1
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
2
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the ER and into the Golgi. PLoS Biol 2025; 23:e3003084. [PMID: 40203033 PMCID: PMC12052135 DOI: 10.1371/journal.pbio.3003084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here, we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. In contrast, TMED9-inhibition did not prevent ER-export of wild-type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
Affiliation(s)
- Elsa Ronzier
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Abu-Elfotuh K, Kamel GAM, Najm MAA, Hamdan AME, Koullah MT, Fahmy RKE, Aboelsoud HA, Alghusn MA, Albalawi BR, Atwa AM, Abdelhakim KR, Elsharkawy AMA, Mohamed EK, Abdou NS, Almotairi R, Salem HA, Gowifel AMH. Modulating Multiple Molecular Trajectories by Nutraceuticals and/or Physical Activity in Attention-Deficit/Hyperactivity Disorder (ADHD)-Like Behaviors in Rat Pups. J Neuroimmune Pharmacol 2025; 20:27. [PMID: 40102360 PMCID: PMC11920304 DOI: 10.1007/s11481-025-10188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition affecting cognitive and social functions all over childhood. Monosodium glutamate (MSG) is a common food additive associated with ADHD-like symptoms in children. Nutraceuticals, like sesamol (SE) and astaxanthin (AST), or physical activity (PHA) were reported to possess beneficial effects on human health. Meanwhile, still their neuroprotective effect against ADHD has been poorly investigated. This study aimed to investigate the impact of SE, AST and PHA either separately or combined on ADHD-like behaviors induced by MSG in rat pups. Eighty-four male Sprague Dawley rat pups were randomly allocated into seven groups; control, MSG, (PHA + MSG), (SE + MSG), (AST + MSG), (SE + AST + MSG), and (COMB [PHA + SE + AST] + MSG) and treated for eight weeks. MSG-induced ADHD-like behavior was evaluated, via assessing behavioral outcomes; neurotransmitters' levels; five pathway biomarkers, coupled with histopathological and immunohistochemical studies. Rats exposed to PHA or treated with SE or AST either separately or combined exhibited enhanced attention, locomotor, and cognitive abilities, compared to MSG-intoxicated group. All treatments remarkably improved MSG-induced abnormalities in neurotransmitters' levels; biochemical markers; along with histological findings, via modulating HMGB1/RAGE/JAK-2/STAT-3, PI3K/AKT/CREB/BDNF, AMPK/SIRT-1 and PERK/CHOP pathways. Nevertheless, the combination of PHA with nutraceuticals (SE and AST) elicited more favorable effects in all measured parameters and histological findings, compared to other treated groups. In conclusion, this study revealed the superiority of the combination of nutraceuticals with PHA, over other standalone treatments, in amelioration of MSG-induced ADHD-like behaviors in rat pups, via fine-tuning of HMGB1/RAGE, PI3K/AKT/CREB/BDNF, AMPK/SIRT-1 and PERK/CHOP pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, An Nasiriyah, AUIQ, Iraq
| | - Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Department of Pharmacology & Toxicology, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Mazin A A Najm
- Department of Pharmacy, Mazaya University College, Thi-Qar, Nasiriyah, Iraq
| | - Ahmed M E Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia.
- Prince Fahad Bin Sultan Chair for Biomedical Research (PFSCBR), University of Tabuk, Tabuk, Saudi Arabia.
| | - Mona T Koullah
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Rasha K E Fahmy
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Heba Abdelnaser Aboelsoud
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo, 11884, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manar A Alghusn
- Faculty of Pharmacy, University of Tabuk, 74191, Tabuk, Saudi Arabia
| | - Budor R Albalawi
- Faculty of Pharmacy, University of Tabuk, 74191, Tabuk, Saudi Arabia
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, An Nasiriyah, AUIQ, Iraq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Khaled R Abdelhakim
- Histology Department, Misr University for Science and Technology, Cairo, Egypt
| | | | - Ehsan K Mohamed
- Biochemistry Department Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Nada S Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Reema Almotairi
- Prince Fahad Bin Sultan Chair for Biomedical Research (PFSCBR), University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hoda A Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt
| |
Collapse
|
4
|
He Y, Sun F, Song C, Liu Y, Wang R, Wang Y, Sun X, Juan Z, Wang Y. Clemastine fumarate alleviates endoplasmic reticulum stress through the Nur77/GFPT2/CHOP pathway after ischemia/reperfusion in rat hearts. Int Immunopharmacol 2025; 149:114242. [PMID: 39929094 DOI: 10.1016/j.intimp.2025.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND PURPOSE Clemastine fumarate (CLE) is an H1 receptor (H1R) antagonist that is used clinically to treat various allergic disorders. It blocks histamine release from mast cells and inhibits H1R. Preliminary studies have shown that CLE can reduce myocardial ischemia/reperfusion (I/R) injury. In this study, we confirmed the efficacy of CLE against myocardial I/R injury using in vivo and in vitro examinations. EXPERIMENTAL APPROACH To test the efficacy of CLE against myocardial I/R injury, we established a rat model of myocardial hypoxia/reperfusion injury. A series of assessments were conducted to determine cardiac function, measure areas of myocardial infarction, and analyze the histopathological changes. Additionally, we developed a rat model of cardiomyocyte hypoxia/reoxygenation (H/R); in both models, we quantified the expression levels of key markers and cardiac injury-specific proteins to assess the biochemical milieu influenced by CLE treatment. KEY RESULTS Our findings demonstrated that CLE reduced the expression of nerve growth factor-induced gene B (Nur77), glutamine-fructose-6-phosphate transaminase 2 (GFPT2), and C/EBP homologous protein (CHOP) and decreased the area of myocardial infarction and the degree of endoplasmic reticulum stress. CLE pretreatment ameliorated abnormal fibers and myocardial edema and reduced the inflammatory cell infiltration caused by I/R injury. While Nur77 overexpression aggravated cardiac function, these effects were ameliorated by the downregulation of Nur77. CONCLUSION AND IMPLICATIONS We anticipate that these results validate the hypothesis that CLE mitigates apoptosis and reduces endogenous stress within myocardial cells by modulating Nur77, GFPT2, and CHOP expression. These findings elucidate the therapeutic mechanisms by which CLE alleviates myocardial I/R injury. In addition, they will serve as a new theoretical foundation for developing future treatment strategies and enhancing clinical applications in cardiac care.
Collapse
Affiliation(s)
- Yuling He
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Fan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Caixuan Song
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Yongxin Liu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Rouguo Wang
- Hospital of Shandong Second Medical University China
| | - Yingmeng Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China
| | - Xiaotong Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China.
| | - Zhaodong Juan
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province School of Anesthesiology Shandong Second Medical University China.
| | | |
Collapse
|
5
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
6
|
Kumar P, Mishra T, Sanyam, Mondal A, Basu S. Triphenylamine-Naphthalimide-Based "On-Off-On" AIEgen for Imaging Golgi Apparatus and Endoplasmic Reticulum. ACS APPLIED BIO MATERIALS 2025; 8:1524-1532. [PMID: 39835412 DOI: 10.1021/acsabm.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Golgi apparatus (GA) and endoplasmic reticulum (ER) are two of the interesting subcellular organelles that are critical for protein synthesis, folding, processing, post-translational modifications, and secretion. Consequently, dysregulation in GA and ER and cross-talk between them are implicated in numerous diseases including cancer. As a result, simultaneous visualization of the GA and ER in cancer cells is extremely crucial for developing cancer therapeutics. To address this, herein, we have designed and synthesized a 1,8-napthalimide-based small molecule (AIE-GA-ER) consisting of phenylsulfonamide as Golgi-ER homing and triphenylamine-napthalimide as aggregation-induced emission (AIE) triggering moieties. AIE-GA-ER exhibited remarkable "on-off-on" AIE properties in THF/water binary solvent system due to aggregated "on-state" in pure THF and 80% water in THF. Molecular dynamic simulations and density functional theory (DFT) calculations exhibited the underlying mechanism of the emissive property of AIE-GA-ER to be the interplay between intramolecular charge transfer (ICT) stabilization and aggregation in THF, DMSO, and water. AIE-GA-ER efficiently homed into the GA and ER of HCT-116 colon cancer cells within 15-30 min as well as noncancerous human retinal epithelial pigment cells (RPE-1) within 3 h with minimum toxicity. This AIEgen has the potential to illuminate the Golgi apparatus and ER simultaneously in cancer cells to understand the chemical biology of their cross-talk for next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Phanindra Kumar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sanyam
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
7
|
Ronzier E, Satpute-Krishnan P. TMED9 coordinates the clearance of misfolded GPI-anchored proteins out of the endoplasmic reticulum and into the Golgi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.27.615420. [PMID: 39974996 PMCID: PMC11838446 DOI: 10.1101/2024.09.27.615420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The p24-family member, TMED9, has recently emerged as a player in secretory pathway protein quality control (PQC) that influences the trafficking and degradation of misfolded proteins. Here we show that TMED9 plays a central role in the PQC of GPI-anchored proteins (GPI-APs). Typically, upon release from the endoplasmic reticulum (ER)-resident chaperone calnexin, misfolded GPI-APs traffic to the Golgi by an ER-export pathway called Rapid ER stress-induced Export (RESET). From the Golgi, they access the plasma membrane where they are rapidly internalized for lysosomal degradation. We used biochemical and imaging approaches in cultured cells to demonstrate that at steady-state, the majority of misfolded GPI-APs reside in the ER in association with calnexin and TMED9. During RESET, they dissociate from calnexin and increase their association with TMED9. Inhibition of TMED9's function through siRNA-induced depletion or chemical inhibitor, BRD4780, blocked ER-export of misfolded GPI-APs. By contrast, TMED9-inhibition did not prevent ER-export of wild type GPI-APs, indicating a specific role for TMED9 in GPI-AP PQC. Intriguingly, we discovered that acute treatment with BRD4780 induced a shift in TMED9 localization away from the ER to the downstream Golgi cisternae and blocked the RESET pathway. Upon removal of BRD4780 following acute treatment, TMED9 regained access to the ER where TMED9 was able to associate with the RESET substrate and restore the RESET pathway. These results suggest that TMED9 plays a requisite role in RESET by capturing misfolded GPI-APs that are released by calnexin within the ER and conveying them to the Golgi.
