). Here, we report the crystal structure of T5 TTP pb6 at 2.2 Å resolution. Pb6 is unusual in forming a trimeric ring, although structure analysis reveals homology with all classical TTPs and related tube proteins of bacterial puncturing devices (type VI secretion system and R-pyocin). Structures of T5 tail tubes before and after interaction with the host receptor were determined by cryo-electron microscopy at 6 Å resolution. Comparison of these two structures reveals that host-binding information is not propagated to the capsid through conformational changes in the tail tube, suggesting a role of the TMP in this information transduction process. Host cell recognition is mediated by the phage tail tip proteins, which then triggers viral genome delivery via the phage tail. Here, the authors combine crystallography and cryoEM to structurally characterise the bacteriophage T5 tail tube structure before and after interaction with its host receptor.
Collapse
|
36
|
Inaba H, Ueno T. Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophys Rev 2017; 10:641-658. [PMID: 29147941 DOI: 10.1007/s12551-017-0336-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage T4 is a natural bio-nanomachine which achieves efficient infection of host cells via cooperative motion of specific three-dimensional protein architectures. The relationships between the protein structures and their dynamic functions have recently been clarified. In this review we summarize the design principles for fabrication of nanomachines using the component proteins of bacteriophage T4 based on these recent advances. We focus on the protein needle known as gp5, which is located at the center of the baseplate at the end of the contractile tail of bacteriophage T4. This protein needle plays a critical role in directly puncturing host cells, and analysis has revealed that it contains a common motif used for cell puncture in other known injection systems, such as T6SS. Our artificial needle based on the β-helical domain of gp5 retains the ability to penetrate cells and can be engineered to deliver various cargos into living cells. Thus, the unique components of bacteriophage T4 and other natural nanomachines have great potential for use as molecular scaffolds in efforts to fabricate new bio-nanomachines.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B55, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
37
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn‐Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017; 56:9497-9501. [PMID: 28644511 PMCID: PMC5582604 DOI: 10.1002/anie.201706060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.
Collapse
Affiliation(s)
- Maximilian Zinke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Pascal Fricke
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Songhwan Hwang
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Sascha Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sophie Zinn‐Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRSUniversité Paris-Sud, Université Paris-SaclayGif-sur-Yvette CedexFrance
| | - Adam Lange
- Department of Molecular BiophysicsLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für BiologieHumboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
38
|
Zinke M, Fricke P, Samson C, Hwang S, Wall JS, Lange S, Zinn-Justin S, Lange A. Bacteriophage Tail-Tube Assembly Studied by Proton-Detected 4D Solid-State NMR. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maximilian Zinke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Pascal Fricke
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Camille Samson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Songhwan Hwang
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | | | - Sascha Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris-Sud, Université Paris-Saclay; Gif-sur-Yvette Cedex France
| | - Adam Lange
- Department of Molecular Biophysics; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP); Berlin Germany
- Institut für Biologie; Humboldt-Universität zu Berlin; Berlin Germany
| |
Collapse
|
39
|
Abstract
The bacteriophage ϕ29 infects Gram-positive Bacillus subtilis with a short noncontractile tail. Recent studies showed that the ϕ29 tail protein gp9 forms a hexameric tube with six long loops of membrane-active peptides blocking in the tube at the distal end of the tail. The long loops exit on genome release and form a membrane pore for passage of the genome. The membrane penetration mechanism of the ϕ29 tail might be common among tailed bacteriophages.
