1
|
Khare V, Cherqui S. Targeted gene therapy for rare genetic kidney diseases. Kidney Int 2024; 106:1051-1061. [PMID: 39222842 DOI: 10.1016/j.kint.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Chronic kidney disease is one of the leading causes of mortality worldwide because of kidney failure and the associated challenges of its treatment including dialysis and kidney transplantation. About one-third of chronic kidney disease cases are linked to inherited monogenic factors, making them suitable for potential gene therapy interventions. However, the intricate anatomical structure of the kidney poses a challenge, limiting the effectiveness of targeted gene delivery to the renal system. In this review, we explore the progress made in the field of targeted gene therapy approaches and their implications for rare genetic kidney disorders, examining preclinical studies and prospects for clinical application. In vivo gene therapy is most commonly used for kidney-targeted gene delivery and involves administering viral and nonviral vectors through various routes such as systemic, renal vein, and renal arterial injections. Small nucleic acids have also been used in preclinical and clinical studies for treating certain kidney disorders. Unexpectedly, hematopoietic stem and progenitor cells have been used as an ex vivo gene therapy vehicle for kidney gene delivery, highlighting their ability to differentiate into macrophages within the kidney, forming tunneling nanotubes that can deliver genetic material and organelles to adjacent kidney cells, even across the basement membrane to target the proximal tubular cells. As gene therapy technologies continue to advance and our understanding of kidney biology deepens, there is hope for patients with genetic kidney disorders to eventually avoid kidney transplantation.
Collapse
Affiliation(s)
- Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Pieroni M, Namdar M, Olivotto I, Desnick RJ. Anderson-Fabry disease management: role of the cardiologist. Eur Heart J 2024; 45:1395-1409. [PMID: 38486361 DOI: 10.1093/eurheartj/ehae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 04/22/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a lysosomal storage disorder characterized by glycolipid accumulation in cardiac cells, associated with a peculiar form of hypertrophic cardiomyopathy (HCM). Up to 1% of patients with a diagnosis of HCM indeed have AFD. With the availability of targeted therapies for sarcomeric HCM and its genocopies, a timely differential diagnosis is essential. Specifically, the therapeutic landscape for AFD is rapidly evolving and offers increasingly effective, disease-modifying treatment options. However, diagnosing AFD may be difficult, particularly in the non-classic phenotype with prominent or isolated cardiac involvement and no systemic red flags. For many AFD patients, the clinical journey from initial clinical manifestations to diagnosis and appropriate treatment remains challenging, due to late recognition or utter neglect. Consequently, late initiation of treatment results in an exacerbation of cardiac involvement, representing the main cause of morbidity and mortality, irrespective of gender. Optimal management of AFD patients requires a dedicated multidisciplinary team, in which the cardiologist plays a decisive role, ranging from the differential diagnosis to the prevention of complications and the evaluation of timing for disease-specific therapies. The present review aims to redefine the role of cardiologists across the main decision nodes in contemporary AFD clinical care and drug discovery.
Collapse
Affiliation(s)
- Maurizio Pieroni
- Cardiovascular Department, San Donato Hospital, Via Pietro Nenni 22, 52100 Arezzo, Italy
| | - Mehdi Namdar
- Cardiology Division, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi Hospital and Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Poletto E, Silva AO, Weinlich R, Martin PKM, Torres DC, Giugliani R, Baldo G. Ex vivo gene therapy for lysosomal storage disorders: future perspectives. Expert Opin Biol Ther 2023; 23:353-364. [PMID: 36920351 DOI: 10.1080/14712598.2023.2192348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.
Collapse
Affiliation(s)
- Edina Poletto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ricardo Weinlich
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Davi Coe Torres
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Roberto Giugliani
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Guilherme Baldo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
5
|
Umer M, Kalra DK. Treatment of Fabry Disease: Established and Emerging Therapies. Pharmaceuticals (Basel) 2023; 16:320. [PMID: 37259462 PMCID: PMC9967779 DOI: 10.3390/ph16020320] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 01/14/2024] Open
Abstract
Fabry disease (FD) is a rare, X-linked inherited disorder of glycosphingolipid metabolism. It leads to the progressive accumulation of globotriaosylceramide within lysosomes due to a deficiency of α-galactosidase A enzyme. It involves multiple organs, predominantly the renal, cardiac, and cerebrovascular systems. Early diagnosis and treatment are critical to prevent progression to irreversible tissue damage and organ failure, and to halt life-threatening complications that can significantly reduce life expectancy. This review will focus on the established and emerging treatment options for FD.
Collapse
Affiliation(s)
| | - Dinesh K. Kalra
- Division of Cardiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
7
|
Rintz E, Higuchi T, Kobayashi H, Galileo DS, Wegrzyn G, Tomatsu S. Promoter considerations in the design of lentiviral vectors for use in treating lysosomal storage diseases. Mol Ther Methods Clin Dev 2022; 24:71-87. [PMID: 34977274 PMCID: PMC8688940 DOI: 10.1016/j.omtm.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 50 lysosomal storage diseases (LSDs) are associated with lysosomal dysfunctions with the frequency of 1:5,000 live births. As a result of missing enzyme activity, the lysosome dysfunction accumulates undegraded or partially degraded molecules, affecting the entire body. Most of them are life-threatening diseases where patients could die within the first or second decade of life. Approximately 20 LSDs have the approved treatments, which do not provide the cure for the disorder. Therefore, the delivery of missing genes through gene therapy is a promising approach for LSDs. Over the years, ex vivo lentiviral-mediated gene therapy for LSDs has been approached using different strategies. Several clinical trials for LSDs are under investigation.Ex vivo lentiviral-mediated gene therapy needs optimization in dose, time of delivery, and promoter-driven expression. Choosing suitable promoters seems to be one of the important factors for the effective expression of the dysfunctional enzyme. This review summarizes the research on therapy for LSDs that has used different lentiviral vectors, emphasizing gene promoters.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Takashi Higuchi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, 3 Chome-25-8 Nishishinbashi, Minato City, Tokyo 105-8461, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, 3 Chome-25-8 Nishishinbashi, Minato City, Tokyo 105-8461, Japan
| | - Deni S. Galileo
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE 19716, USA
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE 19716, USA
- Department of Pediatrics, Gifu University, Gifu, Yanagido 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021; 134:117-131. [PMID: 34340879 DOI: 10.1016/j.ymgme.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.