Collapse
|
8
|
Mishra T, Preeti, Ingle J, Saha A, Basu S. Relocating NSAIDs into the endoplasmic reticulum induces ER stress-mediated apoptosis in cancer cells. RSC Med Chem 2025:d4md00936c. [PMID: 39911136 PMCID: PMC11791515 DOI: 10.1039/d4md00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
The endoplasmic reticulum (ER) is a vital subcellular organelle that orchestrates numerous essential biological processes, including protein synthesis and processing. Disruption of ER function can lead to ER stress, a condition closely associated with the progression and development of cancer. Consequently, inducing ER stress in cancer cells has emerged as an unconventional yet promising therapeutic approach. However, selectively targeting the ER within cancer cells remains a significant challenge. To address this, we have designed and synthesized a novel small-molecule library composed of non-steroidal anti-inflammatory drugs (NSAIDs), fluorescent probes, and ER-targeting moieties. Through screening the library in cancer cells, we identified a promising compound: an ibuprofen derivative conjugated with a dansyl group as a dual fluorescence tag and ER-targeting moiety. This ibuprofen derivative successfully localized into the ER of HCT-116 colon cancer cells within 3 h, induced ER stress by upregulating key stress markers such as CHOP, GRP94, IRE-1α, PERK, and Cas-12, while simultaneously inhibiting Cox-2. The resulting ER stress triggered autophagy by upregulating Beclin and LC3-II/LC3-I as autophagy markers, followed by apoptosis, culminating in significant cancer cell death, particularly when combined with bafilomycin A, 10-hydroxycamptothecin and obatoclax. This NSAID-based ER stress inducer provides a powerful tool for exploring the chemical biology of NSAIDs in the ER and holds great potential for advancing ER-targeted cancer therapies in combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Preeti
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Aditi Saha
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| |
Collapse
|
9
|
Giannone C, Mess X, He R, Chelazzi MR, Mayer A, Bakunts A, Nguyen T, Bushman Y, Orsi A, Gansen B, Degano M, Buchner J, Sitia R. How J-chain ensures the assembly of immunoglobulin IgM pentamers. EMBO J 2025; 44:505-533. [PMID: 39632981 PMCID: PMC11729874 DOI: 10.1038/s44318-024-00317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Polymeric IgM immunoglobulins have high avidity for antigen and complement, and dominate primary antibody responses. They are produced either as assemblies of six µ2L2 subunits (i.e., hexamers), or as pentamers of two µ2L2 subunits and an additional protein termed J-chain (JC), which allows transcytosis across epithelia. The molecular mechanism of IgM assembly with the desired stoichiometry remained unknown. Here, we show in vitro and in cellula that JC outcompetes the sixth IgM subunit during assembly. Before insertion into IgM, JC exists as an ensemble of largely unstructured, protease-sensitive species with heterogeneous, non-native disulfide bonds. The J-chain interacts with the hydrophobic β-sheets selectively exposed by nascent pentamers. Completion of an amyloid-like core triggers JC folding and drives disulfide rearrangements that covalently stabilize JC-containing pentamers. In cells, the quality control factor ERp44 surveys IgM assembly and prevents the secretion of aberrant conformers. This mechanism allows the efficient production of high-avidity IgM for systemic or mucosal immunity.
Collapse
Affiliation(s)
- Chiara Giannone
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, USA.
| | - Xenia Mess
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Ruiming He
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Maria Rita Chelazzi
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Annika Mayer
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Anush Bakunts
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Tuan Nguyen
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Yevheniia Bushman
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Andrea Orsi
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Benedikt Gansen
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany
| | - Massimo Degano
- Division of Immunology and Infectious Diseases. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy
| | - Johannes Buchner
- Technical University Munich, School of Natural Science, Department of Bioscience, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85748, Garching, Germany.
| | - Roberto Sitia
- Division of Genetics and Cell Biology. Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan, IT, Italy.
| |
Collapse
|
10
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
11
|
Zheng Y, Luo Y, Tang K. Bioinformatics Analysis and Experimental Validation of Endoplasmic Reticulum Stress-Related Genes in Osteoporosis. Int J Gen Med 2024; 17:5359-5371. [PMID: 39582915 PMCID: PMC11583764 DOI: 10.2147/ijgm.s486776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is closely associated with Osteoporosis (OP). In order to explore the role of ERS related genes in OP and its molecular mechanism. Methods OP-related transcriptome data were retrieved from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to screen OP-related genes. Differentially expressed ERS-related genes (DE-ERSGs) between OP and controls were identified by overlapping OP-related, differentially expressed genes (DEGs), and ERS-related genes. ERS-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore their functions. Receiver operating characteristic (ROC) curves assessed the diagnostic value of DE-ERSGs, and comparative toxicogenomics database (CTD) was used to predict targeting agents for key DE-ERSGs. Finally, biomarker expression was verified by real time quantitative polymerase chain reaction (RT-qPCR). Results A total of 10 DE-ERSGs were screened in OP patients. GO and KEGG analyses indicated their enrichment in Alcoholic liver disease, Endometrial cancer, and Glycerolipid metabolism. ROC curve analysis revealed that RPN2, FOXO3, ERGIC2, and MYO9A had significant diagnostic value, thus being identified as key DE-ERSGs. Moreover, the key DE-ERSGs-drug interaction network showed that some drugs such as bisphenol A, Cisplatin, Cyclosporine, and Valproic Acid might play roles by targeting key DE-ERSGs in OP. The expression validation analysis of key DE-ERSGs revealed that RPN2, ERGIC2, and MYO9A was significantly expressed in the GSE62402. Ultimately, The blood samples RT-qPCR verification results show that RPN2, ERGIC2, and MYO9A were significantly lower in OP samples compared to normal samples (p < 0.05), whereas there was no difference in the expression levels of FOXO3. Conclusion RPN2, FOXO3, ERGIC2 and MYO9A as the biomarkers associated with ERS in OP by bioinformatics analysis, which may provide new biological targets for clinical treatment.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Yonggui Luo
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Kuihan Tang
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| |
Collapse
|
12
|
Sun Z, Wang J, Ji Z, Ma J, Chen Y, Jiao G. Ortho-silicic Acid Prevents Glucocorticoid-Induced Femoral Head Necrosis by Promoting Akt Phosphorylation to Inhibit Endoplasmic Reticulum Stress-Mediated Apoptosis and Enhance Angiogenesis and Osteogenesis. Biol Trace Elem Res 2024; 202:4988-4999. [PMID: 38177717 DOI: 10.1007/s12011-023-04048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (SONFH) is the most prevalent form of secondary osteonecrosis affecting the femoral head. Glucocorticoids can cause damage to both vascular endothelial cells and osteoblasts. Previous studies have demonstrated that silicon can improve the resistance of vascular endothelial cells to oxidative stress and positively impact bone health. However, the impact of silicon on SONFH has yet to be investigated. We examined the influence of ortho-silicic acid (OSA, Si(OH)4) on the apoptosis and proliferation of vascular endothelial cells after glucocorticoid induction. Additionally, we evaluated the expression of apoptosis-related genes such as cleaved-caspase-3, Bcl-2 and Bax. The impact of glucocorticoids and OSA on the function of vascular endothelial cells was evaluated through wound healing, transwell and angiogenesis assays. Osteogenic function was subsequently evaluated through alizarin red staining, alkaline phosphatase staining and expression levels of osteogenic genes like RUNX2 and ALP. Moreover, we investigated the potential role of OSA in vivo using the SONFH animal model. At concentrations below 100 μM, OSA exhibits no toxicity on vascular endothelial cells and effectively reverses glucocorticoid-induced apoptosis in these cells. OSA increases the resilience of vascular endothelial cells against oxidative stress and enhances osteoblast differentiation. Our study revealed that glucocorticoids activate endoplasmic reticulum stress, a process that mediates the apoptosis of vascular endothelial cells. OSA ameliorated the endoplasmic reticulum stress associated with glucocorticoids through the increased expression of p-Akt levels. In vivo, OSA treatment effectively improved SONFH by enhancing vascular endothelial cell function and promoting osteogenic differentiation. OSA counteracted the adverse effects of glucocorticoids both in vitro and in vivo, demonstrating a beneficial therapeutic effect on SONFH.
