1
|
Dybska E, Nowak JK, Banaszkiewicz A, Szaflarska-Popławska A, Kierkuś J, Kwiecień J, Grzybowska-Chlebowczyk U, Walkowiak J. Methylation of RUNX3 Promoter 2 in the Whole Blood of Children with Ulcerative Colitis. Genes (Basel) 2022; 13:genes13091568. [PMID: 36140736 PMCID: PMC9498668 DOI: 10.3390/genes13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Ulcerative colitis (UC) results from a complex interplay between the environment, gut microbiota, host genetics, and immunity. Runt-related transcription factor 3 (RUNX3) regulates Th1/Th2 balance and, thus, the synthesis of cytokines and inflammation. We aimed to analyze the dependence of RUNX3 promoter 2 (P2) methylation level on: age, sex, body mass index (BMI), C-reactive protein (CRP), serum albumin, disease duration, Pediatric Ulcerative Colitis Activity Index (PUCAI), the Paris classification, and exposure to medications. This multicenter, cross-sectional study recruited hospitalized children with UC. Methylation of RUNX3 P2 was measured with methylation-sensitive restriction enzymes in the whole blood DNA. Sixty-four children were enrolled, with a mean age of 14.5 ± 2.8 years. Half of them were female (51.6%), and the average BMI Z-score was −0.44 ± 1.14. The mean methylation of RUNX3 P2 was 54.1 ± 13.3%. The methylation level of RUNX3 P2 did not correlate with age, sex, nutritional status, CRP, albumin, PUCAI, or the extent of colitis (Paris E1–E4). RUNX3 P2 methylation did not differ between patients recruited within two and a half months of diagnosis and children who had UC for at least a year. Current or past exposure to biologics, immunosuppressants, or steroids was not associated with RUNX3 P2 methylation. Methylation of RUNX3 promoter 2 in whole blood DNA does not seem to be associated with the characteristics of UC in children.
Collapse
Affiliation(s)
- Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Jarosław Kierkuś
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Jarosław Kwiecień
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Urszula Grzybowska-Chlebowczyk
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
2
|
Chen X, Deng Y, Shi Y, Zhu W, Cai Y, Xu C, Zhu K, Zheng X, Chen G, Xie Q, Weng G. Loss of expression rather than cytoplasmic mislocalization of RUNX3 predicts worse outcome in non-small cell lung cancer. Oncol Lett 2018; 15:5043-5055. [PMID: 29545901 PMCID: PMC5840764 DOI: 10.3892/ol.2018.7993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/24/2018] [Indexed: 12/16/2022] Open
Abstract
Functional inactivation of human runt-related transcription factor 3 (RUNX3) through mutation or epigenetic silencing has been well-documented in many cancerous entities. In addition to gene mutation and promoter hypermethylation, cytoplasmic mislocalization has emerged as another major manifestation of RUNX3 dysfunction in malignancies including breast, colorectal and gastric cancers. The aim of the present study was to investigate whether patients with non-small cell lung cancer (NSCLC) and different RUNX3 expression patterns would have different overall survival (OS), and the associations between different patterns of clinicopathological parameters and clinical outcome. Expressions of RUNX3 and Ki-67 were immunohistochemically detected in normal lung tissue (n=5) and surgically resected tissues from NSCLC patients (n=188). The optimal cutoff of RUNX3 was determined by X-tile software associated with their survival. Apoptotic index in cancerous tissue was evaluated using the terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labelling method. The prognostic significance of different expression patterns of RUNX3 was determined by means of Kaplan-Meier survival estimates and log-rank tests. It was revealed that loss of RUNX3 expression in NSCLC was correlated with a low cancerous apoptotic index (P<0.001), shorter OS and worse prognosis (P=0.0142), while no statistical difference of apoptotic index (P=0.73) or survival (P=0.3781) was determined between patient subgroups with different localization of RUNX3 expression, which was quite different from the situation demonstrated in other malignancies. In conclusion, loss of expression rather than cytoplasmic mislocalization of RUNX3 predicted worse outcome in NSCLC, which was quite different from what manifested in other cancer types, and thus, the underlying mechanism may deserve further investigation.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yujie Deng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yi Shi
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Zhu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yibin Cai
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qi Xie
- Department of Cardiac Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guoxing Weng
- Department of Cardiac Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
3
|
Shin EJ, Kim HJ, Son MW, Ahn TS, Lee HY, Lim DR, Bae SB, Jeon S, Kim H, Jeong D, Lee MS, Kim DS, Noh JS, Baek MJ. Epigenetic inactivation of RUNX3 in colorectal cancer. Ann Surg Treat Res 2018; 94:19-25. [PMID: 29333422 PMCID: PMC5765274 DOI: 10.4174/astr.2018.94.1.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Emerging evidence indicates that runt-related transcription factor 3 (RUNX3) is an important tumor suppressor gene in several cancer types, including colorectal cancer (CRC). However, the clinical significance of RUNX3 inactivation in CRC remains unclear. The aim of this study was to examine the correlation between clinicopathologic factors and RUNX3 hypermethylation/expression in CRC. METHODS Sixty-two CRC patients who were treated at the Soonchunhyang University College of Medicine were recruited in this study. The hypermethylation of CpG islands in the RUNX3 promoter and the expression of RUNX3 mRNA were identified by methylation-specific polymerase chain reaction (PCR) and reverse transcriptase-PCR, respectively. The expression of RUNX3 was determined by immunohistochemical staining. RESULTS Of the 62 CRC tissue samples, 20 (32.3%) presented hypermethylated RUNX3 promoters. Aberrant RUNX3 hypermethylation was found to be associated with vascular (P = 0.006) and lymphatic (P = 0.002) invasion. Hypermethylation of RUNX3 was associated with poor survival outcomes (P = 0.038). However, expression of RUNX3 was not a prognostic factor (P = 0.363). CONCLUSION Hypermethylation of RUNX3 may be a predictor of a poor prognosis in CRC.