Collapse
Affiliation(s)
- Jakob M Domm
- Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey A Medin
- Department of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
10
|
The Cardiovascular Phenotype in Fabry Disease: New Findings in the Research Field. Int J Mol Sci 2021; 22:ijms22031331. [PMID: 33572752 PMCID: PMC7865937 DOI: 10.3390/ijms22031331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Fabry disease (FD) is a lysosomal storage disorder, depending on defects in alpha-galactosidase A (GAL) activity. At the clinical level, FD shows a high phenotype variability. Among them, cardiovascular dysfunction is often recurrent or, in some cases, is the sole symptom (cardiac variant) representing the leading cause of death in Fabry patients. The existing therapies, besides specific symptomatic treatments, are mainly based on the restoration of GAL activity. Indeed, mutations of the galactosidase alpha gene (GLA) cause a reduction or lack of GAL activity leading to globotriaosylceramide (Gb3) accumulation in several organs. However, several other mechanisms are involved in FD’s development and progression that could become useful targets for therapeutics. This review discusses FD’s cardiovascular phenotype and the last findings on molecular mechanisms that accelerate cardiac cell damage.
Collapse
|
11
|
Uchida Y, Yoshimitsu M, Hachiman M, Kusano S, Arima N, Shima K, Hayashida M, Kamada Y, Nakamura D, Arai A, Tanaka Y, Hara H, Ishitsuka K. RLTPR Q575E: A novel recurrent gain-of-function mutation in patients with adult T-cell leukemia/lymphoma. Eur J Haematol 2020; 106:221-229. [PMID: 33098696 DOI: 10.1111/ejh.13540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATL) is an intractable T-cell malignancy caused by long-term infection with human T-cell leukemia virus type-1 (HTLV-1). While ATL pathogenesis has been associated with HTLV-1-derived oncogenic proteins, including Tax and HBZ, the contribution of genomic aberrations remains poorly defined. METHODS To elucidate the genomic basis of ATL, whole exome sequencing was performed on cells from 47 patients with aggressive ATL. RESULTS We discovered the novel mutation RLTPR Q575E in four patients (8.5%) with a median variant allele frequency of 0.52 (range 0.11-0.68). Despite being reported in cutaneous T-cell lymphoma, three ATL patients carrying RLTPR Q575E lacked skin involvement. Patients carrying RLTPR Q575E also harbored CARD11 (75%), PLCG1 (25%), PRKCB (25%), or IKBKB (25%) mutations related to TCR/NF-κB signaling. Jurkat cells transfected with RLTPR Q575E cDNA displayed increased NF-κB activity and significantly increased IL-2 mRNA levels under stimulation. RLTPR Q575E increased the interaction between RLTPR and CARD11, while RLTPR directly interacted with Tax. CONCLUSIONS We identified, and functionally validated, a novel gain-of-function mutation in patients with aggressive ATL. During TCR activation by Tax or gain-of-function mutations, RLTPR Q575E selectively upregulates NF-κB signaling and may exert oncogenic effects on ATL pathogenesis.
Collapse
Affiliation(s)
- Yuichiro Uchida
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Miho Hachiman
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Naosuke Arima
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kodai Shima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Maiko Hayashida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuhei Kamada
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Daisuke Nakamura
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Akihiko Arai
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yuetsu Tanaka
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
12
|
Mittal K, Schrenk-Siemens K. Lessons from iPSC research: Insights on peripheral nerve disease. Neurosci Lett 2020; 738:135358. [PMID: 32898616 DOI: 10.1016/j.neulet.2020.135358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/13/2023]
Abstract
With the publication of their breakthrough discovery describing the induction of pluripotent stem cells (iPSCs) from mouse and human fibroblasts, Takahashi and Yamanaka have changed the scientific landscape. The possibility of deriving human pluripotent stem cells from almost any somatic cell has provided the unprecedented opportunity to study specific hereditary diseases in human cells. In the context of diseases affecting peripheral nerves, iPSC platforms are now being increasingly utilized to investigate the underlying pathology as well as regenerative strategies. Peripheral neuropathies result in peripheral nerve damage, leading to - among other things - the degeneration of affected nerve fibers accompanied by severe sensory, motor and autonomic symptoms, often including intense pain. The generation of iPSCs from hereditary forms of peripheral neuropathies and their directed differentiation into cell types most affected by the disease can be instrumental to better understanding the pathological mechanisms underlying these disorders and to investigating cell replacement strategies for repair. In this minireview, we highlight studies that have used iPSCs to investigate the therapeutic potential of iPSC-derived Schwann cell-like cells for nerve regeneration, as well as studies using patient iPSC derivatives to investigate their contribution to disease pathology.
Collapse
Affiliation(s)
- Kritika Mittal
- Department of Anatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Katrin Schrenk-Siemens
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Lambert JRA, Howe SJ, Rahim AA, Burke DG, Heales SJR. Inhibition of Mitochondrial Complex I Impairs Release of α-Galactosidase by Jurkat Cells. Int J Mol Sci 2019; 20:E4349. [PMID: 31491876 PMCID: PMC6770804 DOI: 10.3390/ijms20184349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Fabry disease (FD) is caused by mutations in the GLA gene that encodes lysosomal α-galactosidase-A (α-gal-A). A number of pathogenic mechanisms have been proposed and these include loss of mitochondrial respiratory chain activity. For FD, gene therapy is beginning to be applied as a treatment. In view of the loss of mitochondrial function reported in FD, we have considered here the impact of loss of mitochondrial respiratory chain activity on the ability of a GLA lentiviral vector to increase cellular α-gal-A activity and participate in cross correction. Jurkat cells were used in this study and were exposed to increasing viral copies. Intracellular and extracellular enzyme activities were then determined; this in the presence or absence of the mitochondrial complex I inhibitor, rotenone. The ability of cells to take up released enzyme was also evaluated. Increasing transgene copies was associated with increasing intracellular α-gal-A activity but this was associated with an increase in Km. Release of enzyme and cellular uptake was also demonstrated. However, in the presence of rotenone, enzyme release was inhibited by 37%. Excessive enzyme generation may result in a protein with inferior kinetic properties and a background of compromised mitochondrial function may impair the cross correction process.
Collapse
Affiliation(s)
- Jonathan R A Lambert
- Enzyme Unit Great Ormond Street Hospital, London WC1N 3JH, UK.