Collapse
Affiliation(s)
- Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China
- Shandong University, Wenhuaxi Road 107, Jinan, Shandong Province, People's Republic of China
| | - Jian Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China
- Shandong University, Wenhuaxi Road 107, Jinan, Shandong Province, People's Republic of China
| | - Zhongjie Ji
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China
- Shandong University, Wenhuaxi Road 107, Jinan, Shandong Province, People's Republic of China
| | - Jinlong Ma
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China
- Shandong University, Wenhuaxi Road 107, Jinan, Shandong Province, People's Republic of China
| | - Yunzhen Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China.
| | - Guangjun Jiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
13
|
Wu H, Huo H, Li H, Zhang H, Li X, Han Q, Liao J, Tang Z, Guo J. N-acetylcysteine combined with insulin therapy can reduce myocardial injury induced by type 1 diabetes through the endoplasmic reticulum pathway. Tissue Cell 2024; 90:102515. [PMID: 39146674 DOI: 10.1016/j.tice.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.
Collapse
Affiliation(s)
- Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hongyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Orsi A, van Anken E, Vitale M, Zamai M, Caiolfa VR, Sitia R, Bakunts A. Congress of multiple dimers is needed for cross-phosphorylation of IRE1α and its RNase activity. Life Sci Alliance 2024; 7:e202302562. [PMID: 38886017 PMCID: PMC11184514 DOI: 10.26508/lsa.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The unfolded protein response can switch from a pro-survival to a maladaptive, pro-apoptotic mode. During ER stress, IRE1α sensors dimerize, become phosphorylated, and activate XBP1 splicing, increasing folding capacity in the ER protein factory. The steps that turn on the IRE1α endonuclease activity against endogenous mRNAs during maladaptive ER stress are still unknown. Here, we show that although necessary, IRE1α dimerization is not sufficient to trigger phosphorylation. Random and/or guided collisions among IRE1α dimers are needed to elicit cross-phosphorylation and endonuclease activities. Thus, reaching a critical concentration of IRE1α dimers in the ER membrane is a key event. Formation of stable IRE1α clusters is not necessary for RNase activity. However, clustering could modulate the potency of the response, promoting interactions between dimers and decreasing the accessibility of phosphorylated IRE1α to phosphatases. The stepwise activation of IRE1α molecules and their low concentration at the steady state prevent excessive responses, unleashing full-blown IRE1 activity only upon intense stress conditions.
Collapse
Affiliation(s)
- Andrea Orsi
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Eelco van Anken
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Milena Vitale
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Valeria R Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Center for Experimental Imaging, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Anush Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
| |
Collapse
|
16
|
Holzer E, Martens S, Tulli S. The Role of ATG9 Vesicles in Autophagosome Biogenesis. J Mol Biol 2024; 436:168489. [PMID: 38342428 DOI: 10.1016/j.jmb.2024.168489] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Autophagy mediates the degradation and recycling of cellular material in the lysosomal system. Dysfunctional autophagy is associated with a plethora of diseases including uncontrolled infections, cancer and neurodegeneration. In macroautophagy (hereafter autophagy) this material is encapsulated in double membrane vesicles, the autophagosomes, which form upon induction of autophagy. The precursors to autophagosomes, referred to as phagophores, first appear as small flattened membrane cisternae, which gradually enclose the cargo material as they grow. The assembly of phagophores during autophagy initiation has been a major subject of investigation over the past decades. A special focus has been ATG9, the only conserved transmembrane protein among the core machinery. The majority of ATG9 localizes to small Golgi-derived vesicles. Here we review the recent advances and breakthroughs regarding our understanding of how ATG9 and the vesicles it resides in serve to assemble the autophagy machinery and to establish membrane contact sites for autophagosome biogenesis. We also highlight open questions in the field that need to be addressed in the years to come.
Collapse
Affiliation(s)
- Elisabeth Holzer
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, Vienna, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Susanna Tulli
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Vienna, Austria.
| |
Collapse
|
17
|
Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia-reperfusion injury by elevating plasma adiponectin. Cardiovasc Res 2024; 120:954-970. [PMID: 38252884 PMCID: PMC11218692 DOI: 10.1093/cvr/cvae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.
Collapse
Affiliation(s)
- Lin Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Megan L Shipton
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
18
|
Liu M, Sheng Y, Guo F, Wu J, Huang Y, Yang X, Wang M, Zhang S, Li P. Therapeutic potential of esculetin in various cancer types (Review). Oncol Lett 2024; 28:305. [PMID: 38774454 PMCID: PMC11106741 DOI: 10.3892/ol.2024.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Esculetin (Esc), a coumarin derivative and herbal medicinal compound used in traditional Chinese medicine, is extracted from Fraxinus chinensis. Esc has shown notable potential in the inhibition of proliferation, metastasis and cell cycle arrest in various cancer cell lines. The present review is based on research articles regarding Esc in the field of carcinoma, published between 2009 and 2023. These studies have unanimously demonstrated that Esc can effectively inhibit cancer cell proliferation through diverse mechanisms and modulate multiple signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK and janus kinase/signal transducer and activator of transcription-3. In addition, the safety profile of Esc has been demonstrated in credible animal experiments, which has indicated Esc as an effective compound. Furthermore, the combination therapy of Esc with commonly used chemotherapeutic drugs holds great promise. The aim of the present review was to encourage further studies and applications of Esc in cancer therapy.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuyan Sheng
- Teaching Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fangyue Guo
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Wu
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yufei Huang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaoning Yang
- Department of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mengying Wang
- Department of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shanfeng Zhang
- Department of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pei Li
- Department of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
19
|
Kumar P, Kinger S, Dubey AR, Jagtap YA, Choudhary A, Prasad A, Jha HC, Dhiman R, Gutti RK, Mishra A. Trehalose Promotes Clearance of Proteotoxic Aggregation of Neurodegenerative Disease-Associated Aberrant Proteins. Mol Neurobiol 2024; 61:4055-4073. [PMID: 38057642 DOI: 10.1007/s12035-023-03824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Accumulation of misfolded proteins compromises overall cellular health and fitness. The failure to remove misfolded proteins is a critical reason for their unwanted aggregation in dense cellular protein pools. The accumulation of various inclusions serves as a clinical feature for neurodegenerative diseases. Previous findings suggest that different cellular compartments can store these abnormal inclusions. Studies of transgenic mice and cellular models of neurodegenerative diseases indicate that depleted chaperone capacity contributes to the aggregation of damaged or aberrant proteins, which consequently disturb proteostasis and cell viability. However, improving these abnormal proteins' selective elimination is yet to be well understood. Still, molecular strategies that can promote the effective degradation of abnormal proteins without compromising cellular viability are unclear. Here, we reported that the trehalose treatment elevates endogenous proteasome levels and enhances the activities of the proteasome. Trehalose-mediated proteasomal activation elevates the removal of both bona fide misfolded and various neurodegenerative disease-associated proteins. Our current study suggests that trehalose may retain a proteasome activation potential, which seems helpful in the solubilization of different mutant misfolded proteins, improving cell viability. These results reveal a possible molecular approach to reduce the overload of intracellular misfolded proteins, and such cytoprotective functions may play a critical role against protein conformational diseases.