Collapse
Affiliation(s)
- Eung Jin Shin
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Han Jo Kim
- Department of Hematology and Oncology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Myoung Won Son
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Tae Sung Ahn
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyun Yong Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dae Ro Lim
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sang Byung Bae
- Department of Hematology and Oncology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hyungjoo Kim
- Medical Science Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Dongjun Jeong
- Medical Science Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Moon Soo Lee
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dong-Sun Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jeong Se Noh
- Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Moo-Jun Baek
- Department of Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
4
|
Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, Levanon D, Appel E, Anekstein Y, Agar G, Groner Y, Zelzer E. The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis. Dev Cell 2017; 42:388-399.e3. [DOI: 10.1016/j.devcel.2017.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/10/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
5
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
6
|
Kang JT, Ryu J, Cho B, Lee EJ, Yun YJ, Ahn S, Lee J, Ji DY, Lee K, Park KW. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod Domest Anim 2016; 51:970-978. [PMID: 27696566 DOI: 10.1111/rda.12775] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022]
Abstract
Pigs are an attractive animal model to study the progression of cancer because of their anatomical and physiological similarities to human. However, the use of pig models for cancer research has been limited by availability of genetically engineered pigs which can recapitulate human cancer progression. Utilizing genome editing technologies such as CRISPR/Cas9 system allows us to generate genetically engineered pigs at a higher efficiency. In this study, specific CRISPR/Cas9 systems were used to target RUNX3, a known tumour suppressor gene, to generate a pig model that can induce gastric cancer in human. First, RUNX3 knockout cell lines carrying genetic modification (monoallelic or biallelic) of RUNX3 were generated by introducing engineered CRISPR/Cas9 system specific to RUNX3 into foetal fibroblast cells. Then, the genetically modified foetal fibroblast cells were used as donor cells for somatic cell nuclear transfer, followed by embryo transfer. We successfully obtained four live RUNX3 knockout piglets from two surrogates. The piglets showed the lack of RUNX3 protein in their internal organ system. Our results demonstrate that the CRISPR/Cas9 system is effective in inducing mutations on a specific locus of genome and the RUNX3 knockout pigs can be useful resources for human cancer research and to develop novel cancer therapies.
Collapse
Affiliation(s)
- J-T Kang
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - J Ryu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - B Cho
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - E-J Lee
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - Y-J Yun
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - S Ahn
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - J Lee
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - D-Y Ji
- MGENPLUS Biotechnology Research Institute, Seoul, Korea
| | - K Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - K-W Park
- MGENPLUS Biotechnology Research Institute, Seoul, Korea.,Department of Animal Science & Technology, Sunchon National University, Suncheon, Korea
| |
Collapse
|
7
|
Song XY, Li BY, Zhou EX, Wu FX. The clinicopathological significance of RUNX3 hypermethylation and mRNA expression in human breast cancer, a meta-analysis. Onco Targets Ther 2016; 9:5339-47. [PMID: 27616890 PMCID: PMC5008647 DOI: 10.2147/ott.s77828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aberrant promoter methylation of RUNX3 has been reported in several tumors including human breast cancer (BC). However, the association between RUNX3 hypermethylation and incidence of BC remains elusive. In this study, a detailed literature search was performed in Medline and Google Scholar for related research publications. Analysis of pooled data were executed. Odds ratios with corresponding confidence intervals were determined and summarized, respectively. Finally, 13 studies were identified for the meta-analysis. Analysis of the pooled data showed that RUNX3 hypermethylation was significantly higher in both ductal carcinoma in situ and invasive ductal carcinoma (IDC) than in normal breast tissues. In addition, RUNX3 methylation was significantly higher in IDC than in benign tumor. However, RUNX3 methylation was not significantly higher in IDC than in ductal carcinoma in situ. We also determined that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. In addition, high RUNX3 mRNA expression was found to be correlated with better overall survival and relapse-free survival for all BC patients. Our results strongly support that RUNX3 hypermethylation may play an important role in BC incidence. RUNX3 methylation is a valuable early biomarker for the diagnosis of BC. Further large-scale studies will provide more insight into the role of RUNX3 hypermethylation in the carcinogenesis and clinical diagnosis of BC patients.
Collapse
Affiliation(s)
- Xiao-Yun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bo-Yan Li
- Department of Breast Surgery, Inner Mongolia Forestry General Hospital, Inner Mongolia, People's Republic of China
| | - En-Xiang Zhou
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Feng-Xia Wu
- Department of Breast Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Xu L, Lan H, Su Y, Li J, Wan J. Clinicopathological significance and potential drug target of RUNX3 in non-small cell lung cancer: a meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2855-65. [PMID: 26082616 PMCID: PMC4461130 DOI: 10.2147/dddt.s76358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). However, the correlation between RUNX3 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation on the incidence of NSCLC and clinicopathological characteristics. METHODS A detailed literature search was made using Medline, Embase and Web of Science for related research publications written in English. The methodological quality of the studies was evaluated. The data were extracted and assessed independently by two reviewers. Analysis of pooled data was performed. The odds ratio (OR) and hazard ratio were calculated and summarized. RESULTS Final analysis of 911 NSCLC patients from 13 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in NSCLC than in normal lung tissue; the pooled OR from seven studies including 361 NSCLC and 345 normal lung tissue (OR 7.08, confidence interval 4.12-12.17, P<0.00001). RUNX3 hypermethylation may also be associated with pathological types. The pooled OR was obtained from eleven studies including 271 squamous cell carcinoma and 389 adenocarcinoma (OR 0.41, confidence interval 0.19-0.89, P=0.02), which indicated that RUNX3 hypermethylation is significantly higher in adenocarcinoma that in squamous cell carcinoma. We did not find that RUNX3 hypermethylation was correlated with clinical stage or differentiated status. However, NSCLC patients with RUNX3 hypermethylation had a lower survival rate than those without RUNX3 hypermethylation. CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk and worse survival in NSCLC. RUNX3 hypermethylation, which induces inactivation of the RUNX3 gene, plays an important role in lung carcinogenesis and clinical outcome.