Collapse
|
40
|
Mahony J, Alqarni M, Stockdale S, Spinelli S, Feyereisen M, Cambillau C, Sinderen DV. Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci Rep 2016; 6:36667. [PMID: 27824135 PMCID: PMC5099701 DOI: 10.1038/srep36667] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
The tail tape measure protein (TMP) of tailed bacteriophages (also called phages) dictates the tail length and facilitates DNA transit to the cell cytoplasm during infection. Here, a thorough mutational analysis of the TMP from lactococcal phage TP901-1 (TMPTP901-1) was undertaken. We generated 56 mutants aimed at defining TMPTP901-1 domains that are essential for tail assembly and successful infection. Through analysis of the derived mutants, we determined that TP901-1 infectivity requires the N-terminal 154 aa residues, the C-terminal 60 residues and the first predicted hydrophobic region of TMPTP901-1 as a minimum. Furthermore, the role of TMPTP901-1 in tail length determination was visualized by electron microscopic imaging of TMP-deletion mutants. The inverse linear correlation between the extent of TMPTP901-1-encoding gene deletions and tail length of the corresponding virion provides an estimate of TMPTP901-1 regions interacting with the connector or involved in initiator complex formation. This study represents the most thorough characterisation of a TMP from a Gram-positive host-infecting phage and provides essential advances to understanding its role in virion assembly, morphology and infection.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Mona Alqarni
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen Stockdale
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Marseille, France.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Marseille, France
| | | | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Marseille, France.,Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, Marseille, France
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci U S A 2016; 113:9351-6. [PMID: 27469164 DOI: 10.1073/pnas.1605883113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.
Collapse
|
42
|
Millen AM, Romero DA. Genetic determinants of lactococcal C2viruses for host infection and their role in phage evolution. J Gen Virol 2016; 97:1998-2007. [PMID: 27389474 PMCID: PMC5156332 DOI: 10.1099/jgv.0.000499] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lactococcus lactis is an industrial starter culture used for the production of fermented dairy products. Pip (phage infection protein) bacteriophage-insensitive mutant (BIM) L. lactis DGCC11032 was isolated following challenge of parental strain DGCC7271 with C2viruses. Over a period of industrial use, phages infecting DGCC11032 were isolated from industrial whey samples and identified as C2viruses. Although Pip is reported to be the receptor for many C2viruses including species type phage c2, a similar cell-membrane-associated protein, YjaE, was recently reported as the receptor for C2virus bIL67. Characterization of DGCC7271 BIMs following challenge with phage capable of infecting DGCC11032 identified mutations in yjaE, confirming YjaE to be necessary for infection. DGCC7271 YjaE mutants remained sensitive to the phages used to generate pip variant DGCC11032, indicating a distinction in host phage determinants. We will refer to C2viruses requiring Pip as c2-type andC2viruses that require YjaE as bIL67-type. Genomic comparisons of two c2-type phages unable to infect pip mutant DGCC11032 and four bIL67-type phages isolated on DGCC11032 confirmed the segregation of each group based on resemblance to prototypical phages c2 and bIL67, respectively. The distinguishing feature is linked to three contiguous late-expressed genes: l14-15-16 (c2) and ORF34-35-36 (bIL67). Phage recombinants in which the c2-like l14-15-16 homologue gene set was exchanged with corresponding bIL67 genes ORF34-35-36 were capable of infecting a pip mutated host. Together, these results correlate the phage genes corresponding to l14-15-16 (c2) and ORF34-35-36 (bIL67) to host lactococcal phage determinants Pip and YjaE, respectively.
Collapse
Affiliation(s)
- Anne M Millen
- DuPont Nutrition and Health, Madison, Wisconsin, USA
| | | |
Collapse
|
43
|
Fernandes S, Labarde A, Baptista C, Jakutytè L, Tavares P, São-José C. A non-invasive method for studying viral DNA delivery to bacteria reveals key requirements for phage SPP1 DNA entry in Bacillus subtilis cells. Virology 2016; 495:79-91. [PMID: 27179995 DOI: 10.1016/j.virol.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/30/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022]
Abstract
Bacteriophages use most frequently a tail apparatus to create a channel across the entire bacterial cell envelope to transfer the viral genome to the host cell cytoplasm, initiating infection. Characterization of this critical step remains a major challenge due to the difficulty to monitor DNA entry in the bacterium and its requirements. In this work we developed a new method to study phage DNA entry that has the potential to be extended to many tailed phages. Its application to study genome delivery of bacteriophage SPP1 into Bacillus subtilis disclosed a key role of the host cell membrane potential in the DNA entry process. An energized B. subtilis membrane and a millimolar concentration of calcium ions are shown to be major requirements for SPP1 DNA entry following the irreversible binding of phage particles to the receptor YueB.
