1
|
Yang WX, Su K, Liao MC, Zhou J, Peng J, Hébert MJ, Leal DN, Yamashita M, Miyata KN, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes. Diabetes 2025; 74:554-568. [PMID: 39752561 PMCID: PMC11926280 DOI: 10.2337/db24-0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 03/22/2025]
Abstract
ARTICLE HIGHLIGHTS Renin-angiotensin system (RAS) activation plays an important role in the progression of diabetic kidney disease (DKD). However, systemic RAS blockade alone is insufficient to reverse DKD progression. We hypothesized that intrarenal renin-angiotensin system (iRAS) activation plays a crucial role in the progression of DKD. We sought to elucidate the role of the iRAS in DKD progression. Selective deletion of angiotensinogen in renal tubules ameliorated the pathological features of DKD. Our study indicates that iRAS inactivation may be a potential approach for preventing DKD disease severity and its progression.
Collapse
Affiliation(s)
- Wen-Xia Yang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Ke Su
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Min-Chun Liao
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jing Zhou
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Junzheng Peng
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Marie-Josée Hébert
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel N. Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Kana N. Miyata
- Division of Nephrology, Department of Internal Medicine, Saint Louis University, St. Louis, MO
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Quebec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - John S.D. Chan
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM) and Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Huang JH, Lourenço BN, Coleman AE. The renin-angiotensin-aldosterone system in kidney diseases of cats and dogs. Vet J 2025; 309:106287. [PMID: 39672318 DOI: 10.1016/j.tvjl.2024.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) has a well-established key pathophysiologic role in kidney diseases, and pharmacotherapy targeting this system is a mainstay of treatment of affected human beings, cats, and dogs. Several studies have evaluated the circulating RAAS in animals with spontaneous or experimentally induced kidney diseases. Evidence supporting the activation of this system has been demonstrated in some - but not all - studies and individuals, and the interindividual variability in circulating RAAS markers is high. Advances over the last few decades have expanded our understanding of the system, which now includes the existence of a counterbalancing "alternative" RAAS and tissular renin-angiotensin systems (RASs), the latter regulated independently of the circulating endocrine RAAS. The local RAS in the kidney, termed the intrarenal RAS, is currently recognized as an important regulator of kidney function and mediator of kidney disease. In general, information on the intrarenal RAS is lacking in cats and dogs with kidney diseases; however, existing limited data suggest its activation. Despite the inconsistent evidence for circulating RAAS activation in chronic kidney diseases, RAAS inhibitors have proven effective for the treatment of its common comorbidities, systemic arterial hypertension and renal proteinuria, in both cats and dogs. Further research of the circulating RAAS, the intrarenal RAS, and the interplay between these systems in the context of kidney diseases in companion animals might contribute to the development or refinement of future treatment strategies.
Collapse
Affiliation(s)
- Jane Hc Huang
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA.
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens 30601, USA
| |
Collapse
|
3
|
Barua S, Chavali S, Vien A, Mahendran S, Makarious D, Lo P, Pringle K, Chong J, Muthiah K, Hayward C. Acute kidney injury recovery status predicts mortality and cardiorenal outcomes in patients admitted with acute decompensated heart failure. Open Heart 2025; 12:e002928. [PMID: 39756821 PMCID: PMC11751981 DOI: 10.1136/openhrt-2024-002928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) in the context of acute decompensated heart failure (ADHF) encompasses a broad spectrum of phenotypes with associated disparate outcomes. We evaluate the impact of 'ongoing AKI' on prognosis and cardiorenal outcomes and describe predictors of 'ongoing AKI'. METHODS A prospective multicentre observational study of patients admitted with ADHF requiring intravenous furosemide was completed, with urinary angiotensinogen (uAGT) measured at