- University College London Great Ormond Street Institute of Child Health London, London WC1N 1EH, UK.
| | - Steven J Howe
- University College London Great Ormond Street Institute of Child Health London, London WC1N 1EH, UK.
| | - Ahad A Rahim
- University College London School of Pharmacy, University College London, London WC1N 1AX, UK.
| | - Derek G Burke
- Enzyme Unit Great Ormond Street Hospital, London WC1N 3JH, UK.
- University College London Great Ormond Street Institute of Child Health London, London WC1N 1EH, UK.
| | - Simon J R Heales
- Enzyme Unit Great Ormond Street Hospital, London WC1N 3JH, UK.
- University College London Great Ormond Street Institute of Child Health London, London WC1N 1EH, UK.
- Neurometabolic Unit, National Hospital, London WC1N 3BG, UK.
| |
Collapse
|
14
|
Essential thrombocytosis attributed to JAK2-T875N germline mutation. Int J Hematol 2019; 110:584-590. [DOI: 10.1007/s12185-019-02725-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
|
15
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Huang J, Khan A, Au BC, Barber DL, López-Vásquez L, Prokopishyn NL, Boutin M, Rothe M, Rip JW, Abaoui M, Nagree MS, Dworski S, Schambach A, Keating A, West ML, Klassen J, Turner PV, Sirrs S, Rupar CA, Auray-Blais C, Foley R, Medin JA. Lentivector Iterations and Pre-Clinical Scale-Up/Toxicity Testing: Targeting Mobilized CD34 + Cells for Correction of Fabry Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:241-258. [PMID: 28603745 PMCID: PMC5453867 DOI: 10.1016/j.omtm.2017.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Fabry disease is a rare lysosomal storage disorder (LSD). We designed multiple recombinant lentivirus vectors (LVs) and tested their ability to engineer expression of human α-galactosidase A (α-gal A) in transduced Fabry patient CD34+ hematopoietic cells. We further investigated the safety and efficacy of a clinically directed vector, LV/AGA, in both ex vivo cell culture studies and animal models. Fabry mice transplanted with LV/AGA-transduced hematopoietic cells demonstrated α-gal A activity increases and lipid reductions in multiple tissues at 6 months after transplantation. Next we found that LV/AGA-transduced Fabry patient CD34+ hematopoietic cells produced even higher levels of α-gal A activity than normal CD34+ hematopoietic cells. We successfully transduced Fabry patient CD34+ hematopoietic cells with “near-clinical grade” LV/AGA in small-scale cultures and then validated a clinically directed scale-up transduction process in a GMP-compliant cell processing facility. LV-transduced Fabry patient CD34+ hematopoietic cells were subsequently infused into NOD/SCID/Fabry (NSF) mice; α-gal A activity corrections and lipid reductions were observed in several tissues 12 weeks after the xenotransplantation. Additional toxicology studies employing NSF mice xenotransplanted with the therapeutic cell product demonstrated minimal untoward effects. These data supported our successful clinical trial application (CTA) to Health Canada and opening of a “first-in-the-world” gene therapy trial for Fabry disease.
Collapse
Affiliation(s)
- Ju Huang
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aneal Khan
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bryan C Au
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dwayne L Barber
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lucía López-Vásquez
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole L Prokopishyn
- Department of Pathology and Laboratory Medicine, University of Calgary and Cellular Therapy Laboratory, Calgary Lab Services, Calgary, AB T2N 1N4, Canada
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jack W Rip
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Mona Abaoui
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Murtaza S Nagree
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shaalee Dworski
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS B3H 1V8, Canada
| | - John Klassen
- Department of Hematology, University of Calgary, Foothills Hospital, Calgary, AB T2N 2T9, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sandra Sirrs
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - C Anthony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre, Hamilton, ON L8V 5C2, Canada
| | - Jeffrey A Medin
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
17
|
Glycosphingolipid storage in Fabry mice extends beyond globotriaosylceramide and is affected by ABCB1 depletion. Future Sci OA 2016; 2:FSO147. [PMID: 28116130 PMCID: PMC5242178 DOI: 10.4155/fsoa-2016-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/17/2022] Open
Abstract
Aim: Fabry disease is caused by α-galactosidase A deficiency leading to accumulation of globotriaosylceramide (Gb3) in tissues. Clinical manifestations do not appear to correlate with total Gb3 levels. Studies examining tissue distribution of specific acyl chain species of Gb3 and upstream glycosphingolipids are lacking. Material & methods/Results: Thorough characterization of the Fabry mouse sphingolipid profile by LC-MS revealed unique Gb3 acyl chain storage profiles. Storage extended beyond Gb3; all Fabry tissues also accumulated monohexosylceramides. Depletion of ABCB1 had a complex effect on glycosphingolipid storage. Conclusion: These data provide insights into how specific sphingolipid species correlate with one another and how these correlations change in the α-galactosidase A-deficient state, potentially leading to the identification of more specific biomarkers of Fabry disease. Fabry disease is caused by a shortage of the enzyme α-galactosidase A leading to storage of a fat called globotriaosylceramide (Gb3) in tissues. Disease severity does not appear to correlate directly with total Gb3. Importantly, Gb3 is comprised of many highly related but distinct species. We examined levels of Gb3 species and precursor molecules in Fabry mice. Gb3 species and storage are unique to each tissue. Furthermore, storage is not limited to Gb3; precursor fats are also elevated. Detailed analyses of differences in storage between the normal and α-galactosidase A-deficient state may provide a better understanding of the causes of Fabry disease.
