1
|
Sekine H, Akaike T, Motohashi H. Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence. EMBO J 2025:10.1038/s44318-025-00464-7. [PMID: 40394395 DOI: 10.1038/s44318-025-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Oxygen and sulfur, both members of the chalcogen group (group 16 elements), play fundamental roles in life. Ancient organisms primarily utilized sulfur for energy metabolism, while the rise in atmospheric oxygen facilitated the evolution of aerobic organisms, enabling highly efficient energy production. Nevertheless, all modern organisms, both aerobes and anaerobes, must protect themselves from oxygen toxicity. Interestingly, aerobes still rely on sulfur for survival. This dependence has been illuminated by the recent discovery of supersulfides, a novel class of biomolecules, made possible through advancements in technology and analytical methods. These breakthroughs are reshaping our understanding of biological processes and emphasizing the intricate interplay between oxygen and sulfur in regulating essential redox reactions. This review summarizes the latest insights into the biological roles of sulfur and oxygen, their interdependence in key processes, and their contributions to adaptive responses to environmental stressors. By exploring these interactions, we aim to provide a comprehensive perspective on how these elements drive survival strategies across diverse life forms, highlighting their indispensable roles in both human health and the sustenance of life.
Collapse
Affiliation(s)
- Hiroki Sekine
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Takaaki Akaike
- Department of Redox Molecular Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
2
|
Gao J, Xu Y, Yeh C, Zou Y, Hai Y. Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS. FEBS J 2025; 292:2272-2286. [PMID: 39876065 PMCID: PMC12064363 DOI: 10.1111/febs.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure. In this study, through a biochemical profiling approach, we demonstrate that human ACCS possesses cysteine conjugate sulfoxide β-lyase activity. This function is unexpected but reasonable, as it somewhat parallels the activity of ACCS proteins found in non-seed plants. Structure-function relationship study of human ACCS, guided by an AlphaFold2 model, allowed us to identify key active site residues that are important for its β-lyase activity. Our biochemical study of human ACCS also provided insights into the function of other mammalian ACCS homologs.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yueqi Xu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Christopher Yeh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Yike Zou
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
3
|
Gallegos AL, Nashmias ME, Zubimendi JP, Hernández MA, Acosta V, Tejerizo GAT, Quelas JI, Silva RA, Alvarez HM. Adaptive responses of Rhodococcus aetherivorans L13 to oligotrophy: genome and transcriptomic analysis. Curr Genet 2025; 71:10. [PMID: 40220062 DOI: 10.1007/s00294-025-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
The wide ecological distribution of actinobacteria suggests that they have developed efficient mechanisms to adapt to extremely nutritionally deficient (oligotrophic) conditions. The impact of nutrient limitation typically observed in oligotrophic areas on bacteria remains to be assessed for many species. The non-model Rhodococcus aetherivorans L13can grow under oligotrophic conditions, even without an added carbon source. Oligotrophic cells of L13 undergo physiological and morphological changes compared to glucose-grown cells, including forming short-fragmenting cells, producing an extracellular polymeric substance, and a 26-fold decrease in respiratory activity. We conducted genome sequencing of L13 and assembled the entire genome, subsequently comparing the abundance of gene transcripts in oligotrophic cells to those of glucose-grown cells, to explore the oligotrophy-responsive mechanisms at the genetic level. The genome comprises 6,543,485 base pairs, distributed across a single chromosome and six extrachromosomal plasmids (one linear and five circular). RNA-Seq analysis revealed the significant dysregulation of 2,665 genes (44% of the total genes detected). Results suggested a profound reorganization of its carbon and energy metabolism, including the activation of (i) mechanisms for utilizing air components; (ii) various dehydrogenases involved in aldehyde and alcohol metabolism, (iii) several enzymes involved in C2 metabolism, glyoxylate shunt, and TCA bypass routes, and downregulation of several genes that encode CO2 releasing-decarboxylase enzymes. Our results suggested that the adaptation strategy of L13 to oligotrophic conditions is supported by a combination of metabolic events, including low metabolic activity, the activation of C2 and ketoacids metabolism, and the display of a carbon conservative metabolic program.
Collapse
Affiliation(s)
- Andrea L Gallegos
- INBIOP (Instituto de Biociencias de la Patagonia), Facultad de Ciencias Naturales y Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - María E Nashmias
- YPF Tecnología SA (Y-TEC), Av. del Petróleo Argentino s/n (1923), Berisso, Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina
| | - Juan Pablo Zubimendi
- YPF Tecnología SA (Y-TEC), Av. del Petróleo Argentino s/n (1923), Berisso, Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina
| | - Martín A Hernández
- INBIOP (Instituto de Biociencias de la Patagonia), Facultad de Ciencias Naturales y Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Verónica Acosta
- Facultad de Ingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, CIT Golfo San Jorge. (CONICET), Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Gonzalo A Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan I Quelas
- YPF Tecnología SA (Y-TEC), Av. del Petróleo Argentino s/n (1923), Berisso, Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Godoy Cruz 2290 (C1425FQB), Argentina.
| | - Roxana A Silva
- INBIOP (Instituto de Biociencias de la Patagonia), Facultad de Ciencias Naturales y Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - Héctor M Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia), Facultad de Ciencias Naturales y Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Patagonia San Juan Bosco, Ruta Provincial N° 1, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| |
Collapse
|
4
|
Liu J, Zhou A, Liu Q, Gao Y, Xu S, Lu Y. Genomic Insights into Vector-Pathogen Adaptation in Haemaphysalis longicornis and Rhipicephalus microplus. Pathogens 2025; 14:306. [PMID: 40333071 PMCID: PMC12030188 DOI: 10.3390/pathogens14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
As crucial vectors that transmit pathogens to humans and livestock, ticks pose substantial global health threats and economic burdens. We analyzed 328 tick genomes to explore the population's genetic structure and the adaptive evolution of H. longicornis and R. microplus, two tick species with distinct life cycle characteristics. We observed distinct genetic structures in H. longicornis and R. microplus. Gene flow estimation revealed a closer genetic connection in R. microplus than H. longicornis, which was facilitated by geographical proximity. Notably, we identified a set of candidate genes associated with possible adaptations. Specifically, the immune-related gene DUOX and the iron transport gene ACO1 showed significant signals of natural selection in R. microplus. Similarly, H. longicornis exhibited selection in pyridoxal-phosphate-dependent enzyme genes associated with heme synthesis. Moreover, we observed significant correlations between the abundance of pathogens, such as Rickettsia and Francisella, and specific tick genotypes, which highlights the role of R. microplus in maintaining these pathogens and its adaptations that influence immune responses and iron metabolism, suggesting potential coevolution between vectors and pathogens. Our study highlights the vital genes involved in tick blood feeding and immunity, and it provides insights into the coevolution of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - An Zhou
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| | - Qi Liu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| |
Collapse
|
5
|
Xu T, Fang D, Li F, Wang Z, Liu Y. Vitamin B6 resensitizes mcr-carrying Gram-negative bacteria to colistin. Commun Biol 2025; 8:459. [PMID: 40108411 PMCID: PMC11923103 DOI: 10.1038/s42003-025-07911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Antimicrobial resistance poses a severe threat to human health, with colistin serving as a critical medication in clinical trials against multidrug-resistant Gram-negative bacteria. However, the efficacy of colistin is increasingly compromised due to the rise of MCR-positive bacteria worldwide. Here, we reveal a notable metabolic disparity between mcr-positive and -negative bacteria through transcriptome and metabolomics analysis. Specifically, pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, was significantly diminished in mcr-positive bacteria. Conversely, supplementing with PLP could reverse the metabolic profile of drug-resistant bacteria and effectively restore colistin's bactericidal properties. Mechanistically, PLP was found to augment bacterial proton motive force by inhibiting the Kdp transport system, a bacterial K+ transport ATPase, thereby facilitating the binding of the positively charged colistin to the negatively charged bacterial membrane components. Furthermore, PLP supplementation triggers ferroptosis-like death by accumulating ferrous ions and inducing lipid peroxidation. These two modes of action collectively resensitize mcr-harboring Gram-negative bacteria to colistin therapy. Altogether, our study provides a novel metabolic-driven antibiotic sensitization strategy to tackle antibiotic resistance and identifies a potentially safe antibiotic synergist.
Collapse
Affiliation(s)
- Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Bendahmane I, Garrigues Q, Apper E, Mugnier A, Svilar L, Martin JC, Chastant S, Meynadier A, Mila H. Maternal oral supplementation with Saccharomyces boulardii I-1079 during gestation and early lactation impacts the early growth rate and metabolic profile of newborn puppies. Front Nutr 2025; 12:1500600. [PMID: 40083890 PMCID: PMC11903263 DOI: 10.3389/fnut.2025.1500600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Nutritional programming is a manipulation of fetal and neonatal development through maternal feeding. In humans and pigs, maternal yeast supplementation was demonstrated as a promising approach to positively to modulate newborns' health. This study aimed to investigate the effects of Saccharomyces cerevisiae var. boulardii CNCM I-1079 (SB) supplementation in pregnant and lactating bitches on the newborns' early growth rate (EGR, between birth and 2 days of life), metabolic profiles, and the association between both of them. A total of 17 female dogs and their 81 puppies were included. From day 28 of gestation until the end of the study, bitches were divided into two groups, one of which received orally 1.3 × 109 colony forming units of live yeast per day. Puppies from mothers receiving the live yeast were defined as the SB group (n = 40) and the others were defined as the placebo group (n = 4 1). For each puppy, EGR was calculated, and blood and urine samples were collected at D2 for metabolome analysis using liquid chromatography-mass spectrometry (LCMS). Puppies from the SB group presented higher EGR compared with the placebo group (12% vs. 7%; p = 0.049). According to the Sparse Partial Least Squares Discriminant Analysis (sPLS-DA), both urine and serum metabolome profiles were significantly different between the two groups with a total of 29 discriminating metabolites in urine and serum. Fourteen of them were implicated in the nitrogen metabolism pathway including, gamma-aminobutyrate, 3-methyl-l-histidine and xanthosine (less abundant in SB compared with placebo group, all p < 0.05), adenine, aspartate and proline (more abundant in SB compared with placebo group, all p < 0.05). Metabolic pathways pointed to proline synthesis, a crucial component in collagen synthesis and osteoarticular system development. Urinary proline abundance was positively correlated with EGR (r = 0.45; p < 0.001). These findings highlight the potential benefits of maternal supplementation with SB promoting early neonatal growth, essential for the neonatal survival, through nitrogen metabolism orientation.