Collapse
Affiliation(s)
- Sofia Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Audrey Labarde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91198 Gif-sur-Yvette cedex, France; Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Catarina Baptista
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lina Jakutytè
- Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Paulo Tavares
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, UMR 9198, 91198 Gif-sur-Yvette cedex, France; Unit of Molecular and Structural Virology (VMS), UPR3296 CNRS, Campus CNRS, 91198 Gif-sur-Yvette cedex, France
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
44
|
The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. mBio 2016; 7:e01781-15. [PMID: 26814179 PMCID: PMC4742702 DOI: 10.1128/mbio.01781-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Lactococcus lactis, used for the production of cheeses and other fermented dairy products, falls victim frequently to fortuitous infection by tailed phages. The accompanying risk of dairy fermentation failures in industrial facilities has prompted in-depth investigations of these phages. Lactococcal phage Tuc2009 possesses extensive genomic homology to phage TP901-1. However, striking differences in the baseplate-encoding genes stimulated our interest in solving the structure of this host’s adhesion device. We report here the X-ray structures of phage Tuc2009 receptor binding protein (RBP) and of a “tripod” assembly of three baseplate components, BppU, BppA, and BppL (the RBP). These structures made it possible to generate a realistic atomic model of the complete Tuc2009 baseplate that consists of an 84-protein complex: 18 BppU, 12 BppA, and 54 BppL proteins. The RBP head domain possesses a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” domains share structural features with their equivalents in phage TP901-1. The BppA module interacts strongly with the BppU N-terminal domain. Unlike other characterized lactococcal phages, Tuc2009 baseplate harbors two different carbohydrate recognition sites: one in the bona fide RBP head domain and the other in BppA. These findings represent a major step forward in deciphering the molecular mechanism by which Tuc2009 recognizes its saccharidic receptor(s) on its host. Understanding how siphophages infect Lactococcus lactis is of commercial importance as they cause milk fermentation failures in the dairy industry. In addition, such knowledge is crucial in a general sense in order to understand how viruses recognize their host through protein-glycan interactions. We report here the lactococcal phage Tuc2009 receptor binding protein (RBP) structure as well as that of its baseplate. The RBP head domain has a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” share the fold characteristics also found in the equivalent baseplate proteins of phage TP901-1. The baseplate structure contains, in contrast to other characterized lactococcal phages, two different carbohydrate binding modules that may bind different motifs of the host’s surface polysaccharide.
Collapse
|
45
|
Choi A, Kang I, Yang SJ, Cho JC. Complete genome sequence of bacteriophage P8625, the first lytic phage that infects Verrucomicrobia. Stand Genomic Sci 2015; 10:96. [PMID: 26566421 PMCID: PMC4642752 DOI: 10.1186/s40793-015-0091-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
Bacteriophage P8625 is a lytic bacteriophage that infects the verrucomicrobial strain IMCC8625, a marine bacterium affiliated with Verrucomicrobia subdivision 4. Both the bacteriophage and the host bacterial strain were isolated from surface seawater samples collected off the east coast of Korea. The phage particle has an icosahedral capsid with a diameter of ~47 nm and a long tail of ~75 nm in length, showing the distinctive morphology of the Siphoviridae family. The complete genome sequence of phage P8625 is 32,894 bp long with 51.0 % G + C content. This is the first report of the complete genome sequence of a lytic phage that infects the Verrucomicrobia, for which the name "verrucophage" is proposed.
