1
|
Ilovaisky AI, Scherbakov AM, Miciurov D, Chernoburova EI, Merkulova VM, Bogdanov FB, Salnikova DI, Sorokin DV, Krasil'nikov MA, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid - 1,3,4-oxadiazole hybrids: Synthesis and evaluation of their activity against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2025; 251:106745. [PMID: 40164235 DOI: 10.1016/j.jsbmb.2025.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
This study focused on the synthesis of secosteroids with good antiproliferative properties against hormone-dependent breast cancer. A straightforward and efficient method for synthesizing secosteroid - 1,3,4-oxadiazole hybrids was developed starting from 13α-hydroxy-3-methoxy-13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazide. The cyclization of hydrazide moiety with CS2 into 1,3,4-oxadiazole-2(3H)-thione fragment followed by sulfur alkylation resulted in the formation of various secosteroid - 2-mercapto-1,3,4-oxadiazole hybrids. These novel compounds were evaluated for their antiproliferative activity against the hormone-dependent human breast cancer cell line MCF-7. Among the synthesized hybrids, compounds 3i, 3o, and 3q displayed notable antiproliferative effects, with IC50 values ranging from 6.5 to 8.9 µM, comparable to the reference drug cisplatin. Furthermore, compound 3i showed minimal toxicity toward non-cancerous hFB-hTERT fibroblasts, indicating high selectivity. Compounds 3o and 3q exhibited antiestrogenic activity. Additionally, their effects on PARP and Bcl-2 suggest a pro-apoptotic mechanism of action. These findings highlight the potential of secosteroidal hybrids as promising candidates for the development of new anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Dumitru Miciurov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Elena I Chernoburova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Mikhail A Krasil'nikov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
2
|
Galilea A, Santillán VJ, Acebedo SL, Virginia Dansey M, Álvarez LD, Mazaira GI, Galigniana MD, Castro OA, Gola GF, Ramírez JA. Expanding the Repertoire of ceDAF-12 Ligands for Modulation of the Steroid Endocrine System in C. Elegans. Chembiochem 2024; 25:e202400018. [PMID: 39159394 DOI: 10.1002/cbic.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Steroid hormones are essential for the biological processes of eukaryotic organisms. The steroid endocrine system of C. elegans, which includes dafachronic acids (DA) and the nuclear receptor ceDAF-12, provides a simple model for exploring the role of steroid hormone signaling pathways in animals. In this study, we show for the first time the feasibility of designing synthetic steroids that can modulate different physiological processes, such as development, reproduction and ageing, in relation to ceDAF-12. Our results not only confirm the conclusions derived from genetic studies linking these processes but also provide new chemical tools to selectively manipulate them, as we found that different compounds produce different phenotypic results. The structures of these compounds are much more diverse than those of endogenous hormones and analogues previously described by other researchers, allowing further development of the chemical modulation of the steroid endocrine system in C. elegans and related nematodes.
Collapse
Affiliation(s)
- Agustín Galilea
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Vanessa J Santillán
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Sofía L Acebedo
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - María Virginia Dansey
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Lautaro D Álvarez
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Gisela I Mazaira
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Olga A Castro
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Gabriel F Gola
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Javier A Ramírez
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
3
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Shchetinina MA, Merkulova VM, Bogdanov FB, Sorokin DV, Salnikova DI, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid diacylhydrazines as novel effective agents against hormone-dependent breast cancer cells. J Steroid Biochem Mol Biol 2024; 244:106597. [PMID: 39127416 DOI: 10.1016/j.jsbmb.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 μM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 μM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, Moscow 119021, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor B Bogdanov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Diana I Salnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia; N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
4
|
Muhammad S, Zahir N, Bibi S, Alshahrani MY, Shafiq-urRehman, Chaudhry AR, Sarwar F, Tousif MI. Computational prediction for designing novel ketonic derivatives as potential inhibitors for breast cancer: A trade-off between drug likeness and inhibition potency. Comput Biol Chem 2024; 109:108020. [PMID: 38286082 DOI: 10.1016/j.compbiolchem.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
Unlike simple molecular screening, a combined hybrid computational methodology has been applied which includes quantum chemical methods, molecular docking, and molecular dynamics simulations to design some novel ketonic derivatives. The current study contains the derivatives of an experimental ligand which are designed as a trade-off between drug likeness and inhibition strength. We investigate the interaction of various newly designed ketonic compounds with the breast cancer receptor known as the Estrogen Receptor Alpha (ERα). The molecular structures of all newly designed ligands were studied quantum chemically in terms of their fully optimized structures, 3-D molecular orbital distributions, global chemical descriptors, molecular electrostatic potentials and energies of frontier molecular orbitals (FMOs). All ligands under study show good binding affinities with the ERα protein. The ligands CMR2 and CMR4 exhibit improved molecular docking interactions. The intermolecular interactions indicate that CMR4 demonstrates better hydrophobic and hydrogen bonding interactions with protein (ERα). Furthermore, molecular dynamics simulations were conducted on ligands and reference drugs interacting with the ERα protein over a time span of 120 nanoseconds. The molecular dynamics results are interpreted in terms of ligand-protein stability and flexible behaviour based on their respective values of RMSD, RMSF, H-bonds, the radius of gyration, and SASA graphs. To analyse ligand-protein interactions throughout the entire 120 ns trajectory, a more advanced MM/PBSA method is utilized, where six selected ligands (CMR1, CMR2, CMR3, CMR4, CMR5 and CMR9) illustrate promising results for inhibition of the ERα receptor as assessed through MM/BBSA analysis. The CMR9 has the highest MM/BBSA binding free energy (-14.46 kcal/mol). The ADMET analysis reveals that CMR4 has maximum intestinal absorption (6.68) and clearance rate (0.1). All the compounds are non-toxic and safe to use. These findings indicate the potential of involving different computational techniques to design the ligand structures and to study the ligand-protein interactions for better understanding and achieving more potent synthetic inhibitors for breast cancer.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Nimra Zahir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Shafiq-urRehman
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Fatima Sarwar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
5
|
Mostafa T, Albeir M, Wober J, Abadi A, Salama I, Ahmed NS. Design, synthesis, and in-silico study of novel triarylethylene analogs with dual anti-estrogenic and serotonergic activity. Drug Dev Res 2024; 85:e22127. [PMID: 37877739 DOI: 10.1002/ddr.22127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Estrogen receptor is an important target in breast cancer. Serotonin receptors (5-HT2A and 5-HT2C , in particular) were investigated for a potential role in development and progression of breast cancer. Ligands that interact with estrogenic receptors influence the emotional state of females. Thus, designing selective estrogen receptor modulator (SERM) analogs with potential serotonergic activity is a plausible approach. The dual ligands can augment cytotoxic effect of SERMs, help in both physical and emotional menopausal symptom relief, enhance cognitive function and support bone health. Herein, we report triarylethylene analogs as potential candidates for treatment of breast cancer. Compound 2e showed (ERα relative β- galactosidase activity = 0.70), 5-HT2A (Ki = 0.97 µM), and 5-HT2C (Ki = 3.86 µM). It was more potent on both MCF-7 (GI50 = 0.27 µM) and on MDA-MB-231 (GI50 = 1.86 µM) compared to tamoxifen (TAM). Compound 4e showed 40 times higher antiproliferative activity on MCF-7 and 15 times on MDA-MBA compared to TAM. Compound 4e had higher average potency than TAM on all nine tested cell line panels. Our in-silico model revealed the binding interactions of compounds 2 and 2e in the three receptors; further structural modifications are suggested to optimize binding to the ERα, 5-HT2A , and 5-HT2C .