Collapse
Affiliation(s)
- Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
20
|
Cannon AE, Horn PJ. The Molecular Frequency, Conservation and Role of Reactive Cysteines in Plant Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2024; 65:826-844. [PMID: 38113384 DOI: 10.1093/pcp/pcad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited. To help address these limitations, we have conducted a wide-ranging analysis by integrating published datasets encompassing PTM proteomics (comparing S-sulfenylation, persulfidation, S-nitrosylation and S-acylation), genomics and protein structures, with a specific focus on proteins involved in plant lipid metabolism. The prevalence and distribution of modified Cys residues across all analyzed proteins is diverse and multifaceted. Nevertheless, by combining an evaluation of sequence conservation across 100+ plant genomes with AlphaFold-generated protein structures and physicochemical predictions, we have unveiled structural propensities associated with Cys modifications. Furthermore, we have identified discernible patterns in lipid biochemical pathways enriched with Cys PTMs, notably involving beta-oxidation, jasmonic acid biosynthesis, fatty acid biosynthesis and wax biosynthesis. These collective findings provide valuable insights for future investigations targeting the mechanistic foundations of Cys modifications and the regulation of modified proteins in lipid metabolism and other metabolic pathways.
Collapse
Affiliation(s)
- Ashley E Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
21
|
Mishra T, Sengupta P, Basu S. Biomaterials for Targeting Endoplasmic Reticulum in Cancer. Chem Asian J 2024; 19:e202400250. [PMID: 38602248 DOI: 10.1002/asia.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Endoplasmic reticulum (ER) is one of the most important sub-cellular organelles which controls myriads of biological functions including protein biosynthesis with proper functional folded form, protein misfolding, protein transport into Golgi body for secretion, Ca2+ homeostasis and so on. Subsequently, dysregulation in ER function leads to ER stress followed by disease pathology like cancer. Hence, targeting ER in the cancer cells emerged as one of the futuristic strategies for cancer treatment. However, the major challenge is to selectively and specifically target ER in the sub-cellular milieu in the cancer tissues, due to the lack of ER targeting chemical moieties to recognize the ER markers. To address this, in the last decade, numerous biomaterials were explored to selectively impair and image ER in cancer cells to induce ER stress. This review outlines those biomaterials which consists of carbon and silicon materials, lipid nanoparticles (liposomes and micelles), supramolecular self-assembled nanostructures, cell membrane-coated nanoparticles and metallic nanoparticles. Moreover, we also discuss the challenges and possible solutions of this promising field to usher the readers towards next-generation ER targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
22
|
Chang YC, Shimoda H, Jiang MC, Hsu YH, Maeda K, Yamada Y, Hsu WL. Gn protein expressed in plants for diagnosis of severe fever with thrombocytopenia syndrome virus. Appl Microbiol Biotechnol 2024; 108:303. [PMID: 38639795 PMCID: PMC11031438 DOI: 10.1007/s00253-024-13135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.
Collapse
Affiliation(s)
- Yu-Chih Chang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Min-Chao Jiang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Disease, Tokyo, Japan
| | - Yumiko Yamada
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan.
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
23
|
Bu Y, Yang S, Wang D, Hu S, Zhang Q, Wu Z, Yang C. Role of soluble epoxide hydrolase in pain and depression comorbidity. Neurobiol Dis 2024; 193:106443. [PMID: 38395315 DOI: 10.1016/j.nbd.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.
Collapse
Affiliation(s)
- Yuchen Bu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
24
|
Ahmad T, Alhammadi BA, Almaazmi SY, Arafa S, Blatch GL, Dutta T, Gestwicki JE, Keyzers RA, Shonhai A, Singh H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024; 29:326-337. [PMID: 38518861 PMCID: PMC10990865 DOI: 10.1016/j.cstres.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Bushra A Alhammadi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Shaikha Y Almaazmi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Sahar Arafa
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Gregory L Blatch
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| | - Tanima Dutta
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
25
|
Jin B, Wang M, Sun Y, Lee PAH, Zhang X, Lu Y, Zhao B. CHIP suppresses the proliferation and migration of A549 cells by mediating the ubiquitination of eIF2α and upregulation of tumor suppressor RBM5. J Biol Chem 2024; 300:105673. [PMID: 38272235 PMCID: PMC10877634 DOI: 10.1016/j.jbc.2024.105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α) pathway plays an essential role in endoplasmic reticulum (ER) stress. When the PERK-eIF2α pathway is activated, PERK phosphorylates eIF2α (p-eIF2α) at Ser51 and quenches global protein synthesis. In this study, we verified eIF2α as a bona fide substrate of the E3 ubiquitin ligase carboxyl terminus of the HSC70-interaction protein (CHIP) both in vitro and in cells. CHIP mediated the ubiquitination and degradation of nonphosphorylated eIF2α in a chaperone-independent manner and promoted the upregulation of the cyclic AMP-dependent transcription factor under endoplasmic reticulum stress conditions. Cyclic AMP-dependent transcription factor induced the transcriptional enhancement of the tumor suppressor genes PTEN and RBM5. Although transcription was enhanced, the PTEN protein was subsequently degraded by CHIP, but the expression of the RBM5 protein was upregulated, thereby suppressing the proliferation and migration of A549 cells. Overall, our study established a new mechanism that deepened the understanding of the PERK-eIF2α pathway through the ubiquitination and degradation of eIF2α. The crosstalk between the phosphorylation and ubiquitination of eIF2α shed light on a new perspective for tumor progression.
Collapse
Affiliation(s)
- Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Mengran Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yiheng Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Priscilla Ann Hweek Lee
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangqi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 PMCID: PMC10581588 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
27
|
Kanamori K, Nishimura K, Horie T, Sato MH, Kajino T, Koyama T, Ariga H, Tanaka K, Yotsui I, Sakata Y, Taji T. Golgi apparatus-localized CATION CALCIUM EXCHANGER4 promotes osmotolerance of Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1166-1180. [PMID: 37878763 PMCID: PMC10828203 DOI: 10.1093/plphys/kiad571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Calcium (Ca2+) is a major ion in living organisms, where it acts as a second messenger for various biological phenomena. The Golgi apparatus retains a higher Ca2+ concentration than the cytosol and returns cytosolic Ca2+ to basal levels after transient elevation in response to environmental stimuli such as osmotic stress. However, the Ca2+ transporters localized in the Golgi apparatus of plants have not been clarified. We previously found that a wild-type (WT) salt-tolerant Arabidopsis (Arabidopsis thaliana) accession, Bu-5, showed osmotic tolerance after salt acclimatization, whereas the Col-0 WT did not. Here, we isolated a Bu-5 background mutant gene, acquired osmotolerance-defective 6 (aod6), which reduces tolerance to osmotic, salt, and oxidative stresses, with a smaller plant size than the WT. The causal gene of the aod6 mutant encodes CATION CALCIUM EXCHANGER4 (CCX4). The aod6 mutant was more sensitive than the WT to both deficient and excessive Ca2+. In addition, aod6 accumulated higher Ca2+ than the WT in the shoots, suggesting that Ca2+ homeostasis is disturbed in aod6. CCX4 expression suppressed the Ca2+ hypersensitivity of the csg2 (calcium sensitive growth 2) yeast (Saccharomyces cerevisiae) mutant under excess CaCl2 conditions. We also found that aod6 enhanced MAP kinase 3/6 (MPK3/6)-mediated immune responses under osmotic stress. Subcellular localization analysis of mGFP-CCX4 showed GFP signals adjacent to the trans-Golgi apparatus network and co-localization with Golgi apparatus-localized markers, suggesting that CCX4 localizes in the Golgi apparatus. These results suggest that CCX4 is a Golgi apparatus-localized transporter involved in the Ca2+ response and plays important roles in osmotic tolerance, shoot Ca2+ content, and normal growth of Arabidopsis.
