1
|
Zhang Z, Zhang S, Jiang X, Wu D, Du Y, Yang XD. Spata2L Suppresses TLR4 Signaling by Promoting CYLD-Mediated Deubiquitination of TRAF6 and TAK1. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:957-964. [PMID: 36180997 DOI: 10.1134/s0006297922090085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/13/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that can be activated by bacterial lipopolysaccharide to elicit inflammatory response. Proper activation of TLR4 is critical for the host defense against microbial infections. Since overactivation of TLR4 causes deleterious effects and inflammatory diseases, its activation needs to be tightly controlled by negative regulatory mechanisms, among which the most pivotal could be deubiquitination of key signaling molecules mediated by deubiquitinating enzymes (DUBs). CYLD is a member of the USP family of DUBs that acts as a critical negative regulator of TLR4-depedent inflammatory responses by deconjugating polyubiquitin chains from signaling molecules, such as TRAF6 and TAK1. Dysregulation of CYLD is implicated in inflammatory diseases. However, how the function of CYLD is regulated during inflammatory response remains largely unclear. Recently, we and other authors have shown that Spata2 functions as an important CYLD partner to regulate enzymatic activity of CYLD and substrate binding by this protein. Here, we show that a Spata2-like protein, Spata2L, can also form a complex with CYLD to inhibit the TLR4-dependent inflammatory response. We found that Spata2L constitutively interacts with CYLD and that the deficiency of Spata2L enhances the LPS-induced NF-κB activation and proinflammatory cytokine gene expression. Mechanistically, Spata2L potentiated CYLD-mediated deubiquitination of TRAF6 and TAK1 likely by promoting CYLD enzymatic activity. These findings identify Spata2L as a novel CYLD regulator, provide new insights into regulatory mechanisms underlying CYLD role in TLR4 signaling, and suggest potential targets for modulating TLR4-induced inflammation.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuangyan Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoli Jiang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dandan Wu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yaning Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Jofre BL, Eliçabe RJ, Silva JE, Pérez Sáez JM, Paez MD, Callegari E, Mariño KV, Di Genaro MS, Rabinovich GA, Davicino RC. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021; 11:1636. [PMID: 34827634 PMCID: PMC8615707 DOI: 10.3390/biom11111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous β-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.
Collapse
Affiliation(s)
- Brenda Lucila Jofre
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Ricardo Javier Eliçabe
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Manuel Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
| | - Maria Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina;
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
- Roberto Davicino, División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis CP5700, Argentina
| |
Collapse
|
3
|
LRRC62 attenuates Toll-like receptor signaling by deubiquitinating TAK1 via CYLD. Exp Cell Res 2019; 383:111497. [DOI: 10.1016/j.yexcr.2019.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022]
|
4
|
Yang XD, Sun SC. Deubiquitinases as pivotal regulators of T cell functions. Front Med 2018; 12:451-462. [PMID: 30054854 PMCID: PMC6705128 DOI: 10.1007/s11684-018-0651-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
T cells efficiently respond to foreign antigens to mediate immune responses against infections but are tolerant to self-tissues. Defect in T cell activation is associated with severe immune deficiencies, whereas aberrant T cell activation contributes to the pathogenesis of diverse autoimmune and inflammatory diseases. An emerging mechanism that regulates T cell activation and tolerance is ubiquitination, a reversible process of protein modification that is counter-regulated by ubiquitinating enzymes and deubiquitinases (DUBs). DUBs are isopeptidases that cleave polyubiquitin chains and remove ubiquitin from target proteins, thereby controlling the magnitude and duration of ubiquitin signaling. It is now well recognized that DUBs are crucial regulators of T cell responses and serve as potential therapeutic targets for manipulating immune responses in the treatment of immunological disorders and cancer. This review will discuss the recent progresses regarding the functions of DUBs in T cells.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Tenekeci U, Poppe M, Beuerlein K, Buro C, Müller H, Weiser H, Kettner-Buhrow D, Porada K, Newel D, Xu M, Chen ZJ, Busch J, Schmitz ML, Kracht M. K63-Ubiquitylation and TRAF6 Pathways Regulate Mammalian P-Body Formation and mRNA Decapping. Mol Cell 2017; 62:943-957. [PMID: 27315556 DOI: 10.1016/j.molcel.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/22/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Signals and posttranslational modifications regulating the decapping step in mRNA degradation pathways are poorly defined. In this study we reveal the importance of K63-linked ubiquitylation for the assembly of decapping factors, P-body formation, and constitutive decay of instable mRNAs encoding mediators of inflammation by various experimental approaches. K63-branched ubiquitin chains also regulate IL-1-inducible phosphorylation of the P-body component DCP1a. The E3 ligase TRAF6 binds to DCP1a and indirectly regulates DCP1a phosphorylation, expression of decapping factors, and gene-specific mRNA decay. Mutation of six C-terminal lysines of DCP1a suppresses decapping activity and impairs the interaction with the mRNA decay factors DCP2, EDC4, and XRN1, but not EDC3, thus remodeling P-body architecture. The usage of ubiquitin chains for the proper assembly and function of the decay-competent mammalian decapping complex suggests an additional layer of control to allow a coordinated function of decapping activities and mRNA metabolism in higher eukaryotes.
Collapse
Affiliation(s)
- Ulas Tenekeci
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Michael Poppe
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Knut Beuerlein
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Christin Buro
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Helmut Müller
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Hendrik Weiser
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Daniela Kettner-Buhrow
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Katharina Porada
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Doris Newel
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ming Xu
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Zhijian J Chen
- Department of Molecular Biology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Julia Busch
- Institute of Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
6
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
7
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
8
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
9
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proc Natl Acad Sci U S A 2016; 113:E4776-83. [PMID: 27482120 DOI: 10.1073/pnas.1608355113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.
