1
|
Ochi Y, Matsui T, Inoue K, Monobe K, Sakamoto H, Aoki S, Taira J. Computational Screening and Experimental Validation of Inhibitor Targeting the Complex Formation of Grb14 and Insulin Receptor. Molecules 2023; 29:198. [PMID: 38202781 PMCID: PMC10780909 DOI: 10.3390/molecules29010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The development of drugs targeting gene products associated with insulin resistance holds the potential to enhance our understanding of type 2 diabetes mellitus (T2DM). The virtual screening, based on a three-dimensional (3D) protein structure, is a potential technique to accelerate the development of molecular target drugs. Among the targets implicated in insulin resistance, the genetic characterization and protein function of Grb14 have been clarified without contradiction. The Grb14 gene displays significant variations in T2DM, and its gene product is known to inhibit the function of the insulin receptor (IR) by directly binding to the tyrosine kinase domain. In the present study, a virtual screening, based on a 3D structure of the IR tyrosine kinase domain (IRβ) in complex with part of Grb14, was conducted to find compounds that can disrupt the complex formation between Grb14 and IRβ. First, ten compounds were selected from 154,118 compounds via hierarchical in silico structure-based drug screening, composed of grid docking-based and genetic algorithm-based programs. The experimental validations suggested that the one compound can affect the blood glucose level. The molecular dynamics simulations and co-immunoprecipitation analysis showed that the compound did not completely suppress the protein-protein interaction between Grb14 and IR, though competitively bound to IR with the tyrosine kinase pseudosubstrate region in Grb14.
Collapse
Affiliation(s)
- Yosuke Ochi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Kohei Monobe
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Hiroshi Sakamoto
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Junichi Taira
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| |
Collapse
|
2
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
3
|
Pei J, Xiao Z, Guo Z, Pei Y, Wei S, Wu H, Wang D. Sustained Stimulation of β 2AR Inhibits Insulin Signaling in H9C2 Cardiomyoblast Cells Through the PKA-Dependent Signaling Pathway. Diabetes Metab Syndr Obes 2020; 13:3887-3898. [PMID: 33116735 PMCID: PMC7585860 DOI: 10.2147/dmso.s268028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the role of β2 adrenergic receptor (β2AR) in insulin signaling transduction in H9C2 cardiomyoblast cells to understand the formation of the β2AR-insulin receptor (IR) protein complex and its role in insulin-induced Glut4 expression. METHODS H9C2 cells were treated with various protein inhibitors (CGP, β1AR inhibitor CGP20712; ICI, β2AR inhibitor ICI 118,551; PKI, PKA inhibitor myristoylated PKI; PD 0325901, MEK inhibitor; SP600125, JNK inhibitor) with or without insulin or isoproterenol (ISO) before RNA-sequencing (RNA-Seq) and quantitative-PCR (Q-PCR). Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay were carried out to investigate the formation of the β2AR-IR protein complex. The intracellular concentrations of cAMP in H9C2 cells were tested by high performance liquid chromatography (HPLC) and the phosphorylation of JNK was tested by Western blot. RESULTS Gene Ontology (GO) analysis revealed that the most significantly enriched processes in the domain of molecular function (MF) were catalytic activity and binding, whereas in the domain of biological processes (BP) were metabolic process and cellular process. Furthermore, the enriched processes in the domain of cellular components (CC) were cell and cell parts. The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the most significant pathways that have been altered included the PI3K-Akt and MAPK signaling pathways. Q-PCR, which was performed to verify the gene expression levels exhibited consistent results. In evaluating the signaling pathways, the sustained stimulation of β2AR by ISO inhibited insulin signalling, and the effect was primarily through the cAMP-PKA-JNK pathway and MEK/JNK signaling pathway. Yeast two-hybrid, co-immunoprecipitation and His-tag pull-down assay revealed that β2AR, IR, insulin receptor substrate 1 (IRS1), Grb2-associated binding protein 1 (GAB1) and Grb2 existed in the same protein complex. CONCLUSION The sustained stimulation of β2AR might inhibit insulin signaling transduction through the cAMP-PKA-JNK and MEK/JNK pathways in H9C2 cells.
Collapse
Affiliation(s)
- Jinli Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Zhengpan Xiao
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Ziyi Guo
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Yechun Pei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Shuangshuang Wei
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Hao Wu
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| | - Dayong Wang
- Key Laboratory of Ministry of Education for Tropical Bioresources, Hainan University, Haikou, Hainan570228, People's Republic of China
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan570228, People's Republic of China
| |
Collapse
|
4
|
Al-Mukh H, Baudoin L, Bouaboud A, Sanchez-Salgado JL, Maraqa N, Khair M, Pagesy P, Bismuth G, Niedergang F, Issad T. Lipopolysaccharide Induces GFAT2 Expression to Promote O-Linked β- N-Acetylglucosaminylation and Attenuate Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:2499-2510. [PMID: 32978282 DOI: 10.4049/jimmunol.2000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.
