1
|
Conti BA, Novikov L, Tong D, Xiang Q, Vigil S, McLellan TJ, Nguyen C, De La Cruz N, Veettil RT, Pradhan P, Sahasrabudhe P, Arroyo JD, Shang L, Sabari BR, Shields DJ, Oppikofer M. N6-methyladenosine in DNA promotes genome stability. eLife 2025; 13:RP101626. [PMID: 40193195 PMCID: PMC11975372 DOI: 10.7554/elife.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.
Collapse
Affiliation(s)
- Brooke A Conti
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Leo Novikov
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Deyan Tong
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Qing Xiang
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Savon Vigil
- Discovery Sciences, PfizerGrotonUnited States
| | | | | | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | | | - Jason D Arroyo
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Lei Shang
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - David J Shields
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Mariano Oppikofer
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| |
Collapse
|
2
|
Rega C, Tsitsa I, Roumeliotis TI, Krystkowiak I, Portillo M, Yu L, Vorhauser J, Pines J, Mansfeld J, Choudhary J, Davey NE. High resolution profiling of cell cycle-dependent protein and phosphorylation abundance changes in non-transformed cells. Nat Commun 2025; 16:2579. [PMID: 40089461 PMCID: PMC11910661 DOI: 10.1038/s41467-025-57537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
The cell cycle governs a precise series of molecular events, regulated by coordinated changes in protein and phosphorylation abundance, that culminates in the generation of two daughter cells. Here, we present a proteomic and phosphoproteomic analysis of the human cell cycle in hTERT-RPE-1 cells using deep quantitative mass spectrometry by isobaric labelling. By analysing non-transformed cells and improving the temporal resolution and coverage of key cell cycle regulators, we present a dataset of cell cycle-dependent protein and phosphorylation site oscillation that offers a foundational reference for investigating cell cycle regulation. These data reveal regulatory intricacies including proteins and phosphorylation sites exhibiting cell cycle-dependent oscillation, and proteins targeted for degradation during mitotic exit. Integrated with complementary resources, our data link cycle-dependent abundance dynamics to functional changes and are accessible through the Cell Cycle database (CCdb), an interactive web-based resource for the cell cycle community.
Collapse
Affiliation(s)
- Camilla Rega
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | | | | | - Maria Portillo
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Julia Vorhauser
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jonathon Pines
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jörg Mansfeld
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jyoti Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
3
|
Zhao Y, Chen D, Grin IR, Zharkov DO, Yu B. Developing plant-derived DNA repair enzyme resources through studying the involvement of base excision repair DNA glycosylases in stress responses of plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70162. [PMID: 40113437 DOI: 10.1111/ppl.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
DNA damage caused by internal and external stresses negatively affects plant growth and development. In this, DNA repair enzymes play an important role in recognizing and repairing the caused DNA damage. The first key enzymes in the base excision repair (BER) pathway are DNA glycosylases. In this paper, we present updated knowledge on the classification, phylogeny and conserved structural domains of DNA glycosylases in the plant base excision repair pathway. It describes the key roles played by the DNA glycosylases in plant stress responses, and focuses on the molecular mechanisms of plant stress tolerance from the perspective of the DNA repair system. New opportunities for the development of plant-derived DNA repair genes and DNA repair enzyme resources are discussed.
Collapse
Affiliation(s)
- Ying Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Daniel Chen
- MD program, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Ligasová A, Frydrych I, Piskláková B, Friedecký D, Koberna K. The kinetics of uracil-N-glycosylase distribution inside replication foci. Sci Rep 2025; 15:3026. [PMID: 39849039 PMCID: PMC11757751 DOI: 10.1038/s41598-024-84408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication. The analysis also showed that very popular synchronisation protocols based on the double thymidine block can result in changes in the UNG2 content and uracil excision rate. In response, we propose a new method for the description of the changes of the content and the activity of different cell components during cell cycle without the necessity to use synchronisation protocols.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Barbora Piskláková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Department of Clinical Chemistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Iveland TS, Hagen L, de Sousa MML, Liabakk NB, Aas PA, Sharma A, Kavli B, Slupphaug G. Cytotoxic mechanisms of pemetrexed and HDAC inhibition in non-small cell lung cancer cells involving ribonucleotides in DNA. Sci Rep 2025; 15:2082. [PMID: 39814799 PMCID: PMC11736037 DOI: 10.1038/s41598-025-86007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers. Proteomic alterations were analyzed using label-free shotgun and targeted LC-MS/MS. MS275 enhanced the sensitivity of A549 cells to pemetrexed, but only when administered following prior treatment with pemetrexed. Both HeLa (p53 negative) and A549 (p53 positive) showed robust activation of γH2AX upon treatment with this combination. Importantly, CRISPR/Cas9 knockout of the uracil-DNA glycosylase UNG did not affect γH2AX activation or sensitivity to pemetrexed. Proteomic analysis revealed that MS275 altered the expression of known pemetrexed targets, as well as several proteins involved in pyrimidine metabolism and DNA repair, which could potentiate pemetrexed cytotoxicity. Contrary to the conventional model of antifolate toxicity, which implicates futile cycles of uracil incorporation and excision in DNA, we propose that ribonucleotide incorporation in nuclear and mitochondrial DNA significantly contributes to the cytotoxicity of antifolates like pemetrexed, and likely also of fluorinated pyrimidine analogs. HDAC inhibition apparently exacerbates cytotoxicity of these agents by inhibiting error-free repair of misincorporated ribonucleotides in DNA. The potential of HDACis to modulate pyrimidine metabolism and DNA damage responses offers novel strategies for improving NSCLC outcomes.
