1
|
Chwirot A, Migdał P, Florek M, Stygar D, Kublicka A, Michalczyk K, Napierkowska S, Uchańska O, Matczuk A, Rączkowski W, Bażanów B. Dogs are a susceptible species to human adenovirus 36 infection: New insights into the host range of the virus causing infectious obesity. Vet Microbiol 2025; 302:110369. [PMID: 39823713 DOI: 10.1016/j.vetmic.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
The prevalence of obesity within the human population is escalating globally yearly. Obesity constitutes a complex ailment with diverse etiological factors. Recently, the infectious side of obesity aetiology, implicating pathogens such as human adenovirus 36 (HAdV-D36), has gained attention. Research indicates that HAdV-D36 can infect humans and various animal species, including mice, monkeys, and chickens, inducing obesity in the animals. The present study aimed to confirm whether companion animals, like dogs, can also host HAdV-D36 and which biochemical markers can be helpful to indicate its presence. The blood of 118 canine subjects was analysed using serological techniques for determining the presence of antibodies and screened for biochemical parameters like leptin, cholesterol, and triglycerides. The presence of anti-HAdV-D36 antibodies was confirmed in 80 of the 118 tested individuals. The investigation of the relationship between antibody levels and the concentrations of cholesterol, triglycerides, and leptin in blood serum revealed a positive correlation between antibody titers and triglyceride levels in the tested samples. Furthermore, utilizing cell cultures facilitated successful isolation of HAdV-D36 from the adipose tissue of 14 dogs under investigation. Our study adds to general knowledge of the range of hosts susceptible to the pathogen in question and highlights the discrepancies in the virus mechanisms found in the existing literature. Given the diverse host range of the virus, which extends to companion animals, a zoonotic potential cannot be ruled out, which, however, requires further extensive research.
Collapse
Affiliation(s)
- Aleksandra Chwirot
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38 Street, Wrocław 51-630, Poland; Inter-Departmental Laboratory of Instrumental Analysis and Preparation, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12 Street, Wrocław 53-114, Poland.
| | - Magdalena Florek
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, Zabrze 41-808, Poland.
| | - Agata Kublicka
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, Zabrze 41-808, Poland.
| | - Skarlet Napierkowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49 Street, Wrocław 50-366, Poland.
| | - Oliwia Uchańska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49 Street, Wrocław 50-366, Poland.
| | - Anna Matczuk
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| | - Wojciech Rączkowski
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| | - Barbara Bażanów
- Division of Microbiology, Department of Pathology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Street, Wrocław 50-375, Poland.
| |
Collapse
|
2
|
Arroyo-Xochihua O, Arbez-Evangelista C, Miranda-Contreras E, De León-Ramírez YM, Díaz-Edgar M, Sampieri CL, Arroyo-Helguera O, Álvarez-Bañuelos MT. Adenovirus 36 Seropositivity Is Related to Inflammation and Imbalance Between Oxidative Stress and Antioxidant Status Regardless of Body Mass Index in Mexican Population. Curr Issues Mol Biol 2025; 47:166. [PMID: 40136420 PMCID: PMC11941246 DOI: 10.3390/cimb47030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The etiology of obesity has been associated with genetic and epigenetic factors, hormonal changes, unhealthy lifestyle habits, and infectious agents such as human adenovirus-36 (HAdV-36). Viral infections induce reactive oxygen species, and the imbalance between oxidative stress/antioxidant results in fat accumulation. In the Mexican population, little is known about the frequency of HAdV-36 and its effect on the balance between antioxidants and oxidants, inflammation, and metabolic markers. The purpose of our study was to evaluate the frequency of HAdV-36 seroprevalence and its relation to body mass index (BMI), lipid profiles, glucose levels, inflammation, and levels of antioxidants and oxidative stress in a representative sample. A cross-sectional study was carried out on 112 healthy adults between 18 and 28 years old, who were divided into four groups according to their BMI: underweight (BMI < 18.5); normal weight (BMI 18.5-24.9); overweight (BMI ≥ 25); and obese (BMI ≥ 30). Blood samples were taken to evaluate lipid and glucose profiles, as well as antioxidant and oxidative stress status, using colorimetric techniques. Seropositivity for HAdV-36 and levels of TNF-α, IL-6, and cortisol were determined using an enzyme-linked immunosorbent assay. The HAdV-36 frequency was 15.6% in underweight subjects, 18.7% in the normal-weight subjects, 34.37% in the overweight subjects, and 31.24% in the obese subjects. The subjects who were positive for HAdV-36 seroprevalence had increased levels of IL-6, cortisol, and oxidative stress, independently of BMI. The HAdV-36-positive subjects had reduced LDL-C and HDL-C levels only in the low-weight groups. Glutathione and SOD levels increased in the underweight and normal-weight subjects with positive HAdV-36 seroprevalence, while catalase levels decreased in the normal-weight, overweight, and obese subjects. In conclusion, for the first time, an HAdV-36 seroprevalence in the adult Mexican population is reported which was higher and had a relation with the presence of inflammation, alterations in the lipid profile, and imbalance between oxidative stress and antioxidant status, regardless of BMI. The oxidative stress/antioxidant imbalance could be participating in the stimulation of white adipose tissue deposition.
Collapse
Affiliation(s)
- Omar Arroyo-Xochihua
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico; (O.A.-X.); (C.A.-E.)
| | - Cristian Arbez-Evangelista
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo Ayala S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico; (O.A.-X.); (C.A.-E.)
| | - Edgar Miranda-Contreras
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| | - Yeimy Mar De León-Ramírez
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| | - Montserrat Díaz-Edgar
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| | - Clara Luz Sampieri
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| | - Omar Arroyo-Helguera
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| | - María Teresa Álvarez-Bañuelos
- Laboratorio de Biomedicina y Salud Pública, Instituto de Salud Pública, Universidad Veracruzana, Av. Luís Castelazo Ayala S/N, Col. Industrial Animas, Xalapa 91190, Mexico; (E.M.-C.); (Y.M.D.L.-R.); (M.D.-E.); (C.L.S.); (M.T.Á.-B.)
| |
Collapse
|
3
|
Manríquez V, Brito R, Pavez M, Sapunar J, Fonseca L, Molina V, Ortiz E, Baeza R, Reimer C, Charles M, Schneider C, Hirata MH, Hirata RDC, Cerda A. Adenovirus 36 seropositivity is related to the expression of anti-adipogenic lncRNAs GAS5 and MEG3 in adipose tissue obtained from subjects with obesity. Int J Obes (Lond) 2024; 48:1414-1420. [PMID: 38898229 DOI: 10.1038/s41366-024-01555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Human Adenovirus D-36 (HAdV-D36) promotes adipogenesis in cellular and animal models and may contribute to the development of human obesity. Induction of PPARγ by HAdV-D36 seems to have a central role in the maintenance of adipogenic status. There is limited information about epigenetic mechanisms contributing to this process in human adipose tissue. This study evaluated the expression of lncRNAs (ADINR, GAS5 and MEG3) and miRNAs (miR-18a and miR-140) involved in the adipogenic process in visceral adipose tissue (VAT) of subjects with obesity with previous HAdV-D36 infection (seropositive) and unexposed (seronegative) subjects with obesity. METHODS Individuals with obesity were grouped according to the presence of antibodies against HAdV-D36 (Seropositive: HAdV-D36[+], n = 29; and Seronegative: HAdV-D36[-], n = 28). Additionally, a group of individuals without obesity (n = 17) was selected as a control group. The HAdV-D36 serology was carried out by ELISA. Biopsies of VAT were obtained during an elective and clinically indicated surgery (bariatric or cholecystectomy). RNA extraction from VAT was performed and the expression of PPARG and non-coding RNAs was evaluated by qPCR. RESULTS HAdV-D36[+] individuals had lower expression of anti-adipogenic lncRNAs GAS5 (p = 0.016) and MEG3 (p = 0.035) compared with HAdV-D36[-] subjects with obesity. HAdV-D36[+] subjects also presented increased expression of the adipogenic miRNA miR-18a (p = 0.042), which has been reported to be modulated by GAS5 through a RNA sponging mechanism during adipogenic differentiation. Additionally, an inverse correlation of GAS5 with PPARG expression was observed (r = -0.917, p = 0.01). CONCLUSION Our results suggest that HAdV-D36 is related to non-coding RNAs implicated in adipogenesis, representing a potential mechanism by which previous HAdV-D36 infection could be associated with the long-term maintenance of adipogenic status, probably through the GAS5/miR-18a axis.
Collapse
Affiliation(s)
- Víctor Manríquez
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Roberto Brito
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Monica Pavez
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jorge Sapunar
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile
| | - Luis Fonseca
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Víctor Molina
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Eugenia Ortiz
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Romilio Baeza
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Camila Reimer
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Maria Charles
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Constance Schneider
- Centro de Tratamiento de la Obesidad, Clínica Alemana de Temuco, Temuco, Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile.
- Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile.
- Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
4
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Lee C, Park A, Lee JY. In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D. J Microbiol 2024; 62:409-418. [PMID: 38689047 DOI: 10.1007/s12275-024-00132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
Collapse
Affiliation(s)
- Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
6
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
7
|
Márquez V, Ballesteros G, Dobner T, González RA. Adipocyte commitment of 3T3-L1 cells is required to support human adenovirus 36 productive replication concurrent with altered lipid and glucose metabolism. Front Cell Infect Microbiol 2022; 12:1016200. [PMID: 36237435 PMCID: PMC9553024 DOI: 10.3389/fcimb.2022.1016200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Human adenovirus 36 (HAdV-D36) can cause obesity in animal models, induces an adipogenic effect and increased adipocyte differentiation in cell culture. HAdV-D36 infection alters gene expression and the metabolism of the infected cells resulting in increased glucose internalization and triglyceride accumulation. Although HAdV-D36 prevalence correlates with obesity in humans, whether human preadipocytes may be targeted in vivo has not been determined and metabolic reprogramming of preadipocytes has not been explored in the context of the viral replication cycle. HAdV-D36 infection of the mouse fibroblasts, 3T3-L1 cells, which can differentiate into adipocytes, promotes proliferation and differentiation, but replication of the virus in these cells is abortive as indicated by short-lived transient expression of viral mRNA and a progressive loss of viral DNA. Therefore, we have evaluated whether a productive viral replication cycle can be established in the 3T3-L1 preadipocyte model under conditions that drive the cell differentiation process. For this purpose, viral mRNA levels and viral DNA replication were measured by RT-qPCR and qPCR, respectively, and viral progeny production was determined by plaque assay. The lipogenic effect of infection was evaluated with Oil Red O (ORO) staining, and expression of genes that control lipid and glucose metabolism was measured by RT-qPCR. In the context of a viral productive cycle, HAdV-D36 modulated the expression of the adipogenic genes, C/EBPα, C/EBPβ and PPARγ, as well as intracellular lipid accumulation, and the infection was accompanied by altered expression of glucolytic genes. The results show that only adipocyte-committed 3T3-L1 cells are permissive for the expression of early and late viral mRNAs, as well as viral DNA replication and progeny production, supporting productive HAdV-D36 viral replication, indicating that a greater effect on adipogenesis occurs in adipocytes that support productive viral replication.
Collapse
Affiliation(s)
- Verónica Márquez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Grisel Ballesteros
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Ramón A. González,
| |
Collapse
|
8
|
López-Ortega O, Moreno-Corona NC, Cruz-Holguin VJ, Garcia-Gonzalez LD, Helguera-Repetto AC, Romero-Valdovinos M, Arevalo-Romero H, Cedillo-Barron L, León-Juárez M. The Immune Response in Adipocytes and Their Susceptibility to Infection: A Possible Relationship with Infectobesity. Int J Mol Sci 2022; 23:ijms23116154. [PMID: 35682832 PMCID: PMC9181511 DOI: 10.3390/ijms23116154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The current obesity pandemic has been expanding in both developing and developed countries. This suggests that the factors contributing to this condition need to be reconsidered since some new factors are arising as etiological causes of this disease. Moreover, recent clinical and experimental findings have shown an association between the progress of obesity and some infections, and the functions of adipose tissues, which involve cell metabolism and adipokine release, among others. Furthermore, it has recently been reported that adipocytes could either be reservoirs for these pathogens or play an active role in this process. In addition, there is abundant evidence indicating that during obesity, the immune system is exacerbated, suggesting an increased susceptibility of the patient to the development of several forms of illness or death. Thus, there could be a relationship between infection as a trigger for an increase in adipose cells and the impact on the metabolism that contributes to the development of obesity. In this review, we describe the findings concerning the role of adipose tissue as a mediator in the immune response as well as the possible role of adipocytes as infection targets, with both roles constituting a possible cause of obesity.
Collapse
Affiliation(s)
- Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015 Paris, France;
| | - Nidia Carolina Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, 75015 Paris, France;
| | - Victor Javier Cruz-Holguin
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico;
| | - Luis Didier Garcia-Gonzalez
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
| | - Addy Cecilia Helguera-Repetto
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
| | - Mirza Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Calzada de Tlalpan 4800, Col. Sección XVI, Ciudad de México 14080, Mexico;
| | - Haruki Arevalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica Multidisciplinaria de Jalpa de Méndez, Jalpa de Méndez 86205, Mexico;
| | - Leticia Cedillo-Barron
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Mexico City 07360, Mexico;
| | - Moisés León-Juárez
- Departamento de Immunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico; (V.J.C.-H.); (L.D.G.-G.); (A.C.H.-R.)
- Correspondence:
| |
Collapse
|
9
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
10
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Tarantino G, Citro V, Cataldi M. Findings from Studies Are Congruent with Obesity Having a Viral Origin, but What about Obesity-Related NAFLD? Viruses 2021; 13:1285. [PMID: 34372491 PMCID: PMC8310150 DOI: 10.3390/v13071285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical Medicine and Surgery, “Federico II” University Medical School of Naples, 80131 Napoli, Italy
| | - Vincenzo Citro
- Department of General Medicine, “Umberto I” Hospital, Nocera Inferiore (Sa), 84014 Nocera Inferiore, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, “Federico II” University of Naples, 80131 Napoli, Italy;
| |
Collapse
|
12
|
Kuiper-Makris C, Selle J, Nüsken E, Dötsch J, Alejandre Alcazar MA. Perinatal Nutritional and Metabolic Pathways: Early Origins of Chronic Lung Diseases. Front Med (Lausanne) 2021; 8:667315. [PMID: 34211985 PMCID: PMC8239134 DOI: 10.3389/fmed.2021.667315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lung development is not completed at birth, but expands beyond infancy, rendering the lung highly susceptible to injury. Exposure to various influences during a critical window of organ growth can interfere with the finely-tuned process of development and induce pathological processes with aberrant alveolarization and long-term structural and functional sequelae. This concept of developmental origins of chronic disease has been coined as perinatal programming. Some adverse perinatal factors, including prematurity along with respiratory support, are well-recognized to induce bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar and microvascular formation as well as lung matrix remodeling. While the pathogenesis of various experimental models focus on oxygen toxicity, mechanical ventilation and inflammation, the role of nutrition before and after birth remain poorly investigated. There is accumulating clinical and experimental evidence that intrauterine growth restriction (IUGR) as a consequence of limited nutritive supply due to placental insufficiency or maternal malnutrition is a major risk factor for BPD and impaired lung function later in life. In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal weight gain and early childhood obesity is associated with wheezing and adverse clinical course of chronic lung diseases, such as asthma. While the link between perinatal nutrition and lung health has been described, the underlying mechanisms remain poorly understood. There are initial data showing that inflammatory and nutrient sensing processes are involved in programming of alveolarization, pulmonary angiogenesis, and composition of extracellular matrix. Here, we provide a comprehensive overview of the current knowledge regarding the impact of perinatal metabolism and nutrition on the lung and beyond the cardiopulmonary system as well as possible mechanisms determining the individual susceptibility to CLD early in life. We aim to emphasize the importance of unraveling the mechanisms of perinatal metabolic programming to develop novel preventive and therapeutic avenues.
Collapse
Affiliation(s)
- Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Nüsken
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Member of the German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Gießen, Germany
| |
Collapse
|
13
|
Marjani A, Khatami A, Saadati H, Asghari M, Razizadeh MH, Abbasi A, Zarei M, Beikzadeh L, Soleimani A. Association of adenovirus 36 infection and obesity; An updated meta-analysis of community-based studies. Rev Med Virol 2021; 32:e2255. [PMID: 34028108 DOI: 10.1002/rmv.2255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
As a health problem, obesity has several risk factors; it has been suggested that human adenovirus type 36 (HAdV-36) infections may possibly be associated with obesity. This updated meta-analysis was designed and conducted with an emphasis on articles published from 2015 to 2020. The PubMed, Web of Science, and Scopus databases were searched up to 1 December 2020. Overall, pooled prevalence and odds ratio of antibodies against HAdV-36 in people with obesity and controls was assessed among different ages. Case-control and cohort studies were included in the analysis. The overall prevalence of HAdV-36 infection in obese population was 31% (CI: 0.24%-0.38%) which was 32% in cases and 27% in controls, respectively; a significant association was found between the cases and the controls (OR, 1.84; 95% CI, 1.39-2.43), especially in children younger than 18 years of age (OR, 2.44; 95% CI, 1.85-3.22). A significant association between adenovirus infection and obesity was found, especially in adolescents.