Collapse
Affiliation(s)
- Ilyas Bendahmane
- NeoCare, Université de Toulouse, ENVT, Toulouse, France
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), École nationale vétérinaire de Toulouse (ENVT), Castanet Tolosan, France
| | | | | | | | | | | | | | - Annabelle Meynadier
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), École nationale vétérinaire de Toulouse (ENVT), Castanet Tolosan, France
| | - Hanna Mila
- NeoCare, Université de Toulouse, ENVT, Toulouse, France
| |
Collapse
|
7
|
Yao M, Hong B, Ji H, Guan C, Guan M. Genome-wide identification of PDX and expression analysis under waterlogging stress exhibit stronger waterlogging tolerance in transgenic Brassica napus plants overexpressing the BnaPDX1.3 gene compared to wild-type plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1533219. [PMID: 40012725 PMCID: PMC11863972 DOI: 10.3389/fpls.2025.1533219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The PDX gene is a key gene in the vitamin B6 synthesis pathway, playing a crucial role in plant growth, development, and stress tolerance. To explore the family characteristics of the PDX gene in Brassica napus (B. napus) and its regulatory function under waterlogging stress, this study used five PDX genes from Arabidopsis thaliana as the basis for sequence analysis. Thirteen, eight, and six PDX genes were identified in B. napus, Brassica oleracea (B. oleracea), and Brassica rapa (B. rapa), respectively. Bioinformatics study reveals high conservation of PDX subfamily genes during evolution, and PDX genes in B. napus respond to waterlogging stress.In order to further investigate the effect of the PDX gene on waterlogging tolerance in B. napus, expression analysis was conducted on BnaPDX1.3 gene overexpressing B. napus plants and wild-type plants. The study showed that overexpressing plants could synthesize more VB6 under waterlogging stress, exhibit stronger antioxidant enzyme activity, and have a more effective and stable ROS scavenging system, thus exhibiting a healthier phenotype. These findings suggested that the BnaPDX1.3 gene can enhance the waterlogging tolerance of B. napus, which is of great significance for its response to waterlogging stress. Our study provides a basic reference for further research on the regulation mechanism of the PDX gene and waterlogging tolerance in B. napus.
Collapse
Affiliation(s)
- Mingyao Yao
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Bo Hong
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Hongfei Ji
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
| | - Chunyun Guan
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Mei Guan
- College of Agriculture, Hunan Agricultural University, Changsha, China
- Hunan Branch of National Oilseed Crops Improvement Center, Changsha, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
8
|
Ye Y, Zhang H, Fan X, Yao Q, Lu C, Liu J, Jiao Q. Advancing PLP Biosynthesis: Enhanced Stability and Activity of EcPdxK via LXTE-600 Immobilization. Biotechnol Appl Biochem 2025. [PMID: 39901467 DOI: 10.1002/bab.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
Pyridoxal 5'-phosphate (PLP) plays an essential role in a multitude of cellular processes due to its function as a critical coenzyme. This study introduces a significant advancement in PLP biosynthesis by enhancing the stability and activity of Escherichia coli-derived pyridoxal kinase (EcPdxK) through immobilization on an innovative epoxy resin, LXTE-600. Our approach involved the systematic optimization of enzyme loading, coupling duration, and temperature, which resulted in improved immobilization efficiency and a high loading capacity of 80 mg/g. The characterization of immobilized EcPdxK@LXTE-600 was conducted using Fourier transform infrared spectroscopy (FTIR) and confocal laser scanning microscopy (CLSM), confirming successful immobilization. This process notably enhanced the enzyme's performance, increasing its tolerance to pH and temperature fluctuations, thereby improving its thermal stability. The immobilized EcPdxK@LXTE-600 retained over 80% of its initial activity after 4 weeks of storage at 4°C and could be reused up to eight cycles while maintaining more than 70% of its initial activity. These findings not only demonstrate the efficacy of the LXTE-600-based immobilization method but also suggest promising industrial applications for the sustainable production of PLP, potentially revolutionizing approaches in biotechnological and pharmaceutical sectors.
Collapse
Affiliation(s)
- Yunhui Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qilong Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chenhong Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Junzhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, Nanjing, China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Liu H, Iyer LM, Norris P, Liu R, Yu K, Grant M, Aravind L, Kachroo A, Kachroo P. Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants. NATURE PLANTS 2025; 11:263-278. [PMID: 39953358 DOI: 10.1038/s41477-025-01906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Dietary consumption of lysine in humans leads to the biosynthesis of Δ1-piperideine-6-carboxylic acid (P6C), with elevated levels linked to the neurological disorder epilepsy. Here we demonstrate that P6C biosynthesis is also a critical component of lysine catabolism in Arabidopsis thaliana. P6C regulates vitamin B6 homeostasis, and increased P6C levels deplete B6 vitamers, resulting in compromised plant immunity. We further establish a key role for pyridoxal and pyridoxal-5-phosphate biosynthesis in plant immunity. Our analysis indicates that P6C metabolism probably evolved through combining select lysine and proline metabolic enzymes horizontally acquired from diverse bacterial sources at different points during evolution. More generally, certain enzymes from the lysine and proline metabolic pathways were probably recruited in evolution as potential guardians of B6 vitamers and for semialdehyde detoxification.
Collapse
Affiliation(s)
- Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, UK
| | - L Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Niu R, Guo X, Wang J, Yang X. The hidden rhythms of epilepsy: exploring biological clocks and epileptic seizure dynamics. ACTA EPILEPTOLOGICA 2025; 7:1. [PMID: 40217344 PMCID: PMC11960285 DOI: 10.1186/s42494-024-00197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
Epilepsy, characterized by recurrent seizures, is influenced by biological rhythms, such as circadian, seasonal, and menstrual cycles. These rhythms affect the frequency, severity, and timing of seizures, although the precise mechanisms underlying these associations remain unclear. This review examines the role of biological clocks, particularly the core circadian genes Bmal1, Clock, Per, and Cry, in regulating neuronal excitability and epilepsy susceptibility. We explore how the sleep-wake cycle, particularly non-rapid eye movement sleep, increases the risk of seizures, and discuss the circadian modulation of neurotransmitters like gamma-aminobutyric acid and glutamate. We explore clinical implications, including chronotherapy which refers to the practice of timing medical treatments to align with the body's natural biological rhythms, such as the circadian rhythm. Chronotherapy aligns anti-seizure medication administration with biological rhythms. We also discuss rhythm-based neuromodulation strategies, such as adaptive deep brain stimulation, which may dynamically change stimulation in response to predicted seizures in patients, provide additional therapeutic options. This review emphasizes the potential of integrating biological rhythm analysis into personalized epilepsy management, offering novel approaches to optimize treatment and improve patient outcomes. Future research should focus on understanding individual variability in seizure rhythms and harnessing technological innovations to enhance seizure prediction, precision treatment, and long-term management.
Collapse
Affiliation(s)
- Ruili Niu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Guo
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaoyang Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaofeng Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Lee SH, Yu H, Hong J, Seok J, Kim KJ. Crystal structures of cystathionine β-lyase and cystathionine β-lyase like protein from Bacillus cereus ATCC 14579. Biochem Biophys Res Commun 2025; 742:151122. [PMID: 39644606 DOI: 10.1016/j.bbrc.2024.151122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cystathionine β-lyase (CBL) and cystathionine β-lyase-like protein (CBLP) are key PLP-dependent enzymes involved in methionine biosynthesis. In Bacillus cereus ATCC 14579 CBL (BcCBL) and CBLP (BcCBLP) catalyze the conversion of cystathionine to homocysteine and pyruvate. In this study, we found that both BcCBL and BcCBLP effectively catalyze cystathionine cleavage, with BcCBLP exhibiting a higher catalytic efficiency (kcat) and low substrate affinity (Km). We determined their crystal structures in complex with pyridoxal phosphate (PLP). BcCBL, forming a tetramer, aligns with typical CBLs in sulfur amino acid metabolism, while BcCBLP, forming a dimer, resembles the bifunctional MalY enzyme from Escherichia coli, indicating potential additional regulatory roles. These structural and functional insights highlight the distinct roles of BcCBL and BcCBLP in cellular metabolism. This study provides valuable insights into the structural diversity and potential functions of these enzymes, contributing to the broader knowledge of PLP-dependent enzymatic mechanisms.