Collapse
Affiliation(s)
- Tammy Mostafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miriam Albeir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Jannette Wober
- Institute of Zoology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Ashraf Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ismail Salama
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
6
|
Ilovaisky AI, Scherbakov AM, Chernoburova EI, Povarov AA, Shchetinina MA, Merkulova VM, Salnikova DI, Sorokin DV, Bozhenko EI, Zavarzin IV, Terent'ev AO. Secosteroid thiosemicarbazides and secosteroid-1,2,4-triazoles as antiproliferative agents targeting breast cancer cells: Synthesis and biological evaluation. J Steroid Biochem Mol Biol 2023; 234:106386. [PMID: 37666392 DOI: 10.1016/j.jsbmb.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
A convenient and selective approach to 13,17-secoestra-1,3,5(10)-trien-17-oic acid [N'-arylcarbothioamido]hydrazides and hybrid molecules containing secosteroid and 1,2,4-triazole fragments was disclosed and these novel types of secosteroids were screened for cytotoxicity against hormone-dependent human breast cancer cell line MCF-7. Most of secosteroid-1,2,4-triazole hybrids showed significant cytotoxic effect comparable or superior to that of the reference drug cisplatin. Hit secosteroid-1,2,4-triazole hybrids 4b and 4h were characterized by high cytotoxicity and good selectivity towards MCF-7 breast cancer cells. PARP cleavage (marker of apoptosis) and ERα and cyclin D1 downregulation were discovered in MCF-7 cells treated with lead secosteroid-1,2,4-triazole hybrid 4b. The synthesized secosteroids may be considered as new promising anticancer agents.
Collapse
Affiliation(s)
- Alexey I Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander M Scherbakov
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Elena I Chernoburova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Andrey A Povarov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Marina A Shchetinina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Valentina M Merkulova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Diana I Salnikova
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Danila V Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24, Moscow 115522, Russia
| | - Eugene I Bozhenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
7
|
Birukova V, Scherbakov A, Ilina A, Salnikova D, Andreeva O, Dzichenka Y, Zavarzin I, Volkova Y. Discovery of highly potent proapoptotic antiestrogens in a series of androst-5,16-dienes D-modified with imidazole-annulated pendants. J Steroid Biochem Mol Biol 2023; 231:106309. [PMID: 37037385 DOI: 10.1016/j.jsbmb.2023.106309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Heterocyclic derivatives of steroid hormones are potent anticancer agents, which are used in the chemotherapy of breast and prostate cancers. Here, we describe a novel series of androstenes, D-modified with imidazole-annulated pendants, with significant anticancer activity. Novel C17-linked imidazole-annulated heterocyclic derivatives of dehydropregnenolone acetate were synthesized by the cyclocondensation with amidines using 3β-acetoxy-21-bromopregna-5,16-dien-20-one as the substrate. The antiproliferative potency of all the synthesized compounds was evaluated against human prostate (22Rv1) and human breast (MCF7) cancer cell lines and cytochromes P450. The lead compound, imidazo[1,2-a]pyridine derivative 3h, was revealed to be a promising candidate for future anticancer drug design, particularly against ERα-positive breast cancer. Lead compound 3h was found to be selective against MCF7 cells with IC50 of 0.1μM and to act as both a potent selective agent blocking estrogen receptor α, which is involved in the stimulation of breast cancer growth, and an effective apoptosis inducer. The potential ability of compound 3h to bind to ERα was studded using molecular docking and molecular dynamics simulation. The selectivity analysis showed that lead steroid 3h produces no effects on cytochromes P450 CYP17A1, CYP7A1, and CYP21A2.
Collapse
Affiliation(s)
- Valentina Birukova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Alexander Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Anastasia Ilina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Diana Salnikova
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Olga Andreeva
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe shosse, 115522 Moscow, Russia
| | - Yaraslau Dzichenka
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevich str., 220141, Minsk, Belarus
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| | - Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russia
| |
Collapse
|
8
|
Kumar R. Structure and functions of the N-terminal domain of steroid hormone receptors. VITAMINS AND HORMONES 2023; 123:399-416. [PMID: 37717992 DOI: 10.1016/bs.vh.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The steroid hormone receptors (SHRs) belong to the large superfamily of nuclear receptors that selectively modulate gene expression in response to specific hormone ligands. The SHRs are required in a broad range of normal physiological processes as well as associated with numerous pathological conditions. Over years, the understanding of the SHR biology and mechanisms of their actions on target cells have found many clinical applications and management of various endocrine-related disorders. However, the effectiveness of SHR-based therapies in endocrine-related cancers remain a clinical challenge. This, in part, is due to the lack of in-depth understanding of structural dynamics and functions of SHRs' intrinsically disordered N-terminal domain (NTD). Recent progress in delineating SHR structural information and their correlations with receptor action in a highly dynamic environment is ultimately helping to explain how diverse SHR signaling mechanisms can elicit selective biological effects. Recent developments are providing new insights of how NTD's structural flexibility plays an important role in SHRs' allosteric regulation leading to the fine tuning of target gene expression to more precisely control SHRs' cell/tissue-specific functions. In this review article, we are discussing the up-to-date knowledge about the SHR actions with a particular emphasis on the structure and functions of the NTD.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States.
| |
Collapse
|
9
|
Zhou Y, Lei P, Han J, Wang Z, Ji A, Wu Y, Zheng L, Zhang X, Qu C, Min J, Zhu W, Xu Z, Liu X, Chen H, Cheng Z. Development of a Novel 18F-Labeled Probe for PET Imaging of Estrogen Receptor β. J Med Chem 2023; 66:1210-1220. [PMID: 36602888 DOI: 10.1021/acs.jmedchem.2c00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Estrogen receptor beta (ERβ) is an important ER subtype that plays crucial roles in many physiological and pathological disorders. Herein, we developed the probe [18F]PVBO for in vivo ERβ targeted PET imaging and obtained promising results. The nonradioactive PVBO showed a 12.5-fold stronger binding affinity to ERβ than to ERα in vitro. In vitro assays revealed the specific uptake of [18F]PVBO by DU145 cells. The uptake of [18F]PVBO by DU145 xenografts increased during the 120 min dynamic scanning, with a maximum uptake of 2.80 ± 0.30% ID/g. Based on time activity curves (TACs), the injection of [18F]PVBO with unlabeled PVBO or ERB-041 resulted in a significant signal reduction with the tumor/muscle (T/M) ratio <1 at 30, 60, 75, and 120 min post-injection (p < 0.05). [18F]PVBO demonstrates the feasibility of noninvasively imaging ERβ-positive tumors by small-animal PET and provides a new strategy for visualizing ERβ in vivo.
Collapse
Affiliation(s)
- Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.,Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Peng Lei
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxin Han
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiming Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuyang Wu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Wuhan, Hubei Province, 430062, China.,Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, 430062, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai, 200040, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| |
Collapse
|
10
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
11
|
Khan SH, Braet SM, Koehler SJ, Elacqua E, Anand GS, Okafor CD. Ligand-induced shifts in conformational ensembles that describe transcriptional activation. eLife 2022; 11:e80140. [PMID: 36222302 PMCID: PMC9555869 DOI: 10.7554/elife.80140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We combine cellular and biophysical experiments to characterize transcriptional activity, as well as elucidate mechanisms underlying altered transcription in receptor variants. We then use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and correlation of MD-based predictions with functional ligand profiles. We determine that conformational ensembles accurately describe ligand responses based on observed population shifts. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - Elizabeth Elacqua
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| |
Collapse
|
12
|
Luo G, Li X, Lin X, Lu X, Li Z, Xiang H. Novel 11β-substituted estradiol conjugates: Transition from ERα agonizts to effective PROTAC degraders. J Steroid Biochem Mol Biol 2022; 223:106154. [PMID: 35870675 DOI: 10.1016/j.jsbmb.2022.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Endocrine therapy is widely used in clinic for breast cancer treatment, but long-term treatment inevitably causes drug resistance. Most of endocrine therapy-resistant breast cancers continue to depend on ERα signaling for growth and survival. In this regard, small molecule-induced ERα degradation, i.e. proteolysis targeting chimeras (PROTACs), represents an effective strategy to overcome endocrine resistance. Herein, we describe the design, synthesis, and biological evaluation of novel ERα-targeting PROTACs, wherein a E3 ligase ligand was attached to the 11β-position of estradiol via various linkers. Our efforts have identified a potent ERα PROTAC 15b that achieved excellent ERα degradation activity (DC50 = 67 nM) and induced comparable inhibition of cell growth to that of fulvestrant in MCF-7 cells. Besides, 15b displayed antagonistic effects in uterine cells and favorable physicochemical properties, making it as a good lead compound for further development as anti-breast agents.
Collapse
Affiliation(s)
- Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenbang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022; 27:molecules27092823. [PMID: 35566172 PMCID: PMC9101642 DOI: 10.3390/molecules27092823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
The estrogen receptor α (ERα) is an important biological target mediating 17β-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.