Collapse
Affiliation(s)
- Lijun Xu
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongwen Lan
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yushu Su
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Wan
- Department of Surgery (Operation Room), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| |
Collapse
|
9
|
Association of promoter methylation of RUNX3 gene with the development of esophageal cancer: a meta analysis. PLoS One 2014; 9:e107598. [PMID: 25229459 PMCID: PMC4167998 DOI: 10.1371/journal.pone.0107598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Runt-related transcription factor 3 (RUNX3) is a member of the runt-domain family of transcription factors. Emerging evidence indicates that RUNX3 is a tumor suppressor gene in several types of human cancers including esophageal cancer. However, the association between RUNX3 promoter methylation and esophageal cancer remains unclear. Here we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 promoter methylation on the incidence of esophageal cancer. METHODS A detailed literature search was made on Medline, Pubmed and Web of Science for related research publications written in English and/or Chinese. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analysis of pooled data were performed, the odds ratios (OR) were calculated and summarized respectively. RESULTS Final analysis of 558 patients from 9 eligible studies was performed. The result showed that RUNX3 methylation was significantly higher in esophageal cancer than in normal squamous mucosa from the proximal resection margin or esophageal benign lesions (OR = 2.85, CI = 2.01-4.05, P<0.00001). The prevalence of lymph node involvement, tumor size (T1-T2 vs T3-T4) and histological grade was significantly greater in RUNX3-negative cases (RUNX3 unmethylated groups) than in RUNX3-positive cases (OR = 0.25, CI = 0.14-0.43, P<0.00001). RUNX3 methylation was significantly higher in esophageal adenocarcinoma (EAC) than Barrett's esophagus (OR = 0.35, CI = 0.20-0.59, P<0.0001). In addition, the pooled HR for overall survival (OS) showed that decreased RUNX3 expression was associated with worse survival in esophageal cancer (HR = 4.31, 95% CI = 2.57-7.37, P<0.00001). CONCLUSIONS The results of this meta-analysis suggest that RUNX3 methylation is associated with an increased risk, progression as well as worse survival in esophageal cancer. RUNX3 methylation, which induces the inactivation of RUNX3 gene, plays an important role in esophageal carcinogenesis.
Collapse
|
10
|
Yang Y, Ye Z, Zou Z, Xiao G, Luo G, Yang H. Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma. Tumour Biol 2014; 35:10333-40. [DOI: 10.1007/s13277-014-2329-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/07/2014] [Indexed: 12/16/2022] Open
|
11
|
Mu WP, Wang J, Niu Q, Shi N, Lian HF. Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: a meta-analysis. Onco Targets Ther 2014; 7:1237-45. [PMID: 25053885 PMCID: PMC4105273 DOI: 10.2147/ott.s62103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor family and is closely involved in a variety of cellular processes including development, differentiation, participation in the regulation of p53-dependent DNA damage response and/or tumorigenesis. Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors including colorectal cancer (CRC). However, the correlation of RUNX3 inactivation with CRC remains unclear. In the study reported here, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of RUNX3 hypermethylation/expression on the incidence of CRC. Methods A detailed search of the literature was made using Medline® and Web of Science for related research publications written in English. The methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analyses of the pooled data were performed. Odds ratios (ORs) and hazard ratios were calculated and summarized, respectively. Results A final analysis of 1,427 CRC patients from eleven eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in CRC than in normal colorectal mucosa. The pooled OR from six studies comprising 289 CRC and 188 normal colorectal mucosa was OR =0.07 (confidence interval [CI] =0.03–0.18, P<0.00001). Aberrant RUNX3 hypermethylation/expression was significantly higher in advanced CRC than in early staged CRC (OR =0.54, CI =0.41–0.71, P<0.0001). Aberrant RUNX3 hypermethylation/expression was also significantly higher in microsatellite instability (MSI)-positive CRC than in MSI-negative CRC (OR =0.44, CI =0.3–0.66, P<0.0001). In addition, CRC patients with RUNX3 hypermethylation or lacking RUNX3 protein expression had a lower survival rate than those without RUNX3 hypermethylation or those who did not express RUNX3 protein. Conclusion The results of this meta-analysis suggest that RUNX3 hypermethylation is associated with an increased risk of CRC, increased risk of progression of CRC, and a poorer CRC survival rate. RUNX3 hypermethylation, which induces the inactivation of RUNX3 gene, plays an important role in colorectal carcinogenesis, high levels of MSI, as well as CRC progression and development.
Collapse
Affiliation(s)
- Wei-Ping Mu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Jian Wang
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Qiong Niu
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Ning Shi
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| | - Hai-Feng Lian
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical College, Binzhou, People's Republic of China
| |
Collapse
|
12
|
Yu YY, Chen C, Kong FF, Zhang W. Clinicopathological significance and potential drug target of RUNX3 in breast cancer. Drug Des Devel Ther 2014; 8:2423-30. [PMID: 25525332 PMCID: PMC4266273 DOI: 10.2147/dddt.s71815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Previous reports indicate that RUNX3 is a tumor suppressor in several types of human tumors, including breast cancer (BC). However, the correlation between RUNX3 hypermethylation and the incidence of BC remains unclear. In this study, we conducted a systematic review and meta-analysis aiming to comprehensively assess the potential role of RUNX3 hypermethylation in the pathogenesis of BC. METHODS A detailed literature search was made to identify studies for related research publications. Methodological quality of the studies was evaluated. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized respectively. RESULTS Final analysis of 565 BC patients from eleven eligible studies was performed. The results showed that RUNX3 hypermethylation was significantly higher in BC than in normal breast tissue, the pooled OR from nine studies including 339 BC and 248 normal breast tissue (OR =24.12, 95% confidence interval [CI] =13.50-43.11, Z=10.75, P<0.00001). Further analysis also showed significantly increased OR of RUNX3 hypermethylation in estrogen receptor (ER)-positive than in ER-negative BC patients (OR =5.67, 95% CI =2.69-11.95, Z=4.57, P<0.00001). In addition, RUNX3 messenger RNA (mRNA) high expression was found to be correlated to better overall survival in 3,455 cases of BC patients that were followed up for 20 years (hazard ratio [HR] 0.79, P=8.8×10(-5)). Interestingly, RUNX3 mRNA overexpression was found to be correlated to better overall survival in only 668 cases of ER-negative patients (HR 0.72, P=0.01), but not in 1,767 cases of ER-positive patients (HR 0.87, P=0.13). CONCLUSION The results of this meta-analysis suggest that RUNX3 hypermethylation may be implicated in the pathogenesis of BC. Detection of RUNX3 mRNA may be a helpful and valuable biomarker for diagnosis of BC, especially in ER-negative BC. We also discussed the significance of RUNX3 as a potential drug target.