Collapse
Affiliation(s)
- Seul Hoo Lee
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeonjeong Yu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiyeon Hong
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jihye Seok
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
12
|
Schlikker ML, Brabender M, Schwander L, Garcia Garcia C, Burmeister M, Metzger S, Moran J, Martin WF. Conversion of pyridoxal to pyridoxamine with NH 3 and H 2 on nickel generates a protometabolic nitrogen shuttle under serpentinizing conditions. FEBS J 2024:10.1111/febs.17357. [PMID: 39703002 PMCID: PMC7617359 DOI: 10.1111/febs.17357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Serpentinizing hydrothermal vents are likely sites for the origin of metabolism because they produce H2 as a source of electrons for CO2 reduction while depositing zero-valent iron, cobalt, and nickel as catalysts for organic reactions. Recent work has shown that solid-state nickel can catalyze the H2-dependent reduction of CO2 to various organic acids and their reductive amination with H2 and NH3 to biological amino acids under the conditions of H2-producing hydrothermal vents and that amino acid synthesis from NH3, H2, and 2-oxoacids is facile in the presence of Ni0. Such reactions suggest a metallic origin of metabolism during early biochemical evolution because single metals replace the function of over 130 enzymatic reactions at the core of metabolism in microbes that use the acetyl-CoA pathway of CO2 fixation. Yet solid-state catalysts tether primordial amino synthesis to a mineral surface. Many studies have shown that pyridoxal catalyzes transamination reactions without enzymes. Here we show that pyridoxamine, the NH2-transferring intermediate in pyridoxal-dependent transamination reactions, is generated from pyridoxal by reaction with NH3 (as little as 5 mm) and H2 (5 bar) on Ni0 as catalyst at pH 11 and 80 °C within hours. These conditions correspond to those in hydrothermal vents undergoing active serpentinization. The results indicate that at the origin of metabolism, pyridoxamine provided a soluble, organic amino donor for aqueous amino acid synthesis, mediating an evolutionary transition from NH3-dependent amino acid synthesis on inorganic surfaces to pyridoxamine-dependent organic reactions in the aqueous phase.
Collapse
Affiliation(s)
| | - Max Brabender
- Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Loraine Schwander
- Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | | | | | - Sabine Metzger
- Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| | - Joseph Moran
- Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - William F Martin
- Institute of Molecular Evolution, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
13
|
Xu Y, Liu S, Gao J, Hai Y. Molecular Basis for Cγ-N Bond Formation by PLP-Dependent Enzyme LolC. Biochemistry 2024; 63:3348-3356. [PMID: 39641520 PMCID: PMC11779795 DOI: 10.1021/acs.biochem.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a diverse array of biochemical transformations, making them invaluable biocatalytic tools for the synthesis of complex bioactive compounds. Here, we report the biochemical characterization of LolC, a PLP-dependent γ-synthase involved in the biosynthesis of loline alkaloids. LolC catalyzes the formation of a Cγ-N bond between O-acetyl--homoserine (OAH) and l-proline, generating a diamino diacid intermediate. Our findings reveal that LolC exhibits strict specificity for proline and its analogues, contrasting with the substrate promiscuity of closely related Cγ-C bond-forming enzyme Fub7. Structural analysis, using an AlphaFold model, identifies key differences in the substrate entrance tunnel of LolC, which is amphiphilic and distinct from the hydrophobic tunnel in Fub7. A mutagenesis study further highlights the functional divergence of a key active site residue between these enzymes. These results provide new insights into the substrate specificity and catalytic function of LolC, offering a valuable comparison to Fub7 and advancing our understanding of PLP-dependent enzymes involved in γ-substitution reactions.
Collapse
Affiliation(s)
- Yueqi Xu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Shaonan Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jinmin Gao
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yang Hai
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
14
|
McInerney MP, Awad W, Souter MNT, Kang Y, Wang CJH, Chan Yew Poa K, Abdelaal MR, Le NH, Shepherd CM, McNeice C, Meehan LJ, Nelson AG, Raynes JM, Mak JYW, McCluskey J, Chen Z, Ang CS, Fairlie DP, Le Nours J, Illing PT, Rossjohn J, Purcell AW. MR1 presents vitamin B6-related compounds for recognition by MR1-reactive T cells. Proc Natl Acad Sci U S A 2024; 121:e2414792121. [PMID: 39589872 PMCID: PMC11626183 DOI: 10.1073/pnas.2414792121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024] Open
Abstract
The major histocompatibility complex class I related protein (MR1) presents microbially derived vitamin B2 precursors to mucosal-associated invariant T (MAIT) cells. MR1 can also present other metabolites to activate MR1-restricted T cells expressing more diverse T cell receptors (TCRs), some with anti-tumor reactivity. However, knowledge of the range of the antigen(s) that can activate diverse MR1-reactive T cells remains incomplete. Here, we identify pyridoxal (vitamin B6) as a naturally presented MR1 ligand using unbiased mass spectrometry analyses of MR1-bound metabolites. Pyridoxal, and the related compound, pyridoxal 5-phosphate bound to MR1 and enabled cell surface upregulation of wild type MR1*01 and MR1 expressing the Arg9His polymorphism associated with the MR1*04 allotype in a manner dependent on Lys43-mediated Schiff-base formation. Crystal structures of MR1*01 in complex with pyridoxal and pyridoxal 5-phosphate showed how these ligands were accommodated within the A-pocket of MR1. T cell lines transduced with the 7.G5 TCR, which has reported "pan-cancer" specificity, were specifically activated by pyridoxal presented by antigen-presenting cells expressing MR1*01 and MR1 allotypes bearing the less common Arg9His polymorphism. 7.G5 T cells also recognized, to a lesser extent, pyridoxal 5-phosphate and, importantly, recognition of both vitamers was blocked by an anti-MR1 antibody. 7.G5 TCR reactivity toward pyridoxal was enhanced when presented by the Arg9His polymorphism-bearing MR1 allotypes. Vitamin B6, and vitamers thereof, have been associated with various cancers, and here we describe a link between this ligand, MR1, and its allomorphs, and the pan-cancer 7.G5 TCR. This work identifies an MR1 ligand that can activate a diverse MR1-restricted TCR.
Collapse
Affiliation(s)
- Mitchell P. McInerney
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Wael Awad
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Yang Kang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Carl J. H. Wang
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Kean Chan Yew Poa
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohamed R. Abdelaal
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Ngoc H. Le
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Chloe M. Shepherd
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Conor McNeice
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Adam G. Nelson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Jeremy M. Raynes
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC3052, Australia
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Jérôme Le Nours
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CardiffCF10 3AT, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| |
Collapse
|
15
|
Graziani C, Barile A, Parroni A, di Salvo ML, De Cecio I, Colombo T, Babor J, de Crécy‐Lagard V, Contestabile R, Tramonti A. The ubiquitous pyridoxal 5'-phosphate-binding protein is also an RNA-binding protein. Protein Sci 2024; 33:e5242. [PMID: 39604152 PMCID: PMC11602438 DOI: 10.1002/pro.5242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The pyridoxal 5'-phosphate binding protein (PLP-BP) is believed to play a crucial role in PLP homeostasis, which may explain why it is found in living organisms from all kingdoms. Escherichia coli YggS is the most studied homolog, but human PLP-BP has also attracted much attention because variants of this protein are responsible for a severe form of B6-responsive neonatal epilepsy. Yet, how PLP-BP is involved in PLP homeostasis, and thus what its actual function is in cellular metabolism, is entirely unknown. The present study shows that YggS binds RNA and that the strength of this interaction is modulated by PLP. A key role in RNA binding is clearly played by Lys137, an invariant residue located on a protein loop away from the PLP binding site, whose importance has been highlighted previously. The interaction with RNA is evidently conserved, since it is also observed with human PLP-BP. The RNA binding site, which is apparently located at the entrance of the PLP-binding site, is also evolutionarily conserved. It is therefore reasonable to assume that PLP, by defining the conformation of the protein, determines the RNA binding affinity. RNA-seq analysis of RNA co-purified with or captured by YggS revealed SsrA and RnpB RNAs, respectively involved in trans-translation and tRNA maturation, as the major molecular components. This work opens up new horizons for the function of the PLP-BP, which could be related to its interaction with RNA and modulated by PLP, and thus play a role in an as yet unknown regulatory mechanism.
Collapse
Affiliation(s)
- Claudio Graziani
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
- Istituto Pasteur Italy‐Fondazione Cenci BolognettiRomeItaly
| | - Anna Barile
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Alessia Parroni
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
- Istituto Pasteur Italy‐Fondazione Cenci BolognettiRomeItaly
| | - Irene De Cecio
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Teresa Colombo
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Jill Babor
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFloridaUSA
| | - Valérie de Crécy‐Lagard
- Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleFloridaUSA
- University of Florida Genetics InstituteGainesvilleFloridaUSA
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
- Istituto Pasteur Italy‐Fondazione Cenci BolognettiRomeItaly
| | - Angela Tramonti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| |
Collapse
|
16
|
Davis SE, Hart MT, Braza RED, Perry AA, Vega LA, Le Breton YS, McIver KS. The PdxR-PdxKU locus involved in vitamin B 6 salvage is important for group A streptococcal resistance to neutrophil killing and survival in human blood. Microbiol Spectr 2024; 12:e0160924. [PMID: 39530679 PMCID: PMC11619246 DOI: 10.1128/spectrum.01609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive bacterium that inflicts both superficial and life-threatening diseases on its human host. Analysis of fitness using a transposon mutant library revealed that genes predicted to be involved in vitamin B6 acquisition are associated with fitness in whole human blood. Vitamin B6 is essential for all life and is important for many cellular functions. In several streptococcal species, it has been shown that mutants in B6 acquisition exhibited reduced virulence phenotypes and were attenuated during infection. In GAS, B6 acquisition is believed to be controlled by the pdxR-pdxKU locus, where PdxR is a positive regulator of pdxKU, which encodes for a B6-substrate kinase and permease, respectively. Mutants in the regulator (ΔpdxR) and salvage machinery (ΔpdxKU) both exhibited modest growth defects when grown in oxygenated conditions with limited vitamin B6 precursors. ∆pdxR and ∆pdxKU mutants also exhibited an impaired ability to survive when challenged with whole human or mouse blood. This defect was characterized by reduced survival in the presence of human neutrophil-like HL60s, primary polymorphonuclear leukocytes, and antimicrobial peptide LL-37. Promoter analysis showed that PdxR is an autoregulator and activated pdxKU in the absence of B6. Interestingly, ∆pdxR and ∆pdxKU mutants were not attenuated in mouse models of infection, suggesting a species-specific impact on virulence. Overall, it appears that pdxR-pdxKU is associated with GAS vitamin B6 metabolism as well as pathogen survival during encounters with the human innate immune system.IMPORTANCEBacterial pathogens such as Streptococcus pyogenes (Group A Streptococcus, GAS) must be able to obtain needed nutrients in their human host. Vitamin B6 or pyridoxal 5' phosphate is essential for all life and is important for many cellular functions. In other streptococcal pathogens, B6 acquisition has been shown to be important for their ability to cause disease. Here, we show that loss of the putative vitamin B6 salvage pathway locus pdxR-pdxKU affects GAS pathogenesis when encountering innate immune responses from phagocytic neutrophils and antimicrobial peptides within the host. pdxR-pdxKU may contribute to oxygen tolerance through B6; however, there appear to be other mechanisms for salvaging vitamin B6. Overall, pdxR-pdxKU is associated with GAS resistance to the human innate immune response and oxygen tolerance and contributes modestly to B6 metabolism.