Collapse
Affiliation(s)
- Hasanain Al-Mukh
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Léa Baudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | | | - Nabih Maraqa
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Mostafa Khair
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Patrick Pagesy
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| |
Collapse
|
5
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
6
|
Gondoin A, Hampe C, Eudes R, Fayolle C, Pierre-Eugène C, Miteva M, Villoutreix BO, Charnay-Pouget F, Aitken DJ, Issad T, Burnol AF. Identification of insulin-sensitizing molecules acting by disrupting the interaction between the Insulin Receptor and Grb14. Sci Rep 2017; 7:16901. [PMID: 29203791 PMCID: PMC5715071 DOI: 10.1038/s41598-017-17122-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Metabolic diseases are characterized by a decreased action of insulin. During the course of the disease, usual treatments frequently fail and patients are finally submitted to insulinotherapy. There is thus a need for innovative therapeutic strategies to improve insulin action. Growth factor receptor-bound protein 14 (Grb14) is a molecular adapter that specifically binds to the activated insulin receptor (IR) and inhibits its tyrosine kinase activity. Molecules disrupting Grb14-IR binding are therefore potential insulin-sensitizing agents. We used Structure-Based Virtual Ligand Screening to generate a list of 1000 molecules predicted to hinder Grb14-IR binding. Using an acellular bioluminescence resonance energy transfer (BRET) assay, we identified, out of these 1000 molecules, 3 compounds that inhibited Grb14-IR interaction. Their inhibitory effect on insulin-induced Grb14-IR interaction was confirmed in co-immunoprecipitation experiments. The more efficient molecule (C8) was further characterized. C8 increased downstream Ras-Raf and PI3-kinase insulin signaling, as shown by BRET experiments in living cells. Moreover, C8 regulated the expression of insulin target genes in mouse primary hepatocytes. These results indicate that C8, by reducing Grb14-IR interaction, increases insulin signalling. The use of C8 as a lead compound should allow for the development of new molecules of potential therapeutic interest for the treatment of diabetes.
Collapse
Affiliation(s)
- Anaïs Gondoin
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Richard Eudes
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Cyril Fayolle
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France.,INSERM, U1016, Paris, France
| | - Maria Miteva
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne-Paris-Cité, Inserm UMR-S 973, Molécules Thérapeutiques in silico, Paris, France
| | - Florence Charnay-Pouget
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - David J Aitken
- CP3A Organic Synthesis Group, ICMMO, UMR 8182, CNRS, Université Paris Sud, Université Paris Saclay, Orsay, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France. .,INSERM, U1016, Paris, France.
| | - Anne-Françoise Burnol
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France. .,INSERM, U1016, Paris, France.
| |
Collapse
|
7
|
Pagesy P, Fardini Y, Nguyen TT, Lohmann M, Pierre-Eugene C, Tennagels N, Issad T. Effect of insulin analogues on phosphatidyl inositol-3 kinase/Akt signalling in INS-1 rat pancreatic derived β-cells. Arch Physiol Biochem 2016; 122:54-60. [PMID: 26707268 DOI: 10.3109/13813455.2015.1125364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Insulin analogues are largely used for the treatment of diabetic patients, but concerns have been raised about their mitogenic/anti-apoptotic potential. It is therefore important to evaluate these analogues in different cell systems. OBJECTIVE The aim of this work was to establish the pharmacological profiles of insulin analogues towards PI-3 kinase/Akt pathway in INS-1 β-pancreatic cells. METHODS Bioluminescence Resonance Energy Transfer (BRET), in cell western and caspase 3/7 assays, was used to study the effects of ligands. RESULTS Among the five analogues evaluated, only glargine stimulated PI-3 kinase/Akt pathway with higher efficiency than insulin, whereas glargine's metabolite M1 was less efficient. However, glargine did not show higher anti-apoptotic efficiency than insulin. CONCLUSION Glargine was more efficient than insulin for the activation of PI-3 kinase/Akt pathway, but not for the inhibition of caspase 3/7 activity. Moreover, glargine's metabolite M1 displayed lower efficiency than insulin towards PI-3 kinase/Akt activation and caspase 3/7 inhibition.
Collapse
Affiliation(s)
- Patrick Pagesy
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | - Yann Fardini
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | - Tuyet Thu Nguyen
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | | | - Cécile Pierre-Eugene
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| | | | - Tarik Issad
- a Inserm, U1016, Institut Cochin , Paris , France
- b CNRS, UMR8104 , Paris , France
- c Université Paris Descartes, Sorbonne Paris Cité , Paris , France , and
| |
Collapse
|
8
|
Boutchueng-Djidjou M, Collard-Simard G, Fortier S, Hébert SS, Kelly I, Landry CR, Faure RL. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network. Mol Cell Proteomics 2015; 14:1079-92. [PMID: 25687571 DOI: 10.1074/mcp.m114.047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/31/2022] Open
Abstract
Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis.