Collapse
|
14
|
Herber CB, Yuan C, Chang A, Wang JC, Cohen I, Leitman DC. 2',3',4'-Trihydroxychalcone changes estrogen receptor α regulation of genes and breast cancer cell proliferation by a reprogramming mechanism. Mol Med 2022; 28:44. [PMID: 35468719 PMCID: PMC9036729 DOI: 10.1186/s10020-022-00470-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.
Collapse
Affiliation(s)
- Candice B Herber
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- DENALI Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Chaoshen Yuan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Anthony Chang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
- Biomedical Sciences Program, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA
| | - Isaac Cohen
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA
| | - Dale C Leitman
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720-3104, USA.
- Iaterion, University of California, QB3, 1700 4th Street Byers Hall, Suite 214, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Tze-Yang Ng J, Tan YS. Accelerated Ligand-Mapping Molecular Dynamics Simulations for the Detection of Recalcitrant Cryptic Pockets and Occluded Binding Sites. J Chem Theory Comput 2022; 18:1969-1981. [PMID: 35175753 DOI: 10.1021/acs.jctc.1c01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification and characterization of binding sites is a critical component of structure-based drug design (SBDD). Probe-based/cosolvent molecular dynamics (MD) methods that allow for protein flexibility have been developed to predict ligand binding sites. However, cryptic pockets that appear only upon ligand binding and occluded binding sites with no access to the solvent pose significant challenges to these methods. Here, we report the development of accelerated ligand-mapping MD (aLMMD), which combines accelerated MD with LMMD, for the detection of these challenging binding sites. The method was validated on five proteins with what we term "recalcitrant" cryptic pockets, which are deeply buried pockets that require extensive movement of the protein backbone to expose, and three proteins with occluded binding sites. In all the cases, aLMMD was able to detect and sample the binding sites. Our results suggest that aLMMD could be used as a general approach for the detection of such elusive binding sites in protein targets, thus providing valuable information for SBDD.
Collapse
Affiliation(s)
- Justin Tze-Yang Ng
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| |
Collapse
|
17
|
Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol 2022; 20:43. [PMID: 35172816 PMCID: PMC8851771 DOI: 10.1186/s12915-022-01233-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/14/2022] [Indexed: 12/05/2022] Open
Abstract
Background Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. Results Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4′,6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. Conclusion Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01233-2.
Collapse
|
18
|
Molecular profiling of ginsenoside metabolites to identify estrogen receptor alpha activity. Gene 2021; 813:146108. [PMID: 34929341 DOI: 10.1016/j.gene.2021.146108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
20(S)-Protopanaxadiol (PPD) and 20(S)-Protopanaxatriol (PPT) are major metabolites of ginseng in humans and are considered to have estrogenic activity in cellular bioassays. In this study, we conducted in silico analyses to determine whether PPD and PPT interact with estrogen receptor alpha (ERα) and compared them with ERα agonists, partial agonists, and antagonists to identify their ERα activity. The transcriptome profile of 17β-estradiol (E2), PPD, and PPT in MCF-7 cells expressing ERα was further compared to understand the ERα activity of ginsenoside metabolites. The results showed that PPD and PPT interacted with the 1ERE, 1GWR, and 3UUD ERα proteins in the E2 interaction model, the 3ERD protein in the diethylstilbestrol (DES) interaction model, and the 1X7R protein in the genistein (GEN) interaction model. Conversely, neither the 4PP6 protein of the interaction model with the antagonist resveratrol (RES) nor the 1ERR protein of the interaction model with the antagonist raloxifene (RAL) showed the conformation of amino acid residues. When E2, PPD, and PPT were exposed to MCF-7 cells, cell proliferation and gene expression were observed. The transcriptomic profiles of E2, PPD, and PPT were compared using a knowledge-based pathway. PPD-induced transcription profiling was similar to that of E2, and the neural transmission pathway was detected in both compounds. In contrast, PPT-induced transcription profiling displayed characteristics of gene expression associated with systemic lupus erythematosus. These results suggest that ginsenoside metabolites have ERα agonist activity and exhibit neuroprotective effects and anti-inflammatory actions. However, a meta-analysis using public microarray data showed that the mother compounds GRb1 and GRg1 of PPD and PPT showed metabolic functions in insulin signaling pathways, condensed DNA repair and cell cycle pathways, and immune response and synaptogenesis. These results suggest that the ginsenoside metabolites have potent ERα agonist activity; however, their gene expression profiles may differ from those of E2.
Collapse
|
19
|
Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations. Int J Mol Sci 2021; 22:ijms22179371. [PMID: 34502280 PMCID: PMC8431471 DOI: 10.3390/ijms22179371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17β-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.
Collapse
|
20
|
Patel A, Bhatt M, Soni A, Sharma P. Identification of steroidal saponins from Tribulus terrestris and their in silico docking studies. J Cell Biochem 2021; 122:1665-1685. [PMID: 34337761 DOI: 10.1002/jcb.30113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
Tribulus terrestris is known to possess many pharmacological properties, most notably its anticancer activities, owing to its rich steroidal saponin contents. Even though many reports are available elucidating the anticancer potential of the herb, we, for the very first time have attempted to isolate and identified the active compound present in seed crude saponin extract and confers its in silico docking ability with various cellular targets proteins. High performance thin layer chromatography confirms the presence of active saponins in leaf and seed saponin extracts which were further fractionated by silica gel column chromatography. Fractions collected were assessed for cytotoxicity on human breast cancer cells. High resolution liquid chromatography and mass spectroscopy was employ to identify the active components present in fraction with highest cytotoxicity. Intriguingly, Nautigenin type of steriodal saponin was identified to present in the active fraction of seed extract (SF11) and the identified compound was further analyzed for its in silico docking interaction using PyRx AutodockVina. Docking studies revealed the high binding affinity of Nuatigenin at significant sites with apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, p53 and apoptosis inducing factor along with cell surface receptors estrogen receptor, projesterone receptor, epidermal growth factor receptor, and human epidermal growth factor receptor-2. Thus, the conclusions were drawn that saponin fraction of Tribulus terrestis possesses active compounds having anticancer property and specifically, Nuatigenin saponin can be considered as an important therapeutic drug for the breast cancer treatment.
Collapse
Affiliation(s)
- Apurva Patel
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mital Bhatt
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Anjali Soni
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Preeti Sharma
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
21
|
Díaz M, Lobo F, Hernández D, Amesty Á, Valdés-Baizabal C, Canerina-Amaro A, Mesa-Herrera F, Soler K, Boto A, Marín R, Estévez-Braun A, Lahoz F. FLTX2: A Novel Tamoxifen Derivative Endowed with Antiestrogenic, Fluorescent, and Photosensitizer Properties. Int J Mol Sci 2021; 22:ijms22105339. [PMID: 34069498 PMCID: PMC8161337 DOI: 10.3390/ijms22105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Tamoxifen is the most widely used selective modulator of estrogen receptors (SERM) and the first strategy as coadjuvant therapy for the treatment of estrogen-receptor (ER) positive breast cancer worldwide. In spite of such success, tamoxifen is not devoid of undesirable effects, the most life-threatening reported so far affecting uterine tissues. Indeed, tamoxifen treatment is discouraged in women under risk of uterine cancers. Recent molecular design efforts have endeavoured the development of tamoxifen derivatives with antiestrogen properties but lacking agonistic uterine tropism. One of this is FLTX2, formed by the covalent binding of tamoxifen as ER binding core, 7-nitrobenzofurazan (NBD) as the florescent dye, and Rose Bengal (RB) as source for reactive oxygen species. Our analyses demonstrate (1) FLTX2 is endowed with similar antiestrogen potency as tamoxifen and its predecessor FLTX1, (2) shows a strong absorption in the blue spectral range, associated to the NBD moiety, which efficiently transfers the excitation energy to RB through intramolecular FRET mechanism, (3) generates superoxide anions in a concentration- and irradiation time-dependent process, and (4) Induces concentration- and time-dependent MCF7 apoptotic cell death. These properties make FLTX2 a very promising candidate to lead a novel generation of SERMs with the endogenous capacity to promote breast tumour cell death in situ by photosensitization.
Collapse
Affiliation(s)
- Mario Díaz
- Departamento Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 Tenerife, Spain;
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38200 Tenerife, Spain; (A.B.); (R.M.); (F.L.)