Collapse
Affiliation(s)
- Tobias Solli Iveland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Cancer Clinic, St. Olavs Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
- The Proteomics and Metabolomics Core Facility, PROMEC, at NTNU and the Central Norway Regional Health Authority, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs Hospital, N-7491, Trondheim, Norway.
| |
Collapse
|
6
|
Ramesh J, Gopalakrishnan RM, Nguyen THA, Lai SK, Li HY, Kim PS, Kutzner A, Inoue N, Heese K. Deciphering the molecular landscape of the FAM72 gene family: Implications for stem cell biology and cancer. Neurochem Int 2024; 180:105853. [PMID: 39236808 DOI: 10.1016/j.neuint.2024.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Family with sequence similarity 72 (FAM72) is a protein-coding gene family located on chromosome 1 in humans, uniquely featuring four paralogs: FAM72A, FAM72B, FAM72C, and FAM72D. While FAM72's presence as a gene pair with the SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2) is intriguing, its functional roles, particularly in neural stem cells, remain incompletely understood. This review explores the distinct characteristics of FAM72, shedding light on its expression patterns, potential roles in cell cycle regulation, stem cell renewal and implications in neurogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu, 600-113, India.
| | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600-025, India.
| | - Tuan Hoang Anh Nguyen
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, 136-702, Republic of Korea.
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Noriko Inoue
- Osaka University Institute for Sports and Global Health, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
7
|
Hayran AB, Liabakk NB, Aas PA, Kusnierczyk A, Vågbø CB, Sarno A, Iveland TS, Chawla K, Zahn A, Di Noia JM, Slupphaug G, Kavli B. RPA guides UNG to uracil in ssDNA to facilitate antibody class switching and repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2024; 52:784-800. [PMID: 38000394 PMCID: PMC10810282 DOI: 10.1093/nar/gkad1115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sμ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.
Collapse
Affiliation(s)
- Abdul B Hayran
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Anna Kusnierczyk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- BioCore - Bioinformatics Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département of Médicine, Université de Montréal H3C 3J7 Montréal, Québec, Canada
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
8
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
9
|
Jordan VN, Ordureau A, An H. Identifying E3 Ligase Substrates With Quantitative Degradation Proteomics. Chembiochem 2023; 24:e202300108. [PMID: 37166757 PMCID: PMC10548883 DOI: 10.1002/cbic.202300108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/12/2023]
Abstract
Controlled protein degradation by the ubiquitin-proteasome pathway is critical for almost all cellular processes. E3 ubiquitin ligases are responsible for targeting proteins for ubiquitylation and subsequent proteasomal degradation with spatial and temporal precision. While studies have revealed various E3-substrate pairs involved in distinct biological processes, the complete substrate profiles of individual E3 ligases are largely unknown. Here we report a new approach to identify substrates of an E3 ligase for proteasomal degradation using unnatural amino acid incorporation pulse-chase proteomics (degradomics). Applying this approach, we determine the steady-state substrates of the C-terminal to LisH (CTLH) E3 ligase, a multi-component complex with poorly defined substrates. By comparing the proteome degradation profiles of active and inactive CTLH-expressing cells, we successfully identify previously known and new potential substrates of CTLH ligase. Altogether, degradomics can comprehensively identify degradation substrates of an E3 ligase, which can be adapted for other E3 ligases in various cellular contexts.
Collapse
Affiliation(s)
- Victoria N Jordan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Heeseon An
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
10
|
Greenwood SN, Kulkarni RS, Mikhail M, Weiser BP. Replication Protein A Enhances Kinetics of Uracil DNA Glycosylase on ssDNA and Across DNA Junctions: Explored with a DNA Repair Complex Produced with SpyCatcher/SpyTag Ligation. Chembiochem 2023; 24:e202200765. [PMID: 36883884 PMCID: PMC10267839 DOI: 10.1002/cbic.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/09/2023]
Abstract
DNA repair proteins participate in extensive protein-protein interactions that promote the formation of DNA repair complexes. To understand how complex formation affects protein function during base excision repair, we used SpyCatcher/SpyTag ligation to produce a covalent complex between human uracil DNA glycosylase (UNG2) and replication protein A (RPA). Our covalent "RPA-Spy-UNG2" complex could identify and excise uracil bases in duplex areas next to ssDNA-dsDNA junctions slightly faster than the wild-type proteins, but this was highly dependent on DNA structure, as the turnover of the RPA-Spy-UNG2 complex slowed at DNA junctions where RPA tightly engaged long ssDNA sections. Conversely, the enzymes preferred uracil sites in ssDNA where RPA strongly enhanced uracil excision by UNG2 regardless of ssDNA length. Finally, RPA was found to promote UNG2 excision of two uracil sites positioned across a ssDNA-dsDNA junction, and dissociation of UNG2 from RPA enhanced this process. Our approach of ligating together RPA and UNG2 to reveal how complex formation affects enzyme function could be applied to examine other assemblies of DNA repair proteins.
Collapse
Affiliation(s)
- Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Michel Mikhail
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Internal Medicine, Newark Beth Israel Medical Center, Newark, NJ 07112, USA
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
11
|
Kulkarni RS, Greenwood SN, Weiser BP. Assay design for analysis of human uracil DNA glycosylase. Methods Enzymol 2022; 679:343-362. [PMID: 36682870 DOI: 10.1016/bs.mie.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human uracil DNA glycosylase (UNG2) is an enzyme whose primary function is to remove uracil bases from genomic DNA. UNG2 activity is critical when uracil bases are elevated in DNA during class switch recombination and somatic hypermutation, and additionally, UNG2 affects the efficacy of thymidylate synthase inhibitors that increase genomic uracil levels. Here, we summarize the enzymatic properties of UNG2 and its mitochondrial analog UNG1. To facilitate studies on the activity of these highly conserved proteins, we discuss three fluorescence-based enzyme assays that have informed much of our understanding on UNG2 function. The assays use synthetic DNA oligonucleotide substrates with uracil bases incorporated in the DNA, and the substrates can be single-stranded, double-stranded, or form other structures such as DNA hairpins or junctions. The fluorescence signal reporting uracil base excision by UNG2 is detected in different ways: (1) Excision of uracil from end-labeled oligonucleotides is measured by visualizing UNG2 reaction products with denaturing PAGE; (2) Uracil excision from dsDNA substrates is detected in solution by base pairing uracil with 2-aminopurine, whose intrinsic fluorescence is enhanced upon uracil excision; or (3) UNG2 excision of uracil from a hairpin molecular beacon substrate changes the structure of the substrate and turns on fluorescence by relieving a fluorescence quench. In addition to their utility in characterizing UNG2 properties, these assays are being adapted to discover inhibitors of the enzyme and to determine how protein-protein interactions affect UNG2 function.