Collapse
Affiliation(s)
- Arezoo Marjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Saadati
- Department of Epidemiology and Biostatistics, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Milad Asghari
- Department of Microbiology, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Aida Abbasi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Leila Beikzadeh
- Department of Medical Laboratory Sciences, Faculty of Para-Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Soleimani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
14
|
Wanjalla CN, McDonnell WJ, Ram R, Chopra A, Gangula R, Leary S, Mashayekhi M, Simmons JD, Warren CM, Bailin S, Gabriel CL, Guo L, Furch BD, Lima MC, Woodward BO, Hannah L, Pilkinton MA, Fuller DT, Kawai K, Virmani R, Finn AV, Hasty AH, Mallal SA, Kalams SA, Koethe JR. Single-cell analysis shows that adipose tissue of persons with both HIV and diabetes is enriched for clonal, cytotoxic, and CMV-specific CD4+ T cells. CELL REPORTS MEDICINE 2021; 2:100205. [PMID: 33665640 PMCID: PMC7897802 DOI: 10.1016/j.xcrm.2021.100205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 09/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Persons with HIV are at increased risk for diabetes mellitus compared with individuals without HIV. Adipose tissue is an important regulator of glucose and lipid metabolism, and adipose tissue T cells modulate local inflammatory responses and, by extension, adipocyte function. Persons with HIV and diabetes have a high proportion of CX3CR1+ GPR56+ CD57+ (C-G-C+) CD4+ T cells in adipose tissue, a subset of which are cytomegalovirus specific, whereas individuals with diabetes but without HIV have predominantly CD69+ CD4+ T cells. Adipose tissue CD69+ and C-G-C+ CD4+ T cell subsets demonstrate higher receptor clonality compared with the same cells in blood, potentially reflecting antigen-driven expansion, but C-G-C+ CD4+ T cells have a more inflammatory and cytotoxic RNA transcriptome. Future studies will explore whether viral antigens have a role in recruitment and proliferation of pro-inflammatory C-G-C+ CD4+ T cells in adipose tissue of persons with HIV.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J McDonnell
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,10x Genomics, Pleasanton, CA, USA
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua D Simmons
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian M Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, USA
| | - Briana D Furch
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan C Lima
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Beverly O Woodward
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - LaToya Hannah
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark A Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Simon A Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA.,VANTAGE, Vanderbilt University Medical Center, Nashville, TN, USA.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Spyros A Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Translational Immunology and Infectious Disease, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
15
|
Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev 2021; 37:e3377. [PMID: 32588943 PMCID: PMC7361201 DOI: 10.1002/dmrr.3377] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of the coronavirus disease 2019 (Covid-19) has become an evolving worldwide health crisis. With the rising prevalence of obesity and diabetes has come an increasing awareness of their impacts on infectious diseases, including increased risk for various infections, post-infection complications and mortality from critical infections. Although epidemiological and clinical characteristics of Covid-19 have been constantly reported, no article has systematically illustrated the role of obesity and diabetes in Covid-19, or how Covid-19 affects obesity and diabetes, or special treatment in these at-risk populations. Here, we present a synthesis of the recent advances in our understanding of the relationships between obesity, diabetes and Covid-19 along with the underlying mechanisms, and provide special treatment guidance for these at-risk populations.
Collapse
Affiliation(s)
- Yue Zhou
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Jingwei Chi
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Wenshan Lv
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| |
Collapse
|
16
|
da Silva Fernandes J, Schuelter-Trevisol F, Cancelier ACL, Gonçalves e Silva HC, de Sousa DG, Atkinson RL, Trevisol DJ. Adenovirus 36 prevalence and association with human obesity: a systematic review. Int J Obes (Lond) 2021; 45:1342-1356. [PMID: 33753885 PMCID: PMC7983349 DOI: 10.1038/s41366-021-00805-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Obesity has numerous etiologies and includes biological factors. Studies have demonstrated that the human adenovirus subtype 36 (Adv36) is an adipogenic agent and causes metabolic alterations. Study results on the prevalence of Adv36 and clinical effects in humans vary substantially. This was a systematic review to summarize the studies on the prevalence of Adv36 infection and its association with human obesity. METHODS A systematic literature review was conducted using the preferred reporting items for systematic reviews and meta-analysis (PRISMA). Observational or experimental studies found in the Medline, Embase, LILACS, Science Direct and SciELO databases that presented results on the prevalence of Adv36 in humans were included. RESULTS Thirty-seven studies were screened. A total of 10,300 adults aged 18-70 years and 4585 children and adolescents aged 3-18 years were assessed. The average prevalence of Adv36 among adults was 22.9%, ranging from 5.5% to 49.8%. Among children and adolescents, the average prevalence of Adv36 was 28.9%, ranging from 7.5% to 73.9%. There was a positive statistical relationship between Adv36 and weight gain, obesity, or metabolic changes in 31 studies. However, in four studies there was no association with obesity, and in one, no association was described. One of the studies showed an inverse correlation, i.e., Adv36 was a protective factor against obesity. CONCLUSION Strong evidence suggested a positive association between viral infection and obesity. However, due to the multi-causality of obesity and heterogeneity of studies, diagnostic tests should be standardized and easily accessible by the population to estimate the overall prevalence of Adv36 infection and its association with obesity.
Collapse
Affiliation(s)
- Jaime da Silva Fernandes
- grid.412297.b0000 0001 0648 9933Postgraduate Program in Health Sciences at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana Schuelter-Trevisol
- grid.412297.b0000 0001 0648 9933Postgraduate Program in Health Sciences at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,Clinical Research Center of Hospital Nossa Senhora da Conceição, Tubarão, Santa Catarina Brazil
| | - Ana Carolina Lobor Cancelier
- grid.412297.b0000 0001 0648 9933Postgraduate Program in Health Sciences at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Helena Caetano Gonçalves e Silva
- grid.412297.b0000 0001 0648 9933Postgraduate Program in Health Sciences at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daiana Gomes de Sousa
- grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Richard L. Atkinson
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, School of Medicine, Richmond, VA USA
| | - Daisson José Trevisol
- grid.412297.b0000 0001 0648 9933Postgraduate Program in Health Sciences at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil ,grid.412297.b0000 0001 0648 9933Medical School at University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
17
|
Cancelier ACL, Rezin GT, Fernandes J, Silva HCG, Trevisol DJ, Atkinson RL, Schuelter-Trevisol F. Adenovirus-36 as one of the causes of obesity: the review of the pathophysiology. Nutr Res 2020; 86:60-67. [PMID: 33551256 DOI: 10.1016/j.nutres.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
The dramatic increase of people affected by obesity worldwide seems to be influenced by external factors independent of eating habits, physical exercise, or genetic characteristics. There may be a number of such factors, but one hypothesis is that there is person-to-person transmission, causing an epidemic effect, as occurs with infectious diseases. In animal models, experimental infection with human adenovirus-36 (Adv36) causes obesity. Humans cannot be experimentally infected, but a number of studies found a correlation of positive serology for Adv36 with overweight/obesity in humans. In vitro studies have shown that Adv36 accelerates the differentiation and proliferation of preadipocytes into adipocytes and increases their lipid concentration. Another viral mechanism involved is the activation of a noninsulin-dependent process that increases glucose uptake, mainly in adipose tissue and muscle. The increased glucose, coupled with increased lipogenesis due to increased fatty acid synthase and the action of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in stimulating adipocyte differentiation from adult stem cells enhances fat accumulation within the adipocytes. In studies conducted to date, the Adv36 E4 open reading frame 1 gene (E4orf1), which activates the glucose transporter protein isoform 4 (GLUT4) and glucose transporter protein isoform 1 (GLUT1) glucose transporters, appears to play a major role in the virus adipogenesis. The aim of this study was to review the pathophysiology of obesity and the role of Adv36.
Collapse
Affiliation(s)
- Ana Carolina Lobor Cancelier
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil;.
| | - Jaime Fernandes
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | | | - Daisson José Trevisol
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| | - Richard Lee Atkinson
- Obetech Obesity Research Center and Virginia Commonwealth University, Richmond, VA, USA
| | - Fabiana Schuelter-Trevisol
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina at Tubarão, Santa Catarina, Brazil
| |
Collapse
|
18
|
Magdy Beshbishy A, Hetta HF, Hussein DE, Saati AA, C. Uba C, Rivero-Perez N, Zaragoza-Bastida A, Shah MA, Behl T, Batiha GES. Factors Associated with Increased Morbidity and Mortality of Obese and Overweight COVID-19 Patients. BIOLOGY 2020; 9:E280. [PMID: 32916925 PMCID: PMC7564335 DOI: 10.3390/biology9090280] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Overweight and obesity are defined as an unnecessary accumulation of fat, which poses a risk to health. It is a well-identified risk factor for increased mortality due to heightened rates of heart disease, certain cancers, musculoskeletal disorders, and bacterial, protozoan and viral infections. The increasing prevalence of obesity is of concern, as conventional pathogenesis may indeed be increased in obese hosts rather than healthy hosts, especially during this COVID-19 pandemic. COVID-19 is a new disease and we do not have the luxury of cumulative data. Obesity activates the development of gene induced hypoxia and adipogenesis in obese animals. Several factors can influence obesity, for example, stress can increase the body weight by allowing people to consume high amounts of food with a higher propensity to consume palatable food. Obesity is a risk factor for the development of immune-mediated and some inflammatory-mediated diseases, including atherosclerosis and psoriasis, leading to a dampened immune response to infectious agents, leading to weaker post-infection impacts. Moreover, the obese host creates a special microenvironment for disease pathogenesis, marked by persistent low-grade inflammation. Therefore, it is advisable to sustain healthy eating habits by increasing the consumption of various plant-based and low-fat foods to protect our bodies and decrease the risk of infectious diseases, especially COVID-19.
Collapse
Affiliation(s)
- Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Diaa E. Hussein
- Researcher, Department of Food Hygiene, Agricultural Research Center (ARC), Animal Health Research Institute, Port of Alexandria 26514, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Christian C. Uba
- Department of Microbiology, Paul University, Awka, Anambra State PMB 6074, Nigeria;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico; (N.R.-P.); (A.Z.-B.)