Collapse
Affiliation(s)
- Ahyoung Choi
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Seung-Jo Yang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|
46
|
Sekulovic O, Ospina Bedoya M, Fivian-Hughes AS, Fairweather NF, Fortier LC. The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance. Mol Microbiol 2015; 98:329-42. [PMID: 26179020 PMCID: PMC4737114 DOI: 10.1111/mmi.13121] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 01/21/2023]
Abstract
Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell-surface protein CwpV provides antiphage protection in C. difficile. This protein, for which the expression is phase-variable, is classified into five types, each differing in their repeat-containing C-terminal domain. When expressed constitutively from a plasmid or the chromosome of locked 'ON' cells of C. difficile R20291, CwpV conferred antiphage protection. Differences in the level of phage protection were observed depending on the phage morphological group, siphophages being the most sensitive with efficiency of plaquing (EOP) values of < 5 × 10(-7) for phages ϕCD38-2, ϕCD111 and ϕCD146. Protection against the myophages ϕMMP01 and ϕCD52 was weaker, with EOP values between 9.0 × 10(-3) and 1.1 × 10(-1). The C-terminal domain of CwpV carries the antiphage activity and its deletion, or part of it, significantly reduced the antiphage protection. CwpV does not affect phage adsorption, but phage DNA replication is prevented, suggesting a mechanism reminiscent of superinfection exclusion systems normally encoded on prophages. CwpV thus represents a novel ubiquitous host-encoded and phase-variable antiphage system in C. difficile.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maicol Ospina Bedoya
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Amanda S Fivian-Hughes
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Neil F Fairweather
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Louis-Charles Fortier
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
47
|
Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS One 2015; 10:e0131676. [PMID: 26147978 PMCID: PMC4493119 DOI: 10.1371/journal.pone.0131676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022] Open
Abstract
Bacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by non-sense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion.
Collapse
|
48
|
Cambillau C. Bacteriophage module reshuffling results in adaptive host range as exemplified by the baseplate model of listerial phage A118. Virology 2015; 484:86-92. [PMID: 26074066 DOI: 10.1016/j.virol.2015.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/10/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022]
Abstract
Each phage infects its specific bacterial host strain through highly specific interactions between the baseplate-associated receptor binding protein (RBP) at the tip of the phage tail and the receptor at the host surface. Baseplates incorporate structural core modules, Dit and Tal, largely conserved among phages, and peripheral modules anchoring the RBPs. Exploiting structural information from the HHpred program and EM data from the Bielmann et al. (2015) paper, a molecular model of the A118 phage baseplate was generated from different building blocks. This model implies the occurrence of baseplate module reshuffling and suggests that listerial phage A118 may have been derived from lactococcal phage TP901-1 through host species exchange. With the increase of available viral module structures, modelling phage baseplates will become easier and more reliant, and will provide insightful information on the nature of the phage host receptor and its mode of recognition.
Collapse
Affiliation(s)
- Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, France; AFMB, Aix-Marseille University, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
| |
Collapse
|
49
|
Structural rearrangements in the phage head-to-tail interface during assembly and infection. Proc Natl Acad Sci U S A 2015; 112:7009-14. [PMID: 25991862 DOI: 10.1073/pnas.1504039112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many icosahedral viruses use a specialized portal vertex to control genome encapsidation and release from the viral capsid. In tailed bacteriophages, the portal system is connected to a tail structure that provides the pipeline for genome delivery to the host cell. We report the first, to our knowledge, subnanometer structures of the complete portal-phage tail interface that mimic the states before and after DNA release during phage infection. They uncover structural rearrangements associated with intimate protein-DNA interactions. The portal protein gp6 of bacteriophage SPP1 undergoes a concerted reorganization of the structural elements of its central channel during interaction with DNA. A network of protein-protein interactions primes consecutive binding of proteins gp15 and gp16 to extend and close the channel. This critical step that prevents genome leakage from the capsid is achieved by a previously unidentified allosteric mechanism: gp16 binding to two different regions of gp15 drives correct positioning and folding of an inner gp16 loop to interact with equivalent loops of the other gp16 subunits. Together, these loops build a plug that closes the channel. Gp16 then fastens the tail to yield the infectious virion. The gatekeeper system opens for viral genome exit at the beginning of infection but recloses afterward, suggesting a molecular diaphragm-like mechanism to control DNA efflux. The mechanisms described here, controlling the essential steps of phage genome movements during virus assembly and infection, are likely to be conserved among long-tailed phages, the largest group of viruses in the Biosphere.
Collapse
|
50
|
|