Collapse
Affiliation(s)
- Rashmi S Kulkarni
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Sharon N Greenwood
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
12
|
Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cell Mol Life Sci 2022; 79:449. [PMID: 35882686 PMCID: PMC11072364 DOI: 10.1007/s00018-022-04468-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Intrinsically disordered proteins and regions (IDPs and IDRs) and their importance in biology are becoming increasingly recognized in biology, biochemistry, molecular biology and chemistry textbooks, as well as in current protein science and structural biology curricula. We argue that the sequence → dynamic conformational ensemble → function principle is of equal importance as the classical sequence → structure → function paradigm. To highlight this point, we describe the IDPs and/or IDRs behind the discoveries associated with 17 Nobel Prizes, 11 in Physiology or Medicine and 6 in Chemistry. The Nobel Laureates themselves did not always mention that the proteins underlying the phenomena investigated in their award-winning studies are in fact IDPs or contain IDRs. In several cases, IDP- or IDR-based molecular functions have been elucidated, while in other instances, it is recognized that the respective protein(s) contain IDRs, but the specific IDR-based molecular functions have yet to be determined. To highlight the importance of IDPs and IDRs as general principle in biology, we present here illustrative examples of IDPs/IDRs in Nobel Prize-winning mechanisms and processes.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Marina Abd El Malek
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Twinkle Bhatia
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julian Bender
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Christin Brankatschk
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jaime Calvo Sánchez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Alessio Di Ianni
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Dailen Garcia-Martinez
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Julia Hesselbarth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Janett Köppen
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Luca M Lauth
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Laurin Lippik
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Machner
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Shubhra Sachan
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Lisa Schmidt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Robin Selle
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ioannis Skalidis
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oleksandr Sorokin
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniele Ubbiali
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Bruno Voigt
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alice Wedler
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan An Jung Wei
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Zorn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Alan Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Marcel Köhn
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Andrea Sinz
- Research Training Group RTG2467, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
13
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
14
|
Li X, Cao G, Liu X, Tang TS, Guo C, Liu H. Polymerases and DNA Repair in Neurons: Implications in Neuronal Survival and Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:852002. [PMID: 35846567 PMCID: PMC9279898 DOI: 10.3389/fncel.2022.852002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Most of the neurodegenerative diseases and aging are associated with reactive oxygen species (ROS) or other intracellular damaging agents that challenge the genome integrity of the neurons. As most of the mature neurons stay in G0/G1 phase, replication-uncoupled DNA repair pathways including BER, NER, SSBR, and NHEJ, are pivotal, efficient, and economic mechanisms to maintain genomic stability without reactivating cell cycle. In these progresses, polymerases are prominent, not only because they are responsible for both sensing and repairing damages, but also for their more diversified roles depending on the cell cycle phase and damage types. In this review, we summarized recent knowledge on the structural and biochemical properties of distinct polymerases, including DNA and RNA polymerases, which are known to be expressed and active in nervous system; the biological relevance of these polymerases and their interactors with neuronal degeneration would be most graphically illustrated by the neurological abnormalities observed in patients with hereditary diseases associated with defects in DNA repair; furthermore, the vicious cycle of the trinucleotide repeat (TNR) and impaired DNA repair pathway is also discussed. Unraveling the mechanisms and contextual basis of the role of the polymerases in DNA damage response and repair will promote our understanding about how long-lived postmitotic cells cope with DNA lesions, and why disrupted DNA repair contributes to disease origin, despite the diversity of mutations in genes. This knowledge may lead to new insight into the development of targeted intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Li
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Xiaoling Li
| | - Guanghui Cao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Xiaokang Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, Qinhuangdao, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Caixia Guo
- Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- *Correspondence: Caixia Guo
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Hongmei Liu
| |
Collapse
|
15
|
Kitamura K, Fukano K, Que L, Li Y, Wakae K, Muramatsu M. Activities of endogenous APOBEC3s and uracil-DNA-glycosylase affect the hypermutation frequency of hepatitis B virus cccDNA. J Gen Virol 2022; 103. [PMID: 35438620 DOI: 10.1099/jgv.0.001732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Lusheng Que
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| |
Collapse
|
16
|
Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nat Commun 2022; 13:165. [PMID: 35013197 PMCID: PMC8748498 DOI: 10.1038/s41467-021-27639-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Proteome-wide measurements of protein turnover have largely ignored the impact of post-translational modifications (PTMs). To address this gap, we employ stable isotope labeling and mass spectrometry to measure the turnover of >120,000 peptidoforms including >33,000 phosphorylated, acetylated, and ubiquitinated peptides for >9,000 native proteins. This site-resolved protein turnover (SPOT) profiling discloses global and site-specific differences in turnover associated with the presence or absence of PTMs. While causal relationships may not always be immediately apparent, we speculate that PTMs with diverging turnover may distinguish states of differential protein stability, structure, localization, enzymatic activity, or protein-protein interactions. We show examples of how the turnover data may give insights into unknown functions of PTMs and provide a freely accessible online tool that allows interrogation and visualisation of all turnover data. The SPOT methodology is applicable to many cell types and modifications, offering the potential to prioritize PTMs for future functional investigations. Post-translational modifications (PTMs) can regulate cellular protein function but their global impact on protein turnover is largely unknown. Here, the authors develop proteomic workflows to profile PTM-resolved protein turnover and analyze the effects of phosphorylation, acetylation and ubiquitination.