Collapse
Affiliation(s)
- Kazuki Kanamori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kohji Nishimura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue 690-8504, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Masa H Sato
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takashi Koyama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirotaka Ariga
- Department of Plant Sciences, Institute of Agrobiological Science, NARO, Ibaraki 305-8602, Japan
| | - Keisuke Tanaka
- NODAI Genome Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
28
|
Zou Y, Zhang S, Yang J, Qin C, Jin B, Liang Z, Yang S, Li L, Long M. Protective Effects of Astaxanthin on Ochratoxin A-Induced Liver Injury: Effects of Endoplasmic Reticulum Stress and Mitochondrial Fission-Fusion Balance. Toxins (Basel) 2024; 16:68. [PMID: 38393146 PMCID: PMC10893012 DOI: 10.3390/toxins16020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Ochratoxin A (OTA), a common mycotoxin, can contaminate food and feed and is difficult to remove. Astaxanthin (ASTA), a natural antioxidant, can effectively protect against OTA-induced hepatotoxicity; however, its mechanism of action remains unclear. In the present study, we elucidate the protective effects of ASTA on the OTA-induced damage of the endoplasmic reticulum and mitochondria in broiler liver samples by serum biochemical analysis, antioxidant analysis, qRT-PCR, and Western blot analysis. ASTA inhibited the expressions of ahr, pxr, car, cyp1a1, cyp1a5, cyp2c18, cyp2d6, and cyp3a9 genes, and significantly alleviated OTA-induced liver oxidative damage (SOD, GSH-Px, GSH, MDA). Furthermore, it inhibited OTA-activated endoplasmic reticulum stress genes and proteins (grp94, GRP78, atf4, ATF6, perk, eif2α, ire1, CHOP). ASTA alleviated OTA-induced mitochondrial dynamic imbalance, inhibited mitochondrial division (DRP1, mff), and promoted mitochondrial fusion (OPA1, MFN1, MFN2). In conclusion, ASTA can decrease OTA-induced oxidative damage, thereby alleviating endoplasmic reticulum stress and mitochondrial dynamic imbalance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (S.Z.); (J.Y.); (C.Q.); (B.J.); (Z.L.); (M.L.)
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (S.Z.); (J.Y.); (C.Q.); (B.J.); (Z.L.); (M.L.)
| | | |
Collapse
|
29
|
Ingle J, Tirkey A, Pandey S, Basu S. Small-Molecule Endoplasmic Reticulum Stress Inducer Triggers Apoptosis in Cancer Cells. ChemMedChem 2023; 18:e202300433. [PMID: 37964696 DOI: 10.1002/cmdc.202300433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Endoplasmic reticulum (ER) is highly critical for the sub-cellular protein synthesis, post-translational modifications and myriads of signalling pathways to maintain cellular homeostasis. Consequently, dysregulation in the ER functions leads to the ER stress in different pathological situations including cancer. Hence, exploring small molecules to induce ER stress emerged as one of the unorthodox strategies for future cancer therapeutics. However, development of ER targeted novel small molecules remains elusive due to the dearth of ER targeting moieties. Herein we have synthesized a small library of 3-methoxy-pyrrole-enamine through a concise strategy. Screening of this library in cervical (HeLa), colon (HCT-116), breast (MCF7) and lung cancer (A549) cells identified a novel small molecule which localized into the ER of the HeLa cervical cancer cells within 3 h, induced ER stress through the increased expression of ER stress markers (CHOP, IRE1α, PERK, BiP and Cas-12) and triggered the programmed cell death (apoptosis) leading to remarkable HeLa cell killing. This novel small molecule can be explored further as a tool to understand the chemical biology of ER towards the development of ER targeted cancer therapeutics.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Anjana Tirkey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Shalini Pandey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355, Gandhinagar, Gujarat, India
| |
Collapse
|
30
|
Liu X, Li T, Sun J, Wang Z. The Role of Endoplasmic Reticulum Stress in Calcific Aortic Valve Disease. Can J Cardiol 2023; 39:1571-1580. [PMID: 37516250 DOI: 10.1016/j.cjca.2023.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
Calcific aortic valve disease (CAVD), which is involved in osteogenic reprogramming of valvular interstitial cells, is the most common form of valve disease. It still lacks effective pharmacologic intervention, as its cellular biological mechanisms remain unclear. Congenital abnormality (bicuspid valve) and older age are considered to be the most powerful risk factors for CAVD. Aortic valve sclerosis (AVS) and calcific aortic stenosis (CAS), 2 subclinical forms of CAVD, represent 2 distinct stages of aortic valve calcification. During the AVS stage, the disease is characterised by endothelial activation/damage, inflammatory response, and lipid infiltration accompanied by microcalcification. The CAS stage is dominated by calcification, resulting in valvular dysfunction and severe obstruction to cardiac outflow, which is life threatening if surgery is not performed in time. Endoplasmic reticulum (ER) stress, a state in which conditions disrupting ER homeostasis cause an accumulation of unfolded and misfolded proteins in the ER lumen, has been shown to promote osteogenic differentiation and aortic valve calcification. Therefore, identifying targets or drugs for suppressing ER stress may be a novel approach for CAVD treatment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medicial Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Jun Sun
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhengjun Wang
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
31
|
Zhang IX, Herrmann A, Leon J, Jeyarajan S, Arunagiri A, Arvan P, Gilon P, Satin LS. ER stress increases expression of intracellular calcium channel RyR1 to modify Ca 2+ homeostasis in pancreatic beta cells. J Biol Chem 2023; 299:105065. [PMID: 37468098 PMCID: PMC10448220 DOI: 10.1016/j.jbc.2023.105065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Pancreatic beta cells maintain glucose homeostasis by secreting pulses of insulin in response to a rise in plasma glucose. Pulsatile insulin secretion occurs as a result of glucose-induced oscillations in beta-cell cytosolic Ca2+. The endoplasmic reticulum (ER) helps regulate beta-cell cytosolic Ca2+, and ER stress can lead to ER Ca2+ reduction, beta-cell dysfunction, and an increased risk of type 2 diabetes. However, the mechanistic effects of ER stress on individual calcium channels are not well understood. To determine the effects of tunicamycin-induced ER stress on ER inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) and their involvement in subsequent Ca2+ dysregulation, we treated INS-1 832/13 cells and primary mouse islets with ER stress inducer tunicamycin (TM). We showed TM treatment increased RyR1 mRNA without affecting RyR2 mRNA and decreased both IP3R1 and IP3R3 mRNA. Furthermore, we found stress reduced ER Ca2+ levels, triggered oscillations in cytosolic Ca2+ under subthreshold glucose conditions, and increased apoptosis and that these changes were prevented by cotreatment with the RyR1 inhibitor dantrolene. In addition, we demonstrated silencing RyR1-suppressed TM-induced subthreshold cytosolic Ca2+ oscillations, but silencing RyR2 did not affect these oscillations. In contrast, inhibiting IP3Rs with xestospongin-C failed to suppress the TM-induced cytosolic Ca2+ oscillations and did not protect beta cells from TM-induced apoptosis although xestospongin-C inclusion did prevent ER Ca2+ reduction. Taken together, these results show changes in RyR1 play a critical role in ER stress-induced Ca2+ dysfunction and beta-cell apoptosis.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea Herrmann
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Sivakumar Jeyarajan
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition (EDIN), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
32
|
Jung BK, Park Y, Yoon B, Bae JS, Han SW, Heo JE, Kim DE, Ryu KY. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy 2023; 19:2296-2317. [PMID: 36781380 PMCID: PMC10351455 DOI: 10.1080/15548627.2023.2180202] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
LCN2/neutrophil gelatinase-associated lipocalin/24p3 (lipocalin 2) is a secretory protein that acts as a mammalian bacteriostatic molecule. Under neuroinflammatory stress conditions, LCN2 is produced and secreted by activated microglia and reactive astrocytes, resulting in neuronal apoptosis. However, it remains largely unknown whether inflammatory stress and neuronal loss can be minimized by modulating LCN2 production and secretion. Here, we first demonstrated that LCN2 was secreted from reactive astrocytes, which were stimulated by treatment with lipopolysaccharide (LPS) as an inflammatory stressor. Notably, we found two effective conditions that led to the reduction of induced LCN2 levels in reactive astrocytes: proteasome inhibition and macroautophagic/autophagic flux activation. Mechanistically, proteasome inhibition suppresses NFKB/NF-κB activation through NFKBIA/IκBα stabilization in primary astrocytes, even under inflammatory stress conditions, resulting in the downregulation of Lcn2 expression. In contrast, autophagic flux activation via MTOR inhibition reduced the intracellular levels of LCN2 through its pre-secretory degradation. In addition, we demonstrated that the N-terminal signal peptide of LCN2 is critical for its secretion and degradation, suggesting that these two pathways may be mechanistically coupled. Finally, we observed that LPS-induced and secreted LCN2 levels were reduced in the astrocyte-cultured medium under the above-mentioned conditions, resulting in increased neuronal viability, even under inflammatory stress.Abbreviations: ACM, astrocyte-conditioned medium; ALP, autophagy-lysosome pathway; BAF, bafilomycin A1; BTZ, bortezomib; CHX, cycloheximide; CNS, central nervous system; ER, endoplasmic reticulum; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; JAK, Janus kinase; KD, knockdown; LCN2, lipocalin 2; LPS, lipopolysaccharide; MACS, magnetic-activated cell sorting; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR, mechanistic target of rapamycin kinase; NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; NFKBIA/IκBα, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; OVEX, overexpression; SLC22A17, solute carrier family 22 member 17; SP, signal peptide; SQSTM1, sequestosome 1; STAT3, signal transducer and activator of transcription 3; TNF/TNF-α, tumor necrosis factor; TUBA, tubulin, alpha; TUBB3/β3-TUB, tubulin, beta 3 class III; UB, ubiquitin; UPS, ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Yujin Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Ji-Eun Heo
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
33
|
Wu T, Jiang Y, Shi W, Wang Y, Li T. Endoplasmic reticulum stress: a novel targeted approach to repair bone defects by regulating osteogenesis and angiogenesis. J Transl Med 2023; 21:480. [PMID: 37464413 PMCID: PMC10353205 DOI: 10.1186/s12967-023-04328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Bone regeneration therapy is clinically important, and targeted regulation of endoplasmic reticulum (ER) stress is important in regenerative medicine. The processing of proteins in the ER controls cell fate. The accumulation of misfolded and unfolded proteins occurs in pathological states, triggering ER stress. ER stress restores homeostasis through three main mechanisms, including protein kinase-R-like ER kinase (PERK), inositol-requiring enzyme 1ɑ (IRE1ɑ) and activating transcription factor 6 (ATF6), collectively known as the unfolded protein response (UPR). However, the UPR has both adaptive and apoptotic effects. Modulation of ER stress has therapeutic potential for numerous diseases. Repair of bone defects involves both angiogenesis and bone regeneration. Here, we review the effects of ER stress on osteogenesis and angiogenesis, with emphasis on ER stress under high glucose (HG) and inflammatory conditions, and the use of ER stress inducers or inhibitors to regulate osteogenesis and angiogenesis. In addition, we highlight the ability for exosomes to regulate ER stress. Recent advances in the regulation of ER stress mediated osteogenesis and angiogenesis suggest novel therapeutic options for bone defects.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yaping Jiang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Weipeng Shi
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China
| | - Tao Li
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Qingdao, 266003, China.