baseline. AKI was defined using Kidney Disease Improving Global Outcomes (KDIGO) AKI criteria. AKI recovery status was defined as 'no AKI', 'recovered AKI' or 'ongoing AKI' based on renal function at hospital discharge. Event-free survival analysis was performed to predict death and cardiorenal outcomes at hospital discharge and 6-month follow-up. Multinomial logistic regression was performed to identify predictors of ongoing AKI. Multiclass receiver operator curve analysis was performed to evaluate the relationship between renin-angiotensin system (RAS) blockers and uAGT in predicting ongoing AKI. RESULTS Among 271 enrolled patients, 121 (44.6%) patients developed AKI, of whom 62 patients had ongoing AKI. Ongoing AKI was associated with increased risk of death (HR 6.89, p<0.001), in-hospital end-stage kidney disease (HR 44.39, p<0.001), 6-month composite of death, transplant, left ventricular assist device and heart failure hospitalisation (HR 3.09, p<0.001), and 6-month composite major adverse kidney events (HR 5.71, p<0.001). Elevated baseline uAGT levels, chronic beta-blocker and thiazide diuretic therapy, and lack of RAS blocker prescription at recruitment were associated with ongoing AKI. While uAGT levels were lower with RAS blocker prescription, in patients with ongoing AKI, uAGT levels were elevated regardless of RAS blocker status. CONCLUSION Patients experiencing ongoing AKI during ADHF admission were at increased risk of death and other adverse cardiorenal outcomes. Differential uAGT response in patients receiving RAS blockers with ongoing AKI suggests biomarkers may be helpful in predicting treatment responses and cardiorenal outcomes.
Collapse
Affiliation(s)
- Sumita Barua
- Cardiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Sanjay Chavali
- Cardiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Albert Vien
- Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - David Makarious
- Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Phillip Lo
- Cardiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Kirsty Pringle
- The University of Newcastle Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - James Chong
- Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Kavitha Muthiah
- Cardiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Christopher Hayward
- Cardiology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| |
Collapse
|
4
|
Renal angiotensin I-converting enzyme-deficient mice are protected against aristolochic acid nephropathy. Pflugers Arch 2023; 475:391-403. [PMID: 36520238 PMCID: PMC9908662 DOI: 10.1007/s00424-022-02779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The renal renin-angiotensin system (RAS) is involved in the development of chronic kidney disease. Here, we investigated whether mice with reduced renal angiotensin I-converting enzyme (ACE-/-) are protected against aristolochic acid nephropathy (AAN). To further elucidate potential molecular mechanisms, we assessed the renal abundances of several major RAS components. AAN was induced using aristolochic acid I (AAI). Glomerular filtration rate (GFR) was determined using inulin clearance and renal protein abundances of renin, angiotensinogen, angiotensin I-converting enzyme (ACE) 2, and Mas receptor (Mas) were determined in ACE-/- and C57BL/6J control mice by Western blot analyses. Renal ACE activity was determined using a colorimetric assay and renal angiotensin (Ang) (1-7) concentration was determined by ELISA. GFR was similar in vehicle-treated mice of both strains. AAI decreased GFR in controls but not in ACE-/- mice. Furthermore, AAI decreased renal ACE activity in controls but not in ACE-/- mice. Vehicle-treated ACE-/- mice had significantly higher renal ACE2 and Mas protein abundances than controls. AAI decreased renal ACE2 protein abundance in both strains. Furthermore, AAI increased renal Mas protein abundance, although the latter effect did not reach statistical significance in the ACE-/- mice. Renal Ang(1-7) concentration was similar in vehicle-treated mice of both strains. AAI increased renal Ang(1-7) concentration in the ACE-/- mice but not in the controls. Mice with reduced renal ACE are protected against AAN. Our data suggest that in the face of renal ACE deficiency, AAI may activate the ACE2/Ang(1-7)/Mas axis, which in turn may deploy its reno-protective effects.
Collapse
|
5
|
Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders. Int J Mol Sci 2022; 23:ijms232314564. [PMID: 36498891 PMCID: PMC9740056 DOI: 10.3390/ijms232314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.