Collapse
Affiliation(s)
- Ying-Ying Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chao Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Fan-fei Kong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to TongJi University, Shanghai, People’s Republic of China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Wei Zhang, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai 200011, People’s Republic of China, Email
| |
Collapse
|
13
|
Runt-Related Transcription Factor 3: Single Nucleotide Polymorphism rs760805, Gene Expression, and Methylation Status in Helicobacter pylori-Infected Patients for Determination of Gastric Cancer Risk. J Gastrointest Cancer 2013; 44:444-9. [DOI: 10.1007/s12029-013-9540-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
|
15
|
Abstract
Runx1(P1N/P1N) mice are deficient in the transcription factor distal promoter-derived Runt-related transcription factor 1 (P1-Runx1) and have a > 90% reduction in the numbers of basophils in the BM, spleen, and blood. In contrast, Runx1(P1N/P1N) mice have normal numbers of the other granulocytes (neutrophils and eosinophils). Although basophils and mast cells share some common features, Runx1(P1N/P1N) mice have normal numbers of mast cells in multiple tissues. Runx1(P1N/P1N) mice fail to develop a basophil-dependent reaction, IgE-mediated chronic allergic inflammation of the skin, but respond normally when tested for IgE- and mast cell-dependent passive cutaneous anaphylaxis in vivo or IgE-dependent mast cell degranulation in vitro. These results demonstrate that Runx1(P1N/P1N) mice exhibit markedly impaired function of basophils, but not mast cells. Infection with the parasite Strongyloides venezuelensis and injections of IL-3, each of which induces marked basophilia in wild-type mice, also induce modest expansions of the very small populations of basophils in Runx1(P1N/P1N) mice. Finally, Runx1(P1N/P1N) mice have normal numbers of the granulocyte progenitor cells, SN-Flk2(+/-), which can give rise to all granulocytes, but exhibit a > 95% reduction in basophil progenitors. The results of the present study suggest that P1-Runx1 is critical for a stage of basophil development between SN-Flk2(+/-) cells and basophil progenitors.
Collapse
|
16
|
Cinghu S, Goh YM, Oh BC, Lee YS, Lee OJ, Devaraj H, Bae SC. Phosphorylation of the gastric tumor suppressor RUNX3 following H. pylori infection results in its localization to the cytoplasm. J Cell Physiol 2011; 227:1071-80. [DOI: 10.1002/jcp.22820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Fan XY, Hu XL, Han TM, Wang NN, Zhu YM, Hu W, Ma ZH, Zhang CJ, Xu X, Ye ZY, Han CM, Pan WS. Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis. BMC Gastroenterol 2011; 11:92. [PMID: 21867527 PMCID: PMC3183003 DOI: 10.1186/1471-230x-11-92] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/25/2011] [Indexed: 12/15/2022] Open
Abstract
Background Runt-related transcription factor 3 (RUNX3) is a member of the runt-domain family of transcription factors and has been reported to be a candidate tumor suppressor in gastric cancer. However, the association between RUNX3 promoter methylation and gastric cancer remains unclear. Methods We systematically reviewed studies of RUNX3 promoter methylation and gastric cancer published in English or Chinese from January 2000 to January 2011, and quantified the association between RUNX3 promoter methylation and gastric cancer using meta-analysis methods. Results A total of 1740 samples in 974 participants from seventeen studies were included in the meta-analysis. A significant association was observed between RUNX3 promoter methylation and gastric cancer, with an aggregated odds ratio (OR) of 5.63 (95%CI 3.15, 10.07). There was obvious heterogeneity among studies. Subgroup analyses (including by tissue origin, country and age), meta-regression were performed to determine the source of the heterogeneity. Meta-regression showed that the trend in ORs was inversely correlated with age. No publication bias was detected. The ORs for RUNX3 methylation in well-differentiated vs undifferentiated gastric cancers, and in intestinal-type vs diffuse-type carcinomas were 0.59 (95%CI: 0.30, 1.16) and 2.62 (95%CI: 1.33, 5.14), respectively. There were no significant differences in RUNX3 methylation in cancer tissues in relation to age, gender, TNM stage, invasion of tumors into blood vessel or lymphatic ducts, or tumor stage. Conclusions This meta-analysis identified a strong association between methylation of the RUNX3 promoter and gastric cancer, confirming the role of RUNX3 as a tumor suppressor gene.
Collapse
Affiliation(s)
- Xiao-yuan Fan
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University, School of Medicine, 88 Jiefang Road, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Levanon D, Bernstein Y, Negreanu V, Bone KR, Pozner A, Eilam R, Lotem J, Brenner O, Groner Y. Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Mol Med 2011; 3:593-604. [PMID: 21786422 PMCID: PMC3258485 DOI: 10.1002/emmm.201100168] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 11/15/2022] Open
Abstract
The Runx3 transcription factor regulates cell fate decisions during embryonic development and in adults. It was previously reported that Runx3 is strongly expressed in embryonic and adult gastrointestinal tract (GIT) epithelium (Ep) and that its loss causes gastric cancer. More than 280 publications have based their research on these findings and concluded that Runx3 is indeed a tumour suppressor (TS). In stark contrast, using various measures, we found that Runx3 expression is undetectable in GIT Ep. Employing a variety of biochemical and genetic techniques, including analysis of Runx3-GFP and R26LacZ/Runx3Cre or R26tdTomato/Runx3Cre reporter strains, we readily detected Runx3 in GIT-embedded leukocytes, dorsal root ganglia, skeletal elements and hair follicles. However, none of these approaches revealed detectable Runx3 levels in GIT Ep. Moreover, our analysis of the original Runx3LacZ/LacZ mice used in the previously reported study failed to reproduce the GIT expression of Runx3. The lack of evidence for Runx3 expression in normal GIT Ep creates a serious challenge to the published data and undermines the notion that Runx3 is a TS involved in cancer pathogenesis.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice. Differentiation 2011; 81:261-8. [DOI: 10.1016/j.diff.2011.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/14/2011] [Accepted: 02/01/2011] [Indexed: 11/20/2022]
|
20
|
|
21
|
Hishida A, Matsuo K, Goto Y, Hamajima N. Genetic predisposition to Helicobacter pylori-induced gastric precancerous conditions. World J Gastrointest Oncol 2010; 2:369-79. [PMID: 21160888 PMCID: PMC2999673 DOI: 10.4251/wjgo.v2.i10.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer is the most common malignancy of the gastrointestinal tract in East Asian populations and the second most frequent cause of cancer-related mortality in the world. While previous studies have investigated the genetic factors involved in gastric carcinogenesis, there still exist relatively few studies that have investigated the genetic traits associated with the risk of gastric precancerous conditions. In this paper we will review the biology and genetic polymorphisms involved in the genesis of gastric precancerous conditions reported to date and discuss the future prospects of this field of study. The associations of gastric precancerous conditions with polymorphisms in the cytotoxin-associated gene A-related genes (e.g. PTPN11 G/A at intron 3, rs2301756), those in the genes involved in host immunity against Helicobacter pylori (H. pylori) infection (e.g. TLR4 +3725G/C, rs11536889) or polymorphisms of the genes essential for the development/ differentiation of the gastric epithelial cells (e.g. RUNX3 T/A polymorphism at intron 3, rs760805) have been reported to date. Genetic epidemiological studies of the associations between H. pylori-induced gastric precancerous conditions and other gene polymorphisms in these pathways as well as polymorphisms of the genes involved in other pathways like oxidative DNA damage repair pathways would provide useful evidence for the individualized prevention of these H. pylori-induced gastric precancerous conditions.