Collapse
|
17
|
A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules 2021; 26:molecules26216668. [PMID: 34771075 PMCID: PMC8587785 DOI: 10.3390/molecules26216668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.
Collapse
|
18
|
Ligasová A, Rosenberg I, Bocková M, Homola J, Koberna K. Anchored linear oligonucleotides: the effective tool for the real-time measurement of uracil DNA glycosylase activity. Open Biol 2021; 11:210136. [PMID: 34665968 PMCID: PMC8526170 DOI: 10.1098/rsob.210136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Base excision repair is one of the important DNA repair mechanisms in cells. The fundamental role in this complex process is played by DNA glycosylases. Here, we present a novel approach for the real-time measurement of uracil DNA glycosylase activity, which employs selected oligonucleotides immobilized on the surface of magnetic nanoparticles and Förster resonance energy transfer. We also show that the approach can be performed by surface plasmon resonance sensor technology. We demonstrate that the immobilization of oligonucleotides provides much more reliable data than the free oligonucleotides including molecular beacons. Moreover, our results show that the method provides the possibility to address the relationship between the efficiency of uracil DNA glycosylase activity and the arrangement of the used oligonucleotide probes. For instance, the introduction of the nick into oligonucleotide containing the target base (uracil) resulted in the substantial decrease of uracil DNA glycosylase activity of both the bacterial glycosylase and glycosylases naturally present in nuclear lysates.
Collapse
Affiliation(s)
- Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 182 51 Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 182 51 Prague, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
19
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
20
|
Perkins JL, Zhao L. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions. DNA Repair (Amst) 2021; 101:103077. [PMID: 33640758 DOI: 10.1016/j.dnarep.2021.103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
The presence of uracil in DNA calls for rapid removal facilitated by the uracil-DNA glycosylase superfamily of enzymes, which initiates the base excision repair (BER) pathway. In humans, uracil excision is accomplished primarily by the human uracil-DNA glycosylase (hUNG) enzymes. In addition to BER, hUNG enzymes play a key role in somatic hypermutation to generate antibody diversity. hUNG has several isoforms, with hUNG1 and hUNG2 being the two major isoforms. Both isoforms contain disordered N-terminal domains, which are responsible for a wide range of functions, with minimal direct impact on catalytic efficiency. Subcellular localization of hUNG enzymes is directed by differing N-terminal sequences, with hUNG1 dedicated to mitochondria and hUNG2 dedicated to the nucleus. An alternative isoform of hUNG1 has also been identified to localize to the nucleus in mouse and human cell models. Furthermore, hUNG2 has been observed at replication forks performing both pre- and post-replicative uracil excision to maintain genomic integrity. Replication protein A (RPA) and proliferating cell nuclear antigen (PCNA) are responsible for recruitment to replication forks via protein-protein interactions with the N-terminus of hUNG2. These interactions, along with protein degradation, are regulated by various post-translational modifications within the N-terminal tail, which are primarily cell-cycle dependent. Finally, translocation on DNA is also mediated by interactions between the N-terminus and DNA, which is enhanced under molecular crowding conditions by preventing diffusion events and compacting tail residues. This review summarizes recent research supporting the emerging roles of the N-terminal domain of hUNG.
Collapse
Affiliation(s)
- Jacob L Perkins
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States
| | - Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
21
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
22
|
Iveland TS, Hagen L, Sharma A, Sousa MML, Sarno A, Wollen KL, Liabakk NB, Slupphaug G. HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. J Transl Med 2020; 18:159. [PMID: 32264925 PMCID: PMC7137348 DOI: 10.1186/s12967-020-02318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines. METHODS Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells. RESULTS SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells. CONCLUSION We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Collapse
Affiliation(s)
- Tobias S Iveland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway.,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Kristian Lied Wollen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health, Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim, Norway. .,Proteomics and Modomics Experimental Core, PROMEC, at NTNU and the Central Norway Regional Health Authority, Stjørdal, Norway.