Collapse
|
6
|
Yanofsky SM, Dugas CM, Katsurada A, Liu J, Saifudeen Z, El-Dahr SS, Satou R. Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Am J Physiol Renal Physiol 2021; 321:F559-F571. [PMID: 34448643 PMCID: PMC8616599 DOI: 10.1152/ajprenal.00134.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Human kidney organoid technology holds promise for novel kidney disease treatment strategies and utility in pharmacological and basic science. Given the crucial roles of the intrarenal renin-angiotensin system (RAS) and angiotensin II (ANG II) in the progression of kidney development and injury, we investigated the expression of RAS components and effects of ANG II on cell differentiation in human kidney organoids. Human induced pluripotent stem cell-derived kidney organoids were induced using a modified 18-day Takasato protocol. Gene expression analysis by digital PCR and immunostaining demonstrated the formation of renal compartments and expression of RAS components. The ANG II type 1 receptor (AT1R) was strongly expressed in the early phase of organoid development (around day 0), whereas ANG II type 2 receptor (AT2R) expression levels peaked on day 5. Thus, the organoids were treated with 100 nM ANG II in the early phase on days 0-5 (ANG II-E) or during the middle phase on days 5-10 (ANG II-M). ANG II-E was observed to decrease levels of marker genes for renal tubules and proximal tubules, and the downregulation of renal tubules was inhibited by an AT1R antagonist. In contrast, ANG II-M increased levels of markers for podocytes, the ureteric tip, and the nephrogenic mesenchyme, and an AT2R blocker attenuated the ANG II-M-induced augmentation of podocyte formation. These findings demonstrate RAS expression and ANG II exertion of biphasic effects on cell differentiation through distinct mediatory roles of AT1R and AT2R, providing a novel strategy to establish and further characterize the developmental potential of human induced pluripotent stem cell-derived kidney organoids.NEW & NOTEWORTHY This study demonstrates angiotensin II exertion of biphasic effects on cell differentiation through distinct mediatory roles of angiotensin II type 1 receptor and type 2 receptor in human induced pluripotent stem cell-derived kidney organoids, providing a novel strategy to establish and further characterize the developmental potential of the human kidney organoids.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Cell Differentiation/drug effects
- Cell Line
- Gene Expression Regulation, Developmental
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Kidney/cytology
- Kidney/drug effects
- Kidney/metabolism
- Organoids/cytology
- Organoids/drug effects
- Organoids/metabolism
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Stacy M Yanofsky
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Courtney M Dugas
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jiao Liu
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Zubaida Saifudeen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Zhao S, Lo CS, Miyata KN, Ghosh A, Zhao XP, Chenier I, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of Nrf2 in Renal Proximal Tubular Cells Stimulates Sodium-Glucose Cotransporter 2 Expression and Exacerbates Dysglycemia and Kidney Injury in Diabetic Mice. Diabetes 2021; 70:1388-1403. [PMID: 33820760 DOI: 10.2337/db20-1126] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the impact of nuclear factor erythroid 2-related factor 2 (Nrf2) overexpression in renal proximal tubular cells (RPTCs) on blood glucose, kidney injury, and sodium-glucose cotransporter 2 (Sglt2) expression in diabetic Akita Nrf2 -/-/Nrf2RPTC transgenic (Tg) mice. Immortalized human RPTCs (HK2) stably transfected with plasmid containing the SGLT2 promoter and human kidneys from patients with diabetes were also studied. Nrf2 overexpression was associated with increased blood glucose, glomerular filtration rate, urinary albumin-to-creatinine ratio, tubulointerstitial fibrosis, and Sglt2 expression in Akita Nrf2 -/-/Nrf2RPTC Tg mice compared with their Akita Nrf2 -/- littermates. In vitro, oltipraz or transfection of NRF2 cDNA stimulated SGLT2 expression and SGLT2 promoter activity in HK2, and these effects were inhibited by trigonelline or NRF2 siRNA. The deletion of the NRF2-responsive element (NRF2-RE) in the SGLT2 promoter abolished the stimulatory effect of oltipraz on SGLT2 promoter activity. NRF2 binding to the NRF2-RE of the SGLT2 promoter was confirmed by gel mobility shift assay and chromatin immunoprecipitation assays. Kidneys from patients with diabetes exhibited higher levels of NRF2 and SGLT2 in the RPTCs than kidneys from patients without diabetes. These results suggest a link by which NRF2 mediates hyperglycemia stimulation of SGLT2 expression and exacerbates blood glucose and kidney injury in diabetes.