| |
Collapse
|
34
|
Marsico TV, Silva MV, Valente RS, Annes K, Rissi VB, Glanzner WG, Sudano MJ. Unraveling the Consequences of Oxygen Imbalance on Early Embryo Development: Exploring Mitigation Strategies. Animals (Basel) 2023; 13:2171. [PMID: 37443969 DOI: 10.3390/ani13132171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Although well-established and adopted by commercial laboratories, the in vitro embryo production system still requires refinements to achieve its highest efficiency. Early embryonic development is a dynamic event, demanding suitable conditions to provide a high number of embryos with quality and competence. The first step to obtaining an optimized in vitro environment is to know the embryonic metabolism and energy request throughout the different stages of development. Oxygen plays a crucial role in several key biological processes necessary to sustain and complete embryonic development. Nonetheless, there is still controversy regarding the optimal in vitro atmospheric concentrations during culture. Herein, we discuss the impact of oxygen tension on the viability of in vitro-produced embryos during early development. The importance of oxygen tension is addressed as its roles regarding essential embryonic traits, including embryo production rates, embryonic cell viability, gene expression profile, epigenetic regulation, and post-cryopreservation survival. Finally, we highlight the damage caused by in vitro unbalanced oxygen tensions and strategies to mitigate the harmful effects.
Collapse
Affiliation(s)
- Thamiris Vieira Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Mara Viana Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Roniele Santana Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Vitor Braga Rissi
- Faculty of Veterinary Medicine, Federal University of Santa Catarina, UFSC, Curitibanos 89520-000, SC, Brazil
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
35
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
36
|
Sanchez PR, Head SA, Qian S, Qiu H, Roy A, Jin Z, Zheng W, Liu JO. Modulation of the Endomembrane System by the Anticancer Natural Product Superstolide/ZJ-101. Int J Mol Sci 2023; 24:9575. [PMID: 37298526 PMCID: PMC10253484 DOI: 10.3390/ijms24119575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Marine natural products represent a unique source for clinically relevant drugs due to their vast molecular and mechanistic diversity. ZJ-101 is a structurally simplified analog of the marine natural product superstolide A, isolated from the New Caledonian sea sponge Neosiphonia Superstes. The mechanistic activity of the superstolides has until recently remained a mystery. Here, we have identified potent antiproliferative and antiadhesive effects of ZJ-101 on cancer cell lines. Furthermore, through dose-response transcriptomics, we found unique dysregulation of the endomembrane system by ZJ-101 including a selective inhibition of O-glycosylation via lectin and glycomics analysis. We applied this mechanism to a triple-negative breast cancer spheroid model and identified a potential for the reversal of 3D-induced chemoresistance, suggesting a potential for ZJ-101 as a synergistic therapeutic agent.
Collapse
Affiliation(s)
- Phillip R. Sanchez
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20892, USA;
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sarah A. Head
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Shan Qian
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA (Z.J.)
| | - Haibo Qiu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA (Z.J.)
| | - Avishek Roy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA (Z.J.)
| | - Zhendong Jin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA (Z.J.)
| | - Wei Zheng
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD 20892, USA;
| | - Jun O. Liu
- Department of Pharmacology & Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Fan P, Wang J, Li R, Chang K, Liu L, Wang Y, Wang Z, Zhang B, Ji C, Zhang J, Chen S, Ling R. Development and validation of an endoplasmic reticulum stress-related molecular prognostic model for breast cancer. Front Oncol 2023; 13:1178595. [PMID: 37313465 PMCID: PMC10258344 DOI: 10.3389/fonc.2023.1178595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Background Breast cancer is the most frequently diagnosed cancer and a leading cause of cancer-related death in women. Endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of several malignancies. However, the prognostic value of ERS-related genes in breast cancer has not been thoroughly investigated. Methods We downloaded and analyzed expression profiling data for breast invasive carcinoma samples in The Cancer Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA) and identified 23 ERS-related genes differentially expressed between the normal breast tissue and primary breast tumor tissues. We constructed and validated risk models using external test datasets. We assessed the differences in sensitivity to common antitumor drugs between high- and low-scoring groups using the Genomics of Drug Sensitivity in Cancer (GDSC) database, evaluated the sensitivity of patients in high- and low-scoring groups to immunotherapy using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm, and assessed immune and stromal cell infiltration in the tumor microenvironment (TME) using the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm. We also analyzed the expression of independent factors in the prognostic model using the Western-blot analysis for correlation in relation to breast cancer. Results Using multivariate Cox analysis, FBXO6, PMAIP1, ERP27, and CHAC1 were identified as independent prognostic factors in patients with breast cancer. The risk score in our model was defined as the endoplasmic reticulum score (ERScore). ERScore had high predictive power for overall survival in patients with breast cancer. The high-ERScore group exhibited a worse prognosis, lower drug sensitivity, and lower immunotherapy response and immune infiltration than did the low-ERScore group. Conclusions based on ERScore were consistent with Western-blot results. Conclusion We constructed and validated for the first time an endoplasmic reticulum stress-related molecular prognostic model for breast cancer with reliable predictive properties and good sensitivity, as an important addition to the prognostic prediction model for breast cancer.