Collapse
|
11
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
12
|
Lin J, Lee D, Choi Y, Lee SY. The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci Signal 2015; 8:ra54. [PMID: 26038599 DOI: 10.1126/scisignal.2005867] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The E3 ubiquitin ligase TRAF6 [tumor necrosis factor (TNF) receptor (TNFR)-associated factor 6] and the associated kinase TAK1 [transforming growth factor-β (TGF-β)-activated kinase 1] are key components of the signaling pathways that activate nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in response to various stimuli. The cytokine RANKL (receptor activator of NF-κB ligand) is essential for the differentiation of bone marrow cells into bone-resorbing osteoclasts through the activation of NF-κB and MAPK. We found that the scaffold protein RACK1 (receptor for activated C kinase 1) selectively mediated the RANKL-dependent activation of p38 MAPK through the TRAF6-TAK1 axis by interacting with the MAPK kinase MKK6 (MAPK kinase kinase 6), which is upstream of p38 MAPK. RACK1 was necessary for the differentiation of bone marrow cells into osteoclasts through the stimulation of p38 MAPK activation. Osteoclast precursors exposed to RANKL exhibited an interaction among RACK1, RANK, TRAF6, TAK1, and the kinase MKK6, thereby leading to the activation of the MKK6-p38 MAPK pathway. Experiments in which RACK1 or TAK1 was knocked down in osteoclast precursors indicated that RACK1 acted as a bridge, bringing MKK6 to the TRAF6-TAK1 complex. Furthermore, local administration of RACK1-specific small interfering RNA (siRNA) into mice calvariae reduced the RANKL-induced bone loss by reducing the numbers of osteoclasts. These findings suggest that RACK1 specifies the RANKL-stimulated activation of p38 MAPK by facilitating the association of MKK6 with TAK1 and may provide a molecular target for a new therapeutic strategy to treat bone diseases.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Life Science, Ewha Womans University, Seoul 120-750, South Korea. Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul 120-750, South Korea. Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
13
|
Ashida H, Kim M, Sasakawa C. Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 2014; 12:399-413. [DOI: 10.1038/nrmicro3259] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Liu X, Li H, Zhong B, Blonska M, Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X, Dong C. USP18 inhibits NF-κB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. ACTA ACUST UNITED AC 2013; 210:1575-90. [PMID: 23825189 PMCID: PMC3727316 DOI: 10.1084/jem.20122327] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible ubiquitin modification of cell signaling molecules has emerged as a critical mechanism by which cells respond to extracellular stimuli. Although ubiquitination of TGF-β-activated kinase 1 (TAK1) is critical for NF-κB activation in T cells, the regulation of its deubiquitination is unclear. We show that USP18, which was previously reported to be important in regulating type I interferon signaling in innate immunity, regulates T cell activation and T helper 17 (Th17) cell differentiation by deubiquitinating the TAK1-TAB1 complex. USP18-deficient T cells are defective in Th17 differentiation and Usp18(-/-) mice are resistant to experimental autoimmune encephalomyelitis (EAE). In response to T cell receptor engagement, USP18-deficient T cells exhibit hyperactivation of NF-κB and NFAT and produce increased levels of IL-2 compared with the wild-type controls. Importantly, USP18 is associated with and deubiquitinates the TAK1-TAB1 complex, thereby restricting expression of IL-2. Our findings thus demonstrate a previously uncharacterized negative regulation of TAK1 activity during Th17 differentiation, suggesting that USP18 may be targeted to treat autoimmune diseases.
Collapse
Affiliation(s)
- Xikui Liu
- Department of Immunology, Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Koch I, Dach K, Heesemann J, Hoffmann R. Yersinia enterocolitica inactivates NK cells. Int J Med Microbiol 2013; 303:433-42. [PMID: 23810728 DOI: 10.1016/j.ijmm.2013.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/07/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells serve as an important source of proinflammatory cytokines early during infection. Hypothesizing that Yersinia enterocolitica might interact with and inactivate NK cells, we examined NK cell-Y. enterocolitica interactions in vitro and in vivo. Y. enterocolitica adheres to NK cells in an Invasin dependent manner and inhibits NK cell cytotoxicity and IFN-γ production induced by IL-12+IL-18 or IL-12 alone. YopP, an acetyltransferase known to inhibit MAPK and NFκB signaling, suppresses IL-12 and IL-12+IL-18 mediated IFN-γ production in NK cells by inhibiting phosphorylation of Tyk2 and STAT4 in addition to MAPK. YopP inhibits induction of all genes whose expression is induced by IL-12+IL-18 in NK cells. Y. enterocolitica-mediated adherence to and inactivation of NK cells also occurs after infection in vivo. Thus, we present the first report of a bacterial pathogen inactivating NK cells, and report interaction with Tyk2-STAT4 signaling as a novel function of YopP.
Collapse
Affiliation(s)
- Isabel Koch
- Ludwig Maximilians University, Max von Pettenkofer Institut, Department of Bacteriology, 80336 Munich, Germany
| | | | | | | |
Collapse
|
16
|
Ajibade AA, Wang HY, Wang RF. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 2013; 34:307-16. [PMID: 23664135 DOI: 10.1016/j.it.2013.03.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β-activated kinase 1 (TAK1 or MAP3K7) is a key signaling component of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Activation of TAK1 is tightly regulated through its binding partners and protein modifications. Although TAK1 functions as an essential and positive regulator of innate immune signaling and apoptosis in mouse embryonic fibroblasts (MEFs), T cells, and other cells, it negatively regulates cell development and activation of proinflammatory signaling pathways in neutrophils. However, the molecular mechanisms responsible for the opposite roles of TAK1 in different cell types remain to be addressed. In this article, we discuss the latest progresses in our understanding of TAK1 regulation, function, and mechanisms in a cell-type specific manner.
Collapse
Affiliation(s)
- Adebusola A Ajibade
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Stockert J, Wolf A, Kaddatz K, Schnitzer E, Finkernagel F, Meissner W, Müller-Brüsselbach S, Kracht M, Müller R. Regulation of TAK1/TAB1-mediated IL-1β signaling by cytoplasmic PPARβ/δ. PLoS One 2013; 8:e63011. [PMID: 23646170 PMCID: PMC3639976 DOI: 10.1371/journal.pone.0063011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
The peroxisome proliferator-activated receptor subtypes PPARα, PPARβ/δ, PPARγ are members of the steroid hormone receptor superfamily with well-established functions in transcriptional regulation. Here, we describe an unexpected cytoplasmic function of PPARβ/δ. Silencing of PPARβ/δ expression interferes with the expression of a large subset of interleukin-1β (IL-1β)-induced target genes in HeLa cells, which is preceded by an inhibition of the IL-1β-induced phosphorylation of TAK1 and its downstream effectors, including the NFκBα inhibitor IκBα (NFKBIA) and the NFκBα subunit p65 (RELA). PPARβ/δ enhances the interaction between TAK1 and the small heat-shock protein HSP27, a known positive modulator of TAK1-mediated IL-1β signaling. Consistent with these findings, PPARβ/δ physically interacts with both the endogenous cytoplasmic TAK1/TAB1 complex and HSP27, and PPARβ/δ overexpression increases the TAK1-induced transcriptional activity of NFκB. These observations suggest that PPARβ/δ plays a role in the assembly of a cytoplasmic multi-protein complex containing TAK1, TAB1, HSP27 and PPARβ/δ, and thereby participates in the NFκB response to IL-1β.