Collapse
Affiliation(s)
- Asahi Hishida
- Asahi Hishida, Yasuyuki Goto, Nobuyuki Hamajima, Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
22
|
Lung tissue regeneration after induced injury in Runx3 KO mice. Cell Tissue Res 2010; 341:465-70. [PMID: 20623301 DOI: 10.1007/s00441-010-1011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/16/2010] [Indexed: 01/08/2023]
Abstract
Runx3 is essential for normal murine lung development, and Runx3 knockout (KO) mice, which die soon after birth, exhibit alveolar hyperplasia. Wound healing, tissue repair, and regeneration mechanisms are necessary in humans for proper early lung development. Previous studies have reported that various signaling molecules, such as pErk, Tgf-beta1, CCSP, pJnk, Smad3, and HSP70 are closely related to wound healing. In order to confirm the relationship between lung defects caused by the loss of function of Runx3 and wound healing, we have localized various wound-healing markers after laser irradiation in wild-type and in Runx3 KO mouse lungs at post-natal day 1. Our results indicate that pERK, Tgf-beta1, CCSP, pJnk, and HSP70 are dramatically down-regulated by loss of Runx3 during lung wound healing. However, Smad3 is up-regulated in the Runx3 KO laser-irradiated lung region. Therefore, the lung wound-healing mechanism is inhibited in the Runx3 KO mouse, which shows abnormal lung architecture, by reduced pErk, Tgf-beta1, CCSP, pJnk, and HSP70 and by induced Smad3.
Collapse
|
23
|
Chuang LSH, Ito Y. RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 2010; 29:2605-15. [DOI: 10.1038/onc.2010.88] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Significant association of RUNX3 T/A polymorphism at intron 3 (rs760805) with the risk of gastric atrophy in Helicobacter pylori seropositive Japanese. J Gastroenterol 2010; 44:1165-71. [PMID: 19728008 DOI: 10.1007/s00535-009-0118-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 08/02/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND This study aimed to examine the associations of a RUNX3 T/A polymorphism at exon 1 (Asn18Ile) (rs6672420) and another RUNX3 intronic T/A polymorphism (rs760805) with the risk of gastric cancer together with the risk of H. pylori seropositivity and gastric atrophy in Japanese people. METHODS Study subjects were 583 histologically diagnosed gastric cancer patients and age- and sex-frequency-matched 1,742 control outpatients (among whom 1,637 subjects were eligible for the analyses), who visited Aichi Cancer Center Hospital from 2001 to 2005. Serum pepsinogens were measured to evaluate gastric atrophy. RESULTS There was no significant association between the RUNX3 polymorphisms and the seropositivity. Among H. pylori seropositive subjects, we found a significant association between RUNX3 rs760805 polymorphism and the risk of gastric atrophy with the age- and sex-adjusted OR of 1.51 (95% CI 1.11-2.05, P = 0.008) in T/A, 1.59 (95% CI 1.08-2.33, P = 0.019) in A/A, and 1.53 (95% CI 1.14-2.05, P = 0.004) in T/A + A/A, compared with T/T genotype. We found no statistically significant associations between RUNX3 rs6672420 polymorphism and risk of gastric atrophy, nor between these two RUNX3 polymorphisms and the risk of gastric cancer relative to the subjects with gastric atrophy. CONCLUSIONS Our study results revealed that the RUNX3 intronic T/A polymorphism (rs760805) might modulate the risk of gastric atrophy among H. pylori seropositive subjects, and the RUNX3 T/A polymorphism at exon 1 (rs6672420) had little influence on the risks of H. pylori infection, gastric atrophy or gastric cancer in Japanese people. Further investigation is required to verify our findings.
Collapse
|
25
|
Milne AN, Offerhaus GJA. Early-onset gastric cancer: Learning lessons from the young. World J Gastrointest Oncol 2010; 2:59-64. [PMID: 21160922 PMCID: PMC2998932 DOI: 10.4251/wjgo.v2.i2.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 02/05/2023] Open
Abstract
There is by no means a clear-cut pattern of mutations contributing to gastric cancers, and gastric cancer research can be hampered by the diversity of factors that can induce gastric cancer, such as Helicobacter pylori infection, diet, ageing and other environmental factors. Tumours are unquestionably riddled with genetic changes yet we are faced with an unsolvable puzzle with respect to a temporal relationship. It is postulated that inherited genetic factors may be more important in early-onset gastric cancer (EOGC) than in gastric cancers found in older patients as they have less exposure to environmental carcinogens. EOGC, therefore, could provide a key to unravelling the genetic changes in gastric carcinogenesis. Gastric cancers occurring in young patients provide an ideal background on which to try and uncover the initiating stages of gastric carcinogenesis. This review summarizes the literature regarding EOGC and also presents evidence that these cancers have a unique molecular-genetic phenotype, distinct from conventional gastric cancer.
Collapse
Affiliation(s)
- Anya N Milne
- Anya N Milne, Department of Pathology, University Medical Centre Utrecht, Postbus 85500, 3508 GA, Utrecht, The Netherlands
| | | |
Collapse
|
26
|
|
27
|
Levanon D, Groner Y. Runx3-deficient mouse strains circa 2008: Resemblance and dissimilarity. Blood Cells Mol Dis 2009; 43:1-5. [DOI: 10.1016/j.bcmd.2009.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/05/2009] [Indexed: 11/30/2022]
|
28
|
Ito K, Inoue KI, Bae SC, Ito Y. Runx3 expression in gastrointestinal tract epithelium: resolving the controversy. Oncogene 2009; 28:1379-84. [PMID: 19169278 DOI: 10.1038/onc.2008.496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported earlier that RUNX3 is expressed in human and mouse gastrointestinal tract (GIT) epithelium and that it functions as a tumor suppressor in gastric and colorectal tissues. However, there have been conflicting reports describing the absence of Runx3 in GIT epithelial cells. A part of the controversy may be derived from the use of a specific antibody by other groups (referred to as G-poly). Here, we show further evidence to support our earlier observations and provide a possible explanation for this apparent controversy. We generated multiple anti-RUNX3 monoclonal antibodies and found that RUNX3 antibodies recognizing the RUNX3 N-terminal region (residues 1-234) react with RUNX3 in gastric epithelial cells, whereas those recognizing the C-terminal region (beyond residue 234) did not. G-poly primarily recognizes the region beyond 234 and hence, is unable to detect Runx3 in this tissue.