| |
Collapse
|
23
|
Weiser BP. Analysis of uracil DNA glycosylase (UNG2) stimulation by replication protein A (RPA) at ssDNA-dsDNA junctions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140347. [PMID: 31866506 DOI: 10.1016/j.bbapap.2019.140347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Replication Protein A (RPA) is a single-stranded DNA binding protein that interacts with DNA repair proteins including Uracil DNA Glycosylase (UNG2). Here, I report DNA binding and activity assays using purified recombinant RPA and UNG2. Using synthetic DNA substrates, RPA was found to promote UNG2's interaction with ssDNA-dsDNA junctions regardless of the DNA strand polarity surrounding the junction. RPA stimulated UNG2's removal of uracil bases paired with adenine or guanine in DNA as much as 17-fold when the uracil was positioned 21 bps from ssDNA-dsDNA junctions, and the largest degree of UNG2 stimulation occurred when RPA was in molar excess compared to DNA. I found that RPA becomes sequestered on ssDNA regions surrounding junctions which promotes its spatial targeting of UNG2 near the junction. However, when RPA concentration exceeds free ssDNA, RPA promotes UNG2's activity without spatial constraints in dsDNA regions. These effects of RPA on UNG2 were found to be mediated primarily by interactions between RPA's winged-helix domain and UNG2's N-terminal domain, but when the winged-helix domain is unavailable, a secondary interaction between UNG2's N-terminal domain and RPA can occur. This work supports a widespread role for RPA in stimulating uracil base excision repair.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
24
|
Rodriguez G, Orris B, Majumdar A, Bhat S, Stivers JT. Macromolecular crowding induces compaction and DNA binding in the disordered N-terminal domain of hUNG2. DNA Repair (Amst) 2019; 86:102764. [PMID: 31855846 DOI: 10.1016/j.dnarep.2019.102764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/15/2022]
Abstract
Many human DNA repair proteins have disordered domains at their N- or C-termini with poorly defined biological functions. We recently reported that the partially structured N-terminal domain (NTD) of human uracil DNA glycosylase 2 (hUNG2), functions to enhance DNA translocation in crowded environments and also targets the enzyme to single-stranded/double-stranded DNA junctions. To understand the structural basis for these effects we now report high-resolution heteronuclear NMR studies of the isolated NTD in the presence and absence of an inert macromolecular crowding agent (PEG8K). Compared to dilute buffer, we find that crowding reduces the degrees of freedom for the structural ensemble, increases the order of a PCNA binding motif and dramatically promotes binding of the NTD for DNA through a conformational selection mechanism. These findings shed new light on the function of this disordered domain in the context of the crowded nuclear environment.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Benjamin Orris
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States.
| |
Collapse
|
25
|
Sarno A, Lundbæk M, Liabakk NB, Aas PA, Mjelle R, Hagen L, Sousa MML, Krokan HE, Kavli B. Uracil-DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil. Nucleic Acids Res 2019; 47:4569-4585. [PMID: 30838409 PMCID: PMC6511853 DOI: 10.1093/nar/gkz145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair.
Collapse
Affiliation(s)
- Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Marie Lundbæk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
26
|
Weiser BP, Rodriguez G, Cole PA, Stivers JT. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res 2019; 46:7169-7178. [PMID: 29917162 PMCID: PMC6101581 DOI: 10.1093/nar/gky525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA–dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA–dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias for uracil located <10 bp from the junction, but only when the overhang had a 5′ end. Biased targeting required the NTD and was not observed with the hUNG2 catalytic domain alone. Consistent with this requirement, the isolated NTD was found to bind weakly to ssDNA. These findings indicate that the NTD of hUNG2 targets the enzyme to ssDNA–dsDNA junctions using RPA-dependent and RPA-independent mechanisms. This structure-based specificity may promote efficient removal of uracils that arise from dUTP incorporation during DNA replication, or additionally, uracils that arise from DNA cytidine deamination at transcriptional R-loops during immunoglobulin class-switch recombination.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Gaddiel Rodriguez
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James T Stivers
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
28
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
29
|
Buchinger E, Wiik SÅ, Kusnierczyk A, Rabe R, Aas PA, Kavli B, Slupphaug G, Aachmann FL. Backbone 1H, 13C and 15N chemical shift assignment of full-length human uracil DNA glycosylase UNG2. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:15-22. [PMID: 28879561 DOI: 10.1007/s12104-017-9772-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Human uracil N-glycosylase isoform 2-UNG2 consists of an N-terminal intrinsically disordered regulatory domain (UNG2 residues 1-92, 9.3 kDa) and a C-terminal structured catalytic domain (UNG2 residues 93-313, 25.1 kDa). Here, we report the backbone 1H, 13C, and 15N chemical shift assignment as well as secondary structure analysis of the N-and C-terminal domains of UNG2 representing the full-length UNG2 protein.
Collapse
Affiliation(s)
- Edith Buchinger
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Siv Å Wiik
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Anna Kusnierczyk
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Renana Rabe
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per A Aas
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Bodil Kavli
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
30
|
Kara H, Ponchon L, Bouaziz S. Backbone resonance assignment of the human uracil DNA glycosylase-2. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:37-42. [PMID: 28940147 DOI: 10.1007/s12104-017-9776-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
The HIV-1 viral protein R (Vpr) is incorporated into virus particle during budding suggesting that its presence in the mature virion is required in the early steps of the virus life cycle in newly infected cells. Vpr is released into the host cell cytoplasm to participate to the translocation of the preintegration complex (PIC) into the nucleus for integration of the viral DNA into the host genome. Actually, Vpr plays a key role in the activation of the transcription of the HIV-1 long terminal repeat (LTR), mediates cell cycle arrest in G2 to M transition, facilitates apoptosis and controls the fidelity of reverse transcription. Moreover, Vpr drives the repair enzyme uracil DNA glycosylase (UNG2) towards degradation. UNG2 has a major role in "Base excision repair" (BER) whose main function is to maintain genome integrity by controlling DNA uracilation. The interaction of Vpr with the cellular protein UNG2 is a key event in various stages of retroviral replication and its role remains to be defined. We have performed the structural study of UNG2 by NMR and we report its (1HN, 15N, 13Cα, 13Cβ and 13C') chemical shift backbone assignment and its secondary structure in solution as predicted by TALOS-N. We aim to determine with accuracy by NMR, the residues of UNG2 interacting with Vpr, characterize their interaction and use the local structure of UNG2 and its interface with Vpr to propose potential ligands disturbing this interaction.
Collapse
Affiliation(s)
- Hesna Kara
- Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, 4 Av. de l'Observatoire, Paris, France
| | - Luc Ponchon
- Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, 4 Av. de l'Observatoire, Paris, France
| | - Serge Bouaziz
- Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, 4 Av. de l'Observatoire, Paris, France.
| |
Collapse
|
31
|
Esadze A, Rodriguez G, Weiser BP, Cole PA, Stivers JT. Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells. Nucleic Acids Res 2017; 45:12413-12424. [PMID: 29036472 PMCID: PMC5716149 DOI: 10.1093/nar/gkx848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
DNA ‘sliding’ by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10–80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA ‘hopping’ pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Gaddiel Rodriguez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Brian P Weiser
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| |
Collapse
|
32
|
Bj Rås KØ, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj Rås M, Otterlei M. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res 2017; 45:8291-8301. [PMID: 28575236 PMCID: PMC5737410 DOI: 10.1093/nar/gkx476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.