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
19
|
Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol 2020; 57:759-764. [PMID: 32249357 PMCID: PMC7130453 DOI: 10.1007/s00592-020-01522-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
AIMS Analyze the relationship between obesity and influenza. METHODS Basal hormone milieu, defective response of both innate and adaptive immune system and sedentariness are major determinants in the severity of influenza viral infection in obese patients. Being overweight not only increases the risk of infection and of complications for the single obese person, but a large prevalence of obese individuals within the population might increase the chance of appearance of more virulent viral strain, prolongs the virus shedding throughout the total population and eventually might increase overall mortality rate of an influenza pandemic. RESULTS Waiting for the development of a vaccination against COVID-19, isolation of positive cases and social distancing are the primary interventions. Nonetheless, evidence from previous influenza pandemics suggests the following interventions aimed at improving immune response: (1) lose weight with a mild caloric restriction; (2) include AMPK activators and PPAR gamma activators in the drug treatment for obesity associated with diabetes; and (3) practice mild-to-moderate physical exercise. CONCLUSIONS Due to prolonged viral shedding, quarantine in obese subjects should likely be longer than normal weight individuals.
Collapse
Affiliation(s)
- Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
- Department of Biomedical Sciences and Health, Università degli Studi di Milano, Milan, Italy.
| | - Maria Grazia Radaelli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
20
|
Lessan N, Saradalekshmi KR, Alkaf B, Majeed M, Barakat MT, Lee ZPL, Atkinson RL. Obesity and Diabetes in an Arab population: Role of Adenovirus 36 Infection. Sci Rep 2020; 10:8107. [PMID: 32415247 PMCID: PMC7229214 DOI: 10.1038/s41598-020-65008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
Prior infection with adenovirus 36 (Adv36) has been associated with increased adiposity, improved insulin sensitivity, and a lower prevalence of diabetes. This study investigated the prevalence of Adv36 seropositivity and its association with obesity and diabetes among adults attending a diabetes centre in the UAE.Participants (N = 973) with different weight and glucose tolerance categories were recruited. Adv36 seropositivity (Adv36 + ) was assessed using ELISA. Differences among groups were analyzed using statistical tests as appropriate to the data. Prevalence of Adv36+ in the study population was 47%, with no significant difference in obese and non-obese subgroups (42.5% vs 49.6% respectively; p=non-significant). Females were more likely to be Adv36+ compared to males (odds ratio 1.78; 95% CI 1.36–2.32, p < 0.001). We found no significant association between Adv36 seropositivity and different BMI categories, or glucose tolerance status. In our population, the effect of Adv36 infection on lipid profile varied between healthy individuals and individuals with obesity. Adv36 infection is more prevalent in the UAE than in other countries but has no association with obesity. Our study found that females were more likely to be Adv36 positive regardless of weight or diabetes status.
Collapse
Affiliation(s)
- Nader Lessan
- Imperial College London Diabetes Centre, Abu Dhabi, UAE.
| | | | - Budour Alkaf
- Imperial College London Diabetes Centre, Abu Dhabi, UAE
| | - Maria Majeed
- Imperial College London Diabetes Centre, Abu Dhabi, UAE
| | | | | | - Richard L Atkinson
- Virginia Commonwealth University, Richmond, VA, USA.,Obetech Obesity Research Center, Richmond, VA, USA
| |
Collapse
|
21
|
Tian Y, Jennings J, Gong Y, Sang Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules 2019; 9:biom9110726. [PMID: 31726661 PMCID: PMC6920831 DOI: 10.3390/biom9110726] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity is now a prevalent disease worldwide and has a multi-factorial etiology. Several viruses or virus-like agents including members of adenoviridae, herpesviridae, slow virus (prion), and hepatitides, have been associated with obesity; meanwhile obese patients are shown to be more susceptible to viral infections such as during influenza and dengue epidemics. We examined the co-factorial role of viral infections, particularly of the persistent cases, in synergy with high-fat diet in induction of obesity. Antiviral interferons (IFNs), as key immune regulators against viral infections and in autoimmunity, emerge to be a pivotal player in the regulation of adipogenesis. In this review, we examine the recent evidence indicating that gut microbiota uphold intrinsic IFN signaling, which is extensively involved in the regulation of lipid metabolism. However, the prolonged IFN responses during persistent viral infections and obesogenesis comprise reciprocal causality between virus susceptibility and obesity. Furthermore, some IFN subtypes have shown therapeutic potency in their anti-inflammation and anti-obesity activity.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. RECENT FINDINGS Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 2.112, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Akheruzzaman M, Hegde V, Dhurandhar NV. Twenty-five years of research about adipogenic adenoviruses: A systematic review. Obes Rev 2019; 20:499-509. [PMID: 30562840 DOI: 10.1111/obr.12808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
Abstract
Infectious etiology is implicated in chronic diseases such as gastric ulcer or atherosclerosis. However, "infection" is a recent term in the field of obesity. Since the first report in 1982 of obesity due to infection, several microbes have been linked to obesity. Among the adipogenic microbes, avian adenovirus SMAM-1 and human adenovirus Ad36 have been studied most extensively for the past 25 years. Here, we present a systematic review of literature about SMAM-1 and Ad36. Reports from North America, Europe, and Asia reveal strong evidence that Ad36 causes obesity in animals and paradoxically improves glycemic control, and in vitro data provides mechanistic explanation. Considering that experimental Ad36 infection of humans is unlikely, its causative role in human obesity or glycemic control has not been demonstrated unequivocally. Nonetheless, most, but not all, observational studies in children and adults link Ad36 infection to obesity and improvement in glycemic control. The E4orf1 gene of Ad36 was identified as responsible for better glycemic control. Overall, 25 years have considerably advanced knowledge about the role of infection in obesity. Potential translational benefits include the development of vaccines to prevent Ad36-induced obesity and drug development based on the E4orf1 protein to improve glycemic control.
Collapse
Affiliation(s)
- Md Akheruzzaman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Vijay Hegde
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
24
|
Jiao Y, Liang X, Hou J, Aisa Y, Wu H, Zhang Z, Nuermaimaiti N, Zhao Y, Jiang S, Guan Y. Adenovirus type 36 regulates adipose stem cell differentiation and glucolipid metabolism through the PI3K/Akt/FoxO1/PPARγ signaling pathway. Lipids Health Dis 2019; 18:70. [PMID: 30902099 PMCID: PMC6429705 DOI: 10.1186/s12944-019-1004-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background This study aims to investigate the molecular mechanism of Adenovirus type 36 (Ad36) in adipocyte differentiation and glucolipid metabolism. Methods Rat obesity model was established by Ad36 infection and high-fat diet, respectively. Comparison of the body weight, clinical biochemical indicators, insulin sensitivity and lipid heterotopic deposition between these two models was performed. Ad36-induced adipocyte in vitro model was also established. The binding rate of FoxO1, PPARγ and its target gene promoter was detected using ChIP. The mRNA and protein expression levels of PPARγ and downstream target genes were detected by RT-PCR and Western blot, respectively. Oil red O staining was used to measure differentiation into adipocyte. Wortmannin (WM), inhibitor of PI3K, was used to act on Ad36-induced hADSCs. Results Ad36-induced obese rats did not exhibit disorders in blood glucose and blood TG, insulin resistance and lipid ectopic deposition. The expression of Adipoq, Lpin1 and Glut4 in the adipose tissue increased. Oil red O staining showed that Ad36 induced the differentiation of hAMSCs into human adipocytes in vitro. During this process, the binding rate of FoxO1 and PPARγ promoter regions was weakened. However, the binding rate of the transcription factor PPARγ to its target genes Acc, Adipoq, Lpin1 and Glut4 was enhanced, and thus increased the protein expression of P-FoxO1, PPARγ2, ACC, LPIN1, GLUT4 and ADIPOQ. The PI3K inhibitor Wortmannin reduced the expression of P-Akt, P-FoxO1 and PPARγ2, thereby inhibiting adipogenesis of hADSC. Conclusion Ad36 may promote fatty acid and triglyceride synthesis, and improve insulin sensitivity by affecting the PI3K/Akt/FoxO1/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Yi Jiao
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Xiaodi Liang
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Jianfei Hou
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yiliyasi Aisa
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Han Wu
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Zhilu Zhang
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Nuerbiye Nuermaimaiti
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yang Zhao
- Department of Burn and Plastic Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Sheng Jiang
- Department of Endocrinology, the First Affiliated Hospital of Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China.
| | - Yaqun Guan
- Department of Biochemistry, Preclinical Medicine College, Xinjiang Medical University, No. 393 Xinyi Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
25
|
Sapunar J, Fonseca L, Molina V, Ortiz E, Barra MI, Reimer C, Charles M, Schneider C, Ortiz M, Brito R, Manríquez V, Pavez M, Cerda A. Adenovirus 36 seropositivity is related to obesity risk, glycemic control, and leptin levels in Chilean subjects. Int J Obes (Lond) 2019; 44:159-166. [PMID: 30659258 DOI: 10.1038/s41366-019-0321-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Adenovirus 36 (Ad-36) has been associated to adiposity in animal and in vitro studies. Ad-36 seropositivity has also been reported to contribute to obesity risk in children and adult populations. We investigated the relationship of Ad-36 serology with obesity and metabolic parameters in a Chilean population. SUBJECTS AND METHODS Clinical and anthropometric data were obtained and blood samples were drawn from 99 lean (BMI: 18.5-24.9 kg/m2) and 151 obese (BMI > 30 kg/m2) subjects. Laboratory tests included lipid profile as well as glucose, insulin, leptin, and adiponectin levels. Ad-36 seropositivity was evaluated in serum samples by enzyme-linked immunosorbent assay. RESULTS Seroprevalence of Ad-36 was higher in the obese group (58%) than in lean controls (34%) demonstrating that individuals previously infected with Ad-36 have higher risk of obesity in the study population (OR: 2.67, 95%CI: 1.58-4.51, p < 0.001). Interestingly, Ad-36 was related to lower concentrations of triglycerides and VLDL cholesterol in lean subjects (p = 0.049) and lower leptin in obese individuals (p = 0.014). Previous Ad-36 infection was also related to lower glycemia, insulinemia, and HOMA-IR (p < 0.05) in obese subjects who were not under antidiabetic drugs. CONCLUSIONS Our results provide evidence of the contribution of previous Ad-36 infection to an increased risk of obesity in adult Chilean population. Ad-36 seropositivity was also associated to lipid profile, glycemic control, and leptin levels in adult Chilean population.