Collapse
Affiliation(s)
- Sarah E. Davis
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rezia Era D. Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Aolani A. Perry
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Luis A. Vega
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Yoann S. Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
17
|
Graziani C, Barile A, Antonelli L, Fiorillo A, Ilari A, Vetica F, di Salvo ML, Paiardini A, Tramonti A, Contestabile R. The Z isomer of pyridoxilidenerhodanine 5'-phosphate is an efficient inhibitor of human pyridoxine 5'-phosphate oxidase, a crucial enzyme in vitamin B 6 salvage pathway and a potential chemotherapeutic target. FEBS J 2024; 291:4984-5001. [PMID: 39288205 DOI: 10.1111/febs.17274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, acts as a cofactor in many metabolic processes. In humans, PLP is produced in the reactions catalysed by pyridox(am)ine 5'-phosphate oxidase (PNPO) and pyridoxal kinase (PDXK). Both PNPO and PDXK are involved in cancer progression of many tumours. The silencing of PNPO and PDXK encoding genes determines a strong reduction in tumour size and neoplastic cell invasiveness in models of acute myeloid leukaemia (in the case of PDXK) and ovarian and breast cancer (in the case of PNPO). In the present work, we demonstrate that pyridoxilidenerhodanine 5'-phosphate (PLP-R), a PLP analogue that has been tested by other authors on malignant cell lines reporting a reduction in proliferation, inhibits PNPO in vitro following a mixed competitive and allosteric mechanism. We also show that the unphosphorylated precursor of this inhibitor (PL-R), which has more favourable pharmacokinetic properties according to our predictions, is phosphorylated by PDXK and therefore transformed into PLP-R. On this ground, we propose the prototype of a novel prodrug-drug system as a useful starting point for the development of new, potential, antineoplastic agents.
Collapse
Affiliation(s)
- Claudio Graziani
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Lorenzo Antonelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Alessandro Paiardini
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
18
|
Genot B, Grogan M, Yost M, Iacono G, Archer SD, Burns JA. Functional stress responses in Glaucophyta: Evidence of ethylene and abscisic acid functions in Cyanophora paradoxa. J Eukaryot Microbiol 2024; 71:e13041. [PMID: 38952030 PMCID: PMC11603287 DOI: 10.1111/jeu.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Glaucophytes, an enigmatic group of freshwater algae, occupy a pivotal position within the Archaeplastida, providing insights into the early evolutionary history of plastids and their host cells. These algae possess unique plastids, known as cyanelles that retain certain ancestral features, enabling a better understanding of the plastid transition from cyanobacteria. In this study, we investigated the role of ethylene, a potent hormone used by land plants to coordinate stress responses, in the glaucophyte alga Cyanophora paradoxa. We demonstrate that C. paradoxa produces gaseous ethylene when supplied with exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor in land plants. In addition, we show that cells produce ethylene natively in response to abiotic stress, and that another plant hormone, abscisic acid (ABA), interferes with ethylene synthesis from exogenously supplied ACC, while positively regulating reactive oxygen species (ROS) accumulation. ROS synthesis also occurred following abiotic stress and ACC treatment, possibly acting as a second messenger in stress responses. A physiological response of C. paradoxa to ACC treatment is growth inhibition. Using transcriptomics, we reveal that ACC treatment induces the upregulation of senescence-associated proteases, consistent with the observation of growth inhibition. This is the first report of hormone usage in a glaucophyte alga, extending our understanding of hormone-mediated stress response coordination into the Glaucophyta, with implications for the evolution of signaling modalities across Archaeplastida.
Collapse
Affiliation(s)
- Baptiste Genot
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| | | | | | | | | | - John A. Burns
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| |
Collapse
|
19
|
Ezekiel KS, Downs DM. Purine limitation prevents the exogenous pyridoxal 5'-phosphate accumulation of Salmonella enterica yggS mutants. Microbiol Spectr 2024; 12:e0207524. [PMID: 39436136 PMCID: PMC11619424 DOI: 10.1128/spectrum.02075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
YggS belongs to the highly conserved pyridoxal 5'-phosphate (PLP) binding protein family (COG0325) that is found in all domains of life. Though no precise biochemical activity or molecular mechanism has been determined for this protein, an involvement in vitamin B6 homeostasis has been demonstrated in multiple organisms. In Salmonella enterica, loss of YggS results in altered B6 vitamer pools, including an accumulation of PLP in the growth medium. Transposon mutagenesis identified an insertion upstream of purC (encoding 5'-phosphoribosyl-5-aminoimidazole-4-N-succinocarboxamide synthetase, EC 6.3.2.6) that eliminated accumulation of PLP in the spent medium. Genetic characterization of the insertion showed the causative effect was reduced expression of purC, which limited purine biosynthesis. Data herein shows that purine limitation decreased the exogenous accumulation of B6 vitamers of a yggS mutant but did not suppress other yggS mutant phenotypes. Neither limitation for ATP, regulation by PurR, or decreased growth rate, all of which are direct consequences of purine limitation, prevented exogenous B6 vitamer accumulation of a yggS mutant. This work establishes a relationship between the status of purine biosynthesis and the impact of a yggS mutation. It lays the foundation for continued efforts to identify the physiological role of YggS and its homologs. IMPORTANCE Pyridoxal 5'-phosphate is the active form of vitamin B6 and is an essential cofactor in all domains of life. PLP can be synthesized de novo or salvaged from the environment from one of the six B6 vitamers. B6 vitamer levels appear to be tightly regulated, and alterations in their levels can have deleterious effects, most notably being the development of B6-dependent epilepsy in humans. YggS homologs are broadly conserved across multiple organisms and considered to be involved in maintaining B6 homeostasis, though no specific mechanism has been defined. The current study showed that the exogenous accumulation of PLP caused by a lack of YggS can be prevented by purine limitation. The demonstration that purine limitation impacts exogenous PLP accumulation separates one consequence of a yggS mutation for further study and contributes to continuing efforts to define the biochemical and physiological roles of the COG0325 family of proteins.
Collapse
Affiliation(s)
- Kailey S. Ezekiel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
He H, Gómez-Coronado PA, Zarzycki J, Barthel S, Kahnt J, Claus P, Klein M, Klose M, de Crécy-Lagard V, Schindler D, Paczia N, Glatter T, Erb TJ. Adaptive laboratory evolution recruits the promiscuity of succinate semialdehyde dehydrogenase to repair different metabolic deficiencies. Nat Commun 2024; 15:8898. [PMID: 39406738 PMCID: PMC11480449 DOI: 10.1038/s41467-024-53156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)+-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.
Collapse
Affiliation(s)
- Hai He
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Paul A Gómez-Coronado
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sebastian Barthel
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Claus
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Klein
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Melanie Klose
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Genetic Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Schindler
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
21
|
Ahmed EZ, Sattar AMAE. Improvement of Vicia faba plant tolerance under salinity stress by the application of thiamine and pyridoxine vitamins. Sci Rep 2024; 14:22367. [PMID: 39333671 PMCID: PMC11436915 DOI: 10.1038/s41598-024-72511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Enhancement of plant growth at early growth stages is usually associated with the stimulation of various metabolic activities, which is reflected on morphological features and yield quantity and quality. Vitamins is considered as anatural plant metabolites which makes it a safe and ecofriendly treatment when used in appropriate doses, for that this research aimed to study the effect of two different vitamin B forms (thiamine and pyridoxine) on Vicia faba plants as agrowth stimutator in addition to study it's effect on plant as astrong antioxidant under salinity stress.Our findings demonstrated that both vitamin forms significantly increased seedling growth at germination and early growth stages, especially at 50 ppm for pyridoxine and 100 ppm for thiamine. Pyridoxine at 50 ppm increased seedling length by approximately 35% compared to control, while thiamine at 100 ppm significantly promoted seedling fresh and dry wt by 4.36 and 1.36 g, respectively, compared to control seedling fresh wt 2.17 g and dry weight 1.07 g. Irrigation with 100 mM NaCl had a negative impact on plant growth and processes as well as the uptake of several critical ions, such as K+ and Mg+2, increasing Na uptake in comparison to that in control plants. Compared to control plants irrigated with NaCl solution, the photosynthetic pigments, soluble sugars, soluble proteins, and total antioxidant capacity increased in the presence of pyridoxine and thiamine, both at 50 and 100 ppm salinity. The proline content increased in both treated and untreated plants subjected to salt stress compared to that in control plants. Thiamine, especially at 50 ppm, was more effective than pyridoxine at improving plant health under saline conditions. An increase in Vicia faba plant tolerance to salinity was established by enhancing antioxidant capacity via foliar application of vitamin B through direct and indirect scavenging methods, which protect cell macromolecules from damage by oxidative stress, the highest antioxidant capacity value 28.14% was recorded at 50 ppm thiamine under salinity stress.The provided results is aguide for more researches in plant physiology and molecular biology to explain plant response to vitamins application and the suggest the sequence by which vitamins work inside plant cell.