Collapse
Affiliation(s)
| | | | - Suzanne Fortier
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire
| | - Sébastien S Hébert
- §Département de Psychiatrie et Neurosciences, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant
| | - Isabelle Kelly
- ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant, ‖Plateforme Protéomique de l'Est du Québec, Université Laval
| | - Christian R Landry
- **Institut de Biologie Intégrative et des Système (IBIS), PROTEO, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Robert L Faure
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant,
| |
Collapse
|
9
|
Are Dynamic Mechanistic Explanations Still Mechanistic? HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2015. [DOI: 10.1007/978-94-017-9822-8_12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Abrantes JLF, Tornatore TF, Pelizzaro-Rocha KJ, de Jesus MB, Cartaxo RT, Milani R, Ferreira-Halder CV. Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie 2014; 107 Pt B:167-87. [PMID: 25230087 DOI: 10.1016/j.biochi.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Collapse
Affiliation(s)
- Júlia L F Abrantes
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Thaís F Tornatore
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | | - Marcelo B de Jesus
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Rodrigo T Cartaxo
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | |
Collapse
|
11
|
Gondoin A, Morzyglod L, Desbuquois B, Burnol AF. [Control of insulin signalisation and action by the Grb14 protein]. Biol Aujourdhui 2014; 208:119-36. [PMID: 25190572 DOI: 10.1051/jbio/2014013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/15/2022]
Abstract
The action of insulin on metabolism and cell growth is mediated by a specific receptor tyrosine kinase, which, through phosphorylation of several substrates, triggers the activation of two major signaling pathways, the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the Ras/extracellular signal-regulated kinase (ERK) pathway. Insulin-induced activation of the receptor and downstream signaling is also subjected to a negative feedback control involving several mechanisms, among which the interaction of the insulin receptor and its substrates with inhibitory proteins. After summarizing the major mechanisms underlying the activation and attenuation of insulin signaling, this review focuses on its control by the Grb14 adaptor protein. Grb14 has been identif-ied as an inhibitor of insulin signaling and action, and is involved in insulin resistance associated with type 2 diabetes and obesity. Studies on the molecular mechanism of action of Grb14 have shown that, through interaction with the activated insulin receptor, Grb14 inhibits its catalytic activity and the activation of downstream signaling. However, the consequences of Grb14 gene invalidation are complex and tissue-specific, and some effects of Grb14 on insulin signaling appear to be linked to its interaction with effector proteins downstream the insulin receptor. Pharmacological inhibition of Grb14 should allow to enhance insulin sensitivity and improve energy homeostasis in insulin-resistant states.
Collapse
Affiliation(s)
- Anaïs Gondoin
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lucie Morzyglod
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Bernard Desbuquois
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
12
|
Kuo MS, Auriau J, Pierre-Eugène C, Issad T. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor. PLoS One 2014; 9:e92737. [PMID: 24647478 PMCID: PMC3960261 DOI: 10.1371/journal.pone.0092737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/25/2014] [Indexed: 12/15/2022] Open
Abstract
Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH) domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore an attractive target for drug discovery. However, current assays for measurement of PIP3 production are technically demanding and not amenable to high-throughput screening. We have established a MCF-7-derived breast cancer cell line, that stably co-expresses the PH domain of Akt fused to Renilla luciferase and YFP fused to a membrane localization signal. This BRET biosensor pair permits to monitor, in real time, in living cells, PIP3 production at the plasma membrane upon stimulation by different ligands, including insulin, the insulin analogue glargine, IGF1, IGF2 and EGF. Moreover, several known inhibitors that target different steps of the PI3K/Akt pathway caused inhibition of ligand-induced BRET. Cetuximab, a humanized anti-EGF receptor monoclonal antibody used for the treatment of cancer, completely inhibited EGF-induced BRET, and the tyrosine kinase inhibitor tyrphostine AG1024 inhibited insulin effect on PIP3 production. Moreover, the effects of insulin and IGF1 were inhibited by molecules that inhibit PI3K catalytic activity or the interaction between PIP3 and the PH domain of Akt. Finally, we showed that human serum induced a dose-dependent increase in BRET signal, suggesting that this stable clone may be used as a prognostic tool to evaluate the PI3K stimulatory activity present in serum of human patients. We have thus established a cell line, suitable for the screening and/or the study of molecules with stimulatory or inhibitory activities on the PI3K/Akt pathway that will constitute a new tool for translational research in diabetes and cancer.
Collapse
Affiliation(s)
- Mei-Shiue Kuo
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Johanna Auriau
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
14
|
Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugène C, Masson E, Hampe C, Issad T. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 2013; 8:e69150. [PMID: 23935944 PMCID: PMC3730543 DOI: 10.1371/journal.pone.0069150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine
residues) is a post-translational modification that regulates stability,
activity or localization of cytosolic and nuclear proteins. O-linked
N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the
hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc
from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent
evidences suggest that O-GlcNAcylation may affect the growth of cancer cells.
However, the consequences of O-GlcNAcylation on anti-cancer therapy have not
been evaluated. In this work, we studied the effects of O-GlcNAcylation on
tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells.
Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected
MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT
expression by siRNA potentiated the effect of tamoxifen on cell death. Since the
PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to
evaluate the effect of PUGNAc+glucosamine on PIP3 production. We
observed that these treatments stimulated PIP3 production in MCF-7
cells. This effect was associated with an increase in Akt phosphorylation.
However, the PI-3 kinase inhibitor LY294002, which abolished the effect of
PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects
of PUGNAc+glucosamine against tamoxifen-induced cell death. These results
suggest that the protective effects of O-GlcNAcylation are independent of the
PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen
receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine
on the expression of this receptor. We observed that O-GlcNAcylation-inducing
treatment significantly reduced the expression of ERα mRNA and protein,
suggesting a potential mechanism for the decreased tamoxifen sensitivity induced
by these treatments. Therefore, our results suggest that inhibition of
O-GlcNAcylation may constitute an interesting approach to improve the
sensitivity of breast cancer to anti-estrogen therapy.