Collapse
Affiliation(s)
- Jorge Sapunar
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile.,Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile.,Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
| | - Luis Fonseca
- Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Víctor Molina
- Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Eugenia Ortiz
- Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Maria Ines Barra
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile.,Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Camila Reimer
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile.,Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Maria Charles
- Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Constance Schneider
- Centro de Tratamiento de la Obesidad, Clinica Alemana de Temuco, Temuco, Chile
| | - Manuel Ortiz
- Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile.,Department of Psychology, Universidad de La Frontera, Temuco, Chile
| | - Roberto Brito
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Víctor Manríquez
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Monica Pavez
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Alvaro Cerda
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile. .,Centro de Investigación en Epidemiología Cardiovascular y Nutricional, EPICYN, Universidad de La Frontera, Temuco, Chile. .,Department of Basic Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
26
|
Baranowski T, Motil KJ, Moreno JP. Multi-etiological Perspective on Child Obesity Prevention. Curr Nutr Rep 2019; 8:10.1007/s13668-019-0256-3. [PMID: 30649714 PMCID: PMC6635107 DOI: 10.1007/s13668-019-0256-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The simple energy balance model of obesity is inconsistent with the available findings on obesity etiology, prevention, and treatment. Yet, the most commonly stated causes of pediatric obesity are predicated on this model. A more comprehensive biological model is needed upon which to base behavioral interventions aimed at obesity prevention. In this light, alternative etiologies are little investigated and thereby poorly understood. RECENT FINDINGS Three candidate alternate etiologies are briefly presented: infectobesity, the gut microbiome, and circadian rhythms. Behavioral child obesity preventive investigators need to collaborate with biological colleagues to more intensively analyze the behavioral aspects of these etiologies and to generate innovative procedures for preventing a multi-etiological problem, e.g., group risk analysis, triaging for likely causes of obesity.
Collapse
Affiliation(s)
- Tom Baranowski
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA.
| | - Kathleen J Motil
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| | - Jennette P Moreno
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX, 77030, USA
| |
Collapse
|
27
|
The relationship between human adenovirus 36 and obesity in Chinese Han population. Biosci Rep 2018; 38:BSR20180553. [PMID: 29907627 PMCID: PMC6435506 DOI: 10.1042/bsr20180553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 01/09/2023] Open
Abstract
The study aimed to explore the prevalence of human adenovirus-36 (HAdV-36) infection and the association of HAdV-36 with obesity in Chinese Han population. A qualitative determination using ELISA was performed to determine by duplication of the antibodies to HAdV-36 in the serum samples. Logistic regression analysis was used to analyze the association between HAdV-36 seropositivity and obesity. The overall HAdV-36 seroprevalence was 49.8% amongst 824 participants. The prevalence of HAdV-36 seropositive was 42.9 and 51.4% in the obese and non-obese participants, respectively, which was not statistically significant (P=0.05). There were significant differences in the anthropometric and biochemical parameters observed between the two groups except for height (P=0.067) and total cholesterol (TC) (P<0.29). After the adjustment for age and gender, HAdV-36 seropositivity was a protective factor for obesity (odds ratio (OR) = 0.69, 95% confidence intervals (95% CI) = 0.48-0.97, P=0.03). In the male population, the adjusted OR for AD-36 antibody-positive status was statistically decreased for obese adults (OR = 0.59; 95% CI = 0.39-0.91; P=0.02). However, the similar result was not obtained in the female population (OR = 0.90; 95% CI = 0.48-1.67; P=0.73). We found a high prevalence of HAdV-36 infection in China and significant association between HAdV-36 infection and obesity or weight gain after the adjustment for age and gender. The HAdV-36 infection may be related to the weight loss in Chinese Han population, especially in the male group, which needs to be further confirmed.
Collapse
|
28
|
Fakhoury H, Osman S, Ghazale N, Dahdah N, El-Sibai M, Kanaan A. Enhanced Glucose Uptake in Phenylbutyric Acid-Treated 3T3-L1 Adipocytes. CELL AND TISSUE BIOLOGY 2018; 12:48-56. [DOI: 10.1134/s1990519x18010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/02/2025]
|
29
|
Molloy CT, Adkins LJ, Griffin C, Singer K, Weinberg JB. Mouse adenovirus type 1 infection of adipose tissue. Virus Res 2017; 244:90-98. [PMID: 29141203 DOI: 10.1016/j.virusres.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Abstract
Human adenovirus (HAdV) type 36 seropositivity has been linked to obesity in humans. That link is supported by a small number of studies using HAdV-36 infection of animals that are not natural hosts for HAdVs. In this study, we infected mice with mouse adenovirus type 1 (MAV-1), a mouse pathogen, to determine whether MAV-1 infected adipose tissue and was associated with adipose tissue inflammation and obesity. We detected MAV-1 in adipose tissue during acute MAV-1 infection, but we did not detect virus-induced increases in adipose tissue cytokine expression or histological evidence of adipose tissue inflammation during acute infection. MAV-1 did not persist in adipose tissue at later times, and we did not detect long-term adipose inflammation, increased adipose tissue mass, or body weight in infected mice. Our data indicate that MAV-1 is not associated with obesity in infected mice.
Collapse
Affiliation(s)
- Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Laura J Adkins
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Cameron Griffin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Obesity is a multifactorial disease that is now endemic throughout most of the world. Although addressing proximate causes of obesity (excess energy intake and reduced energy expenditure) have been longstanding global health priorities, the problem has continued to worsen at the global level. RECENT FINDINGS Numerous microbial agents cause obesity in various experimental models-a phenomena known as infectobesity. Several of the same agents alter metabolic function in human cells and are associated with human obesity or metabolic dysfunction in humans. We address the evidence for a role in the genesis of obesity for viral agents in five broad categories: adenoviridae, herpesviridae, phages, transmissible spongiform encephalopathies (slow virus), and other encephalitides and hepatitides. Despite the importance of this topic area, there are many persistent knowledge gaps that need to be resolved. We discuss factors motivating further research and recommend that future infectobesity investigation should be more comprehensive, leveraged, interventional, and patient-centered.
Collapse
Affiliation(s)
- Jameson D Voss
- United States Air Force School of Aerospace Medicine, Epidemiology Consult Service Division, 2510 Fifth Street, Building 840, Wright-Patterson AFB, OH, 45433, USA
| | - Nikhil V Dhurandhar
- Department of Nutritional Sciences, Texas Tech University, Box 41270, Lubbock, TX, 79409-1240, USA.
| |
Collapse
|
31
|
Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Int J Chronic Dis 2016; 2016:7030795. [PMID: 28004036 PMCID: PMC5143720 DOI: 10.1155/2016/7030795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
The global obesity epidemic, dubbed “globesity” by the World Health Organisation, is a pressing public health issue. The aetiology of obesity is multifactorial incorporating both genetic and environmental factors. Recently, epidemiological studies have observed an association between microbes and obesity. Obesity-promoting microbiome and resultant gut barrier disintegration have been implicated as key factors facilitating metabolic endotoxaemia. This is an influx of bacterial endotoxins into the systemic circulation, believed to underpin obesity pathogenesis. Adipocyte dysfunction and subsequent adipokine secretion characterised by low grade inflammation, were conventionally attributed to persistent hyperlipidaemia. They were thought of as pivotal in perpetuating obesity. It is now debated whether infection and endotoxaemia are also implicated in initiating and perpetuating low grade inflammation. The fact that obesity has a prevalence of over 600 million and serves as a risk factor for chronic diseases including cardiovascular disease and type 2 diabetes mellitus is testament to the importance of exploring the role of microbes in obesity pathobiology. It is on this basis that Massachusetts General Hospital is sponsoring the Faecal Microbiota Transplant for Obesity and Metabolism clinical trial, to study the impact of microbiome composition on weight. The association of microbes with obesity, namely, adenovirus infection and metabolic endotoxaemia, is reviewed.