Collapse
|
18
|
Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Okada T, Shimada T. Prevention of Lethal Murine Hypophosphatasia by Neonatal Ex Vivo Gene Therapy Using Lentivirally Transduced Bone Marrow Cells. Hum Gene Ther 2015; 26:801-12. [PMID: 26467745 DOI: 10.1089/hum.2015.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hypophosphatasia (HPP) is an inherited skeletal and dental disease caused by loss-of-function mutations in the gene that encodes tissue-nonspecific alkaline phosphatase (TNALP). The major symptoms of severe forms of the disease are bone defects, respiratory insufficiency, and epileptic seizures. In 2015, enzyme replacement therapy (ERT) using recombinant bone-targeted TNALP with deca-aspartate (D10) motif was approved to treat pediatric HPP patients in Japan, Canada, and Europe. However, the ERT requires repeated subcutaneous administration of the enzyme because of the short half-life in serum. In the present study, we evaluated the feasibility of neonatal ex vivo gene therapy in TNALP knockout (Akp2(-/-)) HPP mice using lentivirally transduced bone marrow cells (BMC) expressing bone-targeted TNALP in which a D10 sequence was linked to the C-terminus of soluble TNALP (TNALP-D10). The Akp2(-/-) mice usually die within 20 days because of growth failure, epileptic seizures, and hypomineralization. However, an intravenous transplantation of BMC expressing TNALP-D10 (ALP-BMC) into neonatal Akp2(-/-) mice prolonged survival of the mice with improved bone mineralization compared with untransduced BMC-transplanted Akp2(-/-) mice. The treated Akp2(-/-) mice were normal in appearance and experienced no seizures during the experimental period. The lentivirally transduced BMC were efficiently engrafted in the recipient mice and supplied TNALP-D10 continuously at a therapeutic level for at least 3 months. Moreover, TNALP-D10 overexpression did not affect multilineage reconstitution in the recipient mice. The plasma ALP activity was sustained at high levels in the treated mice, and tissue ALP activity was selectively detected on bone surfaces, not in the kidneys or other organs. No ectopic calcification was observed in the ALP-BMC-treated mice. These results indicate that lentivirally transduced BMC can serve as a reservoir for stem cell-based ERT to rescue the Akp2(-/-) phenotype. Neonatal ex vivo gene therapy thus appears to be a possible treatment option for treating severe HPP.
Collapse
Affiliation(s)
- Osamu Iijima
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Koichi Miyake
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Atsushi Watanabe
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan .,2 Division of Clinical Genetics, Nippon Medical School Hospital, Tokyo, Japan
| | - Noriko Miyake
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Tsutomu Igarashi
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan .,3 Department of Ophthalmology, Nippon Medical School Hospital, Tokyo, Japan
| | - Chizu Kanokoda
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Aki Nakamura-Takahashi
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Hideaki Kinoshita
- 4 Department of Dental Materials Science, Tokyo Dental College, Tokyo, Japan
| | - Taku Noguchi
- 5 Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Shinichi Abe
- 5 Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Sonoko Narisawa
- 6 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute , La Jolla, California
| | - José Luis Millán
- 6 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute , La Jolla, California
| | - Takashi Okada
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| | - Takashi Shimada
- 1 Division of Gene Therapy, Department of Biochemistry and Molecular Biology, Research Center for Advanced Medical Technology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
19
|
Meghdari M, Gao N, Abdullahi A, Stokes E, Calhoun DH. Carboxyl-terminal truncations alter the activity of the human α-galactosidase A. PLoS One 2015; 10:e0118341. [PMID: 25719393 PMCID: PMC4342250 DOI: 10.1371/journal.pone.0118341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the human lysosomal enzyme, α-galactosidase A (αGal), leading to strokes, myocardial infarctions, and terminal renal failure, often leading to death in the fourth or fifth decade of life. The enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various glycolipids. Enzyme replacement therapy (ERT) has been approved for the treatment of Fabry disease, but adverse reactions, including immune reactions, make it desirable to generate improved methods for ERT. One approach to circumvent these adverse reactions is the development of derivatives of the enzyme with more activity per mg. It was previously reported that carboxyl-terminal deletions of 2 to 10 amino acids led to increased activity of about 2 to 6-fold. However, this data was qualitative or semi-quantitative and relied on comparison of the amounts of mRNA present in Northern blots with αGal enzyme activity using a transient expression system in COS-1 cells. Here we follow up on this report by constructing and purifying mutant enzymes with deletions of 2, 4, 6, 8, and 10 C-terminal amino acids (Δ2, Δ4, Δ6, Δ8, Δ10) for unambiguous quantitative enzyme assays. The results reported here show that the kcat/Km approximately doubles with deletions of 2, 4, 6 and 10 amino acids (0.8 to 1.7-fold effect) while a deletion of 8 amino acids decreases the kcat/Km (7.2-fold effect). These results indicate that the mutated enzymes with increased activity constructed here would be expected to have a greater therapeutic effect on a per mg basis, and could therefore reduce the likelihood of adverse infusion related reactions in Fabry patients receiving ERT treatment. These results also illustrate the principle that in vitro mutagenesis can be used to generate αGal derivatives with improved enzyme activity.
Collapse
Affiliation(s)
- Mariam Meghdari
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Nicholas Gao
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Abass Abdullahi
- Biology & Medical Lab Technology, Bronx Community College, Bronx, NY, USA
| | - Erin Stokes
- Chemistry Dept., City College of New York, New York, NY, USA
| | - David H. Calhoun
- Chemistry Dept., City College of New York, New York, NY, USA
- * E-mail:
| |
Collapse
|
20
|
Wagemaker G. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders. Hum Gene Ther 2014; 25:862-5. [PMID: 25184354 DOI: 10.1089/hum.2014.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease.
Collapse
Affiliation(s)
- Gerard Wagemaker
- Erasmus University Rotterdam, 3005 LA Rotterdam, The Netherlands
| |
Collapse
|
21
|
Shayman JA, Larsen SD. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases. J Lipid Res 2014; 55:1215-25. [PMID: 24534703 DOI: 10.1194/jlr.r047167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine and Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A. Gene therapy for fabry disease: a review of the literature. BioDrugs 2013; 27:237-46. [PMID: 23575647 DOI: 10.1007/s40259-013-0032-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of the lysosomal enzyme, α-galactosidase A. The lack of adequate enzymatic activity results in a systemic accumulation of neutral glycosphingolipids, predominantly globotriaosylceramide, in the lysosomes of, especially, endothelial and smooth muscle cells of blood vessels. Enzyme replacement therapy is at present the only available specific treatment for Fabry disease; however, this therapy has important drawbacks. Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease. It corresponds to a single gene disorder in which moderately low levels of enzyme activity should be sufficient for clinical efficacy and, thanks to cross-correction mechanisms, the transfection of a small number of cells will potentially correct distant cells too. This article summarizes the studies that have been carried out concerning gene therapy for the treatment of Fabry disease. We briefly review the literature from earlier studies in the 1990s to the current achievements.