Collapse
Affiliation(s)
- Shahzina Kanwal
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Thierry N’Tumba-Byn
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Elodie Masson
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Ezzat S, Zheng L, Florez JC, Stefan N, Mayr T, Hliang MM, Jablonski K, Harden M, Stančáková A, Laakso M, Haring HU, Ullrich A, Asa SL. The cancer-associated FGFR4-G388R polymorphism enhances pancreatic insulin secretion and modifies the risk of diabetes. Cell Metab 2013; 17:929-940. [PMID: 23747250 PMCID: PMC4005358 DOI: 10.1016/j.cmet.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/18/2013] [Accepted: 04/05/2013] [Indexed: 12/11/2022]
Abstract
The fibroblast growth factor receptor 4 (FGFR4)-R388 single-nucleotide polymorphism has been associated with cancer risk and prognosis. Here we show that the FGFR4-R388 allele yields a receptor variant that preferentially promotes STAT3/5 signaling. This STAT activation transcriptionally induces Grb14 in pancreatic endocrine cells to promote insulin secretion. Knockin mice with the FGFR4 variant allele develop pancreatic islets that secrete more insulin, a feature that is reversed through Grb14 deletion and enhanced with FGF19 administration. We also show in humans that the FGFR4-R388 allele enhances islet function and may protect against type 2 diabetes. These data support a common genetic link underlying cancer and hyperinsulinemia.
Collapse
Affiliation(s)
- Shereen Ezzat
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Lei Zheng
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Jose C Florez
- Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02142, USA
| | | | - Thomas Mayr
- Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Maw Maw Hliang
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Kathleen Jablonski
- The Biostatistics Center, George Washington University, Rockville, MD 20852, USA
| | - Maegan Harden
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | | | - Axel Ullrich
- Department of Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sylvia L Asa
- Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
16
|
Desbuquois B, Carré N, Burnol AF. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J 2013. [PMID: 23190452 DOI: 10.1111/febs.12080] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic β-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Bernard Desbuquois
- Institut Cochin, Départment d'Endocrinologie, Métabolisme et Cancer, Université Paris-Descartes, Institut National de la Santé et de la Recherche Médicale, Unité 1016, et Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | | | | |
Collapse
|
17
|
Bohrer RC, Rosa PRA, Ferreira R, Bordignon V, Oliveira JFC, Gonçalves PBD. Grb14 mRNA Levels During Follicular Deviation in Cattle are Higher in Granulosa Cells of Subordinate Compared to Dominant Follicles. Reprod Domest Anim 2012; 48:396-401. [DOI: 10.1111/rda.12086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 08/19/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - PRA Rosa
- Laboratory of Biotechnology and Animal Reproduction, BioRep; Federal University of Santa Maria; Santa Maria; Rio Grande do Sul; Brazil
| | - R Ferreira
- Department of Animal Science; Santa Catarina State University; Chapecó; SC; Brazil
| | - V Bordignon
- Department of Animal Science; McGill University; Ste-Anne-de-Bellevue; QC; Canada
| | - JFC Oliveira
- Laboratory of Biotechnology and Animal Reproduction, BioRep; Federal University of Santa Maria; Santa Maria; Rio Grande do Sul; Brazil
| | - PBD Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep; Federal University of Santa Maria; Santa Maria; Rio Grande do Sul; Brazil
| |
Collapse
|
18
|
Pierre-Eugene C, Pagesy P, Nguyen TT, Neuillé M, Tschank G, Tennagels N, Hampe C, Issad T. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 2012; 7:e41992. [PMID: 22848683 PMCID: PMC3406060 DOI: 10.1371/journal.pone.0041992] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/28/2012] [Indexed: 12/28/2022] Open
Abstract
Background In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. Methodology To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP3) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. Results Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. Conclusion Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.