Collapse
Affiliation(s)
- Josefine Stockert
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Alexander Wolf
- Rudolf Buchheim Institute for Pharmacology, Giessen, Germany
| | - Kerstin Kaddatz
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Evelyn Schnitzer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | - Wolfgang Meissner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
| | | | - Michael Kracht
- Rudolf Buchheim Institute for Pharmacology, Giessen, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Marburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Wang X, Gu W, Qiu H, Xia S, Zheng H, Xiao Y, Liang J, Jing H. Comparison of the cytokine immune response to pathogenic Yersinia enterocolitica bioserotype 1B/O:8 and 2/O:9 in susceptible BALB/C and resistant C57BL/6 mice. Mol Immunol 2013; 55:365-71. [PMID: 23582306 DOI: 10.1016/j.molimm.2013.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 10/26/2022]
Abstract
We investigated the lethality of pathogenic Yersinia enterocolitica bioserotypes 1B/O:8 and 2/O:9 in susceptible BALB/C and resistant C57BL/6 mice; the cytokine alterations and histopathological changes were observed comparing the two strains in BALB/C mice. The data showed the 50% lethal dose (LD50) for the pathogenic Y. enterocolitica bioserotype 1B/O:8 was 10³ cfu in both BALB/C and C57BL/6 mice; while the LD50 for the 2/O:9 was 10⁸ cfu in BALB/C mice and 10⁹ cfu in C57BL/6 mice, a large difference. After infection with the two strains in BALB/C mice, GM-CSF (granulocyte-macrophage colony stimulating factor), IFN-γ (interferon-γ), IL-1β (interleukin-1β), IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and TNF-α (tumor necrosis factor-α) appeared as a cytokine storm in a short period, reached peak values, and then quickly decreased. This appeared important for the immune response and cytokine immunopathogenesis in pathogenic Y. enterocolitica infections. In the initial infection stage, GM-CSF, IL-6, and TNF-α of 2/O:9 were higher than 1B/O:8; and subsequently the status was reversed. However, levels of IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-10, IL-12 following infection with 1B/O:8 were always higher than with 2/O:9. The histopathological changes in the liver and spleen in BALB/C mice infected with the two strains were similar at different times and doses. These observations show the different immunological effects and changes for pathogenic Y. enterocolitica 1B/O:8 and 2/O:9 infections using the mouse model.
Collapse
Affiliation(s)
- Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, 102206 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Reinés M, Llobet E, Dahlström KM, Pérez-Gutiérrez C, Llompart CM, Torrecabota N, Salminen TA, Bengoechea JA. Deciphering the acylation pattern of Yersinia enterocolitica lipid A. PLoS Pathog 2012; 8:e1002978. [PMID: 23133372 PMCID: PMC3486919 DOI: 10.1371/journal.ppat.1002978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022] Open
Abstract
Pathogenic bacteria may modify their surface to evade the host innate immune response. Yersinia enterocolitica modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, Y. enterocolitica expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo2-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of lpxR is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of Y. enterocolitica virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the lpxR mutant grown at 21°C. Mechanistically, our data revealed that the expressions of flhDC and rovA, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the lpxR mutant. Finally, we establish that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS. Lipopolysaccharide (LPS) is one of the major surface components of Gram-negative bacteria. The LPS contains a molecular pattern recognized by the innate immune system. Not surprisingly, the modification of the LPS pattern is a virulence strategy of several pathogens to evade the innate immune system. Yersinia enterocolitica causes food-borne infections in animals and humans (yersiniosis). Temperature regulates most, if not all, virulence factors of yersiniae including the structure of the LPS lipid A. At 21°C, lipid A is mainly hexa-acylated and may be modified with aminoarabinose or palmitate. In contrast, at 37°C, Y. enterocolitica expresses a unique tetra-acylated lipid A. In this work, we establish that Y. enterocolitica encodes a lipid A deacylase, LpxR, responsible for the lipid A structure expressed by the pathogen at 37°C, the host temperature. Our findings also revealed that the low inflammatory response associated to Y. enterocolitica infections is the sum of the anti-inflammatory action exerted by a Yersinia protein translocated into the cytosol of macrophages and the reduced activation of the LPS receptor complex due to the expression of a LpxR-dependent deacylated LPS.
Collapse
Affiliation(s)
- Mar Reinés
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Camino Pérez-Gutiérrez
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Catalina M. Llompart
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Nuria Torrecabota
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Recinto Hospital Joan March, Bunyola, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Ziesché E, Kettner-Buhrow D, Weber A, Wittwer T, Jurida L, Soelch J, Müller H, Newel D, Kronich P, Schneider H, Dittrich-Breiholz O, Bhaskara S, Hiebert SW, Hottiger MO, Li H, Burstein E, Schmitz ML, Kracht M. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Res 2012; 41:90-109. [PMID: 23087373 PMCID: PMC3592411 DOI: 10.1093/nar/gks916] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Histone deacetylase (HDAC) 3, as a cofactor in co-repressor complexes containing silencing mediator for retinoid or thyroid-hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR), has been shown to repress gene transcription in a variety of contexts. Here, we reveal a novel role for HDAC3 as a positive regulator of IL-1-induced gene expression. Various experimental approaches involving RNAi-mediated knockdown, conditional gene deletion or small molecule inhibitors indicate a positive role of HDAC3 for transcription of the majority of IL-1-induced human or murine genes. This effect was independent from the gene regulatory effects mediated by the broad-spectrum HDAC inhibitor trichostatin A (TSA) and thus suggests IL-1-specific functions for HDAC3. The stimulatory function of HDAC3 for inflammatory gene expression involves a mechanism that uses binding to NF-κB p65 and its deacetylation at various lysines. NF-κB p65-deficient cells stably reconstituted to express acetylation mimicking forms of p65 (p65 K/Q) had largely lost their potential to stimulate IL-1-triggered gene expression, implying that the co-activating property of HDAC3 involves the removal of inhibitory NF-κB p65 acetylations at K122, 123, 314 and 315. These data describe a novel function for HDAC3 as a co-activator in inflammatory signaling pathways and help to explain the anti-inflammatory effects frequently observed for HDAC inhibitors in (pre)clinical use.
Collapse
Affiliation(s)
- Elisabeth Ziesché
- Rudolf-Buchheim-Institute of Pharmacology, Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
22
|
Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc Natl Acad Sci U S A 2012; 109:12710-5. [PMID: 22802624 DOI: 10.1073/pnas.1008203109] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.