Collapse
Affiliation(s)
- Shuiling Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Kana N Miyata
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Anindya Ghosh
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Chenier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Cailhier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Ethier
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Janos G Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont, and Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - John S D Chan
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, and Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (Lond) 2021; 135:943-961. [PMID: 33822013 DOI: 10.1042/cs20210094] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.
Collapse
|
9
|
Zając M, Rybi-Szumińska A, Storonowicz J, Protas P, Wasilewska A. Urinary excretion of renin and angiotensinogen in hypertensive children and adolescents. Arch Med Sci 2021; 17:1325-1331. [PMID: 34522262 PMCID: PMC8425233 DOI: 10.5114/aoms.2019.88482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In recent years hypertension has become an emerging condition in the young population. It has been proposed that the renin-angiotensin system plays an important role in regulation of blood pressure. We assessed whether activation of the intrarenal renin-angiotensin system occurs in hypertensive children and adolescents and what better reflects its activity: urine angiotensinogen (AGT) or urine renin (REN). MATERIAL AND METHODS The study was conducted on a sample of 58 subjects with primary hypertension (HT) and 29 normotensive children and adolescents. We measured urine REN and AGT excretion and assessed the values in relation to blood pressure (BP) and other clinical parameters. Both REN and AGT values were calculated by urine creatinine: REN/cr. and AGT/cr., respectively. RESULTS We observed higher urine REN/cr. values in hypertensive subjects in comparison to the reference group (6.99 vs. 2.93, p = 0.003). Hypertensive participants showed positive correlations between urine REN/cr. and diastolic 24-hour BP (r = 0.42, p = 0.002) as well as between urine REN/cr. and urine AGT/cr. (r = 0.266, p = 0.044, respectively). CONCLUSIONS Increased urine REN/cr. in hypertensive children and adolescents and its positive correlation with BP may indicate its important role in the pathogenesis of HT. Perhaps urine REN/cr. could be a marker of intrarenal renin-angiotensin system activity. Nevertheless, further research should be undertaken to confirm this observation.
Collapse
Affiliation(s)
- Magdalena Zając
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | | | - Justyna Storonowicz
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Protas
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Wasilewska
- Department of Paediatrics and Nephrology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Seara FAC, Pereira-Junior PP, Silva-Almeida C, Dos-Santos RC, Souza RN, Costa CRM, Domingos AE, Barbosa RAQ, Ferraz AP, Machado AAN, Ceccato VM, Takiya CM, Ponte CG, Reis LC, Olivares EL, Nascimento JHM. Anabolic steroid excess promotes hydroelectrolytic and autonomic imbalance in adult male rats: Is it enough to alter blood pressure? Steroids 2020; 163:108711. [PMID: 32739291 DOI: 10.1016/j.steroids.2020.108711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022]
Abstract
AIM The present study investigated the effects of anabolic steroid (AS) excess on blood pressure regulation. METHODS Male Wistar rats were treated with nandrolone decanoate (AS) or vehicle (CTL) for 8 or 10 weeks. Saline (1.8%) and water intake were measured in metabolic cages. Urinary volume, osmolarity, Na+ and K+ concentrations, and plasma osmolarity were measured. The autonomic balance was estimated by heart rate variability at baseline or after icv injection of losartan. Cardiac function was assessed by echocardiography and ex vivo recordings. Myocardial collagen deposition was evaluated by Picrosirius-Red staining. Vascular reactivity and wall thickness were investigated in aortic sections. Blood pressure (BP) was assessed by tail-cuff plethysmography. Angiotensin II type I receptor (AT1R), renin, and mineralocorticoid receptor (MR) mRNA expression was measured in the kidneys and whole hypothalamus. RESULTS AS group exhibited decreased urinary volume and Na+ concentration, while urinary K+ concentration, plasma osmolarity, and renal AT1R and renin mRNA levels were increased compared to CTL (p < 0.05). Water intake was increased, and saline intake was decreased in the AS group (p < 0.01). AS group exhibited increased low-frequency/high-frequency-ratio, while it was decreased by icv injection of losartan (p < 0.05) compared to baseline. Neither cardiac function nor vascular reactivity/morphology was affected by AS excess (p > 0.05). Ultimately, BP levels were not altered by AS excess (p > 0.05). CONCLUSION AS excess promoted hydroelectrolytic and autonomic imbalance but did not alter vascular or cardiac function/morphology.