Collapse
|
32
|
Abstract
Obesity, which causes some cancer types and other diseases, is not only a global public health problem, but also a factor that affects country's economy. Endocrinal, environmental, neuronal and genetic factors have important roles on the etiology of obesity. When the possibility that SMAM‐1 animal virus could have a relationship with obesity was observed, obesity studies focused on human adenoviruses. Adenovirus‐36 was first isolated in 1978 and was the first human adenovirus to be tested in terms of infectobesity. Both in vivo and in vitro studies proved the strong relationship between adenovirus‐36 presence and obesity. Therefore, a large-scale study incorporating various ethnicities and age groups is required to investigate the worldwide epidemic of obesity and its links with viruses.
Collapse
Affiliation(s)
- Karamese Murat
- Faculty of Medicine, Department of Medical Microbiology, Kafkas University, 36100 Kars, Turkey
| | - Altoparlak Ulku
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
33
|
Xu MY, Cao B, Wang DF, Guo JH, Chen KL, Shi M, Yin J, Lu QB. Human Adenovirus 36 Infection Increased the Risk of Obesity: A Meta-Analysis Update. Medicine (Baltimore) 2015; 94:e2357. [PMID: 26705235 PMCID: PMC4698001 DOI: 10.1097/md.0000000000002357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human adenovirus 36 (HAdV-36), as the key pathogen, was supposed and discussed to be associated with obesity. We searched the references on the association between HAdV-36 infection and obesity with the different epidemiological methods, to explore the relationship with a larger sample size by meta-analysis and compare the differences of epidemiological methods and population subsets by the subgroup analyses.We conducted literature search on the association between HAdV-36 infections and obesity in English or Chinese published up to July 1, 2015. The primary outcome was the HAdV-36 infection rate in the obese and lean groups; the secondary outcomes were the BMI level and BMI z-score in the HAdV-36 positive and negative groups. The pooled odds ratio (OR) was calculated for the primary outcome; the standardized mean differences (SMDs) were calculated for the secondary and third outcomes. Prediction interval (PI) was graphically presented in the forest plot of the random effect meta-analyses. Metaregression analysis and subgroup analysis were performed.Finally 24 references with 10,191 study subjects were included in the meta-analysis. The obesity subjects were more likely to be infected with HAdV-36 compared to the lean controls (OR = 2.00; 95%CI: 1.46, 2.74; PI: 0.59, 6.76; P < 0.001) with a high heterogeneity (I = 80.1%; P < 0.001) estimated by the random effect model. Subgroup analysis demonstrated that the pooled OR of HAdV-36 infection for obesity were 1.77 (95%CI: 1.19, 2.63; PI: 0.44, 7.03; P = 0.005) and 2.26 (95%CI: 1.67, 3.07; PI: 1.45, 3.54; P < 0.001) in the adults and children, respectively. Compared to the HAdV-36 negative subjects, the SMD of BMI was 0.28 (95% CI: 0.08, 0.47; PI: -0.53, 1.08; P = 0.006) in the HAdV-36 positive subjects with a high heterogeneity (I = 86.5%; P < 0.001). The BMI z-score in the children with HAdV-36 infection was higher than those without HAdV-36 infection (SMD = 0.19; 95%CI: -0.31, 0.70; PI: -2.10, 2.49), which had no significantly statistical difference (P = 0.453).HAdV-36 infection increased the risk of obesity. HAdV-36 also increased the risk of weight gain in adults, which was not observed in children.
Collapse
Affiliation(s)
- Mei-Yan Xu
- From the Department of Nutrition, Aerospace Center Hospital (M-YX, JY); School of Public Health, Peking University (BC, D-FW, Q-BL); Department of Ultrasound (J-HG); Department of Respiratory, Aerospace Center Hospital (K-LC); and Department of Clinical Nutrition, China-Japan Friendship Hospital, Beijing, P.R. China (MS)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
DUŠÁTKOVÁ L, ZAMRAZILOVÁ H, ALDHOON HAINEROVÁ I, ATKINSON RL, SEDLÁČKOVÁ B, LEE ZP, VČELÁK J, BENDLOVÁ B, KUNEŠOVÁ M, HAINER V. Association of Adenovirus 36 Infection With Obesity-Related Gene Variants in Adolescents. Physiol Res 2015; 64:S197-202. [DOI: 10.33549/physiolres.933131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Both, common gene variants and human adenovirus 36 (Adv36) are involved in the pathogenesis of obesity. The potential relationship between these two pathogenic factors has not yet been investigated. The aim of our study was to examine the association of obesity susceptibility loci with Adv36 status. Genotyping of ten gene variants (in/near TMEM18, SH2B1, KCTD15, PCSK1, BDNF, SEC16B, MC4R, FTO) and analysis of Adv36 antibodies was performed in 1,027 Czech adolescents aged 13.0-17.9 years. Variants of two genes (PCSK1 and BDNF) were associated with Adv36 seropositivity. A higher prevalence of Adv36 antibody positivity was observed in obesity risk allele carriers of PCSK1 rs6232, rs6235 and BDNF rs4923461 vs. non-carriers (χ2=6.59, p=0.010; χ2=7.56, p=0.023 and χ2=6.84, p=0.033, respectively). The increased risk of Adv36 positivity was also found in PCSK1 variants: rs6232 (OR=1.67, 95 % CI 1.11-2.49, p=0.016) and rs6235 (OR=1.34, 95 % CI 1.08-1.67, p=0.010). PCSK1 rs6232 and BDNF rs925946 variants were closely associated with Adv36 status in boys and girls, respectively (χ2=5.09, p=0.024; χ2=7.29, p=0.026). Furthermore, PCSK1 rs6235 risk allele was related to Adv36 seropositivity (χ2=6.85, p=0.033) in overweight/obese subgroup. In conclusion, our results suggest that obesity risk variants of PCSK1 and BDNF genes may be related to Adv36 infection.
Collapse
Affiliation(s)
- L. DUŠÁTKOVÁ
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
HAINER V, ZAMRAZILOVÁ H, KUNEŠOVÁ M, BENDLOVÁ B, ALDHOON-HAINEROVÁ I. Obesity and Infection: Reciprocal Causality. Physiol Res 2015; 64:S105-19. [DOI: 10.33549/physiolres.933130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Associations between different infectious agents and obesity have been reported in humans for over thirty years. In many cases, as in nosocomial infections, this relationship reflects the greater susceptibility of obese individuals to infection due to impaired immunity. In such cases, the infection is not related to obesity as a causal factor but represents a complication of obesity. In contrast, several infections have been suggested as potential causal factors in human obesity. However, evidence of a causal linkage to human obesity has only been provided for adenovirus 36 (Adv36). This virus activates lipogenic and proinflammatory pathways in adipose tissue, improves insulin sensitivity, lipid profile and hepatic steatosis. The E4orf1 gene of Adv36 exerts insulin senzitizing effects, but is devoid of its pro-inflammatory modalities. The development of a vaccine to prevent Adv36-induced obesity or the use of E4orf1 as a ligand for novel antidiabetic drugs could open new horizons in the prophylaxis and treatment of obesity and diabetes. More experimental and clinical studies are needed to elucidate the mutual relations between infection and obesity, identify additional infectious agents causing human obesity, as well as define the conditions that predispose obese individuals to specific infections.
Collapse
Affiliation(s)
- V. HAINER
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
36
|
Kocazeybek B, Saribas S, Ergin S. The role of Ad-36 as a risk factor in males with gynecomastia. Med Hypotheses 2015; 85:992-6. [PMID: 26394544 DOI: 10.1016/j.mehy.2015.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 12/13/2022]
Abstract
Gynecomastia is highly prevalent worldwide and Adenovirus-36 (Ad-36), recently implicated in increased adipose tissue deposition due to its affinity for adipose tissue, is a potential etiological agent in the development of obesity and therefore we hypothesized that Ad-36 may also play a role in the development of gynecomastia by possibly accompanying increased regional adiposity. To support our hypothesis, we conducted a study that included 33 adult males with gynecomastia (PG) and 15 adult males as the patient control group (HCG). Leptin and adiponectin levels were monitored using ELISA. A significant difference in Ad-36 antibody positivity was found between the groups (p<0.05). Average leptin levels were found to be higher, but average adiponectin levels were found to be lower in Ad-36 Ab(+) patient group. No Ad-36 DNA was detected in any tissue samples. In conclusion, we hypothesize that low-grade chronic inflammation, which was caused by Ad-36 infection, possibly caused an increase in circulating leptin. This in turn may have caused an increase in local or circulating estrogens and/or the estrogen/androgen ratio by stimulating the aromatase enzyme activity in adipose stromal cells and breast tissues. We suggest that gynecomastia may develop following an increase in aromatase enzyme activity, by which more oestrogen is produced and the estrogen-androgen balance disrupted. Also, regional adipose tissue enlargements may cause the excessive production of estrogens leading to gynecomastia. Adipose tissue has been recognized as a major endocrine organ in recent years. Another plausible explanation is excessive aromatization of androgens to estrogens by peripheral adipose tissue may promote gynecomastia in males. Moreover, our results suggest that there might be a relationship between Ad-36 and gynecomastia.