Collapse
Affiliation(s)
- Eman Zakaria Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| | | |
Collapse
|
22
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Drago VN, Phillips RS, Kovalevsky A. Universality of critical active site glutamate as an acid-base catalyst in serine hydroxymethyltransferase function. Chem Sci 2024; 15:12827-12844. [PMID: 39148791 PMCID: PMC11323337 DOI: 10.1039/d4sc03187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in the one-carbon metabolic pathway, utilizing the vitamin B6 derivative pyridoxal 5'-phosphate (PLP) and vitamin B9 derivative tetrahydrofolate (THF) coenzymes to produce essential biomolecules. Many types of cancer utilize SHMT in metabolic reprogramming, exposing the enzyme as a compelling target for antimetabolite chemotherapies. In pursuit of elucidating the catalytic mechanism of SHMT to aid in the design of SHMT-specific inhibitors, we have used room-temperature neutron crystallography to directly determine the protonation states in a model enzyme Thermus thermophilus SHMT (TthSHMT), which exhibits a conserved active site compared to human mitochondrial SHMT2 (hSHMT2). Here we report the analysis of TthSHMT, with PLP in the internal aldimine form and bound THF-analog, folinic acid (FA), by neutron crystallography to reveal H atom positions in the active site, including PLP and FA. We observed protonated catalytic Glu53 revealing its ability to change protonation state upon FA binding. Furthermore, we obtained X-ray structures of TthSHMT-Gly/FA, TthSHMT-l-Ser/FA, and hSHMT2-Gly/FA ternary complexes with the PLP-Gly or PLP-l-Ser external aldimines to analyze the active site configuration upon PLP reaction with an amino acid substrate and FA binding. Accurate mapping of the active site protonation states together with the structural information gained from the ternary complexes allow us to suggest an essential role of the gating loop conformational changes in the SHMT function and to propose Glu53 as the universal acid-base catalyst in both THF-independent and THF-dependent activities of SHMT.
Collapse
Affiliation(s)
- Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia Athens GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia Athens GA 30602 USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
24
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
25
|
Brenner M, Zink C, Witzinger L, Keller A, Hadamek K, Bothe S, Neuenschwander M, Villmann C, von Kries JP, Schindelin H, Jeanclos E, Gohla A. 7,8-Dihydroxyflavone is a direct inhibitor of human and murine pyridoxal phosphatase. eLife 2024; 13:RP93094. [PMID: 38856179 PMCID: PMC11164532 DOI: 10.7554/elife.93094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.
Collapse
Affiliation(s)
- Marian Brenner
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Christoph Zink
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Linda Witzinger
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Angelika Keller
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | | | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, University of WürzburgWürzburgGermany
| | | | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of WürzburgWürzburgGermany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of WürzburgWürzburgGermany
| |
Collapse
|
26
|
Liang Y, Weng X, Ling H, Mustafa G, Yang B, Lu N. Transcriptomic Insights into Molecular Response of Butter Lettuce to Different Light Wavelengths. PLANTS (BASEL, SWITZERLAND) 2024; 13:1582. [PMID: 38931014 PMCID: PMC11207648 DOI: 10.3390/plants13121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Lettuce is a widely consumed leafy vegetable; it became popular due to its enhanced nutritional content. Recently, lettuce is also regarded as one of the model plants for vegetable production in plant factories. Light and nutrients are essential environmental factors that affect lettuce growth and morphology. To evaluate the impact of light spectra on lettuce, butter lettuce was grown under the light wavelengths of 460, 525, and 660 nm, along with white light as the control. Plant morphology, physiology, nutritional content, and transcriptomic analyses were performed to study the light response mechanisms. The results showed that the leaf fresh weight and length/width were higher when grown at 460 nm and lower when grown at 525 nm compared to the control treatment. When exposed to 460 nm light, the sugar, crude fiber, mineral, and vitamin concentrations were favorably altered; however, these levels decreased when exposed to light with a wavelength of 525 nm. The transcriptomic analysis showed that co-factor and vitamin metabolism- and secondary metabolism-related genes were specifically induced by 460 nm light exposure. Furthermore, the pathway enrichment analysis found that flavonoid biosynthesis- and vitamin B6 metabolism-related genes were significantly upregulated in response to 460 nm light exposure. Additional experiments demonstrated that the vitamin B6 and B2 content was significantly higher in leaves exposed to 460 nm light than those grown under the other conditions. Our findings suggested that the addition of 460 nm light could improve lettuce's biomass and nutritional value and help us to further understand how the light spectrum can be tuned as needed for lettuce production.
Collapse
Affiliation(s)
- Yongqi Liang
- Shanxi Qingmei Biotechnology Company Limited, Baoji 721000, China
| | - Xinying Weng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Hao Ling
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, China; (X.W.); (H.L.); (B.Y.)
| | - Na Lu
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa 277-0882, Japan
| |
Collapse
|
27
|
Cao HH, Kong WW, Chen XY, Ayaz S, Hou CP, Wang YS, Liu SH, Xu JP. Bmo-miR-6498-5p suppresses Bombyx mori nucleopolyhedrovirus infection by down-regulating BmPLPP2 to modulate pyridoxal phosphate content in B. mori. INSECT MOLECULAR BIOLOGY 2024; 33:259-269. [PMID: 38335442 DOI: 10.1111/imb.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xi-Ya Chen
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Cai-Ping Hou
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yi-Sheng Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
28
|
Chen K, Liu L, Li J, Tian Z, Jin H, Zhang D. Engineering and finetuning expression of SerC for balanced metabolic flux in vitamin B 6 production. Synth Syst Biotechnol 2024; 9:388-398. [PMID: 38572022 PMCID: PMC10987848 DOI: 10.1016/j.synbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Vitamin B6 plays a crucial role in cellular metabolism and stress response, making it an essential component for growth in all known organisms. However, achieving efficient biosynthesis of vitamin B6 faces the challenge of maintaining a balanced distribution of metabolic flux between growth and production. In this study, our focus is on addressing this challenge through the engineering of phosphoserine aminotransferase (SerC) to resolve its redundancy and promiscuity. The enzyme SerC was semi-designed and screened based on sequences and predicted kcat values, respectively. Mutants and heterologous proteins showing potential were then fine-tuned to optimize the production of vitamin B6. The resulting strain enhances the production of vitamin B6, indicating that different fluxes are distributed to the biosynthesis pathway of serine and vitamin B6. This study presents a promising strategy to address the challenge posed by multifunctional enzymes, with significant implications for enhancing biochemical production through engineering processes.
Collapse
Affiliation(s)
- Kai Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jinlong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongxing Jin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Hossain Z, Zhao S, Luo X, Liu K, Li L, Hubbard M. Deciphering Aphanomyces euteiches-pea-biocontrol bacterium interactions through untargeted metabolomics. Sci Rep 2024; 14:8877. [PMID: 38632368 PMCID: PMC11024177 DOI: 10.1038/s41598-024-52949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Aphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Kui Liu
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| |
Collapse
|
30
|
Wang J, Xu X, Wei W, Song W, Wen J, Hu G, Li X, Gao C, Chen X, Liu L, Wu J. Rational Design of Salmonella typhi Acid Phosphatase for Efficient Production of Pyridoxal 5'-Phosphate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602702 DOI: 10.1021/acs.jafc.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pyridoxal 5'-phosphate (PLP) is highly valuable in food and medicine. However, achieving the efficient biosynthesis of PLP remains challenging. Here, a salvage pathway using acid phosphatase from Salmonella typhi (StAPase) and pyridoxine oxidase from Escherichia coli (EcPNPO) as pathway enzymes was established for the first time to synthesize PLP from pyridoxine (PN) and pyrophosphate (PPi). StAPase was identified as a rate-limiting enzyme. Two protein modification strategies were developed based on the PN phosphorylation mechanism: (1) improving the binding of PN into StAPase and (2) enhancing the hydrophobicity of StAPase's substrate binding pocket. The kcat/Km of optimal mutant M7 was 4.9 times higher than that of the wild type. The detailed mechanism of performance improvement was analyzed. Under the catalysis of M7 and EcPNPO, a PLP high-yielding strain of 14.5 ± 0.55 g/L was engineered with a productivity of 1.0 ± 0.02 g/(L h) (the highest to date). The study suggests a promising method for industrial-scale PLP production.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xin Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Citores L, Ragucci S, Gay CC, Russo R, Chambery A, Di Maro A, Iglesias R, Ferreras JM. Edodin: A New Type of Toxin from Shiitake Mushroom ( Lentinula edodes) That Inactivates Mammalian Ribosomes. Toxins (Basel) 2024; 16:185. [PMID: 38668610 PMCID: PMC11053714 DOI: 10.3390/toxins16040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that irreversibly inhibit protein synthesis and consequently cause cell death. Recently, an RIP called ledodin has been found in shiitake; it is cytotoxic, strongly inhibits protein synthesis, and shows rRNA N-glycosylase activity. In this work, we isolated and characterized a 50 kDa cytotoxic protein from shiitake that we named edodin. Edodin inhibits protein synthesis in a mammalian cell-free system, but not in insect-, yeast-, and bacteria-derived systems. It exhibits rRNA N-glycosylase and DNA-nicking activities, which relate it to plant RIPs. It was also shown to be toxic to HeLa and COLO 320 cells. Its structure is not related to other RIPs found in plants, bacteria, or fungi, but, instead, it presents the characteristic structure of the fold type I of pyridoxal phosphate-dependent enzymes. Homologous sequences have been found in other fungi of the class Agaricomycetes; thus, edodin could be a new type of toxin present in many fungi, some of them edible, which makes them of great interest in health, both for their involvement in food safety and for their potential biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain;
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (R.R.); (A.C.); (A.D.M.)
| | - Claudia C. Gay
- Laboratory of Protein Research, Institute of Basic and Applied Chemistry of Northeast Argentina (UNNE-CONICET), Faculty of Exact and Natural Sciences and Surveying, Av. Libertad 5470, Corrientes 3400, Argentina;
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (R.R.); (A.C.); (A.D.M.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (R.R.); (A.C.); (A.D.M.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (R.R.); (A.C.); (A.D.M.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain;
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain;
| |
Collapse
|
32
|
Drago VN, Devos JM, Blakeley MP, Forsyth VT, Parks JM, Kovalevsky A, Mueser TC. Neutron diffraction from a microgravity-grown crystal reveals the active site hydrogens of the internal aldimine form of tryptophan synthase. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101827. [PMID: 38645802 PMCID: PMC11027755 DOI: 10.1016/j.xcrp.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and β-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.