Collapse
Affiliation(s)
- Cécile Pierre-Eugene
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tuyet Thu Nguyen
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Marion Neuillé
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | | | | | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
20
|
Kulahin N, Sanni SJ, Slaaby R, Nøhr J, Gammeltoft S, Hansen JL, Jorgensen R. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology. J Recept Signal Transduct Res 2012; 32:57-64. [PMID: 22272819 DOI: 10.3109/10799893.2011.647351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src homology-2-containing proteins (Src). Here, we applied the bioluminescence resonance energy transfer 2 (BRET2) technique to study the IR signaling pathways. The interaction between the IR and the substrates IRS1, IRS4 and Shc was examined in response to ligands with different signaling properties. The association between IR and the interacting partners could successfully be monitored when co-expressing green fluorescent protein 2 (GFP2) tagged substrates with Renilla reniformis luciferase 8 (Rluc8) tagged IR. Through additional optimization steps, we developed a stable and flexible BRET2 assay for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can be applied to study IR signaling pathways, and that this assay can be used as a platform for screening and characterization of IR ligands.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Incretin Biology, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
21
|
Balogh K, Asa SL, Zheng L, Cassol C, Cheng S, Ezzat S. The insulin resistance Grb14 adaptor protein promotes thyroid cancer ret signaling and progression. Oncogene 2011; 31:4012-21. [PMID: 22158039 PMCID: PMC3954818 DOI: 10.1038/onc.2011.569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The growth factor receptor-bound protein (Grb) 14 is an adapter molecule of the Grb7/10/14 family with characteristic BPS domains serving to avidly bind tyrosine kinases. Grb14 inhibits insulin receptor (IR) catalytic activity through interaction with the BPS domain and impedes peptide substrate binding. Members of this Grb family have also been shown to interact with other kinases through their SH2 domain. Here we examined the functional role of Grb14 in thyroid cancer using loss- and gain-of-function approaches. Stable knockdown of Grb14 in thyroid cancer cells facilitated insulin receptor signaling. In contrast, RET phosphorylation was diminished in concert with reduced activation of Akt and STAT3. Loss of Grb14 also resulted in diminished cell proliferation and invasion both in vitro and in mouse flank xenografts. In complementary studies, forced expression of Grb14 interrupted insulin receptor signaling but facilitated RET activation, STAT3, and Akt phosphorylation. Consistent with these findings Grb14 over-expression enhanced cell invasion and resulted in striking metastases in an orthotopic thyroid cancer mouse xenograft model. Primary human thyroid cancer microarrays revealed a positive correlation between Grb14 expression and invasive behavior. Our findings uncover a new role for Grb14 in finely tuning receptor signaling and modulating thyroid cancer progression.
Collapse
Affiliation(s)
- K Balogh
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Grb14 inhibits FGF receptor signaling through the regulation of PLCγ recruitment and activation. FEBS Lett 2010; 584:4383-8. [DOI: 10.1016/j.febslet.2010.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
|
23
|
Pan BS, Chan GKY, Chenard M, Chi A, Davis LJ, Deshmukh SV, Gibbs JB, Gil S, Hang G, Hatch H, Jewell JP, Kariv I, Katz JD, Kunii K, Lu W, Lutterbach BA, Paweletz CP, Qu X, Reilly JF, Szewczak AA, Zeng Q, Kohl NE, Dinsmore CJ. MK-2461, a novel multitargeted kinase inhibitor, preferentially inhibits the activated c-Met receptor. Cancer Res 2010; 70:1524-33. [PMID: 20145145 DOI: 10.1158/0008-5472.can-09-2541] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy.
Collapse
Affiliation(s)
- Bo-Sheng Pan
- Department of In Vitro Sciences, Merck Research Laboratories, BMB-11, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Holt LJ, Lyons RJ, Ryan AS, Beale SM, Ward A, Cooney GJ, Daly RJ. Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol Endocrinol 2009; 23:1406-14. [PMID: 19541746 PMCID: PMC2737556 DOI: 10.1210/me.2008-0386] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 06/08/2009] [Indexed: 01/28/2023] Open
Abstract
Growth factor receptor bound (Grb)10 and Grb14 are closely related adaptor proteins that bind directly to the insulin receptor (IR) and regulate insulin-induced IR tyrosine phosphorylation and signaling to IRS-1 and Akt. Grb10- and Grb14-deficient mice both exhibit improved whole-body glucose homeostasis as a consequence of enhanced insulin signaling and, in the case of the former, altered body composition. However, the combined physiological role of these adaptors has remained undefined. In this study we utilize compound gene knockout mice to demonstrate that although deficiency in one adaptor can enhance insulin-induced IRS-1 phosphorylation and Akt activation, insulin signaling is not increased further upon dual ablation of Grb10 and Grb14. Context-dependent limiting mechanisms appear to include IR hypophosphorylation and decreased IRS-1 expression. In addition, the compound knockouts exhibit an increase in lean mass comparable to Grb10-deficient mice, indicating that this reflects a regulatory function specific to Grb10. However, despite the absence of additive effects on insulin signaling and body composition, the double-knockout mice are protected from the impaired glucose tolerance that results from high-fat feeding, whereas protection is not observed with animals deficient for individual adaptors. These results indicate that, in addition to their described effects on IRS-1/Akt, Grb10 and Grb14 may regulate whole-body glucose homeostasis by additional mechanisms and highlight these adaptors as potential therapeutic targets for amelioration of the insulin resistance associated with type 2 diabetes.