Collapse
Affiliation(s)
- Aritz Perez Ruiz de Garibay
- Pharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
23
|
Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, Xu X, Hu S, Zheng Z. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 2013; 16:2150-60. [PMID: 22260784 PMCID: PMC3822985 DOI: 10.1111/j.1582-4934.2012.01523.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiac fibrosis after myocardial infarction (MI) has been identified as a key factor in the development of heart failure. Although dysregulation of microRNA (miRNA) is involved in various pathophysiological processes in the heart, the role of miRNA in fibrosis regulation after MI is not clear. Previously we observed the correlation between fibrosis and the miR-24 expression in hypertrophic hearts, herein we assessed how miR-24 regulates fibrosis after MI. Using qRT-PCR, we showed that miR-24 was down-regulated in the MI heart; the change in miR-24 expression was closely related to extracellular matrix (ECM) remodelling. In vivo, miR-24 could improve heart function and attenuate fibrosis in the infarct border zone of the heart two weeks after MI through intramyocardial injection of Lentiviruses. Moreover, in vitro experiments suggested that up-regulation of miR-24 by synthetic miR-24 precursors could reduce fibrosis and also decrease the differentiation and migration of cardiac fibroblasts (CFs). TGF-β (a pathological mediator of fibrotic disease) increased miR-24 expression, overexpression of miR-24 reduced TGF-β secretion and Smad2/3 phosphorylation in CFs. By performing microarray analyses and bioinformatics analyses, we found furin to be a potential target for miR-24 in fibrosis (furin is a protease which controls latent TGF-β activation processing). Finally, we demonstrated that protein and mRNA levels of furin were regulated by miR-24 in CFs. These findings suggest that miR-24 has a critical role in CF function and cardiac fibrosis after MI through a furin–TGF-β pathway. Thus, miR-24 may be used as a target for treatment of MI and other fibrotic heart diseases.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Treatment of adult MPSI mouse brains with IDUA-expressing mesenchymal stem cells decreases GAG deposition and improves exploratory behavior. GENETIC VACCINES AND THERAPY 2012; 10:2. [PMID: 22520214 PMCID: PMC3404940 DOI: 10.1186/1479-0556-10-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Background Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity. Methods MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses. Results After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months. Conclusions These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.
Collapse
|
25
|
Pacienza N, Yoshimitsu M, Mizue N, Au BCY, Wang JCM, Fan X, Takenaka T, Medin JA. Lentivector transduction improves outcomes over transplantation of human HSCs alone in NOD/SCID/Fabry mice. Mol Ther 2012; 20:1454-61. [PMID: 22472949 DOI: 10.1038/mt.2012.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fabry disease is a lysosomal storage disorder caused by a deficiency of α-galactosidase A (α-gal A) activity that results in progressive globotriaosylceramide (Gb(3)) deposition. We created a fully congenic nonobese diabetic (NOD)/severe combined immunodeficiency (SCID)/Fabry murine line to facilitate the in vivo assessment of human cell-directed therapies for Fabry disease. This pure line was generated after 11 generations of backcrosses and was found, as expected, to have a reduced immune compartment and background α-gal A activity. Next, we transplanted normal human CD34(+) cells transduced with a control (lentiviral vector-enhanced green fluorescent protein (LV-eGFP)) or a therapeutic bicistronic LV (LV-α-gal A/internal ribosome entry site (IRES)/hCD25). While both experimental groups showed similar engraftment levels, only the therapeutic group displayed a significant increase in plasma α-gal A activity. Gb(3) quantification at 12 weeks revealed metabolic correction in the spleen, lung, and liver for both groups. Importantly, only in the therapeutically-transduced cohort was a significant Gb(3) reduction found in the heart and kidney, key target organs for the amelioration of Fabry disease in humans.
Collapse
|
26
|
Engineered human Tmpk fused with truncated cell-surface markers: versatile cell-fate control safety cassettes. Gene Ther 2012; 20:24-34. [PMID: 22241175 DOI: 10.1038/gt.2011.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-fate control gene therapy (CFCGT)-based strategies can augment existing gene therapy and cell transplantation approaches by providing a safety element in the event of deleterious outcomes. Previously, we described a novel enzyme/prodrug combination for CFCGT. Here, we present results employing novel lentiviral constructs harboring sequences for truncated surface molecules (CD19 or low-affinity nerve growth factor receptor) directly fused to that CFCGT cDNA (TmpkF105Y). This confers an enforced one-to-one correlation between cell marking and eradication functions. In-vitro analysis demonstrated the full functionality of the fusion product. Next, low-dose 3'-azido-3'-deoxythymidine (AZT) administration to non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice injected with transduced clonal K562 cells suppressed tumor growth; furthermore, one integrated vector on average was sufficient to mediate cytotoxicity. Further, in a murine xenogeneic leukemia-lymphoma model we also demonstrated in-vivo control over transduced Raji cells. Finally, in a proof-of-principle study to examine the utility of this cassette in combination with a therapeutic cDNA, we integrated this novel CFCGT fusion construct into a lentivector designed for treatment of Fabry disease. Transduction with this vector restored enzyme activity in Fabry cells and retained AZT sensitivity. In addition, human Fabry patient CD34(+) cells showed high transduction efficiencies and retained normal colony-generating capacity when compared with the non-transduced controls. These collective results demonstrated that this novel and broadly applicable fusion system may enhance general safety in gene- and cell-based therapies.
Collapse
|
27
|
Gupta R, Sefton MV. Application of an endothelialized modular construct for islet transplantation in syngeneic and allogeneic immunosuppressed rat models. Tissue Eng Part A 2011; 17:2005-15. [PMID: 21449709 DOI: 10.1089/ten.tea.2010.0542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modular tissue engineering is a novel approach to assemble tissues with an inherent vascularization. In this article, we evaluated whether endothelialized module-driven vascularization enhances islet engraftment in diabetic rats. Two thousand islets were transplanted in the omental pouch of syngeneic and allogeneic immunosuppressed diabetic recipients as free islets, islets in collagen modules, or islets in endothelialized modules. Transplantation of islets in endothelialized modules significantly increased the vessel density compared with controls. Donor green fluorescent protein-positive endothelial cells (ECs) formed vessels in proximity to transplanted islets; donor vessels connected to host vasculature as the vessels included erythrocytes in their lumens and were supported by host smooth muscle cells by 21 days. Transplantation of 2000 islets reversed diabetes in two of five of syngeneic recipients until 60 days, although there was no apparent benefit to islet function of adding ECs relative to collagen modules without EC. However, there was a trend toward increased viability when islets were implanted in endothelialized modules compared with collagen modules at 21 days. Meanwhile, 2000 islets in allogeneic immunosuppressed recipients lowered blood glucose levels short term, but there was graft failure within 1 week. This study explored the simultaneous transplantation of primary ECs with islets in diabetic recipients. The endothelialized modular approach increased vessel density around transplanted islets. Further modulation (i.e., acceleration) of vessel maturation, is presumed necessary to improve islet engraftment.