- Correspondence:
| | - Fernando Lobo
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain; (F.L.); (Á.A.); (C.V.-B.)
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico F. Sánchez, 38206 Tenerife, Spain;
| | - Ángel Amesty
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain; (F.L.); (Á.A.); (C.V.-B.)
- Instituto Universitario de Bioorgánica “Antonio González”, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Catalina Valdés-Baizabal
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain; (F.L.); (Á.A.); (C.V.-B.)
- Departamento Ciencias Médicas Básicas, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Ana Canerina-Amaro
- Departamento Ciencias Médicas Básicas, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Fátima Mesa-Herrera
- Departamento Biología Animal, Edafología y Geología, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Kevin Soler
- Departamento Física, IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Alicia Boto
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38200 Tenerife, Spain; (A.B.); (R.M.); (F.L.)
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico F. Sánchez, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38200 Tenerife, Spain; (A.B.); (R.M.); (F.L.)
- Departamento Ciencias Médicas Básicas, Universidad de La Laguna, 38200 Tenerife, Spain;
| | - Ana Estévez-Braun
- Instituto Universitario de Bioorgánica “Antonio González”, Universidad de La Laguna, 38200 Tenerife, Spain;
- Departamento Química Orgánica, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Fernando Lahoz
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38200 Tenerife, Spain; (A.B.); (R.M.); (F.L.)
- Departamento Física, IUdEA, Universidad de La Laguna, 38200 Tenerife, Spain;
| |
Collapse
|
22
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
23
|
Browning C, McEwen AG, Mori K, Yokoi T, Moras D, Nakagawa Y, Billas IML. Nonsteroidal ecdysone receptor agonists use a water channel for binding to the ecdysone receptor complex EcR/USP. JOURNAL OF PESTICIDE SCIENCE 2021; 46:88-100. [PMID: 33746550 PMCID: PMC7953031 DOI: 10.1584/jpestics.d20-095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 05/27/2023]
Abstract
The ecdysone receptor (EcR) possesses the remarkable capacity to adapt structurally to different types of ligands. EcR binds ecdysteroids, including 20-hydroxyecdysone (20E), as well as nonsteroidal synthetic agonists such as insecticidal dibenzoylhydrazines (DBHs). Here, we report the crystal structures of the ligand-binding domains of Heliothis virescens EcR/USP bound to the DBH agonist BYI09181 and to the imidazole-type compound BYI08346. The region delineated by helices H7 and H10 opens up to tightly fit a phenyl ring of the ligands to an extent that depends on the bulkiness of ring substituent. In the structure of 20E-bound EcR, this part of the ligand-binding pocket (LBP) contains a channel filled by water molecules that form an intricate hydrogen bond network between 20E and LBP. The water channel present in the nuclear receptor bound to its natural hormone acts as a critical molecular adaptation spring used to accommodate synthetic agonists inside its binding cavity.
Collapse
Affiliation(s)
- Christopher Browning
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Alastair G. McEwen
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Kotaro Mori
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Taiyo Yokoi
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Dino Moras
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
| | - Isabelle M. L. Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Lin X, Xiang H, Luo G. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur J Med Chem 2020; 206:112689. [PMID: 32829249 DOI: 10.1016/j.ejmech.2020.112689] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alfa (ERα) is expressed in approximate 70% of breast cancer (BC) which is the most common malignancy in women worldwide. To date, the foremost intervention in the treatment of ER positive (ER+) BC is still the endocrine therapy. However, resistance to endocrine therapies remains a major hurdle in the long-term management of ER + BC. Although the mechanisms underlying endocrine resistance are complex, cumulative evidence revealed that ERα still plays a critical role in driving BC tumor cells to grow in resistance state. Fulvestrant, a selective estrogen receptor degrader (SERD), has moved to first line therapy for metastatic ER + BC, suggesting that removing ERα would be a useful strategy to overcome endocrine resistance. Proteolysis-Targeting Chimera (PROTAC) technology, an emerging paradigm for protein degradation, has the potential to eliminate both wild type and mutant ERα in breast cancer cells. Excitingly, ARV-471, an ERα-targeted PROTAC developed by Arvinas, has been in phase 1 clinical trials. In this review, we will summarize recent progress of ER-targeting PROTACs from publications and patents along with their therapeutic opportunities for the treatment of endocrine-resistant BC.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and β (ERα and ERβ), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and β (TRα and TRβ). More recently, the retinoid X receptors (RXRα, RXRβ and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARβ and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and β (LXRα and LXβ) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
26
|
Jiang W, Chen Q, Zhou B, Wang F. In silico prediction of estrogen receptor subtype binding affinity and selectivity using 3D-QSAR and molecular docking. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02428-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci Rep 2019; 9:7450. [PMID: 31092862 PMCID: PMC6520524 DOI: 10.1038/s41598-019-43768-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/17/2019] [Indexed: 12/29/2022] Open
Abstract
Most estrogen receptor α (ERα) ligands target the ligand binding domain (LBD). Agonist 17β-estradiol (E2) and tamoxifen (TM, known SERM), bind to the same site within the LBD. However, structures of ligand-bound complexes show that E2 and TM induce different conformations of helix 12 (H12). During the molecular modelling studies of some naturally occurring flavonoids such as quercetin, luteolin, myricetin, kaempferol, naringin, hesperidin, galangin, baicalein and epicatechin with human ERα (3ERT and 1GWR), we observed that most of the ligands bound to the active site pocket of both 3ERT and 1GWR. The docking scores, interaction analyses, and conformation of H12 provided the data to support for the estrogenic or antiestrogenic potential of these flavonoids to a limited degree. Explicit molecular dynamics for 50 ns was performed to identify the stability and compatibility pattern of protein-ligand complex and RMSD were obtained. Baicalein, epicatechin, and kaempferol with 1GWR complex showed similar RMSD trend with minor deviations in the protein backbone RMSD against 1GWR-E2 complex that provided clear indications that ligands were stable throughout the explicit molecular simulations in the protein and outcome of naringin-3ERT complex had an upward trend but stable throughout the simulations and all molecular dynamics showed stability with less than overall 1 Å deviation throughout the simulations. To examine their estrogenic or antiestrogenic potential, we studied the effect of the flavonoids on viability, progesterone receptor expression and 3xERE/3XERRE-driven reporter gene expression in ERα positive and estrogen responsive MCF-7 breast cancer cells. Epicatechin, myricetin, and kaempferol showed estrogenic potential at 5 µM concentration.
Collapse
|
28
|
TilakVijay J, Vivek Babu K, Uma A. Virtual screening of novel compounds as potential ER-alpha inhibitors. Bioinformation 2019; 15:321-332. [PMID: 31249434 PMCID: PMC6589477 DOI: 10.6026/97320630015321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Majority of breast cancers diagnosed today are estrogen receptor (ER)-positive, however, progesterone receptor-positive (PR-positive) is also responsible for breast cancer. Tumors that are ER/PR-positive are much more likely to respond to hormone therapy than tumors that are ER/PR-negative. Nearly 105 ERa inhibitors from literature when docked resulted in 31 compounds (pyrazolo[1,5-a]pyrimidine analogs and chromen-2-one derivatives) with better binding affinities. The maximum score obtained was -175.282 kcal/mol for compound, [2-(4- Fluoro-phenylamino)-pyridin-3-yl]-{4-[2-phenyl-7- (3, 4, 5-trimethoxy-phenyl)-pyrazolo[1,5-a]pyrimidine-5-carbonyl]-piperazin-1-yl}-methanone. The major H-bond interactions are observed with Thr347. In pursuit to identify novel ERa inhibitory ligands, virtual screening was carried out by docking pyrazole, bipyrazole, thiazole, thiadiazole etc scaffold analogs from literature.34 bipyrazoles from literature revealed Compound 2, ethyl 5-amino-1-(5-amino-3-anilino-4-ethoxycarbonyl-pyrazol-1-yl)-3-anilino-pyrazole-4-carboxylate, with -175.9 kcal/mol binding affinity with the receptor, where a favourable H-bond was formed with Thr347.On the other hand, screening 2035 FDA approved drugs from Drug Bank database resulted in 11 drugs which showed better binding affinities than ERa bound tamoxifen. Consensus scoring using 5 scoring schemes such as Mol Dock score, mcule, SwissDock, Pose&Rank and DSX respectively resulted in better rank-sumsfor Lomitapide, Itraconazole, Cobicistat, Azilsartanmedoxomil, and Zafirlukast.