Collapse
Affiliation(s)
- Victoria N. Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juliette M. Devos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Faculty of Medicine, Lund University, and LINXS Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Lead contact
| |
Collapse
|
33
|
Barile A, Graziani C, Antonelli L, Parroni A, Fiorillo A, di Salvo ML, Ilari A, Giorgi A, Rosignoli S, Paiardini A, Contestabile R, Tramonti A. Identification of the pyridoxal 5'-phosphate allosteric site in human pyridox(am)ine 5'-phosphate oxidase. Protein Sci 2024; 33:e4900. [PMID: 38284493 PMCID: PMC10804683 DOI: 10.1002/pro.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Adequate levels of pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6 , and its proper distribution in the body are essential for human health. The PLP recycling pathway plays a crucial role in these processes and its defects cause severe neurological diseases. The enzyme pyridox(am)ine 5'-phosphate oxidase (PNPO), whose catalytic action yields PLP, is one of the key players in this pathway. Mutations in the gene encoding PNPO are responsible for a severe form of neonatal epilepsy. Recently, PNPO has also been described as a potential target for chemotherapeutic agents. Our laboratory has highlighted the crucial role of PNPO in the regulation of PLP levels in the cell, which occurs via a feedback inhibition mechanism of the enzyme, exerted by binding of PLP at an allosteric site. Through docking analyses and site-directed mutagenesis experiments, here we identified the allosteric PLP binding site of human PNPO. This site is located in the same protein region as the allosteric site we previously identified in the Escherichia coli enzyme homologue. However, the identity and arrangement of the amino acid residues involved in PLP binding are completely different and resemble those of the active site of PLP-dependent enzymes. The identification of the PLP allosteric site of human PNPO paves the way for the rational design of enzyme inhibitors as potential anti-cancer compounds.
Collapse
Affiliation(s)
- Anna Barile
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Claudio Graziani
- Sapienza Università di RomaIstituto Pasteur Italia‐Fondazione Cenci BolognettiRomeItaly
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Lorenzo Antonelli
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Alessia Parroni
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Annarita Fiorillo
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Martino Luigi di Salvo
- Sapienza Università di RomaIstituto Pasteur Italia‐Fondazione Cenci BolognettiRomeItaly
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Andrea Ilari
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| | - Alessandra Giorgi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Serena Rosignoli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Alessandro Paiardini
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Roberto Contestabile
- Sapienza Università di RomaIstituto Pasteur Italia‐Fondazione Cenci BolognettiRomeItaly
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaRomeItaly
| | - Angela Tramonti
- Istituto di Biologia e Patologia MolecolariConsiglio Nazionale delle RicercheRomeItaly
| |
Collapse
|
34
|
Wang Y, Wang B, Chen J, Sun L, Hou Y, Wang Y, Wang J, Gan J, Barmukh R, Li S, Fan Z, Bao P, Cao B, Cai C, Jing X, Singh BK, Varshney RK, Zhao H. Dynamics of rhizosphere microbial structure and function associated with the biennial bearing of moso bamboo. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119977. [PMID: 38160549 DOI: 10.1016/j.jenvman.2023.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Moso bamboo (Phyllostachys edulis) is a valuable nontimber forestry product with a biennial cycle, producing abundant bamboo shoots within one year (on-year) and few shoots within the following year (off-year). Moso bamboo plants undergo clonal reproduction, resulting in similar genetic backgrounds. However, the number of moso bamboo shoots produced each year varies. Despite this variation, the impact of soil nutrients and the root microbiome on the biennial bearing of moso bamboo is poorly understood. We collected 139 soil samples and determined 14 major physicochemical properties of the rhizosphere, rhizoplane, and bulk soil in different seasons (i.e., the growing and deciduous seasons) and different years (i.e., on- and off-years). Based on 16S rRNA and metagenomic sequencing, major variations were found in the rhizospheric microbial composition during different seasons and years in the moso bamboo forest. Environmental driver analysis revealed that essential nutrients (i.e., SOC, TOC, TN, P, and NH4+) were the main drivers of the soil microbial community composition and were correlated with the on- and off-year cycles. Moreover, 19 MAGs were identified as important biomarkers that could distinguish on- and off-years. We found that both season and year influenced both the microbial community structure and functional pathways through the biosynthesis of nutrients that potentially interact with the moso bamboo growth rhythm, especially the on-year root-associated microbiome, which had a greater abundance of specific nutrients such as gibberellins and vitamin B6. This work provides a dynamic perspective of the differential responses of various on- and off-year microbial communities and enhances our understanding of bamboo soil microbiome biodiversity and stability.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | | | - Jianwei Chen
- BGI Research, Qingdao 266555, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lei Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | | | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Huangpu District, Guangzhou 510530, China
| | - Junwei Gan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Shanying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zeyu Fan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Pengfei Bao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Bingchen Cao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Chunju Cai
- Changning Bamboo Forest Ecosystem National Research Station, Yibin, Sichuan 644300, China
| | - Xiong Jing
- National Agricultural Exhibition Center/China Agricultural Museum, Beijing 100125, China
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Hawkesbury Institute for the Environment Western Sydney University, Penrith, NSW 2751, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
35
|
Zhu Y, Bao G, Zhu G, Zhang K, Zhu S, Hu J, He J, Jiang W, Fan J, Dang Y. Discovery and characterization of natural product luteolin as an effective inhibitor of human pyridoxal kinase. Bioorg Chem 2024; 143:107057. [PMID: 38150934 DOI: 10.1016/j.bioorg.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Pyridoxal kinase (PDXK) is an essential enzyme in the synthesis of pyridoxal 5-phosphate (PLP), the active form of vitamin B6, which plays a pivotal role in maintaining the enzyme activity necessary for cell metabolism. Thus, PDXK has garnered attention as a potential target for metabolism regulation and tumor therapy. Despite this interest, existing PDXK inhibitors have faced limitations, including weak suppressive activity, unclear mechanisms of action, and associated toxic side effects. In this study, we present the discovery of a novel PDXK inhibitor, luteolin, through a high-throughput screening approach based on enzyme activity. Luteolin, a natural product, exhibits micromolar-level affinity for PDXK and effectively inhibits the enzyme's activity in vitro. Our crystal structures reveal that luteolin occupies the ATP binding pocket through hydrophobic interactions and a weak hydrogen bonding pattern, displaying reversible characteristics as confirmed by biochemical assays. Moreover, luteolin disrupts vitamin B6 metabolism by targeting PDXK, thereby inhibiting the proliferation of leukemia cells. This research introduces a novel screening method for identifying high-affinity and potent PDXK inhibitors and sheds light on clarification of the structural mechanism of PDXK-luteolin for subsequent structure optimization of inhibitors.
Collapse
Affiliation(s)
- Yunmei Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Guangsen Bao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gaolin Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Kai Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Sanyong Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Jia He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China; College of Pharmacy, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
36
|
Gao Y, Yang X, Hua L, Wang M, Ge Q, Wang W, Wang N, Ma J, Ge H. Crystal structure of an aspartate aminotransferase Lpg0070 from Legionella pneumophila. Biochem Biophys Res Commun 2023; 689:149230. [PMID: 37984176 DOI: 10.1016/j.bbrc.2023.149230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Legionella pneumophila aspartate aminotransferase (Lpg0070) is a member of the transaminase and belongs to the pyridoxal 5'-phosphate (PLP)-dependent superfamily. It is responsible for the transfer of α-amino between aspartate and α-ketoglutarate to form glutamate and oxaloacetate. Here, we report the crystal structure of Lpg0070 at the resolution of 2.14 Å and 1.7 Å, in apo-form and PLP-bound, respectively. Our structural analysis revealed the specific residues involved in the PLP binding and free form against PLP-bound supported conformational changes before substrate recognition. In vitro enzyme activity proves that the absence of the N-terminal arm reduces the enzyme activity of Lpg0070. These data provide further evidence to support the N-terminal arm plays a crucial role in catalytic activity.