Collapse
Affiliation(s)
- Fernando A C Seara
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.
| | - Pedro P Pereira-Junior
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Claudio Silva-Almeida
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Estácio de Sá University, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil
| | - Raquel N Souza
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil
| | - César R M Costa
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Ana P Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - André A N Machado
- Laboratory of Biochemistry and Gene Expression, University of Ceará, Brazil
| | - Vânia M Ceccato
- Laboratory of Biochemistry and Gene Expression, University of Ceará, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Cristiano G Ponte
- Federal Institute of Education, Science, and Technology of Rio de Janeiro, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Emerson L Olivares
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Reduction in urinary angiotensinogen levels and improvement of proteinuria by renin-angiotensin system blockade in pediatric chronic kidney disease patients with very low birth weight. Pediatr Nephrol 2020; 35:1307-1314. [PMID: 32162100 DOI: 10.1007/s00467-020-04520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Children with low birth weight (LBW) have an increased risk of developing chronic kidney disease (CKD), and no effective strategies have been established to prevent the progression of CKD in these patients. Urinary angiotensinogen (UAGT) may represent a useful marker of intrarenal renin-angiotensin system (RAS) activation, which has been suggested to play a critical role in the development of hypertension and CKD. Herein, we conducted a prospective study to determine whether RAS blockade is beneficial for suppressing the progression of CKD in children with LBW, using UAGT as a surrogate marker of renal impairment. METHODS Nine children with CKD (stages: 1-2) who had very low birth weight (VLBW; < 1500 g) were started on RAS blockade with candesartan. We measured blood pressure and laboratory parameters, including urinary concentrations of angiotensinogen, protein, albumin, creatinine (Cr), and estimated glomerular filtration rate (eGFR), before and after candesartan treatment. RESULTS Birth weight was 712 g (range, 536-800 g). Age at evaluation was 11.6 years (range, 10.3-15.6 years). After candesartan treatment for 47.6 ± 25.0 months, the UAGT to urinary Cr ratio decreased from 61.9 ± 44.7 to 16.8 ± 14.4 μg/g (p = 0.015). The urinary protein to Cr and albumin to Cr ratios also decreased (p = 0.008 and p = 0.012, respectively), whereas there was no significant change in eGFR. CONCLUSIONS RAS blockade reduced UAGT levels and improved proteinuria/albuminuria in children with CKD who had VLBW. Suppression of intrarenal RAS activity may slow the progression of CKD in children with LBW.
Collapse
|
12
|
Reverte V, Gogulamudi VR, Rosales CB, Musial DC, Gonsalez SR, Parra-Vitela AJ, Galeas-Pena M, Sure VN, Visniauskas B, Lindsey SH, Katakam PVG, Prieto MC. Urinary angiotensinogen increases in the absence of overt renal injury in high fat diet-induced type 2 diabetic mice. J Diabetes Complications 2020; 34:107448. [PMID: 31761419 PMCID: PMC6981045 DOI: 10.1016/j.jdiacomp.2019.107448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
AIM OF THE STUDY During type 2 diabetes (T2D) and hypertension there is stimulation of renal proximal tubule angiotensinogen (AGT), but whether urinary excretion of AGT (uAGT) is an indicator of glomerular damage or intrarenal RAS activation is unclear. We tested the hypothesis that elevations in uAGT can be detected in the absence of albuminuria in a mouse model of T2D. METHODS Male C57BL/6 mice (N = 10) were fed a high fat (HFD; 45% Kcal from fat) for 28 weeks, and the metabolic phenotype including body weight, blood pressures, glucose, insulin, ippGTT, HOMA-IR, and cholesterol was examined. In addition, kidney Ang II content and reactive oxygen species (ROS) was measured along with urinary albumin, creatinine, Ang II, and AGT. RESULTS All parameters consistent with T2D were present in mice after 12-14 weeks on the HFD. Systolic BP increased after 18 weeks in HFD but not NFD mice. Intrarenal ROS and Ang II concentrations were also increased in HFD mice. Remarkably, these changes paralleled the augmentation uAGT excretion (3.66 ± 0.50 vs. 0.92 ± 0.13 ng/mg by week 29; P < 0.01), which occurred in the absence of overt albuminuria. CONCLUSIONS In HFD-induced T2D mice, increases in uAGT occur in the absence of overt renal injury, indicating that this biomarker accurately detects early intrarenal RAS activation.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | | | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Diego C Musial
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Department of Pharmacology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sabrina R Gonsalez
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, USA; Hypertension and Renal Center of Excellence, New Orleans, USA.