Collapse
|
23
|
Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 2012; 33:522-30. [PMID: 22795313 DOI: 10.1016/j.tips.2012.06.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022]
Abstract
The transcription factors nuclear factor-κB (NF-κB) and activating protein-1 (AP-1) are critical regulators of stress responses, immunity, inflammation and cancer. A large variety of cellular stimuli utilize these signaling pathways through a common upstream kinase transforming growth factor-β-activated kinase 1 (TAK1). TAK1 was originally identified as a mitogen-activated kinase kinase kinase (MAP3K) activated by transforming growth factor-β (TGF-β); however, it has been characterized as a key regulator in inflammatory and immune signaling pathways. In addition, microbial proteins and components of host cell signaling scramble for the TAK1 complex in innate immunity. This review highlights the recent advances in the activation mechanisms and physiological functions of TAK1. Research targeting TAK1 raises the potential for new therapeutic options for inflammatory disorders, including cancer.
Collapse
Affiliation(s)
- Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
24
|
Wolf A, Beuerlein K, Eckart C, Weiser H, Dickkopf B, Müller H, Sakurai H, Kracht M. Identification and functional characterization of novel phosphorylation sites in TAK1-binding protein (TAB) 1. PLoS One 2011; 6:e29256. [PMID: 22216226 PMCID: PMC3245275 DOI: 10.1371/journal.pone.0029256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/23/2011] [Indexed: 12/28/2022] Open
Abstract
TAB1 was defined as a regulatory subunit of the protein kinase TAK1, which functions upstream in the pathways activated by interleukin (IL)-1, tumor necrosis factor (TNF), toll-like receptors (TLRs) and stressors. However, TAB1 also functions in the p38 MAPK pathway downstream of TAK1. We identified amino acids (aa) 452/453 and 456/457 of TAB1 as novel sites phosphorylated by TAK1 as well as by p38 MAPK in intact cells as well as in vitro. Serines 452/453 and 456/457 were phosphorylated upon phosphatase blockade by calyculin A, or in response to IL-1 or translational stressors such as anisomycin and sorbitol. Deletion or phospho-mimetic mutations of aa 452–457 of TAB1 retain TAB1 and p38 MAPK in the cytoplasm. The TAB1 mutant lacking aa 452–457 decreases TAB1-dependent phosphorylation of p38 MAPK. It also enhances TAB1-dependent CCL5 secretion in response to IL-1 and increases activity of a post-transcriptional reporter gene, which contains the CCL5 3′ untranslated region. These data suggest a complex role of aa 452–457 of TAB1 in controlling p38 MAPK activity and subcellular localization and implicate these residues in TAK1- or p38 MAPK-dependent post-transcriptional control of gene expression.
Collapse
Affiliation(s)
- Alexander Wolf
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Knut Beuerlein
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christoph Eckart
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hendrik Weiser
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Beate Dickkopf
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Helmut Müller
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Hiroaki Sakurai
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
25
|
Rzeczkowski K, Beuerlein K, Müller H, Dittrich-Breiholz O, Schneider H, Kettner-Buhrow D, Holtmann H, Kracht M. c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies. ACTA ACUST UNITED AC 2011; 194:581-96. [PMID: 21859862 PMCID: PMC3160581 DOI: 10.1083/jcb.201006089] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytokines and stress-inducing stimuli signal through c-Jun N-terminal kinase (JNK) using a diverse and only partially defined set of downstream effectors. In this paper, the decapping complex subunit DCP1a was identified as a novel JNK target. JNK phosphorylated DCP1a at residue S315 in vivo and in vitro and coimmunoprecipitated and colocalized with DCP1a in processing bodies (P bodies). Sustained JNK activation by several different inducers led to DCP1a dispersion from P bodies, whereas IL-1 treatment transiently increased P body number. Inhibition of TAK1-JNK signaling also affected the number and size of P bodies and the localization of DCP1a, Xrn1, and Edc4. Transcriptome analysis further identified a central role for DCP1a in IL-1-induced messenger ribonucleic acid (mRNA) expression. Phosphomimetic mutation of S315 stabilized IL-8 but not IκBα mRNA, whereas overexpressed DCP1a blocked IL-8 transcription and suppressed p65 NF-κB nuclear activity. Collectively, these data reveal DCP1a as a multifunctional regulator of mRNA expression and suggest a novel mechanism controlling the subcellular localization of DCP1a in response to stress or inflammatory stimuli.
Collapse
Affiliation(s)
- Katharina Rzeczkowski
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht M. Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2165-75. [PMID: 21787809 DOI: 10.1016/j.bbamcr.2011.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/20/2022]
Abstract
Infection or cell damage triggers the release of pro-inflammatory cytokines such as interleukin(IL)-1α or β and tumor necrosis factor (TNF)α which are key mediators of the host immune response. Following their identification and the elucidation of central signaling pathways, recent results show a highly complex crosstalk between various cytokines and their signaling effectors. The molecular mechanisms controlling signaling thresholds, signal integration and the function of feed-forward and feedback loops are currently revealed by combining methods from biochemistry, genetics and in silico analysis. Increasing evidence is mounted that defects in information processing circuits or their components can be causative for chronic or overshooting inflammation. As progress in biosciences has always benefitted from the use of well-studied model systems, research on inflammatory cytokines may function as a paradigm to reveal general principles of signal integration, crosstalk mechanisms and signaling networks.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | |
Collapse
|
27
|
Perrett CA, Lin DYW, Zhou D. Interactions of bacterial proteins with host eukaryotic ubiquitin pathways. Front Microbiol 2011; 2:143. [PMID: 21772834 PMCID: PMC3131157 DOI: 10.3389/fmicb.2011.00143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/16/2011] [Indexed: 12/20/2022] Open
Abstract
Ubiquitination is a post-translational modification in which one or more 76 amino acid polypeptide ubiquitin molecules are covalently linked to the lysine residues of target proteins. Ubiquitination is the main pathway for protein degradation that governs a variety of eukaryotic cellular processes, including the cell-cycle, vesicle trafficking, antigen presentation, and signal transduction. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of many diseases including inflammatory and neurodegenerative disorders. Recent studies have revealed that viruses and bacterial pathogens exploit the host ubiquitination pathways to gain entry and to aid their survival/replication inside host cells. This review will summarize recent developments in understanding the biochemical and structural mechanisms utilized by bacterial pathogens to interact with the host ubiquitination pathways.
Collapse
Affiliation(s)
| | - David Yin-Wei Lin
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Daoguo Zhou
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
28
|
Fan Y, Yu Y, Mao R, Zhang H, Yang J. TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-κB activation. Cell Signal 2011; 23:660-5. [PMID: 21130870 PMCID: PMC3035988 DOI: 10.1016/j.cellsig.2010.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The nuclear factor kappa B (NF-κB) transcription factor-mediated transcription is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli. Both the proteolytic and non-proteolytic functions of ubiquitination are critically important for the regulation of NF-κB activation. Lys63-linked polyubiquitination of TAK1 is required for IL-1β-induced IKK/NF-κB activation. However, the lysine site that mediates Lys63-linked TAK1 polyubiquitination in IL-1β signaling is still controversial. Here we report that TAK1 Lysine 158 but not Lysine 209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and TAK1-mediated IKK, JNK, and p38 activation. Co-overexpression of TAK1 wild-type and K209R mutant with TAB1 induced Lys63-linked TAK1 polyubiquitination and NF-κB activation whereas TAK1 K158R mutant failed to do so. Furthermore, IL-1β induces polyubiquitination of TAK1 wild-type and K209R mutant but not K158R mutant. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with wild-type, K158R mutant, or K209R mutant TAK1 reveals that TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced IKK, p38 and JNK activation.