Collapse
Affiliation(s)
- Bekir Kocazeybek
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Suat Saribas
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey
| | - Sevgi Ergin
- Istanbul University, Cerrahpasa Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey.
| |
Collapse
|
37
|
Voss JD, Atkinson RL, Dhurandhar NV. Role of adenoviruses in obesity. Rev Med Virol 2015; 25:379-87. [PMID: 26352001 DOI: 10.1002/rmv.1852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Five human adenovirus subtypes, Ad5, Ad9, Ad31, Ad36, and Ad37, and a non-human adenovirus, SMAM1, are linked to increased adiposity in vitro or in vivo. Experimental infection with Ad5, Ad36, and Ad37 produced excess adiposity or weight gain in animals. Ad9 and Ad31 increase fat storage in tissue culture but are not associated with animal or human obesity. Ad36 is the most extensively studied adipogenic adenovirus and is correlated with some measure of overweight/obesity in humans from multiple countries. The correlation is strongest and most consistent in children, but some studies have been negative in both children and adults. About 30% of overweight/obese children and adults and about 15-20% of lean individuals have Ad36 antibodies in epidemiologic studies. The mechanisms of action of Ad36 are due to the early gene 4, open reading frame 1 (E4-ORF1). Blocking E4-ORF1 with siRNA prevents the effects of Ad36, and transfection of lentivirus with E4-ORF1 reproduces the Ad36 effects. Increased adiposity is caused by stimulation of at least three pathways by Ad36. Cell membrane glucose receptors are increased via the Ras pathway, leading to increased intracellular glucose. Fatty acid synthase is increased, which converts the glucose to fatty acids. Finally, peroxisome proliferator-activated receptor-γ is increased, resulting in differentiation of adult stem cells into adipocytes. CONCLUSIONS several adenoviruses increase adiposity in animals and are associated with obesity in humans. There are critical gaps in the literature needing further investigation including evaluation of other adenovirus subtypes and better research designs to improve the strength of causal inferences.
Collapse
Affiliation(s)
- Jameson D Voss
- Epidemiology Consult Division, United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH, USA
| | - Richard L Atkinson
- Virginia Obesity Research Institute, Richmond, VA, USA.,Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
38
|
Bil-Lula I, Krzywonos-Zawadzka A, Sawicki G, Woźniak M. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation. J Med Virol 2015; 88:400-7. [PMID: 26297921 DOI: 10.1002/jmv.24362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/15/2023]
Abstract
The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells.
Collapse
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Grzegorz Sawicki
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Mieczysław Woźniak
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
39
|
Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, Scherer PE. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab 2015; 4:653-64. [PMID: 26500839 PMCID: PMC4588421 DOI: 10.1016/j.molmet.2015.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. Inducible activation of the distal branch of the insulin pathway in adipocytes. Insulin-sparing characteristics during glucose tolerance testing. Chronic activation of the distal Ras-ERK-MAPK signaling pathway. Reduced body-weight during metabolic challenge. Preserved carbohydrate metabolism at the expense of lipid metabolism.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Violeta I Gallardo-Montejano
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhao V Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vijay Hegde
- Department of Infection and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikhil V Dhurandhar
- Department of Infection and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
40
|
Adenovirus 36 and Obesity: An Overview. Viruses 2015; 7:3719-40. [PMID: 26184280 PMCID: PMC4517116 DOI: 10.3390/v7072787] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed.
Collapse
|
41
|
The relationship between adenovirus-36 seropositivity, obesity and metabolic profile in Turkish children and adults. Epidemiol Infect 2015; 143:3550-6. [PMID: 25876626 DOI: 10.1017/s0950268815000679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity potentially arising from viral infection is known as 'infectobesity'. The latest reports suggest that adenovirus-36 (Adv36) is related to obesity in adults and children. Our aim was not only to determine the Adv36 seropositivity in both obese and non-obese children and adults, but also to investigate correlations between antibody positivity and serum lipid profiles. Both Adv36 positivity and tumour-necrosis-factor-alpha, leptin and interleukin-6 levels were detected in blood samples collected from 146 children and 130 adults by ELISA. Fasting plasma triglycerides, total cholesterol and low-density lipoprotein levels were also measured. Adv36 positivity was determined to be 27·1% and 6% in obese and non-obese children and 17·5% and 4% in obese and non-obese adults, respectively. There was no difference with regard to total cholesterol, low-density lipoprotein, triglyceride, tumour-necrosis-factor-alpha and interleukin-6 levels (P > 0·05). However, there was a significant difference between groups in terms of leptin levels (P < 0·05). We determined the prevalence of Adv36 positivity in obese children and adults. Our results showed that Adv36 may be an obesity agent for both adults and children, parallel with current literature data. However, the available data on a possible relationship between Adv36 infection and obesity both in children and adults do not completely solve the problem.
Collapse
|
42
|
Adenovirus 36 attenuates weight loss from exercise but improves glycemic control by increasing mitochondrial activity in the liver. PLoS One 2014; 9:e114534. [PMID: 25479564 PMCID: PMC4257667 DOI: 10.1371/journal.pone.0114534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/10/2014] [Indexed: 12/17/2022] Open
Abstract
Human adenovirus type 36 (Ad36) as an obesity agent induces adiposity by increasing glucose uptake and promoting chronic inflammation in fat tissues; in contrast, exercise reduces total body fat and inflammation. Our objective was to determine the association between Ad36 and the effects of exercise on inflammation and glycemic control. In the human trials (n = 54), Korean children (aged 12–14 years) exercised for 60 min on three occasions each week for 2 months. We compared the body mass index (BMI) Z-scores before and after exercise. C57BL/6 mice were infected with Ad36 and Ad2 as a control, and these mice exercised for 12 weeks postinfection. After the exercise period, we determined the serum parameters and assessed the presence of inflammation and the mitochondrial function in the organs. Ad36-seropositive children who were subjected to a supervised exercise regimen had high BMI Z-scores whereas Ad36-seronegative children had lower scores. Similarly, Ad36-infected mice were resistant to weight loss and exhibited chronic inflammation of their adipose tissues despite frequent exercise. However, Ad36 combined with exercise reduced the levels of serum glucose, nonesterified fatty acids, total cholesterol, and insulin in virus-infected mice. Interestingly, virus infection increased the mitochondrial function in the liver, as demonstrated by the numbers of mitochondria, cytochrome c oxidase activity, and transcription of key mitochondrial genes. Therefore Ad36 counteracts the weight-loss effect of exercise and maintains the chronic inflammatory state, but glycemic control is improved by exercise synergistically because of increased mitochondrial activity in the liver.
Collapse
|
43
|
Almgren M, Atkinson RL, Hilding A, He J, Brismar K, Schalling M, Ostenson CG, Lavebratt C. Human adenovirus-36 is uncommon in type 2 diabetes and is associated with increased insulin sensitivity in adults in Sweden. Ann Med 2014; 46:539-46. [PMID: 25045929 DOI: 10.3109/07853890.2014.935469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human adenovirus-36 (Adv36) increases adiposity, but also upregulates distal insulin signaling in vitro in human adipose and muscle tissue and in vivo in the rodent independently of adiposity. Accordingly, healthy adults and children with antibodies against Adv36 had increased insulin sensitivity and reduced hepatic lipid accumulation. We hypothesized that Adv36 infection would be less frequent in individuals with type 2 diabetes or impaired glycemic control. METHODS Presence of antibodies against Adv36 was analyzed for association to type 2 diabetes or impaired glycemic control in a two-wave population-based sample of well-characterized adults (n = 1734). Indices of impaired glycemic control included oral glucose tolerance, and circulating fasting levels of glucose, insulin, and insulin-like growth factor binding protein-1 (IGFBP-1). RESULTS Adv36 seropositivity was more common in those with normal glucose tolerance (NGT) than in those with diabetes (females: OR 17.2, 95% CI 4.0-74.3; males: OR 3.5, 95% CI 1.8-6.7). Also, females with NGT had higher frequency of Adv36 seropositivity than females with prediabetes (impaired glucose tolerance and/or impaired fasting glucose; OR 1.8, 95% CI 1.1-3.1). Within the female prediabetes group Adv36 seropositivity was associated with higher insulin sensitivity reflected by reduced HOMA-IR and increased IGFBP-1. CONCLUSION Adv36 infection is associated with lower occurrence of type 2 diabetes and better insulin sensitivity in adults, particularly among females.