Collapse
Affiliation(s)
- Jakkanaboina TilakVijay
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, Telungana, India
| | - Kandimalla Vivek Babu
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, Telungana, India
| | - Addepally Uma
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad, Telungana, India
| |
Collapse
|
29
|
Hanson RN, McCaskill E, Hua E, Tongcharoensirikul P, Dilis R, Silver JL, Coulther TA, Ondrechen MJ, Labaree D, Hochberg RB. Synthesis of benzoylbenzamide derivatives of 17α-E-vinyl estradiol and evaluation as ligands for the estrogen receptor-α ligand binding domain. Steroids 2019; 144:15-20. [PMID: 30738075 DOI: 10.1016/j.steroids.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
A series consisting of substituted benzoylbenzamide derivatives of 17α-E-vinyl estradiol 6a-i and 7a-d was prepared in good overall yields from the corresponding novel iodinated benzoylbenzamide precursors using Pd(0)-catalyzed Stille coupling. Biological evaluation using competitive binding assays indicated that all compounds were effective ligands for the ERα- and ERβ-LBD (RBA = 0.5-10.0% of estradiol). Most of the compounds expressed lower stimulatory (agonist) potency (RSA <0.2-0.5%) compared to their binding affinity, however, the meta-substituted isomer 6h demonstrated a level of efficacy (RSA = 5.7%) comparable to its affinity (RBA = 9.5%). Docking studies of 6b, 6h, and 6i with the 2YAT crystal structure suggested that higher affinity and efficacy of 6h are due to an effective set of interactions with exposed receptor sidechains not observed with the ortho- and para- isomers. In this binding model, the terminal ring of the ligand is exposed to the solvent space, which would explain both the small variation in RBA values and the narrow SAR for the diverse structural features.
Collapse
Affiliation(s)
- Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.
| | - Emmett McCaskill
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Edward Hua
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | | | - Robert Dilis
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Jessa L Silver
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Timothy A Coulther
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - David Labaree
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Richard B Hochberg
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
30
|
Gajadeera N, Hanson RN. Review of fluorescent steroidal ligands for the estrogen receptor 1995-2018. Steroids 2019; 144:30-46. [PMID: 30738074 DOI: 10.1016/j.steroids.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
The development of fluorescent ligands for the estrogen receptor (ER) continues to be of interest. Over the past 20 years, most efforts have focused on appending an expanding variety of fluorophores to the B-, C- and D-rings of the steroidal scaffold. This review highlights the synthesis and evaluation of derivatives substituted primarily at the 6-, 7α- and 17α-positions, culminating with our recent work on 11β-substituted estradiols, and proposes an approach to new fluorescent imaging agents that retain high ER affinity.
Collapse
Affiliation(s)
- Nisal Gajadeera
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston MA02115-5000, United States
| | - Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston MA02115-5000, United States.
| |
Collapse
|
31
|
Fokialakis N, Alexi X, Aligiannis N, Boulaka A, Meligova AK, Lambrinidis G, Kalpoutzakis E, Pratsinis H, Cheilari A, Mitsiou DJ, Mitakou S, Alexis MN. Biological evaluation of isoflavonoids from Genista halacsyi using estrogen-target cells: Activities of glucosides compared to aglycones. PLoS One 2019; 14:e0210247. [PMID: 30620769 PMCID: PMC6324813 DOI: 10.1371/journal.pone.0210247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to evaluate the response of estrogen target cells to a series of isoflavone glucosides and aglycones from Genista halacsyi Heldr. The methanolic extract of aerial parts of this plant was processed using fast centrifugal partition chromatography, resulting in isolation of four archetypal isoflavones (genistein, daidzein, isoprunetin, 8-C-β-D-glucopyranosyl-genistein) and ten derivatives thereof. 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein were among the most abundant constituents of the isolate. All fourteen, except genistein, displayed low binding affinity for estrogen receptors (ER). Models of binding to ERα could account for the low binding affinity of monoglucosides. Genistein and its glucosides displayed full efficacy in inducing alkaline phosphatase (AlkP) in Ishikawa cells, proliferation of MCF-7 cells and ER-dependent gene expression in reporter cells at low concentrations (around 0.3 μM). ICI182,780 fully antagonized these effects. The AlkP-inducing efficacy of the fourteen isoflavonoids was more strongly correlated with their transcriptional efficacy through ERα. O-monoglucosides displayed higher area under the dose-response curve (AUC) of AlkP response relative to the AUC of ERα-transcriptional response compared to the respective aglycones. In addition, 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein displayed estradiol-like efficacy in promoting differentiation of MC3T3-E1 cells to osteoblasts, while genistein was not convincingly effective in this respect. Moreover, 7,4΄-di-O-β-D-glucopyranosyl-genistein suppressed lipopolysaccharide-induced tumor necrosis factor mRNA expression in RAW 264.7 cells, while 7-O-β-D-glucopyranosyl-genistein was not convincingly effective and genistein was ineffective. However, genistein and its O-glucosides were ineffective in inhibiting differentiation of RAW 264.7 cells to osteoclasts and in protecting glutamate-challenged HT22 hippocampal neurons from oxidative stress-induced cell death. These findings suggest that 7-O-β-D-glucopyranosyl-genistein and 7,4΄-di-O-β-D-glucopyranosyl-genistein display higher estrogen-like and/or anti-inflammatory activity compared to the aglycone. The possibility of using preparations rich in O-β-D-glucopyranosides of genistein to substitute for low-dose estrogen in formulations for menopausal symptoms is discussed.
Collapse
Affiliation(s)
- Nikolas Fokialakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- * E-mail: (MNA); (NF)
| | - Xanthippi Alexi
- Molecular Endocrinology Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Boulaka
- Molecular Endocrinology Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aggeliki K. Meligova
- Molecular Endocrinology Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Kalpoutzakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra J. Mitsiou
- Molecular Endocrinology Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael N. Alexis
- Molecular Endocrinology Program, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
- * E-mail: (MNA); (NF)
| |
Collapse
|
32
|
Eid EEM, Azam F, Hassan M, Taban IM, Halim MA. Zerumbone binding to estrogen receptors: an in-silico investigation. J Recept Signal Transduct Res 2018; 38:342-351. [PMID: 30396310 DOI: 10.1080/10799893.2018.1531886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignancy among females worldwide. Estrogen receptor (ER) mediate important pathophysiological signaling pathways induced by estrogens, and is regarded as a promising target for the treatment of breast cancer. Zerumbone (2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one; ZER), a chemical constituent present in the Zingiber zerumbet is known to exhibit anti-breast cancer activity by modulating several proteins to induce apoptosis. Medicinal chemists usually exploit lead compounds of natural origin to develop molecules with improved pharmacological properties. Current study is intended to utilize molecular modeling techniques to investigate the interaction of ZER with estrogen receptors. AutoDock was used to predict the binding modes of ZER and target receptors. Stability of the ZER-ER complex was verified by molecular dynamics simulation using Desmond software. Docked ZER was further optimized by density functional theory (DFT) using Gaussian09 program. Analysis of docked conformations in terms of binding energy disclosed estrogen receptor-β (ERβ) as more promising than estrogen receptor-α (ERα). Evaluation of MD trajectories of ZER bound to both ERα and ERβ showed appreciable stability with minimum Cα-atom root mean square deviation shifts. DFT based global reactivity descriptors such as electron affinity, hardness, chemical potential, electronegativity and electrophilicity index, calculated from the energies of highest occupied and lowest unoccupied molecular orbitals underscored the electronic features governing viability of the ZER for interaction with the target receptors. In conclusion, these findings can be exploited to design and develop novel anticancer agents based on the lead compound, ZER.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- a Unaizah College of Pharmacy, Qassim University , Unaizah , Saudi Arabia
| | - Faizul Azam
- a Unaizah College of Pharmacy, Qassim University , Unaizah , Saudi Arabia
| | - Mahmoud Hassan
- b Swiss Tropical & Public Health Institute, University of Basel , Switzerland
| | - Ismail M Taban
- c School of Biosciences, Cardiff University , Cardiff , United Kingdom
| | - Mohammad A Halim
- d Division of Computer-aided Drug Design , The Red-Green Research Center , BICCB , Dhaka , Bangladesh.,e Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon , Villeurbanne Cedex , France
| |
Collapse
|
33
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. A Novel Estrogen Receptor α-Targeted Near-Infrared Fluorescent Probe for in Vivo Detection of Breast Tumor. Mol Pharm 2018; 15:4702-4709. [DOI: 10.1021/acs.molpharmaceut.8b00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
34
|
Ning W, Hu Z, Tang C, Yang L, Zhang S, Dong C, Huang J, Zhou HB. Novel Hybrid Conjugates with Dual Suppression of Estrogenic and Inflammatory Activities Display Significantly Improved Potency against Breast Cancer. J Med Chem 2018; 61:8155-8173. [PMID: 30053783 DOI: 10.1021/acs.jmedchem.8b00224] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we developed a small library of novel OBHS-RES hybrid compounds with dual inhibition activities targeting both the estrogen receptor α (ERα) and NF-κB by incorporating resveratrol (RES), a known inhibitor of NF-κB, into a privileged indirect antagonism structural motif (OBHS, oxabicycloheptene sulfonate) of estrogen receptor (ER). The OBHS-RES conjugates could bind well to ER and showed remarkable ERα antagonistic activity, and they also exhibited excellent NO inhibition in macrophage RAW 264.7 cells. Compared with 4-hydroxytamoxifen, some of them showed better antiproliferative efficacy in MCF-7 cell lines with IC50 up to 3.7 μM. In vivo experiments in a MCF-7 breast cancer model in Balb/c nude mice indicated that compound 26a was more potent than tamoxifen. Exploration of the compliancy of the structure against ER specificity utilizing these types of isomeric three-dimensional ligands indicated that one enantiomer had much better biological activity than the other.