Collapse
Affiliation(s)
- Pengyu Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiajia Wang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Ruolei Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Kexin Chang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liuyin Liu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yaping Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhe Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Bo Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Cheng Ji
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
38
|
Chen D, Xu T, Li Y, Xu J, Peng B, Xu W, Wang X. Stress regulation of WFS1 and PERK-p-eIF2α-ATF4 signaling pathway in placental tissue cells of intrahepatic cholestasis of pregnancy. Placenta 2023; 139:1-11. [PMID: 37269649 DOI: 10.1016/j.placenta.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The placental tissue stress of intrahepatic cholestasis of pregnancy (ICP) is activated by ERS under hypoxia condition. PERK signaling pathway is the key pathway for UPR regulation, and is first to activated during ERS. WFS1, as an important regulatory gene of UPR pathway, participates in ERS regulation. The purpose of our study is to explore the expression level and mutual regulation mechanisms of WFS1 and PERK-mediated UPR pathway in ICP placental tissue cell under stress. METHODS Blood and placenta samples were obtained from the ICP patients and ethinylestradiol (EE)-induced intrahepatic cholestasis pregnant rats. IHC and WB were used to detect the expression of WFS1, key factors of PERK pathway (GRP78, PERK, eIF2a, P-eIF2α, ATF4) and placental stress peptides (CRH, UCN). Furthermore, qPCR was carried out to detect mRNA expression of above indicators. RESULTS The expression levels of WFS1 and key factors of PERK pathway were significantly increased in severe ICP placental tissues. Moreover, qPCR and WB showed that relative mRNA and protein expression levels of WFS1 and key factors of PERK pathways in placenta tissues of severe ICP and EE-induced intrahepatic cholestasis pregnant rats were higher than those in control group to varying degrees, while CRH and UCN were descended. Meanwhile, after WFS1-siRNA targeted silencing of the WFS1 gene, the protein expression levels of PERK, P-eIF2α, ATF4 were significantly increased, while CRH and UCN protein were significantly decreased. DISCUSSION Our study revealed that the activation of WFS1 and PERK-p-eIF2α-ATF4 signaling pathway may contribute to stress regulation in placental tissue cells of intrahepatic cholestasis of pregnancy, thereby avoiding adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Daijuan Chen
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China; Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Xu
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China; Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Bing Peng
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, Ministry of Education, West China Second University Hospital of Sichuan University/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), No. 20, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
39
|
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z, Wu P, Xiong X, Gao X. Comprehensive analysis of the biological functions of endoplasmic reticulum stress in prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1090277. [PMID: 36967783 PMCID: PMC10036859 DOI: 10.3389/fendo.2023.1090277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Endoplasmic reticulum stress (ERS) has sizeable affect on cancer proliferation, metastasis, immunotherapy and chemoradiotherapy resistance. However, the effect of ERS on the biochemical recurrence (BCR) of prostate cancer patients remains elusive. Here, we generated an ERS-related genes risk signature to evaluate the physiological function of ERS in PCa with BCR. Methods We collected the ERS-related genes from the GeneCards. The edgeR package was used to screen the differential ERS-related genes in PCa from TCGA datasets. ERS-related gene risk signature was then established using LASSO and multivariate Cox regression models and validated by GEO data sets. Nomogram was developed to assess BCR-free survival possibility. Meanwhile, the correlations between ERS-related signature, gene mutations, drug sensitivity and tumor microenvironment were also investigated. Results We obtained an ERS risk signature consisting of five genes (AFP, COL10A1, DNAJB1, EGF and PTGS2). Kaplan Meier survival analysis and ROC Curve analysis indicated that the high risk score of ERS-related gene signature was associated with poor BCR-free prognosis in PCa patients. Besides, immune cell infiltration and immune checkpoint expression levels differed between high- and low-risk scoring subgroups. Moreover, drug sensitivity analyzed indicated that high-risk score group may be involved in apoptosis pathway. Discussion This study comprehensively analyzed the characteristics of ERS related genes in PCa, and created a five-gene signature, which could effectively predict the BCR time of PCa patients. Targeting ERS related genes and pathways may provide potential guidance for the treatment of PCa.
Collapse
Affiliation(s)
- Shengren Cen
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongmei Jiang
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Xu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamao Hou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zixiang Yang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhao Xiong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Gao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR, Chen ZS, He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat 2023; 67:100929. [PMID: 36739809 DOI: 10.1016/j.drup.2023.100929] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Currently, renal cell carcinoma (RCC) is the most prevalent type of kidney cancer. Targeted therapy has replaced radiation therapy and chemotherapy as the main treatment option for RCC due to the lack of significant efficacy with these conventional therapeutic regimens. Sunitinib, a drug used to treat gastrointestinal tumors and renal cell carcinoma, inhibits the tyrosine kinase activity of a number of receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-Kit, rearranged during transfection (RET) and fms-related receptor tyrosine kinase 3 (Flt3). Although sunitinib has been shown to be efficacious in the treatment of patients with advanced RCC, a significant number of patients have primary resistance to sunitinib or acquired drug resistance within the 6-15 months of therapy. Thus, in order to develop more efficacious and long-lasting treatment strategies for patients with advanced RCC, it will be crucial to ascertain how to overcome sunitinib resistance that is produced by various drug resistance mechanisms. In this review, we discuss: 1) molecular mechanisms of sunitinib resistance; 2) strategies to overcome sunitinib resistance and 3) potential predictive biomarkers of sunitinib resistance.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin-Shi Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shi-Jie Dai
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Wen-Fang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Shou-Ye Li
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
41
|
Selvaraj C, Panwar U, Ramalingam KR, Vijayakumar R, Singh SK. Exploring the macromolecules for secretory pathway in cancer disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:55-83. [PMID: 36707206 DOI: 10.1016/bs.apcsb.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Secretory proteins play an important role in the tumor microenvironment and are widely distributed throughout tumor tissues. Tumor cells secrete a protein that mediates communication between tumor cells and stromal cells, thereby controlling tumor growth and affecting the success of cancer treatments in the clinic. The cancer secretome is produced by various secretory pathways and has a wide range of applications in oncoproteomics. Secretory proteins are involved in cancer development and tumor cell migration, and thus serve as biomarkers or effective therapeutic targets for a variety of cancers. Several proteomic strategies have recently been used for the analysis of cancer secretomes in order to gain a better understanding and elaborate interpretation. For instance, the development of exosome proteomics, degradomics, and tumor-host cell interaction provide clear information regarding the mechanism of cancer pathobiology. In this chapter, we emphasize the recent advances in secretory protein and the challenges in the field of secretome analysis and their clinical applications.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Umesh Panwar
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Karthik Raja Ramalingam
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
42
|
Drake LY, Koloko Ngassie ML, Roos BB, Teske JJ, Prakash YS. Asthmatic lung fibroblasts promote type 2 immune responses via endoplasmic reticulum stress response dependent thymic stromal lymphopoietin secretion. Front Physiol 2023; 14:1064822. [PMID: 36760534 PMCID: PMC9907026 DOI: 10.3389/fphys.2023.1064822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Lung fibroblasts contribute to asthma pathology partly through modulation of the immune environment in the airway. Tumor necrosis factor-α (TNFα) expression is upregulated in asthmatic lungs. How asthmatic lung fibroblasts respond to TNFα stimulation and subsequently regulate immune responses is not well understood. Endoplasmic reticulum (ER) stress and unfolded protein responses (UPR) play important roles in asthma, but their functional roles are still under investigation. In this study, we investigated TNFα-induced cytokine production in primary lung fibroblasts from asthmatic vs. non-asthmatic human subjects, and downstream effects on type 2 immune responses. TNFα significantly upregulated IL-6, IL-8, C-C motif chemokine ligand 5 (CCL5), and thymic stromal lymphopoietin (TSLP) mRNA expression and protein secretion by lung fibroblasts. Asthmatic lung fibroblasts secreted higher levels of TSLP which promoted IL-33-induced IL-5 and IL-13 production by peripheral blood mononuclear cells. TNFα exposure enhanced expression of ER stress/UPR pathways in both asthmatic and non-asthmatic lung fibroblasts, especially inositol-requiring protein 1α in asthmatics. ER stress/UPR inhibitors decreased IL-6, CCL5, and TSLP protein secretion by asthmatic lung fibroblasts. Our data suggest that TNFα and lung fibroblasts form an important axis in asthmatic lungs to promote asthmatic inflammation that can be attenuated by inhibiting ER stress/UPR pathway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,*Correspondence: Li Y. Drake,
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Calnexin, More Than Just a Molecular Chaperone. Cells 2023; 12:cells12030403. [PMID: 36766745 PMCID: PMC9913998 DOI: 10.3390/cells12030403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein with an N-terminal domain that resides in the lumen of the ER and a C-terminal domain that extends into the cytosol. Calnexin is commonly referred to as a molecular chaperone involved in the folding and quality control of membrane-associated and secreted proteins, a function that is attributed to its ER- localized domain with a structure that bears a strong resemblance to another luminal ER chaperone and Ca2+-binding protein known as calreticulin. Studies have discovered that the cytosolic C-terminal domain of calnexin undergoes distinct post-translational modifications and interacts with a variety of proteins. Here, we discuss recent findings and hypothesize that the post-translational modifications of the calnexin C-terminal domain and its interaction with specific cytosolic proteins play a role in coordinating ER functions with events taking place in the cytosol and other cellular compartments.