Collapse
Affiliation(s)
- Rohini Gupta
- Institute of Biomaterials and Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
28
|
Abstract
Functional cardiac tissue was prepared using a modular tissue engineering approach with the goal of creating vascularized tissue. Rat aortic endothelial cells (RAEC) were seeded onto submillimeter-sized modules made of type I bovine collagen supplemented with Matrigel™ (25% v/v) embedded with cardiomyocyte (CM)-enriched neonatal rat heart cells and assembled into a contractile, macroporous, sheet-like construct. Modules (without RAEC) cultured in 10% bovine serum (BS) were more contractile and responsive to external stimulus (lower excitation threshold, higher maximum capture rate, and greater en face fractional area changes) than modules cultured in 10% fetal BS. Incorporating 25% Matrigel in the matrix reduced the excitation threshold and increased the fractional area change relative to collagen only modules (without RAEC). A coculture medium, containing 10% BS, low Mg2+ (0.814mM), and normal glucose (5.5mM), was used to maintain RAEC junction morphology (VE-cadherin) and CM contractility, although the responsiveness of CM was attenuated with RAEC on the modules. Macroporous, sheet-like module constructs were assembled by partially immobilizing a layer of modules in alginate gel until day 8, with or without RAEC. RAEC/CM module sheets were electrically responsive; however, like modules with RAEC this responsiveness was attenuated relative to CM-only sheets. Muscle bundles coexpressing cardiac troponin I and connexin-43 were evident near the perimeter of modules and at intermodule junctions. These results suggest the potential of the modular approach as a platform for building vascularized cardiac tissue.
Collapse
Affiliation(s)
- Brendan M Leung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
29
|
Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv 2010; 28:715-24. [DOI: 10.1016/j.biotechadv.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
|
30
|
Chamberlain MD, Gupta R, Sefton MV. Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed Sprague-Dawley rats. Tissue Eng Part A 2010; 17:151-60. [PMID: 20695789 DOI: 10.1089/ten.tea.2010.0293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modular tissue engineering is a means of building functional, vascularized tissues using small (∼1 mm long×0.5 mm diameter) components. While this approach is being explored for its utility in adipose and cardiac tissue engineering and in islet transplantation, the initial question in this study was to assess the fate of the endothelial cells (EC) after transplantation delivered on the surface of modules, without an embedded cell. Rat aortic EC-covered collagen gel modules were transplanted into the omental pouch of allogeneic (outbred) Sprague-Dawley rats with and without immunosuppressive drug treatment (atorvastatin and tacrolimus) for 3-60 days. There was a significant increase in vessel density at all time points in the drug treated rats as compared to untreated rats. Green fluorescent protein (GFP)-positive donor rat aortic EC migrated from the surface of the modules and formed primitive vessels by day 7. In the untreated rats, the GFP-positive cells were not seen after day 7. In drug-treated rats, GFP-positive vessels matured over time, accumulated erythrocytes, were supported by host smooth muscle cells, and formed chimeric vessels that survived until day 60. This resulted in the formation of a densely vascularized, perfusable network by day 60. To our knowledge, this is the first study that demonstrates that primary unmodified EC, without the addition of supporting cells, form a chimeric and stable vascular bed in allogeneic, although drug-treated, animals.
Collapse
Affiliation(s)
- Michael Dean Chamberlain
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Lee CJ, Fan X, Guo X, Medin JA. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol 2010; 57:115-22. [PMID: 20846825 DOI: 10.1016/j.jjcc.2010.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 02/05/2023]
Abstract
In Fabry disease a deficiency of α-galactosidase A (α-gal A) activity leads to accumulation of globotriaosylceramide (Gb3) in various tissues including the heart. A specific cardiac variant of Fabry disease has also been described. Previously we have demonstrated the feasibility of gene therapy for Fabry disease. Here, to provide efficient transfer and increased specificity of transgene expression, we synthesized lentiviral vectors (LVs) with myocardial-specific promoters including: α-myosin heavy chain (α-MHC), myosin light chain (MLC2v), and cardiac troponin T (cTnT). Initially, neonatal Balb/c mice were injected with such LV constructs engineering expression of luciferase. One month post-injection, we found specific expression of luciferase in hearts of recipient animals when compared with transgene expression driven by the standard EF1-α promoter. To examine the feasibility of long-term therapy specifically targeting the heart, recombinant LV/α-gal A therapeutic vectors with analogous cardiac promoters were generated and injected into numerous neonatal Fabry mice. No immune response against the corrective α-gal A hydrolase was observed in the treated mice. Serum α-gal A activity of 10-week-old Fabry mice was increased in LV/α-gal A-injected animals compared to controls. In 28-week-old Fabry mice we observed significantly decreased Gb3 accumulation. Neonatal injections with LVs harboring cardiac-specific promoters may thus be an effective long-term treatment strategy for heart manifestations and cardiac variant Fabry disease. These results can be also extended to other progressive pathologies of the heart.
Collapse
|
32
|
Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 2010; 29:1-10. [PMID: 20656005 DOI: 10.1016/j.biotechadv.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/15/2023]
Abstract
Monogenic diseases are often severe, life-threatening disorders for which lifelong palliative treatment is the only option. Over the last two decades, a number of strategies have been devised with the aim to treat these diseases with a genetic approach. Gene therapy has been under development for many years, yet suffers from the lack of an effective and safe vector for the delivery of genetic material into cells. More recently, gene targeting by homologous recombination has been proposed as a safer treatment, by specifically correcting disease-causing mutations. However, low efficiency is a major drawback. The emergence of two technologies could overcome some of these obstacles. Terminally differentiated somatic cells can be reprogrammed, using defined factors, to become induced pluripotent stem cells (iPSCs), which can undergo efficient gene mutation correction with the aid of fusion proteins known as zinc finger nucleases (ZFNs). The amalgamation of these two technologies has the potential to break through the current bottleneck in gene therapy and gene targeting.