Collapse
Affiliation(s)
- K Ito
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | |
Collapse
|
29
|
Cancer genes hypermethylated in human embryonic stem cells. PLoS One 2008; 3:e3294. [PMID: 18820729 PMCID: PMC2546447 DOI: 10.1371/journal.pone.0003294] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/01/2008] [Indexed: 12/05/2022] Open
Abstract
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.
Collapse
|
30
|
Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression. PLoS Genet 2008; 4:e1000092. [PMID: 18551179 PMCID: PMC2410297 DOI: 10.1371/journal.pgen.1000092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/12/2008] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3−/−;Apc1638N and Mlh3−/−;Pms2−/−;Apc1638N (MPA) mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1−/−;Apc1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle) family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression. Approximately one million people every year are diagnosed with colorectal cancer worldwide, and about five hundred thousand of these people subsequently perish from the disease. Colorectal cancer is thought to develop through a series of early and later stages (called cancer initiation and progression, respectively). Deaths from colorectal cancer are particularly tragic because the disease can usually be cured if discovered before full-blown progression. However, our knowledge of how these tumors progress remains very limited. DNA mismatch repair is known to be an important process in preventing ∼15% of colorectal cancer initiation. In this study we describe how two of these genes (Mlh3 and Pms2) that have partial functional redundancy and therefore individually are rarely mutated are also important in preventing colorectal cancer progression. Additionally, we describe a new gene (Tle6-like) that, when overactive, makes these cancers progress more rapidly. The overall goal of this study is to understand colorectal cancer progression better so that we can come up with new ways to block it at the later stage.
Collapse
|
31
|
Worming out the biology of Runx. Dev Biol 2007; 313:492-500. [PMID: 18062959 DOI: 10.1016/j.ydbio.2007.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/08/2007] [Accepted: 11/02/2007] [Indexed: 01/09/2023]
Abstract
Runx family transcription factors have risen to prominence over the last few years because of the increasing evidence implicating them as key regulators of the choice between cell proliferation and differentiation during development and carcinogenesis. Runx factors have been found to be involved in diverse developmental processes, ranging from hematopoiesis to neurogenesis, and are increasingly being linked with various human cancers. In this review, we examine the case for Runx factors as key regulators of cell proliferation in various developmental situations, a role that predisposes Runx mutations as causative agents in oncogenesis. We discuss the evidence that Runx factors regulate, and are regulated by, core components of the cell cycle machinery, and focus our attention on the solo Runx gene, rnt-1, in Caenorhabditis elegans, an organism that we feel has much to offer the Runx field.
Collapse
|
32
|
Friedrich MJ, Rad R, Langer R, Voland P, Hoefler H, Schmid RM, Prinz C, Gerhard M. Lack of RUNX3 regulation in human gastric cancer. J Pathol 2007; 210:141-6. [PMID: 16917803 DOI: 10.1002/path.2042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been proposed that the transcription factor RUNX3 is the product of a gastric tumour suppressor gene. We examined RUNX3 expression in gastric biopsies from 105 patients with different histological presentations. Surprisingly, immunohistochemical staining detected RUNX3 protein expression only in infiltrating leukocytes but not in the gastric epithelium. Using laser capture microdissection and quantitative reverse transcription-polymerase chain reaction, we confirmed that the level of RUNX3 mRNA expression in the gastric epithelium was very low and was influenced neither by H. pylori infection nor by neoplastic transformation. Instead, RUNX3 was highly expressed in the gastric stroma and the level of expression correlated with the magnitude of H. pylori-induced gastric inflammation. The low level of RUNX3 expression in gastric epithelium and the absence of downregulation in gastric cancer do not support the hypothesis that RUNX3 functions as a gastric tumour suppressor gene.
Collapse
Affiliation(s)
- M J Friedrich
- Second Department of Internal Medicine and Gastroenterology, Technical University of Munich, Ismaningerstrasse 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Saeki N, Kim DH, Usui T, Aoyagi K, Tatsuta T, Aoki K, Yanagihara K, Tamura M, Mizushima H, Sakamoto H, Ogawa K, Ohki M, Shiroishi T, Yoshida T, Sasaki H. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene 2007; 26:6488-98. [PMID: 17471240 DOI: 10.1038/sj.onc.1210475] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Defining apoptosis-regulatory cascades of the epithelium is important for understanding carcinogenesis, since cancer cells are considered to arise as a result of the collapse of the cascades. We previously reported that a novel gene GASDERMIN (GSDM) is expressed in the stomach but suppressed in gastric cancer cell lines. Furthermore, in this study, we demonstrated that GSDM is expressed in the mucus-secreting pit cells of the gastric epithelium and frequently silenced in primary gastric cancers. We found that GSDM has a highly apoptotic activity and its expression is regulated by a transcription factor LIM domain only 1 (LMO1) through a sequence to which Runt-related transcription factor 3 (RUNX3) binds, in a GSDM promoter region. We observed coexpression of GSDM with LMO1, RUNX3 and type II transforming growth factor-beta receptor (TGF-betaRII) in the pit cells, and found that TGF-beta upregulates the LMO1- and GSDM-expression in the gastric epithelial cell line and induces apoptosis, which was confirmed by the finding that the apoptosis induction is inhibited by suppression of each LMO1-, RUNX3- and GSDM expression, respectively. The present data suggest that TGF-beta, LMO1, possibly RUNX3, and GSDM form a regulatory pathway for directing the pit cells to apoptosis.