Collapse
Affiliation(s)
- Wentao Ning
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Zhiye Hu
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an 710126 , Shaanxi , China
| | - Lu Yang
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Silong Zhang
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Chune Dong
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Jian Huang
- College of Life Sciences , Wuhan University , Wuhan 430072 , China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| |
Collapse
|
35
|
Hou TY, Weng CF, Leong MK. Insight Analysis of Promiscuous Estrogen Receptor α-Ligand Binding by a Novel Machine Learning Scheme. Chem Res Toxicol 2018; 31:799-813. [PMID: 30019586 DOI: 10.1021/acs.chemrestox.8b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Estrogen receptor α (ERα) plays a significant role in occurrence of breast cancer and may cause various adverse side-effects when ERα is an off-target protein. A theoretical model was derived to predict the binding affinity of ERα using the pharmacophore ensemble/support vector machine (PhE/SVM) scheme to consider the promiscuous characteristic of ERα. The estimations by PhE/SVM were discovered to be in good agreement with the observed values for those training molecules ( n = 31, r2 = 0.80, qCV2 = 0.77, RMSE = 0.57, s = 0.58), test molecules ( n = 179, q2 = 0.91-0.96, RMSE = 0.33, s = 0.26) and outliers ( n = 15, q2 = 0.80-0.86, RMSE = 0.56, s = 0.49). When subjected to various statistical validations, the PhE/SVM model consistently fulfilled the strictest criteria. A mock test also asserted its predictivity. When compared with crystal structures, the calculated results are consistent with the reported ERα-ligand co-complex structure, and the plasticity nature of ERα is also disclosed. Consequently, this precise, fast, and robust model can be adopted to predict ERα-ligand binding affinities and to design safer non-ERα-targeted pharmaceuticals in the process of drug discovery and development.
Collapse
|
36
|
Zhang T, Zhong S, Hou L, Wang Y, Xing X, Guan T, Zhang J, Li T. Computational and experimental characterization of estrogenic activities of 20( S, R)-protopanaxadiol and 20( S, R)-protopanaxatriol. J Ginseng Res 2018; 44:690-696. [PMID: 32913398 PMCID: PMC7471209 DOI: 10.1016/j.jgr.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/24/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
Background As the main metabolites of ginsenosides, 20(S, R)-protopanaxadiol [PPD(S, R)] and 20(S, R)-protopanaxatriol [PPT(S, R)] are the structural basis response to a series of pharmacological effects of their parent components. Although the estrogenicity of several ginsenosides has been confirmed, however, the underlying mechanisms of their estrogenic effects are still largely unclear. In this work, PPD(S, R) and PPT(S, R) were assessed for their ability to bind and activate human estrogen receptor α (hERα) by a combination of in vitro and in silico analysis. Methods The recombinant hERα ligand-binding domain (hERα-LBD) was expressed in E. coli strain. The direct binding interactions of ginsenosides with hERα-LBD and their ERα agonistic potency were investigated by fluorescence polarization and reporter gene assays, respectively. Then, molecular dynamics simulations were carried out to simulate the binding modes between ginsenosides and hERα-LBD to reveal the structural basis for their agonist activities toward receptor. Results Fluorescence polarization assay revealed that PPD(S, R) and PPT(S, R) could bind to hERα-LBD with moderate affinities. In the dual luciferase reporter assay using transiently transfected MCF-7 cells, PPD(S, R) and PPT(S, R) acted as agonists of hERα. Molecular docking results showed that these ginsenosides adopted an agonist conformation in the flexible hydrophobic ligand-binding pocket. The stereostructure of C-20 hydroxyl group and the presence of C-6 hydroxyl group exerted significant influence on the hydrogen bond network and steric hindrance, respectively. Conclusion This work may provide insight into the chemical and pharmacological screening of novel therapeutic agents from ginsenosides.
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ligang Hou
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - XiaoJia Xing
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
37
|
Starkey NJE, Li Y, Drenkhahn-Weinaug SK, Liu J, Lubahn DB. 27-Hydroxycholesterol Is an Estrogen Receptor β-Selective Negative Allosteric Modifier of 17β-Estradiol Binding. Endocrinology 2018; 159:1972-1981. [PMID: 29579190 PMCID: PMC6693046 DOI: 10.1210/en.2018-00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 01/23/2023]
Abstract
Estrogens bind to two nuclear estrogen receptor (ER) subtypes, ERα and ERβ, which are expressed in differing amounts in various tissues. The endogenous estrogen, 17β-estradiol (E2), binds to both subtypes with nearly equal affinity and is the prototypical agonist. Selective estrogen receptor modulators (SERMs) may bind to both subtypes with equivalent affinities but have agonist activities in some tissues while having antagonist activities in others. In the present study, we demonstrate that the first reported endogenous SERM, 27-hydroxycholesterol (27-OHC), binds preferentially (>100-fold) to ERβ over ERα. Furthermore, 27-OHC is not able to fully compete with E2 binding, suggesting the two may bind at different sites. We provide an allosteric ternary complex model for the simultaneous binding of 27-OHC and E2 to ERβ, which accurately describes the binding data we have observed. We conclude that 27-OHC is a negative allosteric modifier of E2 binding, with an inhibitor constantof 50 nM and cooperativity factor (α) of 0.036. We also propose an in silico three-dimensional model of the simultaneous binding to guide future experiments. Further study of this unique binding model may allow for the discovery of novel ERβ-selective ligands and potentially explain the lack of effectiveness of ERβ-selective agonists in humans vs preclinical models.