Collapse
|
33
|
Higuchi K, Yoshimitsu M, Fan X, Guo X, Rasaiah VI, Yen J, Tei C, Takenaka T, Medin JA. Alpha-galactosidase A-Tat fusion enhances storage reduction in hearts and kidneys of Fabry mice. Mol Med 2010; 16:216-21. [PMID: 20454522 DOI: 10.2119/molmed.2009.00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 02/16/2010] [Indexed: 11/06/2022] Open
Abstract
The protein transduction domain from human immunodeficiency virus (HIV) Tat allows proteins to penetrate the cell membrane. Enhanced cellular uptake of therapeutic proteins could benefit a number of disorders. This is especially true for lysosomal storage disorders (LSDs) where enzyme replacement therapy (ERT) and gene therapy have been developed. We developed a novel recombinant lentiviral vector (LV) that engineers expression of alpha-galactosidase A (alpha-gal A)-Tat fusion protein for correction of Fabry disease, the second-most prevalent LSD with manifestations in the brain, kidney and heart. In vitro experiments confirmed mannose-6-phosphate independent uptake of the fusion factor. Next, concentrated therapeutic LV was injected into neonatal Fabry mice. Analysis of tissues at 26 wks demonstrated similar alpha-gal A enzyme activities but enhanced globotriaosylceramide (Gb3) reduction in hearts and kidneys compared with the alpha-gal A LV control. This strategy might advance not only gene therapy for Fabry disease and other LSDs, but also ERT, especially for cardiac Fabry disease.
Collapse
Affiliation(s)
- Koji Higuchi
- University Health Network (UHN), Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshimitsu M, Higuchi K, Fan X, Takao S, Medin JA, Tei C, Takenaka T. Sequencing and characterization of the porcine α-galactosidase A gene: towards the generation of a porcine model for Fabry disease. Mol Biol Rep 2010; 38:3145-52. [PMID: 20131008 DOI: 10.1007/s11033-010-9985-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Fabry disease is an inherited lysosomal disorder caused by a deficiency of alpha-galactosidase A (α-gal A). The systemic accumulation of substrate, mainly globotriaosylceramide (Gb3), results in organ failure. Although Gb3 accumulation has been observed in an α-gal A-deficient mouse model, important clinical manifestations were not seen. The pursuit of effective treatment for Fabry disease through gene therapy, for example, has been hampered by the lack of a relevant large animal model to assess the efficacy and safety of novel therapies. Towards assembling the tools to generate an alternative animal model, we have sequenced and characterized the porcine ortholog of the α-gal A gene. When compared to the human α-gal A, the porcine α-gal A showed a high level of homology in the coding regions and located at chromosome Xq22. Cell lysate and supernatants from Fabry patient-derived fibroblasts transduced with a lentiviral vector (LV) carrying the porcine α-gal A cDNA (LV/porcine α-gal A), showed high levels of α-gal A activity and its enzymological stability was similar to that of human α-gal A. Uptake of secreted porcine α-gal A was observed into non-transduced cells and was partially inhibited by soluble mannose-6-phosphate. Furthermore, Gb3 accumulation was reduced in Fabry patient-derived fibroblasts transduced with the LV/porcine α-gal A. In conclusion, we elucidated and characterized the porcine α-gal A gene and enzyme. Similarity in enzymatic profile and chromosomal location between α-gal A of porcine and human origins may be of great advantage for the development of a large animal model for Fabry disease.
Collapse
Affiliation(s)
- Makoto Yoshimitsu
- Division of Cardiac Repair and Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Silvertown JD, Neschadim A, Liu HN, Shannon P, Walia JS, Kao JC, Robertson J, Summerlee AJ, Medin JA. Relaxin-3 and receptors in the human and rhesus brain and reproductive tissues. ACTA ACUST UNITED AC 2010; 159:44-53. [DOI: 10.1016/j.regpep.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/25/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|
36
|
Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen reduction. Gene Ther 2009; 17:521-30. [PMID: 20033064 DOI: 10.1038/gt.2009.160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pompe disease results from the deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to accumulated glycogen in the heart and the skeletal muscles, which causes cardiomyopathy and muscle weakness. In this study, we tested the feasibility of gene therapy for Pompe disease using a lentivirus vector (LV). Newborn GAA knockout mice were treated with intravenous injection of LV encoding human GAA (hGAA) through the facial superficial temporal vein. The transgene expression in the tissues was analyzed up to 24 weeks after treatment. Our results showed that the recombinant LV was efficient not only in increasing the GAA activity in tissues but also in decreasing their glycogen content. The examination of histological sections showed clearence of the glycogen storage in skeletal and cardiac muscles 16 and 24 weeks after a single vector injection. Levels of expressed hGAA could be detected in serum of treated animals until 24 weeks. No significant immune reaction to transgene was detected in most treated animals. Therefore, we show that LV-mediated delivery system was effective in correcting the biochemical abnormalities and that this gene transfer system might be suitable for further studies on delivering GAA to Pompe disease mouse models.
Collapse
|
37
|
Vascular endothelial growth factor broadens lentivector distribution in the heart after neonatal injection. J Cardiol 2009; 54:245-54. [PMID: 19782262 DOI: 10.1016/j.jjcc.2009.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/15/2009] [Accepted: 05/20/2009] [Indexed: 01/08/2023]
Abstract
For some applications, the success of gene therapy depends on the efficiency of gene transfer into target organs, however, delivery to many tissues is limited. Efforts have been made to improve the efficiency of gene transfer into target organs such as the brain by using mannitol or vascular endothelial growth factor (VEGF) prior to gene delivery, since these treatments have been reported to increase vascular permeability in experimental animals. Here, we investigated the effect of VEGF pretreatment of neonatal mice on the ability of injected lentivirus (LV)--engineering expression of firefly luciferase (luc)--to enhance the transduction of various organs, including the brain and heart. LV/luc was delivered to VEGF-treated neonatal mice via the temporal vein. Whole-body bioluminescence imaging (WBLI) of luciferase expression showed that VEGF pretreatment does not diminish transgene expression over time since it remained steady for up to 12 weeks. Ex vivo imaging of the organs and assessments of organ luciferase activity showed that VEGF pretreatment resulted in significantly increased luciferase expression not only in the heart, but also in the brain, lung, and kidney. This study shows that VEGF may have therapeutic importance to enhance the efficiency of viral gene delivery to the heart, as well as to other target organs.