Collapse
Affiliation(s)
- Lowenna J Holt
- Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou J, He X, Huang K. Bidirectional regulation of insulin receptor autophosphorylation and kinase activity by peroxynitrite. Arch Biochem Biophys 2009; 488:1-8. [DOI: 10.1016/j.abb.2009.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 01/23/2023]
|
26
|
Goenaga D, Hampe C, Carré N, Cailliau K, Browaeys-Poly E, Perdereau D, Holt LJ, Daly RJ, Girard J, Broutin I, Issad T, Burnol AF. Molecular determinants of Grb14-mediated inhibition of insulin signaling. Mol Endocrinol 2009; 23:1043-51. [PMID: 19359342 DOI: 10.1210/me.2008-0360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Grb14 belongs to the Grb7 family of molecular adapters and was identified as an inhibitor of insulin signaling. Grb14 binds to activated insulin receptors (IR) and inhibits their catalytic activity. To gain more insight into the Grb14 molecular mechanism of action, we generated various mutants and studied the Grb14-IR interaction using coimmunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments. Biological activity was further analyzed using the Xenopus oocyte model and a functional complementation assay measuring cellular proliferation rate in Grb14 knockout mouse embryonic fibroblasts. These studies identified two important interaction sites, Grb14 L404-IR L1038 and Grb14 R385-IR K1168, involving the IR alphaC-helix and activation loop, respectively. Interestingly, the former involves residues that are likely to be crucial for the specificity of IR binding with regard to other members of the Grb7 family. In addition, mutation of the Grb14-S370 residue suggested that its phosphorylation status controlled the biological activity of the protein. We further demonstrated that insulin-induced Grb14-PDK1 interaction is required in addition to Grb14-IR binding to mediate maximal inhibition of insulin signaling. This study provides important insights into the molecular determinants of Grb14 action by demonstrating that Grb14 regulates insulin action at two levels, through IR binding and by interfering with downstream pathways. Indeed, a precise knowledge of the molecular mechanism of insulin signaling inhibition by Grb14 is a prerequisite for the development of insulin-sensitizing molecules to treat pathophysiological states such as obesity or type 2 diabetes.
Collapse
Affiliation(s)
- Diana Goenaga
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Siamakpour-Reihani S, Argiros HJ, Wilmeth LJ, Haas LL, Peterson TA, Johnson DL, Shuster CB, Lyons BA. The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner. J Mol Recognit 2009; 22:9-17. [PMID: 18853468 PMCID: PMC3060053 DOI: 10.1002/jmr.916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Grb7 is an adaptor molecule that can mediate signal transduction from multiple cell surface receptors to various downstream signaling pathways. Grb7, along with Grb10 and Grb14, make up the Grb7 protein family. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7 and a receptor tyrosine kinase (RTK), erbB2, are overexpressed in 20-30% of breast cancers. Grb7 overexpression has been linked to enhanced cell migration and metastasis, though the participants in these pathways have not been determined. In this study, we report that Grb7 interacts with four and half lim domains isoform 2 (FHL2), a transcription regulator with an important role in oncogenesis, including breast cancer. Additionally, in yeast 2-hybrid (Y2H) assays, we show that the interaction is specific to the Grb7 RA and PH domains. We have also demonstrated that full-length (FL) Grb7 and FHL2 interact in mammalian cells and that Grb7 must be tyrosine phosphorylated for this interaction to occur. Immunofluorescent microscopy demonstrates possible co-localization of Grb7 and FHL2. A model with supporting NMR evidence of Grb7 autoinhibition is proposed.
Collapse
Affiliation(s)
| | - Haroula J. Argiros
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Lori J. Wilmeth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - L. Lowell Haas
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Tabitha A. Peterson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Dennis L. Johnson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Barbara A. Lyons
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
28
|
Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem Pharmacol 2008; 76:873-83. [PMID: 18718450 DOI: 10.1016/j.bcp.2008.07.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/05/2008] [Accepted: 07/07/2008] [Indexed: 12/16/2022]
Abstract
The insulin receptor (IR) is composed of two alpha-chains that bind ligands and two beta-chains that possess an intracellular tyrosine kinase activity. The IR is expressed in cells as two isoforms containing or not exon 11 (IRB and IRA, respectively). Several mRNA studies have demonstrated that the two isoforms are co-expressed in different tissues and in several cancer cells. IRA/IRB hybrid receptors, constituting of an alphabeta-chain from IRA and an alphabeta-chain from IRB, are likely to occur in cells co-expressing both isoforms, but their study has been hampered by the lack of specific tools. In previous work, we used BRET to study IR and IGF1R homodimers and heterodimers. Here, we have used BRET to characterize IRA/IRB hybrids. BRET saturation experiments showed that IRA/IRB hybrids are randomly formed in cells. Moreover, by co-transfecting HEK-293 cells with a luciferase-tagged kinase-dead version of one isoform and a wild-type untagged version of the other isoform, we showed that IRA/IRB hybrids can recruit, upon ligand stimulation, a YFP-tagged intracellular partner. Finally, using BRET, we have studied ligand-induced conformational changes within IRA/IRB hybrids. Dose-response experiments showed that hybrid receptors bind IGF-2 with the same affinity than IRA homodimers, whereas they bind IGF-1 with a lower affinity. Altogether, our data indicate that IRA/IRB hybrid receptors can form in cells co-expressing both IR isoforms, that they are capable of recruiting intracellular partners upon ligand stimulation, and that they have pharmacological properties more similar to those of IRA than those of IRB homodimers with regards to IGF-2.