Collapse
Affiliation(s)
- Karine Ø Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Davi M Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Caroline K S Gaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Magnar Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital and University of Oslo, N-0027 Oslo, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
33
|
Rodriguez G, Esadze A, Weiser BP, Schonhoft JD, Cole PA, Stivers JT. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation. ACS Chem Biol 2017; 12:2260-2263. [PMID: 28787572 DOI: 10.1021/acschembio.7b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear human uracil-DNA glycosylase (hUNG2) initiates base excision repair (BER) of genomic uracils generated through misincorporation of dUMP or through deamination of cytosines. Like many human DNA glycosylases, hUNG2 contains an unstructured N-terminal domain that encodes a nuclear localization signal, protein binding motifs, and sites for post-translational modifications. Although the N-terminal domain has minimal effects on DNA binding and uracil excision kinetics, we report that this domain enhances the ability of hUNG2 to translocate on DNA chains as compared to the catalytic domain alone. The enhancement is most pronounced when physiological ion concentrations and macromolecular crowding agents are used. These data suggest that crowded conditions in the human cell nucleus promote the interaction of the N-terminus with duplex DNA during translocation. The increased contact time with the DNA chain likely contributes to the ability of hUNG2 to locate densely spaced uracils that arise during somatic hypermutation and during fluoropyrimidine chemotherapy.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Alexandre Esadze
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Brian P. Weiser
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Joseph D. Schonhoft
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Philip A. Cole
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - James T. Stivers
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| |
Collapse
|
34
|
Weiser BP, Stivers JT, Cole PA. Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis. Biophys J 2017; 113:393-401. [PMID: 28746850 DOI: 10.1016/j.bpj.2017.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 11/16/2022] Open
Abstract
Uracil DNA Glycosylase (UNG2) is the primary enzyme in humans that prevents the stable incorporation of deoxyuridine monophosphate into DNA in the form of U/A basepairs. During S-phase, UNG2 remains associated with the replication fork through its interactions with two proteins, Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RPA), which are critical for DNA replication and repair. In this work, we used protein semisynthesis and fluorescence anisotropy assays to explore the interactions of UNG2 with PCNA and RPA and to determine the effects of two UNG2 phosphorylation sites (Thr6 and Tyr8) located within its PCNA-interacting motif (PIP-box). In binding assays, we found that phosphorylation of Thr6 or Tyr8 on UNG2 can impede PCNA binding without affecting UNG2 catalytic activity or its RPA interaction. Our data also suggests that unmodified UNG2, PCNA, and RPA can form a ternary protein complex. We propose that the UNG2 N-terminus may serve as a flexible scaffold to tether PCNA and RPA at the replication fork, and that post-translational modifications on the UNG2 N-terminus disrupt formation of the PCNA-UNG2-RPA protein complex.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
35
|
Alsøe L, Sarno A, Carracedo S, Domanska D, Dingler F, Lirussi L, SenGupta T, Tekin NB, Jobert L, Alexandrov LB, Galashevskaya A, Rada C, Sandve GK, Rognes T, Krokan HE, Nilsen H. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1. Sci Rep 2017; 7:7199. [PMID: 28775312 PMCID: PMC5543110 DOI: 10.1038/s41598-017-07314-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1−/− mice. We found that 5-hydroxymethyluracil accumulated in Smug1−/− tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1−/− mice did not accumulate uracil in their genome and Ung−/− mice showed slightly elevated uracil levels. Contrastingly, Ung−/−Smug1−/− mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.
Collapse
Affiliation(s)
- Lene Alsøe
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | | | - Lisa Lirussi
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Nuriye Basdag Tekin
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway.,LifeTechnologies AS, Ullernschauseen 52, 0379, Oslo, Norway
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87102, USA
| | - Anastasia Galashevskaya
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424, Oslo, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway. .,Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
36
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
37
|
D'Errico M, Parlanti E, Pascucci B, Fortini P, Baccarini S, Simonelli V, Dogliotti E. Single nucleotide polymorphisms in DNA glycosylases: From function to disease. Free Radic Biol Med 2017; 107:278-291. [PMID: 27932076 DOI: 10.1016/j.freeradbiomed.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Oxidative stress is associated with a growing number of diseases that span from cancer to neurodegeneration. Most oxidatively induced DNA base lesions are repaired by the base excision repair (BER) pathway which involves the action of various DNA glycosylases. There are numerous genome wide studies attempting to associate single-nucleotide polymorphisms (SNPs) with predispositions to various types of disease; often, these common variants do not have significant alterations in their biochemical function and do not exhibit a convincing phenotype. Nevertheless several lines of evidence indicate that SNPs in DNA repair genes may modulate DNA repair capacity and contribute to risk of disease. This overview provides a convincing picture that SNPs of DNA glycosylases that remove oxidatively generated DNA lesions are susceptibility factors for a wide disease spectrum that includes besides cancer (particularly lung, breast and gastrointestinal tract), cochlear/ocular disorders, myocardial infarction and neurodegenerative disorders which can be all grouped under the umbrella of oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Mariarosaria D'Errico
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Eleonora Parlanti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Barbara Pascucci
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | - Paola Fortini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Baccarini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valeria Simonelli
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
38
|
Folate rescues vitamin B 12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability. Proc Natl Acad Sci U S A 2017; 114:E4095-E4102. [PMID: 28461497 DOI: 10.1073/pnas.1619582114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5-35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.