Collapse
Affiliation(s)
- Yongshan Gao
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xiaowen Yang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Lan Hua
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Min Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Qing Ge
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Weiqiang Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Na Wang
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jinming Ma
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Honghua Ge
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
37
|
Tramonti A, Donkor AK, Parroni A, Musayev FN, Barile A, Ghatge MS, Graziani C, Alkhairi M, AlAwadh M, di Salvo ML, Safo MK, Contestabile R. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway. FEBS J 2023; 290:5628-5651. [PMID: 37734924 PMCID: PMC10872706 DOI: 10.1111/febs.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Akua K Donkor
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Alessia Parroni
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudio Graziani
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Mona Alkhairi
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed AlAwadh
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| |
Collapse
|
38
|
Lee KH, Distefano MD, Seelig B. Facile immobilization of pyridoxal 5'-phosphate using p-diazobenzoyl-derivatized Sepharose 4B. RESULTS IN CHEMISTRY 2023; 6:101044. [PMID: 38131063 PMCID: PMC10735239 DOI: 10.1016/j.rechem.2023.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a ubiquitous and versatile cofactor utilized by numerous enzymes involved in amino acid biosynthetic pathways. Immobilized PLP is a valuable tool to isolate unknown PLP-dependent enzymes in nature or to perform in vitro selection or directed evolution on existing or de novo PLP-dependent enzymes. The C-6 position is preferred for covalent immobilization of PLP because it maintains all important functional groups in their native, unmodified form. Previously reported diazonium derivatization methods for C-6 immobilization utilized an azide linker compound that is hazardous and not readily available. Here we report a safer and more accessible method to synthesize p-diazobenzoyl-derivatized Sepharose 4B using the N-hydroxysuccinimide (NHS) ester chemistry. The derivative was used to immobilize PLP, and the resulting C-6 immobilized PLP had a loading of ~2.6 μmol PLP per mL of resin, comparable to commercially available products of other immobilized cofactors.
Collapse
Affiliation(s)
- Kun-Hwa Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
39
|
Vuksanovic N, Melkonian TR, Serrano DA, Schwabacher AW, Silvaggi NR. Structural and Biochemical Characterization of MppQ, an L-Enduracididine Biosynthetic Enzyme from Streptomyces hygroscopicus. Biochemistry 2023; 62:3105-3115. [PMID: 37890134 DOI: 10.1021/acs.biochem.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
MppQ is an enzyme of unknown function from Streptomyces hygroscopicus (ShMppQ) that operates in the biosynthesis of the nonproteinogenic amino acid L-enduracididine (L-End). Since L-End is a component of several peptides showing activity against antibiotic-resistant pathogens, understanding its biosynthetic pathway could facilitate the development of chemoenzymatic routes to novel antibiotics. Herein, we report on the crystal structures of ShMppQ complexed with pyridoxal-5'-phosphate (PLP) and pyridoxamine-5'-phosphate (PMP). ShMppQ is similar to fold-type I PLP-dependent aminotransferases like aspartate aminotransferase. The tertiary structure of ShMppQ is composed of an N-terminal extension, a large domain, and a small domain. The active site is placed at the junction of the large and small domains and includes residues from both protomers of the homodimer. We also report the first functional characterization of MppQ, which we incubated with the enzymatically produced 2-ketoenduracidine and observed the conversion to L-End, establishing ShMppQ as the final enzyme in L-End biosynthesis. Additionally, we have observed that MppQ has a relatively high affinity for 2-keto-5-guanidinovaleric acid (i.e., 2-ketoarginine), a shunt product of MppP, indicating the potential role of MppQ in increasing the efficiency of L-End biosynthesis by converting 2-ketoarginine back to the starting material, l-arginine. A panel of potential amino-donor substrates was tested for the transamination activity against a saturating concentration of 2-ketoarginine in end-point assays. Most l-Arg was produced with l-ornithine as the donor substrate. Steady-state kinetic analysis of the transamination reaction with l-Orn and 2-ketoarginine shows that the kinetic constants are in line with those for the amino donor substrate of other fold-type I aminotransferases.
Collapse
Affiliation(s)
- Nemanja Vuksanovic
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Trevor R Melkonian
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dante A Serrano
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
- Department of Chemistry, Pennsylvania State University, 302 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Alan W Schwabacher
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nicholas R Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
40
|
Said Y, Singh D, Sebu C, Poolman M. A novel algorithm to calculate elementary modes: Analysis of Campylobacter jejuni metabolism. Biosystems 2023; 234:105047. [PMID: 39491107 DOI: 10.1016/j.biosystems.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
We describe a novel algorithm, 'LPEM', that given a steady-state flux vector from a (possibly genome-scale) metabolic model, decomposes that vector into a set of weighted elementary modes such that the sum of these elementary modes is equal to the original flux vector. We apply the algorithm to a genome scale metabolic model of the human pathogen Campylobacter jejuni. This organism is unusual in that it has an absolute growth requirement for oxygen, despite being able to operate the electron transport chain anaerobically. We conclude that (1) Microaerophilly in C. jejuni can be explained by the dependence of pyridoxine 5'-phosphate oxidase for the synthesis of pyridoxal 5'- phosphate (the biologically active form of vitamin B6), (2) The LPEM algorithm is capable of determining the elementary modes of a linear programming solution describing the simultaneous production of 51 biomass precursors, (3) Elementary modes for the production of individual biomass precursors are significantly more complex when all others are produced simultaneously than those for the same product in isolation and (4) The sum of elementary modes for the production of all precursors in isolation requires a greater number of reactions and overall total flux than the simultaneous production of all precursors.
Collapse
Affiliation(s)
- Yanica Said
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, OX3 0BP, UK; Department of Mathematics, University of Malta, Msida, MSD 2080, Malta
| | - Dipali Singh
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Cristiana Sebu
- Department of Mathematics, University of Malta, Msida, MSD 2080, Malta
| | - Mark Poolman
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
41
|
Fryar-Williams S, Strobel J, Clements P. Molecular Mechanisms Provide a Landscape for Biomarker Selection for Schizophrenia and Schizoaffective Psychosis. Int J Mol Sci 2023; 24:15296. [PMID: 37894974 PMCID: PMC10607016 DOI: 10.3390/ijms242015296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Research evaluating the role of the 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) gene in schizophrenia has not yet provided an extended understanding of the proximal pathways contributing to the 5-10-methylenetetrahydrofolate reductase (MTHFR) enzyme's activity and the distal pathways being affected by its activity. This review investigates these pathways, describing mechanisms relevant to riboflavin availability, trace mineral interactions, and the 5-methyltetrahydrofolate (5-MTHF) product of the MTHFR enzyme. These factors remotely influence vitamin cofactor activation, histamine metabolism, catecholamine metabolism, serotonin metabolism, the oxidative stress response, DNA methylation, and nicotinamide synthesis. These biochemical components form a broad interactive landscape from which candidate markers can be drawn for research inquiry into schizophrenia and other forms of mental illness. Candidate markers drawn from this functional biochemical background have been found to have biomarker status with greater than 90% specificity and sensitivity for achieving diagnostic certainty in schizophrenia and schizoaffective psychosis. This has implications for achieving targeted treatments for serious mental illness.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley Annexe, Mary Street, Unley, SA 5061, Australia
- Department of Nanoscale BioPhotonics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| |
Collapse
|
42
|
Safari Yazd H, Bazargani SF, Fitzpatrick G, Yost RA, Kresak J, Garrett TJ. Metabolomic and Lipidomic Characterization of Meningioma Grades Using LC-HRMS and Machine Learning. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2187-2198. [PMID: 37708056 DOI: 10.1021/jasms.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Meningiomas are among the most common brain tumors that arise from the leptomeningeal cover of the brain and spinal cord and account for around 37% of all central nervous system tumors. According to the World Health Organization, meningiomas are classified into three histological subtypes: benign, atypical, and anaplastic. Sometimes, meningiomas with a histological diagnosis of benign tumors show clinical characteristics and behavior of aggressive tumors. In this study, we examined the metabolomic and lipidomic profiles of meningioma tumors, focusing on comparing low-grade and high-grade tumors and identifying potential markers that can discriminate between benign and malignant tumors. High-resolution mass spectrometry coupled to liquid chromatography was used for untargeted metabolomics and lipidomics analyses of 85 tumor biopsy samples with different meningioma grades. We then applied feature selection and machine learning techniques to find the features with the highest information to aid in the diagnosis of meningioma grades. Three biomarkers were identified to differentiate low- and high-grade meningioma brain tumors. The use of mass-spectrometry-based metabolomics and lipidomics combined with machine learning analyses to prospect and characterize biomarkers associated with meningioma grades may pave the way for elucidating potential therapeutic and prognostic targets.
Collapse
Affiliation(s)
- Hoda Safari Yazd
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | | | - Garrett Fitzpatrick
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jesse Kresak
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
43
|
Echizen H, Hanaoka K, Shimamoto K, Hibi R, Toma-Fukai S, Ohno H, Sasaki E, Komatsu T, Ueno T, Tsuchiya Y, Watanabe Y, Otsuka T, Saito H, Nagatoishi S, Tsumoto K, Kojima H, Okabe T, Shimizu T, Urano Y. Discovery of a cystathionine γ-lyase (CSE) selective inhibitor targeting active-site pyridoxal 5'-phosphate (PLP) via Schiff base formation. Sci Rep 2023; 13:16456. [PMID: 37777556 PMCID: PMC10542788 DOI: 10.1038/s41598-023-43536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
D,L-Propargylglycine (PAG) has been widely used as a selective inhibitor to investigate the biological functions of cystathionine γ-lyase (CSE), which catalyzes the formation of reactive sulfur species (RSS). However, PAG also inhibits other PLP (pyridoxal-5'-phosphate)-dependent enzymes such as methionine γ-lyase (MGL) and L-alanine transaminase (ALT), so highly selective CSE inhibitors are still required. Here, we performed high-throughput screening (HTS) of a large chemical library and identified oxamic hydrazide 1 as a potent inhibitor of CSE (IC50 = 13 ± 1 μM (mean ± S.E.)) with high selectivity over other PLP-dependent enzymes and RSS-generating enzymes. Inhibitor 1 inhibited the enzymatic activity of human CSE in living cells, indicating that it is sufficiently membrane-permeable. X-Ray crystal structure analysis of the complex of rat CSE (rCSE) with 1 revealed that 1 forms a Schiff base linkage with the cofactor PLP in the active site of rCSE. PLP in the active site may be a promising target for development of selective inhibitors of PLP-dependent enzymes, including RSS-generating enzymes such as cystathionine β-synthase (CBS) and cysteinyl-tRNA synthetase 2 (CARS2), which have unique substrate binding pocket structures.