Collapse
|
29
|
Carré N, Caüzac M, Girard J, Burnol AF. Dual effect of the adapter growth factor receptor-bound protein 14 (grb14) on insulin action in primary hepatocytes. Endocrinology 2008; 149:3109-17. [PMID: 18339716 DOI: 10.1210/en.2007-1196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tight control of insulin action in liver is a crucial determinant for the regulation of energy homeostasis. Growth factor receptor-bound protein 14 (Grb14) is a molecular adapter, highly expressed in liver, which binds to the activated insulin receptor and inhibits its tyrosine kinase activity. The physiological role of Grb14 in liver metabolism was unexplored. In this study we used RNA interference to investigate the consequences of Grb14 decrease on insulin-regulated intracellular signaling, and on glucose and lipid metabolism in mouse primary cultured hepatocytes. In Grb14-depleted hepatocytes, insulin-induced phosphorylation of Akt, and of its substrates glycogen synthase kinase 3 and fork-head box protein 1, was increased. These effects on insulin signaling are in agreement with the selective inhibitory effect of Grb14 on the receptor kinase. However, the metabolic and genic effects of insulin were differentially regulated after Grb14 down-regulation. Indeed, the insulin-mediated inhibition of hepatic glucose production and gluconeogenic gene expression was slightly increased. Surprisingly, despite the improved Akt pathway, the induction by insulin of sterol regulatory element binding protein-1c maturation was totally blunted. As a result, in the absence of Grb14, glycogen synthesis as well as glycolytic and lipogenic gene expression were not responsive to the stimulatory effect of insulin. This study provides evidence that Grb14 exerts a dual role on the regulation by insulin of hepatic metabolism. It inhibits insulin receptor catalytic activity, and acts also at a more distal step, i.e. sterol regulatory element binding protein-1c maturation, which effect is predominant under short-term inhibition of Grb14 expression.
Collapse
Affiliation(s)
- Nadège Carré
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), 75014 Paris, France
| | | | | | | |
Collapse
|
30
|
Tan PK, Wang J, Littler PLH, Wong KK, Sweetnam TA, Keefe W, Nash NR, Reding EC, Piu F, Brann MR, Schiffer HH. Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer. Mol Pharmacol 2007; 72:1440-6. [PMID: 17715395 DOI: 10.1124/mol.107.039636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A limited number of whole-cell assays allow monitoring of receptor tyrosine kinase (RTK) activity in a signaling pathway-specific manner. We present the general use of the bioluminescence resonance energy transfer (BRET) technology to quantitatively study the pharmacology and signaling properties of the receptor tyrosine kinase (RTK) superfamily. RTK BRET-2 assays monitor, in living cells, the specific interaction between RTKs and their effector proteins, which control the activation of specific downstream signaling pathways. A total of 22 BRET assays have been established for nine RTKs derived from four subfamilies [erythroblastic leukemia viral (v-erb-b) oncogene homolog (ErbB), platelet-derived growth factor (PDGF), neurotrophic tyrosine kinase receptor (TRK), vascular endothelial growth factor (VEGF)] monitoring the interactions with five effectors (Grb2, p85, Stat5a, Shc46, PLCgamma1). These interactions are dependent on the RTK kinase activity and autophosphorylation of specific tyrosine residues in the carboxyl terminus. RTK BRET assays are highly sensitive for quantifying ligand-independent (constitutive), agonist-induced, or antagonist-inhibited RTK activity levels. We studied the signaling properties of the PDGF receptor, alpha polypeptide (PDGFRA) isoforms (V561D; D842V and delta842-845) carrying activating mutations identified in gastrointestinal stromal tumors (GIST). All three PDGFRA isoforms are fully constitutively activated, insensitive to the growth factor PDGF-BB, but show differential sensitivity of their constitutive activity to be inhibited by the inhibitor imatinib (Gleevec). Epidermal growth factor receptor (EGFR) BRET structure-function studies identify the tyrosine residues 1068, 1114, and 1148 as the main residues mediating the interaction of EGFR with the adapter protein Grb2. The BRET technology provides an assay platform to study signaling pathway-specific RTK structure-function and will facilitate drug discovery efforts for the identification of novel RTK modulators.
Collapse
Affiliation(s)
- Philip K Tan
- ACADIA Pharmaceuticals, 3911 Sorrento Valley Blvd., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith FM, Holt LJ, Garfield AS, Charalambous M, Koumanov F, Perry M, Bazzani R, Sheardown SA, Hegarty BD, Lyons RJ, Cooney GJ, Daly RJ, Ward A. Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol Cell Biol 2007; 27:5871-86. [PMID: 17562854 PMCID: PMC1952119 DOI: 10.1128/mcb.02087-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/14/2006] [Accepted: 05/22/2007] [Indexed: 02/07/2023] Open
Abstract
The Grb10 adapter protein is capable of interacting with a variety of receptor tyrosine kinases, including, notably, the insulin receptor. Biochemical and cell culture experiments have indicated that Grb10 might act as an inhibitor of insulin signaling. We have used mice with a disruption of the Grb10 gene (Grb10Delta2-4 mice) to assess whether Grb10 might influence insulin signaling and glucose homeostasis in vivo. Adult Grb10Delta2-4 mice were found to have improved whole-body glucose tolerance and insulin sensitivity, as well as increased muscle mass and reduced adiposity. Tissue-specific changes in insulin receptor tyrosine phosphorylation were consistent with a model in which Grb10, like the closely related Grb14 adapter protein, prevents specific protein tyrosine phosphatases from accessing phosphorylated tyrosines within the kinase activation loop. Furthermore, insulin-induced IRS-1 tyrosine phosphorylation was enhanced in Grb10Delta2-4 mutant animals, supporting a role for Grb10 in attenuation of signal transmission from the insulin receptor to IRS-1. We have previously shown that Grb10 strongly influences growth of the fetus and placenta. Thus, Grb10 forms a link between fetal growth and glucose-regulated metabolism in postnatal life and is a candidate for involvement in the process of fetal programming of adult metabolic health.