Collapse
|
39
|
Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E2319-E2326. [PMID: 28265077 PMCID: PMC5373342 DOI: 10.1073/pnas.1619745114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.
Collapse
Affiliation(s)
- Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Erica R Lachenauer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Aislyn C DiRisio
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
40
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
41
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Wang Q, Kieffer-Kwon KR, Oliveira TY, Mayer CT, Yao K, Pai J, Cao Z, Dose M, Casellas R, Jankovic M, Nussenzweig MC, Robbiani DF. The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med 2016; 214:49-58. [PMID: 27998928 PMCID: PMC5206505 DOI: 10.1084/jem.20161649] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023] Open
Abstract
Wang et al. show that antibody gene deamination by activation-induced cytidine deaminase (AID) is restricted to a short time window in early G1 as a result of AID’s transient nuclear localization and accessibility of the target sites. Activation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic. Here, we show that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm. Consistent with this observation, the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G1 after chromosomes decondense. Altering the timing of cell cycle–regulated AID nuclear residence increases DNA damage at off-target sites. Thus, the cell cycle–controlled breakdown and reassembly of the nuclear membrane and the restoration of transcription after mitosis constitute an essential time window for AID-induced deamination, and provide a novel DNA damage mechanism restricted to early G1.
Collapse
Affiliation(s)
- Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Zhen Cao
- Weill Cornell Medical College and Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marei Dose
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
43
|
Baehr CA, Huntoon CJ, Hoang SM, Jerde CR, Karnitz LM. Glycogen Synthase Kinase 3 (GSK-3)-mediated Phosphorylation of Uracil N-Glycosylase 2 (UNG2) Facilitates the Repair of Floxuridine-induced DNA Lesions and Promotes Cell Survival. J Biol Chem 2016; 291:26875-26885. [PMID: 27875297 DOI: 10.1074/jbc.m116.746081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
Uracil N-glycosylase 2 (UNG2), the nuclear isoform of UNG, catalyzes the removal of uracil or 5-fluorouracil lesions that accumulate in DNA following treatment with the anticancer agents 5-fluorouracil and 5-fluorodeoxyuridine (floxuridine), a 5-fluorouracil metabolite. By repairing these DNA lesions before they can cause cell death, UNG2 promotes cancer cell survival and is therefore critically involved in tumor resistance to these agents. However, the mechanisms by which UNG2 is regulated remain unclear. Several phosphorylation sites within the N-terminal regulatory domain of UNG2 have been identified, although the effects of these modifications on UNG2 function have not been fully explored, nor have the identities of the kinases involved been determined. Here we show that glycogen synthase kinase 3 (GSK-3) interacts with and phosphorylates UNG2 at Thr60 and that Thr60 phosphorylation requires a Ser64 priming phosphorylation event. We also show that mutating Thr60 or Ser64 to Ala increases the half-life of UNG2, reduces the rate of in vitro uracil excision, and slows UNG2 dissociation from chromatin after DNA replication. Using an UNG2-deficient ovarian cancer cell line that is hypersensitive to floxuridine, we show that GSK-3 phosphorylation facilitates UNG2-dependent repair of floxuridine-induced DNA lesions and promotes tumor cell survival following exposure to this agent. These data suggest that GSK-3 regulates UNG2 and promotes DNA damage repair.
Collapse
Affiliation(s)
- Carly A Baehr
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Catherine J Huntoon
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and.,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002
| | - Song-My Hoang
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Calvin R Jerde
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Larry M Karnitz
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and .,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002.,Radiation Oncology and
| |
Collapse
|
44
|
Liu Z, Hu Y, Gong Y, Zhang W, Liu C, Wang Q, Deng H. Hydrogen peroxide mediated mitochondrial UNG1-PRDX3 interaction and UNG1 degradation. Free Radic Biol Med 2016; 99:54-62. [PMID: 27480846 DOI: 10.1016/j.freeradbiomed.2016.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/09/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
Isoform 1 of uracil-DNA glycosylase (UNG1) is the major protein for initiating base-excision repair in mitochondria and is in close proximity to the respiratory chain that generates reactive oxygen species (ROS). Effects of ROS on the stability of UNG1 have not been well characterized. In the present study, we found that overexpression of UNG1 enhanced cells' resistance to oxidative stress and protected mitochondrial DNA (mtDNA) from oxidation. Proteomics analysis showed that UNG1 bound to eight proteins in the mitochondria, including PAPSS2, CD70 antigen, and AGR2 under normal growth conditions, whereas UNG1 mainly bound to Peroxiredoxin 3 (PRDX3) via a disulfide linkage under oxidative stress. We further demonstrated that the UNG1-PRDX3 interaction protected UNG1 from ROS-mediated degradation and prevented mtDNA oxidation. Moreover, our results show that ROS-mediated UNG1 degradation was Lon protease 1 (LonP1)-dependent and mitochondrial UNG1 degradation was aggravated by knockdown of PRDX3 expression. Taken together, these results reveal a novel function of UNG1 in the recruitment of PRDX3 to mtDNA under oxidative stress, enabling protection of UNG1 and UNG1-bound DNA from ROS damage and enhancing cell resistance to oxidative stress.