Collapse
Affiliation(s)
- Honami Echizen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuhito Shimamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Hibi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sachiko Toma-Fukai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukihiro Tsuchiya
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, Machida-shi 194-8543, Tokyo, Japan
| | - Yasuo Watanabe
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, Machida-shi 194-8543, Tokyo, Japan
| | - Takao Otsuka
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University, 3 Ho Kanakawa-cho, Kanazawa, Ishikawa, 920-1181, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
44
|
Rastogi S, Chandra A. Free Energy Landscapes of the Tautomeric Interconversion of Pyridoxal 5'-Phosphate Aldimines at the Active Site of Ornithine Decarboxylase in Aqueous Media. J Phys Chem B 2023; 127:8139-8149. [PMID: 37721415 DOI: 10.1021/acs.jpcb.3c04142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The pyridoxal 5'-phosphate (PLP) acts as a coenzyme for a large number of biochemical reactions. It exists in mainly two bound forms at the active site of the concerned enzyme: the internal aldimine, in which the PLP is bound with the ϵ-amino group of lysine at the active site, and the external aldimine, where the PLP is bound to the substrate amino acid. Both the internal and external aldimines have Schiff base linkage (N-H-O) and can exist in two tautomeric structures of ketoenamine and enolimine forms. In this work, we have investigated the free energy landscape for the tautomeric proton transfer in the internal and external aldimines at the active site of the ornithine decarboxylase enzyme in an aqueous medium. We performed hybrid quantum-classical metadynamics and force field-based molecular dynamics simulations, which revealed that the ketoenamine tautomer is more stable than the enolimine form. The QM/MM metadynamics calculations show that the free energy difference between the ketoenamine and enolimine forms for the internal aldimine is 3.9 kcal/mol, and it is found to be 5.8 kcal/mol for the external aldimine, with the ketoenamine form being more stable in both cases. The results are further supported by calculations of the binding free energies from classical simulations and static quantum chemical calculations in different environments. We have also analyzed the configurational structure of the microenvironment at the active site in order to have better insights into the interactions of the active site residues with the PLP in its two tautomeric forms.
Collapse
Affiliation(s)
- Shreya Rastogi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
45
|
Ueno K, Ushimaru R, Abe I. Photoinduced Reductive Dehalogenation of Phenacyl Bromides with Pyridoxal 5'-Phosphate. Chem Pharm Bull (Tokyo) 2023; 71:675-677. [PMID: 37394629 DOI: 10.1248/cpb.c23-00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We describe the photoinduced reductive debromination of phenacyl bromides using pyridoxal 5'-phosphate (PLP). The reaction requires irradiation with cyan or blue light in an anaerobic atmosphere. Mechanistic analysis reveals the formation of the phenacyl radical as an intermediate in the reaction, implying a single electron transfer to phenacyl bromides from a PLP-derived species resulting from excitation by illumination.
Collapse
Affiliation(s)
- Koki Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
46
|
Freda I, Exertier C, Barile A, Chaves-Sanjuan A, Vega M, Isupov M, Harmer N, Gugole E, Swuec P, Bolognesi M, Scipioni A, Savino C, Di Salvo M, Contestabile R, Vallone B, Tramonti A, Montemiglio L. Structural insights into the DNA recognition mechanism by the bacterial transcription factor PdxR. Nucleic Acids Res 2023; 51:8237-8254. [PMID: 37378428 PMCID: PMC10450172 DOI: 10.1093/nar/gkad552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Specificity in protein-DNA recognition arises from the synergy of several factors that stem from the structural and chemical signatures encoded within the targeted DNA molecule. Here, we deciphered the nature of the interactions driving DNA recognition and binding by the bacterial transcription factor PdxR, a member of the MocR family responsible for the regulation of pyridoxal 5'-phosphate (PLP) biosynthesis. Single particle cryo-EM performed on the PLP-PdxR bound to its target DNA enabled the isolation of three conformers of the complex, which may be considered as snapshots of the binding process. Moreover, the resolution of an apo-PdxR crystallographic structure provided a detailed description of the transition of the effector domain to the holo-PdxR form triggered by the binding of the PLP effector molecule. Binding analyses of mutated DNA sequences using both wild type and PdxR variants revealed a central role of electrostatic interactions and of the intrinsic asymmetric bending of the DNA in allosterically guiding the holo-PdxR-DNA recognition process, from the first encounter through the fully bound state. Our results detail the structure and dynamics of the PdxR-DNA complex, clarifying the mechanism governing the DNA-binding mode of the holo-PdxR and the regulation features of the MocR family of transcription factors.
Collapse
Affiliation(s)
- Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Anna Barile
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milano, Milano 20133, Italy
| | - Mirella Vivoli Vega
- School of Biochemistry, University of Bristol, University Walk, BS8 1TD Bristol, UK
| | - Michail N Isupov
- Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Elena Gugole
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Core Facility, Human Technopole, Milano 20157, Italy
| | - Martino Bolognesi
- Department of Biosciences, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi and NOLIMITS, University of Milano, Milano 20133, Italy
| | - Anita Scipioni
- Department of Chemistry, Sapienza, University of Rome, Rome 00185, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Martino Luigi Di Salvo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, Rome 00185, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza, University of Rome, Rome 00185, Italy
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | | |
Collapse
|
47
|
Drago VN, Campos C, Hooper M, Collins A, Gerlits O, Weiss KL, Blakeley MP, Phillips RS, Kovalevsky A. Revealing protonation states and tracking substrate in serine hydroxymethyltransferase with room-temperature X-ray and neutron crystallography. Commun Chem 2023; 6:162. [PMID: 37532884 PMCID: PMC10397204 DOI: 10.1038/s42004-023-00964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize a vitamin B6-derived cofactor to perform a myriad of chemical transformations on amino acids and other small molecules. Some PLP-dependent enzymes, such as serine hydroxymethyltransferase (SHMT), are promising drug targets for the design of small-molecule antimicrobials and anticancer therapeutics, while others have been used to synthesize pharmaceutical building blocks. Understanding PLP-dependent catalysis and the reaction specificity is crucial to advance structure-assisted drug design and enzyme engineering. Here we report the direct determination of the protonation states in the active site of Thermus thermophilus SHMT (TthSHMT) in the internal aldimine state using room-temperature joint X-ray/neutron crystallography. Conserved active site architecture of the model enzyme TthSHMT and of human mitochondrial SHMT (hSHMT2) were compared by obtaining a room-temperature X-ray structure of hSHMT2, suggesting identical protonation states in the human enzyme. The amino acid substrate serine pathway through the TthSHMT active site cavity was tracked, revealing the peripheral and cationic binding sites that correspond to the pre-Michaelis and pseudo-Michaelis complexes, respectively. At the peripheral binding site, the substrate is bound in the zwitterionic form. By analyzing the observed protonation states, Glu53, but not His residues, is proposed as the general base catalyst, orchestrating the retro-aldol transformation of L-serine into glycine.
Collapse
Affiliation(s)
- Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Claudia Campos
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
| | - Mattea Hooper
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
| | - Aliyah Collins
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
48
|
Dai LL, Cho SB, Li HF, A LS, Ji XP, Pan S, Bao ML, Bai L, Ba GN, Fu MH. Lomatogonium rotatum extract alleviates diabetes mellitus induced by a high-fat, high-sugar diet and streptozotocin in rats. World J Diabetes 2023; 14:846-861. [PMID: 37383587 PMCID: PMC10294064 DOI: 10.4239/wjd.v14.i6.846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a hypoglycemic agent, but its evidence-based pharmacological effects and me-chanisms of action have not been fully elucidated.
AIM To emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat model and examine potential biomarkers to obtain mechanistic understanding regarding serum metabolite modifications.
METHODS A high-fat, high-sugar diet and streptozotocin injection-induced type 2 diabetic rat model was established. The chemical composition of the LR was identified by high performance liquid chromatography. LR extract administrated as oral gavage at 0.5 g/kg, 2.5 g/kg, and 5 g/kg for 4 wk. Anti-diabetic effects of LR extract were evaluated based on histopathological examination as well as the measurement of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid levels. Serum metabolites were analyzed using an untargeted metabolomics approach.
RESULTS According to a chemical analysis, swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone are the principal active ingredients in LR. An anti-diabetic experiment revealed that the LR treatment significantly increased plasma insulin and GLP-1 levels while effectively lowering blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and oral glucose tolerance test compared to the model group. Furthermore, untargeted metabolomic analysis of serum samples detected 236 metabolites, among which 86 were differentially expressed between the model and the LR group. It was also found that LR considerably altered the levels of metabolites such as vitamin B6, mevalonate-5P, D-proline, L-lysine, and taurine, which are involved in the regulation of the vitamin B6 metabolic pathway, selenium amino acid metabolic pathway, pyrimidine metabolic pathway, and arginine and proline metabolic pathways.
CONCLUSION These findings indicated that LR may have a hypoglycemic impact and that its role may be related to changes in the serum metabolites and to facilitate the release of insulin and GLP-1, which lower blood glucose and lipid profiles.
Collapse
Affiliation(s)
- Li-Li Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sung-Bo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Hui-Fang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Li-Sha A
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xiao-Ping Ji
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Sirigunqiqige Pan
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Lan Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Gen-Na Ba
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia Autonomous Region, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
49
|
Pilesi E, Angioli C, Graziani C, Parroni A, Contestabile R, Tramonti A, Vernì F. A gene-nutrient interaction between vitamin B6 and serine hydroxymethyltransferase (SHMT) affects genome integrity in Drosophila. J Cell Physiol 2023. [PMID: 37183313 DOI: 10.1002/jcp.31033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMTRNAi . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.
Collapse
Affiliation(s)
- Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Chiara Angioli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Claudio Graziani
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alessia Parroni
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Department of Biochemical Sciences "A. Rossi Fanelli", Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|