Collapse
Affiliation(s)
- Yihui Fan
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Yang Yu
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Renfang Mao
- Department of Pathology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Hong Zhang
- Department of Pathology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jianhua Yang
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
29
|
Abstract
The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | |
Collapse
|
30
|
Suarez G, Sierra JC, Kirtley ML, Chopra AK. Role of Hcp, a type 6 secretion system effector, of Aeromonas hydrophila in modulating activation of host immune cells. MICROBIOLOGY-SGM 2010; 156:3678-3688. [PMID: 20798163 PMCID: PMC3068704 DOI: 10.1099/mic.0.041277-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently, we reported that the type 6 secretion system (T6SS) of Aeromonas hydrophila SSU plays an important role in bacterial virulence in a mouse model, and immunization of animals with the T6SS effector haemolysin co-regulated protein (Hcp) protected them against lethal infections with wild-type bacteria. Additionally, we showed that the mutant bacteria deleted for the vasH gene within the T6SS gene cluster did not express the hcp gene, while the vasK mutant could express and translocate Hcp, but was unable to secrete it into the extracellular milieu. Both of these A. hydrophila SSU mutants were readily phagocytosed by murine macrophages, pointing to the possible role of the secreted form of Hcp in the evasion of the host innate immunity. By using the ΔvasH mutant of A. hydrophila, our in vitro data showed that the addition of exogenous recombinant Hcp (rHcp) reduced bacterial uptake by macrophages. These results were substantiated by increased bacterial virulence when rHcp was added along with the ΔvasH mutant in a septicaemic mouse model of infection. Analysis of the cytokine profiling in the intraperitoneal lavage as well as activation of host cells after 4 h of infection with the ΔvasH mutant supplemented with rHcp indicated that this T6SS effector inhibited production of pro-inflammatory cytokines and induced immunosuppressive cytokines, such as interleukin-10 and transforming growth factor-β, which could circumvent macrophage activation and maturation. This mechanism of innate immune evasion by Hcp possibly inhibited the recruitment of cellular immune components, which allowed bacterial multiplication and dissemination in animals, thereby leading to their mortality.
Collapse
Affiliation(s)
- Giovanni Suarez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Johanna C Sierra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
31
|
Shinohara H, Kurosaki T. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev 2010; 232:300-18. [PMID: 19909372 DOI: 10.1111/j.1600-065x.2009.00836.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) contributes to many events in the immune system. Characterization of NF-kappaB has facilitated our understanding of immune cell differentiation, survival, proliferation, and effector functions. Intense research continues to elucidate the role of NF-kappaB, which is shared in several receptor signaling pathways, such as Toll-like receptors, the tumor necrosis factor receptor, and antigen receptors. The specificity of cellular responses emanating from stimulation of these receptors is determined by post-translational modification, or 'fine tuning', which regulates spatiotemporal dynamics of downstream signaling. Understanding the fine tuning mechanisms of NF-kappaB activation is crucial for insights into biological regulation and for understanding how cellular signaling pathways are tightly regulated to guide different cell fates. In this review, we focus on recent advances that illuminate the fine tuning mechanisms of NF-kappaB activation by BCR signaling and have increased our comprehension of complex signal systems.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan.
| | | |
Collapse
|
32
|
Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, Mao R, Chang A, Xu G, Schneider MD, Zhang H, Fu S, Qin J, Yang J. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem 2009; 285:5347-60. [PMID: 20038579 DOI: 10.1074/jbc.m109.076976] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta-activated kinase 1 (TAK1) plays an essential role in the tumor necrosis factor alpha (TNFalpha)- and interleukin-1beta (IL-1beta)-induced IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1) activation. Here we report that TNFalpha and IL-1beta induce Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue within the kinase domain. Tumor necrosis factor receptor-associated factors 2 and 6 (TRAF2 and -6) act as the ubiquitin E3 ligases to mediate Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue in vivo and in vitro. Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue is required for TAK1-mediated IKK complex recruitment. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild type or a TAK1 mutant containing a K158R mutation revealed the importance of this site in TNFalpha and IL-1beta-mediated IKK/NF-kappaB and JNK/AP-1 activation as well as IL-6 gene expression. Our findings demonstrate that Lys(63)-linked polyubiquitination of TAK1 at Lys(158) is essential for its own kinase activation and its ability to mediate its downstream signal transduction pathways in response to TNFalpha and IL-1beta stimulation.
Collapse
Affiliation(s)
- Yihui Fan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pandey AK, Sodhi A. Recombinant YopJ induces apoptosis in murine peritoneal macrophages in vitro: involvement of mitochondrial death pathway. Int Immunol 2009; 21:1239-49. [PMID: 19736292 DOI: 10.1093/intimm/dxp086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Yersinia species during infection adhere to host immune cells primarily to macrophages and employ its secretary proteins known as Yersinia outer proteins to trigger death in infected cells. In the present study, it is shown that recombinant Yersinia outer protein J (rYopJ) could induce apoptosis in murine peritoneal macrophages in vitro as assessed by morphological features, internucleosomal DNA fragmentation, change in mitochondrial membrane potential (MMP) (Deltapsim), activation of caspases and Annexin V binding. rYopJ-induced cell death was dose and time dependent. Pre-treatment with broad-spectrum caspase inhibitor Z-VAD-FMK, caspase-3 inhibitor Ac-DEVD-CHO and caspase-8 inhibitor Z-IETD-FMK prevented the change in MMP and DNA fragmentation, suggesting caspase-dependent apoptosis of rYopJ-treated macrophages. Blocking the endocytosis by pre-treatment of cells with cytochalasin B did not prevent the rYopJ-induced macrophages apoptosis. The data further suggest that rYopJ-induced apoptosis is mediated by molecules upstream of caspase-8 and relay through mitochondrial pathway involving Bax, Bcl-2, activation of caspase-8 and caspase-3, Bid and polyadenosine diphosphate-ribose polymerase cleavage, cytochrome c release and DNA fragmentation.