Collapse
Affiliation(s)
| | - Yufei Li
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Sara K Drenkhahn-Weinaug
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Department of Chemistry, Lindenwood University–Belleville, Belleville, Illinois
| | - Jinghua Liu
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri, Columbia, Missouri
- Department of Child Health, University of Missouri, Columbia, Missouri
- Correspondence: Dennis B. Lubahn, PhD, 110A Animal Science Research Center, University of Missouri, Columbia, Missouri 65211. E-mail:
| |
Collapse
|
38
|
Scherbakov AM, Komkov AV, Komendantova AS, Yastrebova MA, Andreeva OE, Shirinian VZ, Hajra A, Zavarzin IV, Volkova YA. Steroidal Pyrimidines and Dihydrotriazines as Novel Classes of Anticancer Agents against Hormone-Dependent Breast Cancer Cells. Front Pharmacol 2018; 8:979. [PMID: 29375380 PMCID: PMC5767602 DOI: 10.3389/fphar.2017.00979] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Most breast and prostate tumors are hormone-dependent, making it possible to use hormone therapy in patients with these tumors. The design of effective endocrine drugs that block the growth of tumors and have no severe side effects is a challenge. Thereupon, synthetic steroids are promising therapeutic drugs for the treatment of diseases such as hormone-dependent breast and prostate cancers. Here, we describe novel series of steroidal pyrimidines and dihydrotriazines with anticancer activities. A flexible approach to unknown pyrimidine and dihydrotriazine derivatives of steroids with selective control of the heterocyclization pattern is disclosed. A number of 18-nor-5α-androsta-2,13-diene[3,2-d]pyrimidine, androsta-2-ene[3,2-d]pyrimidine, Δ1, 3, 5(10)-estratrieno[16,17-d]pyrimidine, and 17-chloro-16-dihydrotriazine steroids were synthesized by condensations of amidines with β-chlorovinyl aldehydes derived from natural hormones. The synthesized compounds were screened for cytotoxicity against breast cancer cells and showed IC50 values of 7.4 μM and higher. Compounds were tested against prostate cancer cells and exhibited antiproliferative activity with IC50 values of 9.4 μM and higher comparable to that of cisplatin. Lead compound 4a displayed selectivity in ERα-positive breast cancer cells. At 10 μM concentration, this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERα down-regulation. The ERα reporter assay and immunoblotting were supported by the docking study, which showed the probable binding mode of compound 4a to the estrogen receptor pocket. Thus, heterosteroid 4a proved to be a selective ERα modulator with the highest antiproliferative activity against hormone-dependent breast cancer and can be considered as a candidate for further anticancer drug development. In total, the synthesized heterosteroids may be considered as new promising classes of active anticancer agents.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alexander V Komkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Komendantova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Margarita A Yastrebova
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Valerii Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati University, Santiniketan, India
| | - Igor V Zavarzin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia A Volkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Kumar S, Gu L, Palma G, Kaur M, Singh-Pillay A, Singh P, Kumar V. Design, synthesis, anti-proliferative evaluation and docking studies of 1H-1,2,3-triazole tethered ospemifene–isatin conjugates as selective estrogen receptor modulators. NEW J CHEM 2018. [DOI: 10.1039/c7nj04964a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of 1H-1,2,3-triazole-tethered ospemifene–isatin and ospemifene–spiroisatin conjugates have been synthesized and evaluated for their anti-proliferative activities against MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Liang Gu
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Private Bag 3
- Johannesburg
- South Africa
| | - Gabriella Palma
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Private Bag 3
- Johannesburg
- South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology
- University of the Witwatersrand
- Private Bag 3
- Johannesburg
- South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics
- University of KwaZulu Natal
- P/Bag X54001
- Westville
- Durban 4000
| | - Parvesh Singh
- School of Chemistry and Physics
- University of KwaZulu Natal
- P/Bag X54001
- Westville
- Durban 4000
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
40
|
Cornilleau T, Simonsen M, Vang M, Taib-Maamar N, Dessolin J, Audrain H, Hermange P, Fouquet E. Last-Step Pd-Mediated [11C]CO Labeling of a Moxestrol-Conjugated o-Iodobenzyl Alcohol: From Model Experiments to in Vivo Positron Emission Tomography Studies. Bioconjug Chem 2017; 28:2887-2894. [DOI: 10.1021/acs.bioconjchem.7b00583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Cornilleau
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| | - Mette Simonsen
- Department
of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus, Denmark
| | - Maylou Vang
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nada Taib-Maamar
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean Dessolin
- University of Bordeaux, CNRS, CBMN, UMR 5248, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Hélène Audrain
- Department
of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus, Denmark
| | - Philippe Hermange
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| | - Eric Fouquet
- University of Bordeaux, CNRS, Institut des Sciences Moléculaires, UMR 5255, 351 Cours de la
Libération, 33405 Talence Cedex, France
| |
Collapse
|
41
|
Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. J Comput Aided Mol Des 2017; 32:129-142. [PMID: 28986733 DOI: 10.1007/s10822-017-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022]
Abstract
The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.
Collapse
|
42
|
Kasiotis KM, Lambrinidis G, Fokialakis N, Tzanetou EN, Mikros E, Haroutounian SA. Novel Carbonyl Analogs of Tamoxifen: Design, Synthesis, and Biological Evaluation. Front Chem 2017; 5:71. [PMID: 29018796 PMCID: PMC5622936 DOI: 10.3389/fchem.2017.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Aim of this work was to provide tamoxifen analogs with enhanced estrogen receptor (ER) binding affinity. Hence, several derivatives were prepared using an efficient triarylethylenes synthetic protocol. The novel compounds bioactivity was evaluated through the determination of their receptor binding affinity and their agonist/antagonist activity against breast cancer tissue using a MCF-7 cell-based assay. Phenyl esters 6a,b and 8a,b exhibited binding affinity to both ERα and ERβ higher than 4-hydroxytamoxifen while compounds 13 and 14 have shown cellular antiestrogenic activity similar to 4-hydroxytamoxifen and the known ER inhibitor ICI182,780. Theoretical calculations and molecular modeling were applied to investigate, support and explain the biological profile of the new compounds. The relevant data indicated an agreement between calculations and demonstrated biological activity allowing to extract useful structure-activity relationships. Results herein underline that modifications of tamoxifen structure still provide molecules with substantial activity, as portrayed in the inhibition of MCF-7 cells proliferation.
Collapse
Affiliation(s)
- Konstantinos M Kasiotis
- Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia N Tzanetou
- Laboratory of Nutritional Physiology and Feeding, Faculty of Animal Sciences and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Faculty of Animal Sciences and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
43
|
Markov GV, Gutierrez-Mazariegos J, Pitrat D, Billas IML, Bonneton F, Moras D, Hasserodt J, Lecointre G, Laudet V. Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen. SCIENCE ADVANCES 2017; 3:e1601778. [PMID: 28435861 PMCID: PMC5375646 DOI: 10.1126/sciadv.1601778] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/10/2017] [Indexed: 05/11/2023]
Abstract
The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.
Collapse
Affiliation(s)
- Gabriel V. Markov
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Sorbonne Universités, Muséum National d’Histoire Naturelle (MNHN), Paris, France
| | - Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Delphine Pitrat
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Isabelle M. L. Billas
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - François Bonneton
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Dino Moras
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Jens Hasserodt
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Guillaume Lecointre
- Département Systématique et Evolution, Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS–MNHN–Université Pierre et Marie Curie (UPMC)–École Pratique des Hautes Études (EPHE), Sorbonne Universités, Muséum National d’Histoire Naturelle, CP 30, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
44
|
Sharma N, Carlson KE, Nwachukwu JC, Srinivasan S, Sharma A, Nettles KW, Katzenellenbogen JA. Exploring the Structural Compliancy versus Specificity of the Estrogen Receptor Using Isomeric Three-Dimensional Ligands. ACS Chem Biol 2017; 12:494-503. [PMID: 28032978 PMCID: PMC5315646 DOI: 10.1021/acschembio.6b00918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The estrogen receptors (ERs) bind with high affinity to many structurally diverse ligands by significantly distorting the contours of their ligand-binding pockets. This raises a question: To what degree is ER able to distinguish between structurally related regioisomers and enantiomers? We have explored the structural compliance and specificity of ERα with a set of ligands having a 7-oxa-bicyclo[2.2.1]hept-5-ene sulfonate core and basic side chains typical of selective ER modulators (SERMs). These ligands have two regioisomers, each of which is a racemate of enantiomers. Using orthogonal protecting groups and chiral HPLC, we isolated all 4 isomers and assigned their absolute stereochemistry by X-ray analysis. The 1S,2R,4S isomer has a 80-170-fold higher affinity for ERα than the others, and it profiles as a partial agonist/antagonist in cellular reporter gene assays and in suppressing proliferation of MCF-7 breast cancer cells with subnanomolar potency, far exceeding that of the other isomers. It is the only isomer found bound to ERα by X-ray analysis after crystallization with four-isomer mixtures of closely related analogs. Thus, despite the general compliance of this receptor for binding a large variety of ligand structures, ER demonstrates marked structural specificity and stereospecificity by selecting a single component from a mixture of structurally related isomers to drive ER-regulated cellular activity. Our findings lay the necessary groundwork for seeking unique ER-mediated pharmacological profiles by rational structural perturbations of two different types of side chains in this unprecedented class of ER ligands, which may prove useful in developing more effective endocrine therapies for breast cancer.