Collapse
|
38
|
Ramsubir S, Nonaka T, Girbés CB, Carpentier S, Levade T, Medin JA. In vivo delivery of human acid ceramidase via cord blood transplantation and direct injection of lentivirus as novel treatment approaches for Farber disease. Mol Genet Metab 2008; 95:133-41. [PMID: 18805722 PMCID: PMC2614354 DOI: 10.1016/j.ymgme.2008.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/10/2008] [Accepted: 08/10/2008] [Indexed: 11/30/2022]
Abstract
Farber disease is a rare lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (AC) activity and subsequent accumulation of ceramide. Currently, there is no treatment for Farber disease beyond palliative care and most patients succumb to the disorder at a very young age. Previously, our group showed that gene therapy using oncoretroviral vectors (RV) could restore enzyme activity in Farber patient cells. The studies described here employ novel RV and lentiviral (LV) vectors that engineer co-expression of AC and a cell surface marking transgene product, human CD25 (huCD25). Transduction of Farber patient fibroblasts and B cells with these vectors resulted in overexpression of AC and led to a 90% and 50% reduction in the accumulation of ceramide, respectively. Vectors were also evaluated in human hematopoietic stem/progenitor cells (HSPCs) and by direct in vivo delivery in mouse models. In a xenotransplantation model using NOD/SCID mice, we found that transduced CD34(+) cells could repopulate irradiated recipient animals, as measured by CD25 expression. When virus was injected intravenously into mice, soluble CD25 was detected in the plasma and increased AC activity was present in the liver up to 14 weeks post-injection. These findings suggest that vector and transgene expression can persist long-term and offer the potential of a lasting cure. To our knowledge, this is the first report of in vivo testing of direct gene therapy strategies for Farber disease.
Collapse
Affiliation(s)
- Shobha Ramsubir
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Takahiro Nonaka
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Toronto, ON, Canada
| | - Carmen Bedia Girbés
- INSERM, Institut de Médicine Moléculaire de Rangueil, U858, Université Paul Sabatier, Toulouse, France
| | - Stéphane Carpentier
- INSERM, Institut de Médicine Moléculaire de Rangueil, U858, Université Paul Sabatier, Toulouse, France
| | - Thierry Levade
- INSERM, Institut de Médicine Moléculaire de Rangueil, U858, Université Paul Sabatier, Toulouse, France
- Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Neschadim A, McCart JA, Keating A, Medin JA. A roadmap to safe, efficient, and stable lentivirus-mediated gene therapy with hematopoietic cell transplantation. Biol Blood Marrow Transplant 2008; 13:1407-16. [PMID: 18022569 DOI: 10.1016/j.bbmt.2007.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/24/2007] [Indexed: 11/15/2022]
Abstract
Hematopoietic stem cells comprise a prominent target for gene therapy aimed at treating various genetic and acquired disorders. A number of limitations associated with hematopoietic cell transplantation can be circumvented by the use of cells stably modified by retroviral gene transfer. Oncoretroviral and lentiviral vectors offer means for generating efficient and stable transgene expression. This review summarizes the state of the field today in terms of vector development and clinical experimentation. In particular, concerns with the safety of retroviral vectors intended for clinical gene transfer, applicability of preclinical data in directing clinical trial design, and recent research aimed at resolving some of these issues are addressed. Finally, this review underlines the specific advantages offered by lentiviral gene-transfer vectors for gene therapy in stem cells.
Collapse
Affiliation(s)
- Anton Neschadim
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Ramsubir S, Yoshimitsu M, Medin JA. Anti-CD25 Targeted Killing of Bicistronically Transduced Cells: A Novel Safety Mechanism Against Retroviral Genotoxicity. Mol Ther 2007; 15:1174-81. [PMID: 17387334 DOI: 10.1038/sj.mt.6300147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene therapy for Fabry disease, a deficiency in alpha-galactosidase A (alpha-gal A) activity, has the potential to provide a cure for the disorder with a single treatment. Despite modifications to existing vectors, concerns have arisen regarding the risk of genotoxicity associated with the use of retroviruses. To address safety concerns, we propose that expression of a cell surface protein, human CD25 (huCD25) in a bicistronic format, with any therapeutic gene such as alpha-gal A can provide a target that can be used to kill transduced cells selectively should transformative events occur. We show that an anti-CD25 antibody and immunotoxin can specifically target and eliminate transduced leukemia cells expressing CD25. In a murine leukemia model, antibody treatment reduced tumor burden 32-fold and increased survival compared with untreated mice. Furthermore, after a bone marrow transplant of therapeutically transduced cells into Fabry mice, antibody treatment reduced the number of retrovirally transduced huCD25-expressing cells in the peripheral blood. A systemic loss of transduced cells with functional consequences was also evident in the liver and spleen. This proof-of-principle study demonstrates that a targeted antibody can reduce tumor burden and selectively clear bicistronically transduced hematopoietic cells that express a target antigen, thus acting as a built-in safety mechanism.
Collapse
Affiliation(s)
- Shobha Ramsubir
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Yoshimitsu M, Higuchi K, Dawood F, Rasaiah VI, Ayach B, Chen M, Liu P, Medin JA. Correction of cardiac abnormalities in fabry mice by direct intraventricular injection of a recombinant lentiviral vector that engineers expression of alpha-galactosidase A. Circ J 2006; 70:1503-8. [PMID: 17062978 DOI: 10.1253/circj.70.1503] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recombinant lentiviral vectors (LVs) offer the possibility of stable, long-term expression of transgenes even in non-dividing cells. In the present study this vector system was applied to a clinically relevant cardiovascular problem. METHODS AND RESULTS Fabry disease results from deficient activity of alpha-galactosidase A (alpha-gal A) and cardiac abnormalities are a common and an important cause of death in patients with the disease. A therapeutic LV that delivers the alpha-gal A cDNA has been synthesized. In vitro studies established efficient transduction of the H9c2 rat cardiomyocytes and showed overexpression of enGFP (control) and alpha-gal A. In in vivo studies, the enGFP cDNA was transferred into C57BL/6 mouse hearts by direct intraventricular injection. Next, in a mouse model of Fabry disease, the recombinant therapeutic construct was delivered analogously. In cardiac tissue, alpha-gal A activity rose to 23% of normal levels at day 7 after LV injection, which is encouraging because levels of correction approximating 5% of normal may be curative for this disorder. There was also a corresponding reduction in globotriaosylceramide accumulation. Other organs assayed showed no detectable changes in alpha-gal A activity levels in injected animals. CONCLUSION A localized benefit of directly injecting a therapeutic LV into the heart has been shown, confirming the utility of this delivery system for research and therapy for a variety of cardiovascular disorders.
Collapse
Affiliation(s)
- Makoto Yoshimitsu
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M1, Canada
| | | | | | | | | | | | | | | |
Collapse
|