Collapse
Affiliation(s)
- Ashok Kumar Pandey
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
34
|
Köberle M, Klein-Günther A, Schütz M, Fritz M, Berchtold S, Tolosa E, Autenrieth IB, Bohn E. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model. PLoS Pathog 2009; 5:e1000551. [PMID: 19680448 PMCID: PMC2718809 DOI: 10.1371/journal.ppat.1000551] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/22/2009] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops. An important strategy of Yersinia enterocolitica (Ye) to suppress the immune defense is to inject bacterial proteins (Yersinia outer proteins, Yops) after cell contact directly into host cells, which affects their functions. However, tracking of cells in which Yop injection occurred has only been described for Yersinia pestis thus far. We adapted the described reporter system specifically for the use of infections with Ye and report the usefulness and limitations of this system. Using cell culture experiments, we demonstrated that β1-integrins and the RhoGTPases RhoA and Rac1 are involved in Yop injection. Since cell culture experiments also revealed that Yop injection is detectable in a similar manner into all subpopulations of the spleen, the system can be used to detect interaction of bacteria with host cells in vivo. In a mouse infection model we found that follicular B cells, granulocytes, macrophages, and dendritic cells are the main targets of Yop injection. Interestingly, Yop-injected B cells displayed an increased activation as indicated by increased CD69 expression. In contrast, interaction of bacteria with T cells seems to be rather a rare event. In immunocompromised gene-targeted mice we found increased frequencies of Yop-injected host cells for yet unknown reasons. Taken together, this novel reporter system represents a powerful tool to further study interaction of host cells with Ye.
Collapse
Affiliation(s)
- Martin Köberle
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Annegret Klein-Günther
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michaela Fritz
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Eva Tolosa
- Hertie-Institut für klinische Hirnforschung, Universitätsklinikum Tübingen, Tübingen, Germany
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Ingo B. Autenrieth
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Erwin Bohn
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
35
|
Sun SC, Ley SC. New insights into NF-kappaB regulation and function. Trends Immunol 2008; 29:469-78. [PMID: 18775672 DOI: 10.1016/j.it.2008.07.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 01/24/2023]
Abstract
NF-kappaB (nuclear factor-kappaB) transcription factors have multiple critical roles in the regulation of immune responses. In unstimulated cells, NF-kappaB proteins are sequestered in the cytoplasm by IkappaB inhibitory proteins. Various immune stimuli induce the IkappaB kinase (IKK) to phosphorylate IkappaBs, triggering their ubiquitination and proteasomal degradation, which permits nuclear translocation of associated NF-kappaB subunits and activation of NF-kappaB target genes. Recent studies have highlighted the importance of dynamic ubiquitination-deubiquitination events in regulating this canonical NF-kappaB signaling pathway. Ubiquitination additionally plays critical roles in activation of the noncanonical pathway that regulates NF-kappaB via signal-induced processing of NF-kappaB2 p100. New research has also identified several novel regulatory proteins that control the transcriptional activity of nuclear NF-kappaB.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA.
| | | |
Collapse
|
36
|
Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. Cytokine 2008; 43:359-67. [PMID: 18707898 DOI: 10.1016/j.cyto.2008.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/26/2008] [Indexed: 01/09/2023]
Abstract
Post-translational protein modifications are involved in all functions of living cells. This includes the ability of cells to recognize pathogens and regulate genes involved in their clearance, a concept known as innate immunity. While phosphorylation mechanisms play essential roles in regulating different aspects of the innate immune response, ubiquitination is now recognized as another post-translational modification that works in parallel with phosphorylation to orchestrate the final proper innate immune response against invading pathogens. More precisely, this review will discuss the most recent advances that address the role of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling.
Collapse
|
37
|
Abstract
Ubiquitylation is a fundamental mechanism of signal transduction that regulates immune responses and many other biological processes. Similar to phosphorylation, ubiquitylation is a reversible process that is counter-regulated by ubiquitylating enzymes and deubiquitylating enzymes (DUBs). Despite the identification of a large number of DUBs, our knowledge of the function and activities of this family of enzymes is just starting to accumulate. As described in this Review, recent studies of several DUBs, in particular CYLD and A20, show that deubiquitylation has an important role in the regulation of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, BOX 902, Houston, Texas 77030, USA.
| |
Collapse
|
38
|
Brodsky IE, Medzhitov R. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog 2008; 4:e1000067. [PMID: 18483548 PMCID: PMC2361194 DOI: 10.1371/journal.ppat.1000067] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/11/2008] [Indexed: 12/15/2022] Open
Abstract
Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow–derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis–infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen. The ability of bacterial pathogens to modulate death of infected host cells is an important virulence determinant. For pathogenic members of the genus Yersinia, the type III secreted effector protein YopJ/YopP is required for Yersinia-induced macrophage death. The YopJ protein is expressed by Y. pseudotuberculosis, while the ninety-four percent identical YopP protein is expressed by Y. enterocolitica. Y. enterocolitica infection also triggers YopP-dependent killing of dendritic cells, which are critical antigen presenting cells of the immune system. We demonstrate that in contrast to macrophages, dendritic cells are resistant to Y. pseudotuberculosis-mediated cytotoxicity. However, Y. pseudotuberculosis expressing YopP in place of YopJ was highly cytotoxic toward dendritic cells. This difference in cytotoxicity was attributable to a difference in the delivery of YopJ and YopP into mammalian cells. Furthermore, mutation of two amino acids at the N-terminus of YopJ enhanced its delivery and cytotoxicity. Remarkably, we found that enhancing the cytotoxicity of Y. pseudotuberculosis by expression of YopP led to its attenuation in a mouse model of Yersinia infection. This indicates that optimal virulence for a given pathogen requires careful regulation of virulence properties and highlights the potential evolutionary tradeoffs between cellular cytotoxicity and in vivo virulence.