Collapse
|
44
|
Roberts BS, Satpute-Krishnan P. The many hats of transmembrane emp24 domain protein TMED9 in secretory pathway homeostasis. Front Cell Dev Biol 2023; 10:1096899. [PMID: 36733337 PMCID: PMC9888432 DOI: 10.3389/fcell.2022.1096899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The secretory pathway is an intracellular highway for the vesicular transport of newly synthesized proteins that spans the endoplasmic reticulum (ER), Golgi, lysosomes and the cell surface. A variety of cargo receptors, chaperones, and quality control proteins maintain the smooth flow of cargo along this route. Among these is vesicular transport protein TMED9, which belongs to the p24/transmembrane emp24 domain (TMED) family of proteins, and is expressed across vertebrate species. The TMED family is comprised of structurally-related type I transmembrane proteins with a luminal N-terminal Golgi-dynamics domain, a luminal coiled-coil domain, a transmembrane domain and a short cytosolic C-terminal tail that binds COPI and COPII coat proteins. TMED9, like other members of the TMED family, was first identified as an abundant constituent of the COPI and COPII coated vesicles that mediate traffic between the ER and the Golgi. TMED9 is typically purified in hetero-oligomers together with TMED family members, suggesting that it may function as part of a complex. Recently, TMED family members have been discovered to play various roles in secretory pathway homeostasis including secreted protein processing, quality control and degradation of misfolded proteins, and post-Golgi trafficking. In particular, TMED9 has been implicated in autophagy, lysosomal sorting, viral replication and cancer, which we will discuss in this Mini-Review.
Collapse
|
45
|
Munteanu CVA, Chirițoiu GN, Petrescu AJ, Petrescu ȘM. Defining the altered glycoproteomic space of the early secretory pathway by class I mannosidase pharmacological inhibition. Front Mol Biosci 2023; 9:1064868. [PMID: 36699698 PMCID: PMC9869281 DOI: 10.3389/fmolb.2022.1064868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
N-glycosylation is a key process for various biological functions like protein folding, maturation and sorting for the conventional secretory compartment, cell-cell communication and immune response. This is usually accomplished by a complex system of mannosidases in which those from class I have an outstanding role, commonly involved in the early protein sorting associated to the Endoplasmic Reticulum (ER) in the N-glycan dependent quality control (ERQC) and ER-associated degradation (ERAD). Although these are vital processes in maintaining cellular homeostasis, large-scale analysis studies for this pool of molecules, further denoted as proteins from the early secretory pathway (ESP), were limited addressed. Here, using a custom workflow employing a combination of glycomics and deglycoproteomics analyses, using lectin affinity and selective Endoglycosidase H (Endo H) digestion, we scrutinize the steady-state oligomannosidic glycoprotein load and delineate ESP fraction in melanoma cells. All of these were assessed by applying our workflow for glycosite relative quantification of both the peptide chain and carbohydrate structure in cells with inhibited activity of class I mannosidases after kifunensine treatment. We found that most of the ESP are transient clients involved in cell communication via extracellular matrix, particularly integrin-mediated communication which adopt Man9 N-glycans in kifunensine-treated cells. Moreover, our results reveal that core-fucosylation is decreased subsequent inhibition of class I mannosidases and this could be explained by a general lower protein level of FUT8, the enzyme responsible for fucosylation. By comparing our data with results obtained following downregulation of a key mannosidase in misfolded protein degradation, we mapped both novel and previously suggested endogenous substrate candidates like PCDH2, HLA-B, LAMB2 or members of the integrin family of proteins such as ITGA1 and ITGA4, thus validating the findings obtained using our workflow regarding accumulation and characterization of ESP transitory members following mannosidase class I inhibition. This workflow and the associated dataset not only allowed us to investigate the oligomannosidic glycoprotein fraction but also to delineate differences mediated at glycosite-level upon kifunensine treatment and outline the potential associated cellular responses.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| |
Collapse
|
46
|
Ingle J, Sengupta P, Basu S. Illuminating Sub-Cellular Organelles by Small Molecule AIEgens. Chembiochem 2023; 24:e202200370. [PMID: 36161823 DOI: 10.1002/cbic.202200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/25/2022] [Indexed: 01/05/2023]
Abstract
Sub-cellular organelles play a critical role in a myriad biological phenomena. Consequently, organelle structures and functions are invariably highjacked in diverse diseases including metabolic disorders, aging, and cancer. Hence, illuminating organelle dynamics is crucial in understanding the diseased states as well as developing organelle-targeted next generation therapeutics. In this review, we outline the novel small molecules which show remarkable aggregation-induced emission (AIE) properties due to restriction in intramolecular motion (RIM). We outline the examples of small molecules developed to image organelles like mitochondria, endoplasmic reticulum (ER), Golgi, lysosomes, nucleus, cell membrane and lipid droplets. These AIEgens have tremendous potential for next-generation phototherapy.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
47
|
Liang Q, Sun M, Ma Y, Wang F, Sun Z, Duan J. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. CHEMOSPHERE 2023; 311:136955. [PMID: 36280121 DOI: 10.1016/j.chemosphere.2022.136955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) have been widely used and mass-producted due to its unique properties. With the life cycle of SiNPs-based products, SiNPs are further released into the air, soil, surface water and sediment, resulting in an increasing risk to humans. SiNPs could enter into the human body through vein, respiratory tract, digestive tract or skin. Moreover, recent evidences have showed that, regardless of exposure pathways, SiNPs could even be traced in liver, which is gradually considered as one of the main organs that SiNPs accumulate. Increasing evidences supported the link between SiNPs exposure and adverse liver effects. However, the research models are diverse and the molecular mechanisms have not been well integrated. In this review, the liver-related studies of SiNPs in vivo and in vitro were screened from the PubMed database by systematic retrieval method. We explored the interaction between SiNPs and the liver, and especially proposed a framework of SiNPs-caused liver toxicity, considering AOP Wiki and existing studies. We identified increased reactive oxygen species (ROS) as a molecular initiating event (MIE), oxidative stress, endoplasmic reticulum stress, lysosome disruption and mitochondrial dysfunction as subsequent key events (KEs), which gradually led to adverse outcomes (AOs) containing liver dysfunction and liver fibrosis through a series of key events about cell inflammation and death such as hepatocyte apoptosis/pyroptosis, hepatocyte autophagy dysfuncton and hepatic macrophages pyroptosis. To our best knowledge, this is the first AOP proposed on SiNPs-related liver toxicity. In the future, more epidemiological studies need to be performed and more biomarkers need to be explored to improve the AOP framework for SiNPs-associated liver toxicity.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Techonology, Baotou, 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
48
|
Russ M, Ehret AK, Hörner M, Peschkov D, Bohnert R, Idstein V, Minguet S, Weber W, Lillemeier BF, Yousefi OS, Schamel WW. Opto-APC: Engineering of cells that display phytochrome B on their surface for optogenetic studies of cell-cell interactions. Front Mol Biosci 2023; 10:1143274. [PMID: 36936981 PMCID: PMC10016228 DOI: 10.3389/fmolb.2023.1143274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The kinetics of a ligand-receptor interaction determine the responses of the receptor-expressing cell. One approach to experimentally and reversibly change this kinetics on demand is optogenetics. We have previously developed a system in which the interaction of a modified receptor with an engineered ligand can be controlled by light. In this system the ligand is a soluble Phytochrome B (PhyB) tetramer and the receptor is fused to a mutated PhyB-interacting factor (PIFS). However, often the natural ligand is not soluble, but expressed as a membrane protein on another cell. This allows ligand-receptor interactions in two dimensions. Here, we developed a strategy to generate cells that display PhyB as a membrane-bound protein by expressing the SpyCatcher fused to a transmembrane domain in HEK-293T cells and covalently coupling purified PhyB-SpyTag to these cells. As proof-of-principle, we use Jurkat T cells that express a GFP-PIFS-T cell receptor and show that these cells can be stimulated by the PhyB-coupled HEK-293T cells in a light dependent manner. Thus, we call the PhyB-coupled cells opto-antigen presenting cells (opto-APCs). Our work expands the toolbox of optogenetic technologies, allowing two-dimensional ligand-receptor interactions to be controlled by light.
Collapse
Affiliation(s)
- Marissa Russ
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna K. Ehret
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Peschkov
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rebecca Bohnert
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vincent Idstein
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Björn F. Lillemeier
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Wolfgang W. Schamel,
| |
Collapse
|
49
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
50
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|