Collapse
Affiliation(s)
- Malin Almgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bil-Lula I, Sochocka M, Zatońska K, Szuba A, Sawicki G, Woźniak M. Adenovirus type 9 enhances differentiation and decreases cytokine release from preadipocytes. J Med Virol 2014; 87:230-9. [DOI: 10.1002/jmv.24009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
| | - Marta Sochocka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Science; Wroclaw Poland
| | - Katarzyna Zatońska
- Department of Social Medicine; Wroclaw Medical University; Wroclaw Poland
| | - Andrzej Szuba
- Department of Clinical Nursing; Wroclaw Medical University; Wroclaw Poland
| | - Grzegorz Sawicki
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| | - Mieczysław Woźniak
- Department of Clinical Chemistry; Wroclaw Medical University; Wroclaw Poland
- Department of Pharmacology; University of Saskatchewan, College of Medicine; Saskatoon Canada
| |
Collapse
|
45
|
Shang Q, Wang H, Song Y, Wei L, Lavebratt C, Zhang F, Gu H. Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects. Obesity (Silver Spring) 2014; 22:895-900. [PMID: 23804409 DOI: 10.1002/oby.20533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Serological studies on the relationship between adenovirus 36 (Ad36) and an increased risk of obesity development have shown conflicting results. We reviewed the published studies and carried out a meta-analysis to explore this relationship. METHODS PubMed was searched until December 2012 for the relative references with sufficient information to estimate odds ratios (ORs) and 95% confidence intervals (CIs). A total of 11 case-control studies, including 2508 obese subjects and 3005 controls, were selected. RESULTS Compared with nonobese controls, Ad36 infection significantly increased the obesity risk by a pooled OR of 1.60 (95% CI = 1.14-2.25; P < 0.01). Meta-regression showed that the types of subject and obesity assessments were potential risk factors. In the subgroup analysis, a significantly increased risk was found in children (OR = 1.95; 95% CI = 1.34-2.85; z = 3.45; P < 0.01) and those with an obesity assessment of BMI ≥ 30 kg/cm2 (OR = 1.89; 95% CI = 1.15-3.10; P < 0.05). CONCLUSIONS Ad36 infection is associated with an increased risk of obesity development. To our knowledge, this is the first report to reveal the significant relationship in children with a serological data analysis.
Collapse
Affiliation(s)
- Qinglong Shang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China; Heilongjiang key Laboratory of Infection and Immunity, Heilongjiang Province, China; Pathogenic-Biological key laboratory, Heilongjiang Higher Education Institutions, 150081, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Genoni G, Prodam F, Marolda A, Giglione E, Demarchi I, Bellone S, Bona G. Obesity and infection: two sides of one coin. Eur J Pediatr 2014; 173:25-32. [PMID: 24146165 DOI: 10.1007/s00431-013-2178-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
The prevalence of obesity has exponentially risen worldwide. The etiology of obesity is multifactorial, and genetic inheritance and behavioral/environmental causes are considered the main etiological factors. Moreover, evidence that specific infections might promote the development of obesity has steadily accumulated. Only a few works investigate the impact of obesity on the immune response to infections and the risk of infections in the obese population. The aim of this paper was to review the available data regarding the various aspects of the association between obesity and infections and to highlight the possibility that infectious agents may have an etiological role in obesity, an idea known as "infectobesity". Several microbes have been considered as possible promoter of obesity, but most of the data concern adenovirus-36 that exerts an adipogenic action mainly via a direct effect on adipose tissue leading to weight gain, at least in animal models.Obesity affects the immune response leading to an increased susceptibility to infections. Obese adults and children show an increased incidence of both nosocomial and community-acquired infections. Furthermore, obesity may alter the pharmacokinetics of antimicrobial drugs and impact on vaccine response. However, the various aspects of the association of obesity infections remain poorly studied, and a call to research is necessary to better investigate the problem.In conclusion, obesity impacts millions globally, and greater understanding of its etiology and its effects on immunity, infections, and prevention and management strategies is a key public health concern.
Collapse
Affiliation(s)
- Giulia Genoni
- SCDU of Pediatrics, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, Novara, 28100, Italy,
| | | | | | | | | | | | | |
Collapse
|
47
|
Hur SJ, Kim DH, Chun SC, Lee SK. Effect of adenovirus and influenza virus infection on obesity. Life Sci 2013; 93:531-5. [PMID: 24007799 DOI: 10.1016/j.lfs.2013.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 11/25/2022]
Abstract
The purpose of this review is to provide an overview of the effects of adenovirus and influenza virus infections on obesity in various experimental models. We reviewed studies that were conducted within the past 10 years and were related to virus infection and obesity prevalence. Here, we discuss a different causal relationship between adenovirus and influenza infections with obesity. Adenovirus infection can cause obesity, whereas obesity can be a risk factor for increasing influenza virus infection and increases the risk of morbidity and mortality. The prevalence of obesity due to adenovirus infections may be due to an increase in glucose uptake and reduction in lipolysis caused by an increase in corticosterone secretion. Adenovirus infections may lead to increases in appetite by decreasing norepinephrine and leptin levels and also cause immune dysfunction. The relationship between obesity and influenza virus infection could be summarized by the following features: decreases in memory T-cell functionality and interferon (IFN)-α, IFN-β, and IFN-γ mRNA expression, increases in viral titer and infiltration, and impaired dendritic cell function in obese individuals. Moreover, leptin resistance may play an important role in increasing influenza virus infections in obese individuals. In conclusion, prevention of adenovirus infections could be a good approach for reducing obesity prevalence, and prevention of obesity could reduce influenza virus infections from the point of view of viral infections and obesity.
Collapse
Affiliation(s)
- Sun Jin Hur
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Laing EM, Tripp RA, Pollock NK, Baile CA, Della-Fera MA, Rayalam S, Tompkins SM, Keys DA, Lewis RD. Adenovirus 36, adiposity, and bone strength in late-adolescent females. J Bone Miner Res 2013; 28:489-96. [PMID: 23296755 PMCID: PMC5705225 DOI: 10.1002/jbmr.1776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/27/2012] [Accepted: 09/10/2012] [Indexed: 12/16/2022]
Abstract
Adenovirus 36 (Ad36) is the only adenovirus to date that has been linked with obesity in humans. Our previous studies in late-adolescent females suggest that excess weight in the form of fat mass is associated with lower cortical bone strength. The purpose of this study was to assess the relationship between Ad36-specific antibodies, adiposity, and bone strength in our sample of late-adolescent females. A cross-sectional study of 115 females aged 18 to 19 years was performed. Participants were classified according to adiposity by dual-energy X-ray absorptiometry (body fat percentage as normal-fat [ < 32% body fat; n = 93] or high-fat [ ≥ 32% body fat; n = 22]), and according to the presence of Ad36-specific neutralizing antibodies. Peripheral quantitative computed tomography measured bone parameters at the 4% (trabecular bone) and 20% (cortical bone) site, and muscle cross-sectional area (MCSA) at the 66% site, from the distal metaphyses of the radius and the tibia. Bone strength was determined from volumetric bone mineral density and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength-strain index (SSI; cortical site). After adjustment for MCSA and limb length, radial SSI was lower in Ad36+ versus Ad36- subjects from the high-fat group (p < 0.03), but not the normal-fat group. No significant differences were observed between groups in tibial SSI or BSI. These data support an association of adiposity and cortical bone strength at the radius with the presence of neutralizing antibodies to Ad36 in late-adolescent females.
Collapse
Affiliation(s)
- Emma M Laing
- Department of Foods and Nutrition, The University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complications 2013; 27:191-9. [PMID: 23246247 DOI: 10.1016/j.jdiacomp.2012.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 02/06/2023]
Abstract
Additional drugs are required to effectively manage diabetes and its complications. Recent studies have revealed protective effects of Ad36, a human adenovirus, and its E4orf1 protein on glucose disposal, which may be creatively harnessed to develop novel anti-diabetic agents. Experimental Ad36 infection improves hyperglycemia in animal models and natural Ad36 infection in humans is associated with better glycemic control. Available data indicate distinctive advantages for a drug that may mimic the action of Ad36/E4orf1. The key features of such a potential drug include the ability to increase glucose uptake by adipose tissue and skeletal muscle, to reduce hepatic glucose output independent of proximal insulin signaling, and to up-regulate adiponectin and its hepatic action. The effect of Ad36/E4orf1 on hepatocyte metabolism suggests a role for treating hepatic steatosis. Despite these potential advantages, considerable research is required before such a drug is developed. The in vivo efficacy and safety of E4orf1 in improving hyperglycemia remain unknown, and an appropriate drug delivery system is required. Nonetheless, Ad36 E4orf1 offers a research opportunity to develop a new anti-diabetic agent with multiple potential advantages and conceptually advances the use of a rather unconventional source, microbial proteins, for anti-diabetic drug development.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Infections and Obesity laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
50
|
Parra-Rojas I, Del Moral-Hernández O, Salgado-Bernabé AB, Guzmán-Guzmán IP, Salgado-Goytia L, Muñoz-Valle JF. Adenovirus-36 seropositivity and its relation with obesity and metabolic profile in children. Int J Endocrinol 2013; 2013:463194. [PMID: 24324491 PMCID: PMC3845401 DOI: 10.1155/2013/463194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
The human adenovirus 36 (Ad-36) is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA) was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P = 0.007). Ad-36 seropositivity was associated with obesity (OR = 2.66, P = 0.01) and high-density lipoprotein <40 mg/dL (OR = 2.85, P = 0.03). The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied.
Collapse
Affiliation(s)
- Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, 39090 Chilpancingo, GR, Mexico
- *Isela Parra-Rojas:
| | - Oscar Del Moral-Hernández
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, 39090 Chilpancingo, GR, Mexico
| | - Aralia B. Salgado-Bernabé
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, 39090 Chilpancingo, GR, Mexico
| | - Iris P. Guzmán-Guzmán
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, 39090 Chilpancingo, GR, Mexico
| | - Lorenzo Salgado-Goytia
- Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, 39090 Chilpancingo, GR, Mexico
| | - José F. Muñoz-Valle
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Sierra Mojada 950, 44350 Guadalajara, JA, Mexico
| |
Collapse
|