Collapse
Affiliation(s)
- Igor E. Brodsky
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (IEB); (RM)
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (IEB); (RM)
| |
Collapse
|
39
|
Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, Wagner EF, Troppmair J, Mackman N, Kracht M. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 2008; 283:12120-8. [PMID: 18281687 DOI: 10.1074/jbc.m800583200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The proinflammatory cytokine interleukin (IL)-1 activates several hundred genes within the same cell. This occurs in part by activation of the MKK7-JNK-c-Jun signaling pathway whose precise role in the regulation of individual inflammatory genes is still incompletely understood. To identify the genes that are under specific control of activated JNK, we used a JNK-MKK7 fusion protein. Genome-wide microarray analysis revealed EGR-1 as the transcript that was most strongly induced by JNK-MKK7. IL-1-stimulated EGR-1 mRNA and protein expression were impaired in cells lacking JNK or c-Jun. Transcriptional activation of the EGR-1 promoter by JNK-MKK7 or by IL-1 required a single upstream AP-1 site and three distal serum-response elements (SRE). Reconstitution experiments in c-Jun-deficient cells revealed that c-Jun is required for EGR-1 transcription through both the AP-1 site and the distal SREs. By chromatin immunoprecipitation analysis, we found IL-1-inducible recruitment of c-Jun to the AP-1 site and to the region containing the three distal SREs. These experiments suggest that c-Jun plays a dual role in EGR-1 transcription. It directly binds to the AP-1 element, and at the same time it is essential for promoter activation through the three distal SREs by an indirect unknown mechanism. As predicted by TRANSFAC analysis and verified by ChIP experiments, IL-1-induced EGR-1 protein binds to the promoter regions of inflammatory mediators such as IL-6, IL-8, and CCL2. Furthermore, short interfering RNA-mediated suppression of EGR-1 partially suppresses IL-1-inducible transcription of IL-8, IL-6, and CCL2. In summary, we provide novel evidence for a complex c-Jun-mediated mechanism that is essential for inducible EGR-1 expression. We identify this pathway as a previously unrecognized part of a multistep gene regulatory network that controls cytokine and chemokine expression via the IL-1-MKK7-JNK-c-Jun-EGR-1 pathway.
Collapse
Affiliation(s)
- Elke Hoffmann
- Institute of Pharmacology, Medical School Hannover, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ruckdeschel K, Deuretzbacher A, Haase R. Crosstalk of signalling processes of innate immunity with Yersinia Yop effector functions. Immunobiology 2008; 213:261-9. [DOI: 10.1016/j.imbio.2007.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 12/23/2022]
|
41
|
c-Jun controls histone modifications, NF-kappaB recruitment, and RNA polymerase II function to activate the ccl2 gene. Mol Cell Biol 2008; 28:4407-23. [PMID: 18443042 DOI: 10.1128/mcb.00535-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin-1 (IL-1)-induced mRNA expression of ccl2 (also called MCP-1), a prototypic highly regulated inflammatory gene, is severely suppressed in cells lacking c-Jun or Jun N-terminal protein kinase 1 (JNK1)/JNK2 genes and is only partially restored in cells expressing a c-Jun(SS63/73AA) mutant protein. We used chromatin immunoprecipitation to identify three c-Jun-binding sites located in the far 5' region close to the transcriptional start site and in the far 3' region of murine and human ccl2 genes. Mutational analysis revealed that the latter two sites contribute to ccl2 transcription in response to the presence of IL-1 or of ectopically expressed c-Jun-ATF-2 dimers. Further experiments comparing wild-type and c-Jun-deficient cells revealed that c-Jun regulates Ser10 phosphorylation of histone H3, acetylation of histones H3 and H4, and recruitment of histone deacetylase 3 (HDAC3), NF-kappaB subunits, and RNA polymerase II across the ccl2 locus. c-Jun also coimmunoprecipitated with p65 NF-kappaB and HDAC3. Based on DNA microarray analysis, c-Jun was required for full expression of 133 out of 162 IL-1-induced genes. For inflammatory genes, these data support the idea of an activator function of c-Jun that is executed by multiple mechanisms, including phosphorylation-dependent interaction with p65 NF-kappaB and HDAC3 at the level of chromatin.
Collapse
|
42
|
Coiras M, Camafeita E, López-Huertas MR, Calvo E, López JA, Alcamí J. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. Proteomics 2008; 8:852-73. [PMID: 18297655 PMCID: PMC7167661 DOI: 10.1002/pmic.200700664] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Host–pathogen interactions involve protein expression changes within both the host and the pathogen. An understanding of the nature of these interactions provides insight into metabolic processes and critical regulatory events of the host cell as well as into the mechanisms of pathogenesis by infectious microorganisms. Pathogen exposure induces changes in host proteins at many functional levels including cell signaling pathways, protein degradation, cytokines and growth factor production, phagocytosis, apoptosis, and cytoskeletal rearrangement. Since proteins are responsible for the cell biological functions, pathogens have evolved to manipulate the host cell proteome to achieve optimal replication. Intracellular pathogens can also change their proteome to adapt to the host cell and escape from immune surveillance, or can incorporate cellular proteins to invade other cells. Given that the interactions of intracellular infectious agents with host cells are mainly at the protein level, proteomics is the most suitable tool for investigating these interactions. Proteomics is the systematic analysis of proteins, particularly their interactions, modifications, localization and functions, that permits the study of the association between pathogens with their host cells as well as complex interactions such as the host–vector–pathogen interplay. A review on the most relevant proteomic applications used in the study of host–pathogen interactions is presented.
Collapse
Affiliation(s)
- Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Gröbner S, Adkins I, Schulz S, Richter K, Borgmann S, Wesselborg S, Ruckdeschel K, Micheau O, Autenrieth IB. Catalytically active Yersinia outer protein P induces cleavage of RIP and caspase-8 at the level of the DISC independently of death receptors in dendritic cells. Apoptosis 2008; 12:1813-25. [PMID: 17624595 DOI: 10.1007/s10495-007-0100-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55-/- mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/metabolism
- Benzoquinones/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Caspase 8/metabolism
- Cell Death/physiology
- Cells, Cultured
- Death Domain Receptor Signaling Adaptor Proteins/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/metabolism
- Enzyme Activation
- Enzyme Inhibitors/metabolism
- Fas-Associated Death Domain Protein/metabolism
- Humans
- Lactams, Macrocyclic/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptors, Death Domain/genetics
- Receptors, Death Domain/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/physiology
- Yersinia enterocolitica/metabolism
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Sabine Gröbner
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Str., 6, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shao F. Biochemical functions of Yersinia type III effectors. Curr Opin Microbiol 2008; 11:21-9. [PMID: 18299249 DOI: 10.1016/j.mib.2008.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
Abstract
Yersinia uses a type III secretion system (TTSS) to deliver six effector proteins into host cells. These six proteins harbor distinct activities that are mimicries of host functions but often have acquired unique biochemical features. The host targets for these effectors appear to be limited to a few key signaling components such as G proteins and kinases, whereas their models of action are diverse and sophisticated. The functions of these effectors are to subvert the host immune defense response, including alterations of the cytoskeleton structure, inhibition of phagocytic clearance, blockage of cytokine production, and induction of apoptosis. These effectors also interfere with communications between the innate and the adaptive immune response, thus aiding the establishment of a systemic infection.