Collapse
Affiliation(s)
- Naina Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Kathryn E. Carlson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Jerome C. Nwachukwu
- Department of Cancer Biology, The Scripps Research Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - Sathish Srinivasan
- Department of Cancer Biology, The Scripps Research Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - Abhishek Sharma
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Kendall W. Nettles
- Department of Cancer Biology, The Scripps Research Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
45
|
Lee S, Barron MG. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists. PLoS One 2017; 12:e0169607. [PMID: 28061508 PMCID: PMC5218732 DOI: 10.1371/journal.pone.0169607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 11/18/2022] Open
Abstract
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors.
Collapse
Affiliation(s)
- Sehan Lee
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
- * E-mail:
| | - Mace G. Barron
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
| |
Collapse
|
46
|
Srinivasan S, Nwachukwu JC, Bruno NE, Dharmarajan V, Goswami D, Kastrati I, Novick S, Nowak J, Cavett V, Zhou HB, Boonmuen N, Zhao Y, Min J, Frasor J, Katzenellenbogen BS, Griffin PR, Katzenellenbogen JA, Nettles KW. Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nat Chem Biol 2017; 13:111-118. [PMID: 27870835 PMCID: PMC5161551 DOI: 10.1038/nchembio.2236] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
Resistance to endocrine therapies remains a major clinical problem for the treatment of estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms. A series of crystal structures and phenotypic assays reveal a structure-based design strategy with separate design elements for antagonism and degradation of the receptor, and access to a structurally distinct space for further improvements in ligand design. Understanding structural rules that guide ligands to produce diverse ERα-mediated phenotypes has broad implications for the treatment of breast cancer and other estrogen-sensitive aspects of human health including bone homeostasis, energy metabolism, and autoimmunity.
Collapse
Affiliation(s)
- Sathish Srinivasan
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| | - Jerome C. Nwachukwu
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| | - Nelson E. Bruno
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| | | | - Devrishi Goswami
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458 USA
| | - Irida Kastrati
- Department of Physiology and Biophysics, University of Illinois, 835 South Wolcott Avenue, Chicago, IL 60612 USA
| | - Scott Novick
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458 USA
| | - Jason Nowak
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| | - Valerie Cavett
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| | - Hai-Bing Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Nittaya Boonmuen
- Department of Molecular and Integrative Physiology, University of Illinois, 407 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Yuechao Zhao
- Department of Molecular and Integrative Physiology, University of Illinois, 407 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Jian Min
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois, 61801 USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois, 835 South Wolcott Avenue, Chicago, IL 60612 USA
| | - Benita S. Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois, 407 South Goodwin Avenue, Urbana, IL 61801 USA
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458 USA
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois, 61801 USA
| | - Kendall W. Nettles
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458 USA
| |
Collapse
|
47
|
Thai QD, Tchoumtchoua J, Makropoulou M, Boulaka A, Meligova AK, Mitsiou DJ, Mitakou S, Michel S, Halabalaki M, Alexis MN, Skaltsounis LA. Phytochemical study and biological evaluation of chemical constituents of Platanus orientalis and Platanus × acerifolia buds. PHYTOCHEMISTRY 2016; 130:170-181. [PMID: 27179684 DOI: 10.1016/j.phytochem.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/13/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
One flavonol glycoside, two O-isoprenylated flavonols, one α,α-dimethylallyl flavonol, one dihydrochalcone, two furanocoumarins and one terpenoid previously undescribed, along with 42 known compounds were isolated from the buds of two European Platanaceae, Platanus orientalis and Platanus × acerifolia. Their chemical structures were elucidated on the basis of spectroscopic analysis, including homonuclear and heteronuclear correlation NMR (COSY, NOESY, HSQC, and HMBC) experiments, as well as HRMS data. The estrogen-like and antiestrogen-like activity of dichloromethane and methanol extracts of P. orientalis and P. × acerifolia buds and isolated compounds was evaluated using estrogen-responsive cell lines. The potency of selected estrogen agonists to regulate gene expression through ERα and/or ERβ was compared with their in vitro osteoblastogenic activity. Kaempferol and 8-C-(1,1-dimethyl-2-propen-1-yl)-5,7-dihydroxyflavonol displayed osteoblastogenic as well as ERα-mediated estrogenic activity similar to estradiol.
Collapse
Affiliation(s)
- Quoc Dang Thai
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece; Laboratoire de Pharmacognosie de l'Université Paris Descartes, UMR/CNRS 8638, Faculté de Pharmacie, 4 Avenue de l'Observatoire, F-75006, Paris, France
| | - Job Tchoumtchoua
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Maria Makropoulou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece; Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Athina Boulaka
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aggeliki K Meligova
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Dimitra J Mitsiou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Sophia Mitakou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Sylvie Michel
- Laboratoire de Pharmacognosie de l'Université Paris Descartes, UMR/CNRS 8638, Faculté de Pharmacie, 4 Avenue de l'Observatoire, F-75006, Paris, France
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Michael N Alexis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece.
| |
Collapse
|
48
|
Pais A, Degani H. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status. Front Oncol 2016; 6:100. [PMID: 27200289 PMCID: PMC4846659 DOI: 10.3389/fonc.2016.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/11/2016] [Indexed: 12/26/2022] Open
Abstract
The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this drug increases the microvascular permeability of breast cancer xenograft in an ER-independent manner. In conclusion, EPTA-Gd has been shown to serve as an efficient molecular imaging probe for specific assessment of breast cancer ER in vivo.
Collapse
Affiliation(s)
- Adi Pais
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| | - Hadassa Degani
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
49
|
Kaur G, Mahajan MP, Pandey MK, Singh P, Ramisetti SR, Sharma AK. Design, synthesis, and anti-breast cancer evaluation of new triarylethylene analogs bearing short alkyl- and polar amino-/amido-ethyl chains. Bioorg Med Chem Lett 2016; 26:1963-9. [PMID: 26972118 DOI: 10.1016/j.bmcl.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 12/01/2022]
Abstract
The synthesis of novel triarylethylene analogs, designed based on well-known Selective Estrogen Receptor Modulators (SERMs), i.e., ospemifene and tamoxifen, as potential anti-breast cancer agents is described. The cytotoxic potential of these analogs against ER-positive (MCF-7) and ER-negative (MDA-MB-231) human breast cancer cell lines was determined and compared with the standards, ospemifene and tamoxifen. In initial screening, analogs 5, 14 and 15 were found to be much more effective than the standards against both the cell lines. The results showed that these novel analogs inhibit the expression of proteins involved in the migration and metastasis, compound 5 being most effective. Compound 5 inhibited the expression of MMP-9, c-Myc and Caveolin in both MCF-7 and MDA-MB-231 cells, and suppressed the invasion of ER-negative cells in a dose dependent manner. Finally, in silico docking simulations of the representative compounds in the binding sites of the estrogen receptors (ERs) indicated a good binding affinity of the compounds with the ERs, and supported their experimental toxicity against MCF-7 cancer cell lines.
Collapse
Affiliation(s)
- Gurleen Kaur
- School of Pharmaceutical Sciences, Apeejay Stya University, Plot No. 23, Institutional Area, Sector-32, Gurgaon 122001, India
| | - Mohinder P Mahajan
- School of Pharmaceutical Sciences, Apeejay Stya University, Plot No. 23, Institutional Area, Sector-32, Gurgaon 122001, India.
| | - Manoj K Pandey
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Parvesh Singh
- School of Chemistry and Physics, University of Kwa-Zulu Natal (UKZN), Westville Campus, Durban 4000, South Africa
| | - Srinivasa R Ramisetti
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States
| |
Collapse
|
50
|
Xiong R, Patel HK, Gutgesell LM, Zhao J, Delgado-Rivera L, Pham TND, Zhao H, Carlson K, Martin T, Katzenellenbogen JA, Moore TW, Tonetti DA, Thatcher GRJ. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer. J Med Chem 2015; 59:219-237. [PMID: 26681208 DOI: 10.1021/acs.jmedchem.5b01276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Hitisha K Patel
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Loruhama Delgado-Rivera
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Thao N D Pham
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Kathryn Carlson
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Teresa Martin
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - John A Katzenellenbogen
- Department of Chemistry, University of Illinois, Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Terry W Moore
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612
| |
Collapse
|