Collapse
Affiliation(s)
- Florentia M Smith
- University of Bath, Developmental Biology Program and Centre for Regenerative Medicine, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Issad T, Blanquart C, Gonzalez-Yanes C. The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors. Expert Opin Ther Targets 2007; 11:541-56. [PMID: 17373883 DOI: 10.1517/14728222.11.4.541] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During recent years, the bioluminescence resonance energy transfer (BRET) methodology has emerged as a powerful technique for the study of protein-protein interactions. This review focuses on recent work demonstrating the power of BRET for the study of tyrosine kinase receptors, using insulin and IGF-1 receptors as models. The authors show that BRET can be used to monitor ligand-induced conformational changes within homodimeric insulin and IGF-1 receptors, as well as heterodimeric insulin/IGF-1 hybrid receptors. BRET can also be used to study, in real time and in living cells, the interaction of tyrosine kinase receptors with cellular partners negatively or positively involved in the regulation of intracellular signalling (protein tyrosine phosphatases, molecular adaptors). In addition, BRET can be used to develop high-throughput screening assays for the search of molecules with therapeutic interest and could, therefore, constitute a valuable tool for laboratories involved in drug discovery.
Collapse
Affiliation(s)
- Tarik Issad
- Institut Cochin, Department of Cell Biology, Université Paris Descartes, CNRS (UMR 8104), 22 Rue Méchain, 75014 Paris, France.
| | | | | |
Collapse
|
33
|
Rajala A, Anderson RE, Ma JX, Lem J, Al-Ubaidi MR, Rajala RVS. G-protein-coupled receptor rhodopsin regulates the phosphorylation of retinal insulin receptor. J Biol Chem 2007; 282:9865-9873. [PMID: 17272282 DOI: 10.1074/jbc.m608845200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that phosphoinositide 3-kinase in the retina is activated in vivo through light-induced tyrosine phosphorylation of the insulin receptor (IR). The light effect is localized to photoreceptor neurons and is independent of insulin secretion (Rajala, R. V., McClellan, M. E., Ash, J. D., and Anderson, R. E. (2002) J. Biol. Chem. 277, 43319-43326). These results suggest that there exists a cross-talk between phototransduction and other signal transduction pathways. In this study, we examined the stage of phototransduction that is coupled to the activation of the IR. We studied IR phosphorylation in mice lacking the rod-specific alpha-subunit of transducin to determine if phototransduction events are required for IR activation. To confirm that light-induced tyrosine phosphorylation of the IR is signaled through bleachable rhodopsin, we examined IR activation in retinas from RPE65(-/-) mice that are deficient in opsin chromophore. We observed that IR phosphorylation requires the photobleaching of rhodopsin but not transducin signaling. To determine whether the light-dependent activation of IR is mediated through the rod or cone transduction pathway, we studied the IR activation in mice lacking opsin, a mouse model of pure cone function. No light-dependent activation of the IR was found in the retinas of these mice. We provide evidence for the existence of a light-mediated IR pathway in the retina that is different from the known insulin-mediated pathway in nonneuronal tissues. These results suggest that IR phosphorylation in rod photoreceptors is signaled through the G-protein-coupled receptor rhodopsin. This is the first study demonstrating that rhodopsin can initiate signaling pathway(s) in addition to its classical phototransduction.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Robert E Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jian-Xing Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Janis Lem
- Department of Ophthalmology, New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Muayyad R Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
34
|
Nouaille S, Blanquart C, Zilberfarb V, Boute N, Perdereau D, Burnol AF, Issad T. Interaction between the insulin receptor and Grb14: A dynamic study in living cells using BRET. Biochem Pharmacol 2006; 72:1355-66. [PMID: 16934761 DOI: 10.1016/j.bcp.2006.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/18/2022]
Abstract
Grb14 is a molecular adaptor that binds to the activated insulin receptor (IR) and negatively regulates insulin signaling. We have studied the dynamics of interaction of the IR with Grb14, in real time, in living HEK cells, using bioluminescence resonance energy transfer (BRET). Insulin rapidly and dose-dependently stimulated this interaction. Removing insulin from the incubation medium only resulted in a modest decrease in BRET signal, indicating that the interaction between the IR and Grb14 can remain long after insulin stimulus has disappeared. BRET saturation experiments indicated that insulin markedly increases the affinity between IR and Grb14, resulting in recruitment of the adaptor to the activated IR. In addition, using both BRET and co-immunoprecipitation experiments, we demonstrated that insulin induced the dimerization of Grb14, most likely as a result of simultaneous binding of two Grb14 molecules on the activated IR. We also investigated the relationships between IR, Grb14 and the protein tyrosine phosphatase PTP1B. We observed that insulin-induced BRET between the IR and PTP1B was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the insulin receptor, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the ERK pathway. Our work suggests that Grb14 may regulate signalling through the insulin receptor by controlling its tyrosine-dephosphorylation in a site-specific manner.
Collapse
Affiliation(s)
- Sébastien Nouaille
- Institut Cochin, Département de Biologie Cellulaire, Paris F-75014, France
| | | | | | | | | | | | | |
Collapse
|