Collapse
Affiliation(s)
- N Saeki
- Center for Medical Genomics, Genetics Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X, Jia Z, Li Q, Xie K. RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res 2007; 12:6386-94. [PMID: 17085650 DOI: 10.1158/1078-0432.ccr-05-2359] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Recent studies indicated that RUNX3 exhibits potent antitumor activity. However, the underlying molecular mechanisms of this activity remain unclear. In the present study, we used a gastric cancer model to determine the effect of RUNX3 expression on tumor angiogenesis. EXPERIMENTAL DESIGN The effects of increased RUNX3 expression on vascular endothelial growth factor (VEGF) expression in and angiogenic potential of human gastric cancer cells were determined in vitro and in animal models. RUNX3 and VEGF expression was determined in 120 human gastric cancer specimens and their relationship was analyzed. RESULTS RUNX3 gene transfer suppressed VEGF expression in human gastric cancer cells. Down-regulation of VEGF expression correlated with a significantly impaired angiogenic potential of human gastric cancer cells. Furthermore, RUNX3 restoration inhibited tumor growth and metastasis in animal models, which was consistent with inhibition of angiogenesis as determined by evaluating VEGF expression and tumor microvessel formation. In gastric cancer specimens, loss or decrease in RUNX3 expression inversely associated with increased VEGF expression and elevated microvessel formation. CONCLUSIONS Our clinical and experimental data provide a novel molecular mechanism for the antitumor activity of RUNX3 and may help design effective therapy targeting RUNX3 pathway to control gastric cancer growth and metastasis.
Collapse
Affiliation(s)
- Zhihai Peng
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vanderzwan-Butler CJ, Prazak LM, Gergen JP. The HMG-box protein Lilliputian is required for Runt-dependent activation of the pair-rule gene fushi-tarazu. Dev Biol 2006; 301:350-60. [PMID: 17137570 DOI: 10.1016/j.ydbio.2006.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 09/06/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
lilliputian (lilli), the sole Drosophila member of the FMR2/AF4 (Fragile X Mental Retardation/Acute Lymphoblastic Leukemia) family of transcription factors, is widely expressed with roles in segmentation, cellularization, and gastrulation during early embryogenesis with additional distinct roles at later stages of embryonic and postembryonic development. We identified lilli in a genetic screen based on the suppression of a lethal phenotype that is associated with ectopic expression of the transcription factor encoded by the segmentation gene runt in the blastoderm embryo. In contrast to other factors identified by this screen, lilli appears to have no role in mediating either the establishment or maintenance of engrailed (en) repression by Runt. Instead, we find that Lilli plays a critical role in the Runt-dependent activation of the pair-rule segmentation gene fushi-tarazu (ftz). The requirement for lilli is distinct from and temporally precedes the Runt-dependent activation of ftz that is mediated by the orphan nuclear receptor protein Ftz-F1. We further describe a role for lilli in the activation of Sex-lethal (Sxl), an early target of Runt in the sex determination pathway. However, lilli is not required for all targets that are activated by Runt and appears to have no role in activation of sloppy paired (slp1). Based on these results we suggest that Lilli plays an architectural role in facilitating transcriptional activation that depends both on the target gene and the developmental context.
Collapse
Affiliation(s)
- Christine J Vanderzwan-Butler
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | |
Collapse
|
36
|
Carvalho R, Milne ANA, Polak M, Corver WE, Offerhaus GJA, Weterman MAJ. Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene 2006; 24:8252-8. [PMID: 16091737 DOI: 10.1038/sj.onc.1208963] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies claim a critical role for RUNX3 in gastric epithelial homeostasis. However, conflicting results exist regarding RUNX3 expression in the stomach and its potential role as a tumour-suppressor gene (TSG) in gastric carcinogenesis. Our aim was to evaluate the role of RUNX3 in early-onset gastric carcinomas (EOGCs). We analysed 41 EOGCs for RUNX3 aberrations using loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analyses. LOH of markers flanking RUNX3 was relatively common, indicating that loss of the gene may play a role in gastric carcinogenesis. However, FISH analysis of selected cases and a panel of 14 gastric carcinoma-derived cell lines showed widespread presence of multiple copies of centromere 1. While RUNX3 copy numbers were generally equal to or fewer than those of centromere 1, at least two copies were present in almost all cells analysed. Accordingly, a subpopulation of tumour cells in 12/37 cases showed RUNX3 protein expression. However, expression was not detected in the adjacent nontumorous mucosa of any case. Together, these observations indicate that chromosome 1 aberrations occur frequently in EOGCs and are reflected in the LOH and IHC patterns found. Our findings refute a role for RUNX3 as a TSG in EOGCs.
Collapse
Affiliation(s)
- Ralph Carvalho
- Department of Pathology, Academisch Medisch Centrum, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Puig-Kröger A, Corbí A. RUNX3: A new player in myeloid gene expression and immune response. J Cell Biochem 2006; 98:744-56. [PMID: 16598764 DOI: 10.1002/jcb.20813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RUNX transcription factors function as scaffolds for interaction with various coregulatory proteins during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis. The current view places RUNX proteins within the TGF-beta signaling pathway, although each one exhibits cell- and tissue-specific functions. In the case of RUNX3, recent data have suggested its function as a tumor suppressor factor and highlighted its involvement in immune cell differentiation and activation. The molecular mechanisms for the pleiotropic effects of Runx3 deficiency are not completely understood. The present article will summarize the known functional activities of RUNX3, emphasizing its role in myeloid cell gene expression and its potential contribution to the migratory and adhesive capabilities of this cell lineage.