Collapse
Affiliation(s)
- Zhilei Liu
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yadong Hu
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yiyi Gong
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chongdong Liu
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics and the Center of Biomedical Analsis, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
45
|
Phosphorylation Sites Identified in the NEIL1 DNA Glycosylase Are Potential Targets for the JNK1 Kinase. PLoS One 2016; 11:e0157860. [PMID: 27518429 PMCID: PMC4982613 DOI: 10.1371/journal.pone.0157860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/23/2016] [Indexed: 12/20/2022] Open
Abstract
The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells. Mass spectrometry (MS) analysis revealed phosphorylation at three serine residues: S207, S306, and a third novel site, S61. We expressed, purified, and characterized phosphomimetic (glutamate) and phosphoablating (alanine) mutants of the three phosphorylation sites in NEIL1 revealed by the MS analysis. All mutant enzymes were active and bound tightly to DNA, indicating that phosphorylation does not affect DNA binding and enzyme activity at these three serine sites. We also characterized phosphomimetic mutants of two other sites of phosphorylation, Y263 and S269, reported previously, and observed that mutation of Y263 to E yielded a completely inactive enzyme. Furthermore, based on sequence motifs and kinase prediction algorithms, we identified the c-Jun N-terminal kinase 1 (JNK1) as the kinase involved in the phosphorylation of NEIL1. JNK1, a member of the mitogen activated protein kinase (MAPK) family, was detected in NEIL1 immunoprecipitates, interacted with NEIL1 in vitro, and was able to phosphorylate the enzyme at residues S207, S306, and S61.
Collapse
|
46
|
Wu Y, Lu J, Kang T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai) 2016; 48:671-7. [PMID: 27217471 DOI: 10.1093/abbs/gmw044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.
Collapse
Affiliation(s)
- Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinping Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
47
|
Abstract
Base excision repair (BER) is an essential DNA repair pathway involved in the maintenance of genome stability and thus in the prevention of human diseases, such as premature aging, neurodegenerative diseases, and cancer. Protein posttranslational modifications (PTMs), including acetylation, methylation, phosphorylation, SUMOylation, and ubiquitylation, have emerged as important contributors in controlling cellular BER protein levels, enzymatic activities, protein-protein interactions, and protein cellular localization. These PTMs therefore play key roles in regulating the BER pathway and are consequently crucial for coordinating an efficient cellular DNA damage response. In this review, we summarize the presently available data on characterized PTMs of key BER proteins, the functional consequences of these modifications at the protein level, and also the impact on BER in vitro and in vivo.
Collapse
|
48
|
Herate C, Vigne C, Guenzel CA, Lambele M, Rouyez MC, Benichou S. Uracil DNA glycosylase interacts with the p32 subunit of the replication protein A complex to modulate HIV-1 reverse transcription for optimal virus dissemination. Retrovirology 2016; 13:26. [PMID: 27068393 PMCID: PMC4828845 DOI: 10.1186/s12977-016-0257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/27/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Through incorporation into virus particles, the HIV-1 Vpr protein participates in the early steps of the virus life cycle by influencing the reverse transcription process. We previously showed that this positive impact on reverse transcription was related to Vpr binding to the uracil DNA glycosylase 2 enzyme (UNG2), leading to enhancement of virus infectivity in established CD4-positive cell lines via a nonenzymatic mechanism. RESULTS We report here that Vpr can form a trimolecular complex with UNG2 and the p32 subunit (RPA32) of the replication protein A (RPA) complex and we explore how these cellular proteins can influence virus replication and dissemination in the primary target cells of HIV-1, which express low levels of both proteins. Virus infectivity and replication in peripheral blood mononuclear cells and monocyte-derived macrophages (MDMs), as well as the efficiency of the viral DNA synthesis, were significantly reduced when viruses were produced from cells depleted of endogenous UNG2 or RPA32. Moreover, viruses produced in macrophages failed to replicate efficiently in UNG2- and RPA32-depleted T lymphocytes. Reciprocally, viruses produced in UNG2-depleted T cells did not replicate efficiently in MDMs confirming the positive role of UNG2 for virus dissemination. CONCLUSIONS Our data show the positive effect of UNG2 and RPA32 on the reverse transcription process leading to optimal virus replication and dissemination between the primary target cells of HIV-1.
Collapse
Affiliation(s)
- Cecile Herate
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Clarisse Vigne
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Carolin A. Guenzel
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Marie Lambele
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Marie-Christine Rouyez
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Serge Benichou
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
49
|
Xue JH, Xu GF, Gu TP, Chen GD, Han BB, Xu ZM, Bjørås M, Krokan HE, Xu GL, Du YR. Uracil-DNA Glycosylase UNG Promotes Tet-mediated DNA Demethylation. J Biol Chem 2015; 291:731-8. [PMID: 26620559 DOI: 10.1074/jbc.m115.693861] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
In mammals, active DNA demethylation involves oxidation of 5-methylcytosine (5mC) into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by Tet dioxygenases and excision of these two oxidized bases by thymine DNA glycosylase (TDG). Although TDG is essential for active demethylation in embryonic stem cells and induced pluripotent stem cells, it is hardly expressed in mouse zygotes and dispensable in pronuclear DNA demethylation. To search for other factors that might contribute to demethylation in mammalian cells, we performed a functional genomics screen based on a methylated luciferase reporter assay. UNG2, one of the glycosylases known to excise uracil residues from DNA, was found to reduce DNA methylation, thus activating transcription of a methylation-silenced reporter gene when co-transfected with Tet2 into HEK293T cells. Interestingly, UNG2 could decrease 5caC from the genomic DNA and a reporter plasmid in transfected cells, like TDG. Furthermore, deficiency in Ung partially impaired DNA demethylation in mouse zygotes. Our results suggest that UNG might be involved in Tet-mediated DNA demethylation.
Collapse
Affiliation(s)
- Jian-Huang Xue
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Fang Xu
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China, the School of Life Science, Fudan University, Shanghai 200433, China
| | - Tian-Peng Gu
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Dong Chen
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin-Bin Han
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Mei Xu
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Magnar Bjørås
- the Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, P. O. Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Hans E Krokan
- the Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway, and
| | - Guo-Liang Xu
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China, the School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China
| | - Ya-Rui Du
- From the The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
50
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|