Collapse
Affiliation(s)
- Feng Shao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China.
| |
Collapse
|
45
|
Jakobs A, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R. Ubc9 fusion-directed SUMOylation identifies constitutive and inducible SUMOylation. Nucleic Acids Res 2007; 35:e109. [PMID: 17709345 PMCID: PMC2034454 DOI: 10.1093/nar/gkm617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive and induced protein SUMOylation is involved in the regulation of a variety of cellular processes, such as regulation of gene expression and protein transport, and proceeds mainly in the nucleus of the cell. So far, several hundred SUMOylation targets have been identified, but presumably they represent only a part of the total of proteins which are regulated by SUMOylation. Here, we used the Ubc9 fusion-dependent SUMOylation system (UFDS) to screen for constitutive and induced SUMOylation of 46 randomly chosen proteins with proven or potential nuclear localization. Fourteen new UFDS-substrate proteins were identified of which eight could be demonstrated to be SUMOylated in a UFDS-independent manner in vivo. Of these, three were constitutively SUMOylated (FOS, CRSP9 and CDC37) while the remaining five substrates (CSNK2B, TAF10, HSF2BP, PSMC3 and DRG1) showed a stimulation-dependent SUMOylation induced by the MAP3 kinase MEKK1. Hence, UFDS is appropriate for the identification and characterization of constitutive and, more importantly, induced protein SUMOylation in vivo.
Collapse
Affiliation(s)
- Astrid Jakobs
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Fabian Himstedt
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Martin Funk
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Bernhard Korn
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Matthias Gaestel
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Rainer Niedenthal
- Institut für Physiologische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg Street, 1, 30625 Hannover, MediGene AG, Lochhamer Street, 11, 82152 Martinsried and Deutsches Krebsforschungszentrum, Genomics and Proteomics Core Facilities, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- *To whom correspondence should be addressed. +0511 532 2826+0511 532 2827
| |
Collapse
|
46
|
Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 2007; 9:2700-15. [PMID: 17608743 DOI: 10.1111/j.1462-5822.2007.00990.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Yersinia pestis virulence factor YopJ is a potent inhibitor of the NF-kappaB and MAPK signalling pathways, however, its molecular mechanism and relevance to pathogenesis are the subject of much debate. In this report, we characterize the effects of this type III effector protein on bone fide signalling events downstream of Toll-like receptors (TLRs), critical sensors in innate immunity. YopJ inhibited TLR-mediated NF-kappaB and MAP kinase activation, as suggested by previous studies. In addition, induction of the TLR-mediated interferon response was blocked by YopJ, indicating that YopJ also inhibits IRF3 signalling. Examination of the NF-kappaB signalling pathway in detail suggested that YopJ acts at the level of TAK1 (MAP3K7) activation. Further studies revealed a YopJ-dependent decrease in the ubiquitination of TRAF3 and TRAF6. These data support the hypothesis that YopJ is a deubiquitinating protease that acts on TRAF proteins to prevent or remove the K63-polymerized ubiquitin conjugates required for signal transduction. Our data do not directly address the alternative hypothesis that YopJ is an acetyltransferase that acts on the activation loop of IKK and MKK proteins, but support the conclusion that the critical function of YopJ is to deubiquinate TRAF proteins.
Collapse
Affiliation(s)
- Charles R Sweet
- Division of Infectious Diseases and Immunology, Departments of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
47
|
Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF, Leonard TO, Norbury CC, Fitzpatrick L, Zhang M, Sun SC. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. ACTA ACUST UNITED AC 2007; 204:1475-85. [PMID: 17548520 PMCID: PMC2118606 DOI: 10.1084/jem.20062694] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The deubiquitinating enzyme CYLD has recently been implicated in the regulation of signal transduction, but its physiological function and mechanism of action are still elusive. In this study, we show that CYLD plays a pivotal role in regulating T cell activation and homeostasis. T cells derived from Cyld knockout mice display a hyperresponsive phenotype and mediate the spontaneous development of intestinal inflammation. Interestingly, CYLD targets a ubiquitin-dependent kinase, transforming growth factor–β-activated kinase 1 (Tak1), and inhibits its ubiquitination and autoactivation. Cyld-deficient T cells exhibit constitutively active Tak1 and its downstream kinases c-Jun N-terminal kinase and IκB kinase β. These results emphasize a critical role for CYLD in preventing spontaneous activation of the Tak1 axis of T cell signaling and, thereby, maintaining normal T cell function.
Collapse
Affiliation(s)
- William W Reiley
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mukherjee S, Hao YH, Orth K. A newly discovered post-translational modification--the acetylation of serine and threonine residues. Trends Biochem Sci 2007; 32:210-6. [PMID: 17412595 DOI: 10.1016/j.tibs.2007.03.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/02/2007] [Accepted: 03/27/2007] [Indexed: 11/21/2022]
Abstract
Recent studies on a bacterial virulence factor, YopJ of Yersinia, have led to the realization that the acetylation of serine and threonine residues could be an important form of post-translational modification in eukaryotes. Although the identification of the machinery used for the addition and removal of acetyl groups on serine or threonine residues is in its infancy, the enzymes thus-far studied provide early insight into the mechanism of this newly discovered post-translational modification, and hint at its potential importance. For example, acetylation can compete with phosphorylation targeted to the same residues and could, therefore, alter the course of signaling pathways. What are the implications for signal transduction in eukaryotes and how widespread could acetylation of serine and threonine prove to be?
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
49
|
Angot A, Vergunst A, Genin S, Peeters N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 2007; 3:e3. [PMID: 17257058 PMCID: PMC1781473 DOI: 10.1371/journal.ppat.0030003] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The specific and covalent addition of ubiquitin to proteins, known as ubiquitination, is a eukaryotic-specific modification central to many cellular processes, such as cell cycle progression, transcriptional regulation, and hormone signaling. Polyubiquitination is a signal for the 26S proteasome to destroy earmarked proteins, but depending on the polyubiquitin chain topology, it can also result in new protein properties. Both ubiquitin-orchestrated protein degradation and modification have also been shown to be essential for the host's immune response to pathogens. Many animal and plant pathogenic bacteria utilize type III and/or type IV secretion systems to inject effector proteins into host cells, where they subvert host signaling cascades as part of their infection strategy. Recent progress in the determination of effector function has taught us that playing with the host's ubiquitination system seems a general tactic among bacteria. Here, we discuss how bacteria exploit this system to control the timing of their effectors' action by programming them for degradation, to block specific intermediates in mammalian or plant innate immunity, or to target host proteins for degradation by mimicking specific ubiquitin/proteasome system components. In addition to analyzing the effectors that have been described in the literature, we screened publicly available bacterial genomes for mimicry of ubiquitin proteasome system subunits and detected several new putative effectors. Our understanding of the intimate interplay between pathogens and their host's ubiquitin proteasome system is just beginning. This exciting research field will aid in better understanding this interplay, and may also provide new insights into eukaryotic ubiquitination processes.
Collapse
Affiliation(s)
| | | | | | - Nemo Peeters
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|