Collapse
|
38
|
Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L, Le X, Yao J, Wu TT, Huang S, Xie K. Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 2005; 65:4809-16. [PMID: 15930301 DOI: 10.1158/0008-5472.can-04-3741] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identification of precise prognostic marker and effective therapeutic target is pivotal in the treatment of gastric cancer. In the present study, we determined the level of RUNX3 expression in gastric cancer cells and gastric cancer specimens and the impact of its alteration on cancer biology and clinical outcome. There was a loss or substantial decrease of RUNX3 protein expression in 86 cases of gastric tumors as compared with that in normal gastric mucosa (P < 0.0001), which was significantly associated with inferior survival duration (P = 0.0005). In a Cox proportional hazards model, RUNX3 expression independently predicted better survival (P = 0.036). Moreover, various human gastric cancer cell lines also exhibited loss or drastic decrease of RUNX3 expression. Enforced restoration of RUNX3 expression led to down-regulation of cyclin D1 but to up-regulation of p27, caspase 3, 7, and 8 expression, cell cycle arrest, and apoptosis in vitro, and dramatic attenuation of tumor growth and abrogation of metastasis in animal models. Therefore, we offered both clinical and mechanistic evidence that RUNX3 was an independent prognostic factor and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fainaru O, Shseyov D, Hantisteanu S, Groner Y. Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc Natl Acad Sci U S A 2005; 102:10598-603. [PMID: 16027362 PMCID: PMC1180803 DOI: 10.1073/pnas.0504787102] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Runx3 transcription factor is a key regulator of lineage-specific gene expression in several developmental pathways and could also be involved in autoimmunity. We report that, in dendritic cells (DC), Runx3 regulates TGFbeta-mediated transcriptional attenuation of the chemokine receptor CCR7. When Runx3 is lost, i.e., in Runx3 knockout mice, expression of CCR7 is enhanced, resulting in increased migration of alveolar DC to the lung-draining lymph nodes. This increased DC migration and the consequent accumulation of activated DC in draining lymph nodes is associated with the development of asthma-like features, including increased serum IgE, hypersensitivity to inhaled bacterial lipopolysaccharide, and methacholine-induced airway hyperresponsiveness. The enhanced migration of DC in the knockout mice could be blocked in vivo by anti-CCR7 antibodies and by the drug Ciglitazone, known to inhibit CCR7 expression. The data indicate that Runx3 transcriptionally regulates CCR7 and that, when absent, the dysregulated expression of CCR7 in DC plays a role in the etiology of asthmatic conditions that recapitulate clinical symptoms of the human disease. Interestingly, human RUNX3 resides in a region of chromosome 1p36 that contains susceptibility genes for asthma and hypersensitivity against environmental antigens. Thus, mutations in RUNX3 may be associated with increased sensitivity to asthma development.
Collapse
Affiliation(s)
- Ofer Fainaru
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
40
|
Stock M, Otto F. Control of RUNX2 isoform expression: The role of promoters and enhancers. J Cell Biochem 2005; 95:506-17. [PMID: 15838892 DOI: 10.1002/jcb.20471] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three mammalian RUNX genes constitute the family of runt domain transcription factors that are involved in the regulation of a number of developmental processes such as haematopoiesis, osteogenesis and neuronal differentiation. All three genes show a complex temporo-spatial pattern of expression. Since the three proteins are probably mutually interchangeable with regard to function, most of the specificity of each family member seems to be based on a tightly controlled regulation of expression. While RUNX gene expression is driven by two promoters for each gene, the promoter sequence alone does not seem to suffice for a proper expressional control. This review focuses on the available evidence for the existence of such control mechanisms and studies aiming at discovering cis-acting regulatory sequences of the RUNX2 gene.
Collapse
Affiliation(s)
- Michael Stock
- Division of Hematology/Oncology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
41
|
Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E, Groner Y. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci U S A 2004; 101:16016-21. [PMID: 15514019 PMCID: PMC528776 DOI: 10.1073/pnas.0407180101] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RUNX transcription factors are key regulators of lineage-specific gene expression and might be involved in autoimmune diseases. Runx3 plays a role during the development of sensory neurons and T cells and regulates transforming growth factor beta (TGF-beta) signaling in dendritic cells. Here, we report that at 4 weeks of age, Runx3 knockout (KO) mice spontaneously develop inflammatory bowel disease (IBD) characterized by leukocyte infiltration, mucosal hyperplasia, formation of lymphoid clusters, and increased production of IgA. Additionally, at a considerably older age (8 months), the KO mice also develop progressive hyperplasia of the gastric mucosa associated with disturbed epithelial differentiation and cellular hyaline degeneration. Analysis of cytokines in the colonic mucosa of Runx3 KO mice revealed a mixed T helper 1/T helper 2 response. By using immunohistochemistry and RNA in situ hybridization, Runx3 expression in the gastrointestinal tract is detected in lymphoid and myeloid populations but not in the epithelium. The data indicate that loss of leukocytic cell-autonomous function of Runx3 results in IBD and gastric lesion in the KO mice. IBD in humans is viewed as a complex genetic disorder. Several susceptibility loci were identified on different human chromosomes including the chromosomal region 1p36 where RUNX3 resides. It is thus tempting to speculate that mutations in RUNX3 may constitute an IBD risk factor in humans.
Collapse
Affiliation(s)
- Ori Brenner
- Departments of Molecular Genetics and Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004; 23:4315-29. [PMID: 15156188 DOI: 10.1038/sj.onc.1207676] [Citation(s) in RCA: 414] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center University of Massachusetts Medical School, Worcester, M 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
RUNX3: is expressed by gastric epithelial cells throughout development. Mice whose Runx3 gene has been knocked out died soon after birth. In the knockout mouse, gastric epithelia exhibited hyperplasia and epithelial apoptosis was suppressed. Analysis using a primary culture system for the epithelial cells suggested that this is caused by the reduced sensitivity of Runx3-/- gastric epithelial cells to the growth-inhibiting and apoptosis-inducing activities of TGF-beta. In human and mouse gastric cancer cell lines, RUNX3/Runx3 was silenced due to hypermethylation of CpG islands in the promoter region. Exogenous expression of RUNX3 in the cells that do not express the endogenous gene caused an inhibition of growth both in vivo and in vitro. These observations indicate that Runx3 is a major growth regulator of gastric epithelial cells, and that it is deeply involved in gastric tumorigenesis in both humans and mice.
Collapse
Affiliation(s)
- Hiroshi Fukamachi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
44
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:1380-1383. [DOI: 10.11569/wcjd.v12.i6.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
46
|
Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R. Mapping of the Physcomitrella patens proteome. PHYTOCHEMISTRY 2004; 65:1589-1607. [PMID: 15276455 DOI: 10.1016/j.phytochem.2004.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/02/2004] [Indexed: 05/24/2023]
Abstract
The moss Physcomitrella patens is unique among land plants due to the high rate of homologous recombination in its nuclear DNA. The feasibility of gene targeting makes Physcomitrella an unrivalled model organism in the field of plant functional genomics. To further extend the potentialities of this seed-less plant we aimed at exploring the P. patens proteome. Experimental conditions had to be adopted to meet the special requirements connected to the investigations of this moss. Here we describe the identification of 306 proteins from the protonema of Physcomitrella. Proteins were separated by two dimensional electrophoresis, excised form the gel and analysed by means of mass spectrometry. This reference map will lay the basis for further profound studies in the field of Physcomitrella proteomics.
Collapse
Affiliation(s)
- Eric Sarnighausen
- Plant Biotechnology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|