| |
Collapse
|
13
|
Tubular Deficiency of Heterogeneous Nuclear Ribonucleoprotein F Elevates Systolic Blood Pressure and Induces Glycosuria in Mice. Sci Rep 2019; 9:15765. [PMID: 31673025 PMCID: PMC6823451 DOI: 10.1038/s41598-019-52323-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
We reported previously that overexpression of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in renal proximal tubular cells (RPTCs) suppresses angiotensinogen (Agt) expression, and attenuates systemic hypertension and renal injury in diabetic Hnrnpf-transgenic (Tg) mice. We thus hypothesized that deletion of Hnrnpf in the renal proximal tubules (RPT) of mice would worsen systemic hypertension and kidney injury, perhaps revealing novel mechanism(s). Tubule-specific Hnrnpf knockout (KO) mice were generated by crossbreeding Pax8-Cre mice with floxed Hnrnpf mice on a C57BL/6 background. Both male and female KO mice exhibited elevated systolic blood pressure, increased urinary albumin/creatinine ratio, tubulo-interstitial fibrosis and glycosuria without changes in blood glucose or glomerular filtration rate compared with control littermates. However, glycosuria disappeared in male KO mice at the age of 12 weeks, while female KO mice had persistent glycosuria. Agt expression was elevated, whereas sodium-glucose co-transporter 2 (Sglt2) expression was down-regulated in RPTs of both male and female KO mice as compared to control littermates. In vitro, KO of HNRNPF in human RPTCs (HK-2) by CRISPR gRNA up-regulated AGT and down-regulated SGLT2 expression. The Sglt2 inhibitor canagliflozin treatment had no effect on Agt and Sglt2 expression in HK-2 and in RPTCs of wild-type mice but induced glycosuria. Our results demonstrate that Hnrnpf plays a role in the development of hypertension and glycosuria through modulation of renal Agt and Sglt2 expression in mice, respectively.
Collapse
|
14
|
Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol 2019; 235:4109-4119. [PMID: 31612497 DOI: 10.1002/jcp.29302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Hypertrophic scars (HTS) commonly occurred after burn and trauma. It was characterized by the excessive deposition of extracellular matrix with the inadequate remodeling, which could result in severe physiological and psychological problems. However, the effective available prevention and treatment measures were still limited. The main pathological feature of HTS was the excessive formation of myofibroblasts, and they persist in the repaired tissue. To better understand the mechanics of this process, this review focused on the characteristics and formation of myofibroblasts, the main effector cells in HTS. We summarized the present theories and opinions on myofibroblasts formation from the perspective of related signaling pathways and epigenetic regulation, such as DNA methylation, miRNA/lncRNA/ceRNA action, histone modification, and so forth for a better understanding on the development of HTS. This information might assist in developing effective experimental and clinical treatment strategies. Additionally, we also summarized currently known clinical strategies for HTS treatment, including traditional drugs, molecular medicine, stem cells, and exosomes.
Collapse
Affiliation(s)
- Ziying Zhu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Ghosh A, Zhao S, Lo CS, Maachi H, Chenier I, Lateef MA, Abdo S, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Mediates Insulin Inhibition of Bcl2-Modifying Factor Expression and Tubulopathy in Diabetic Kidney. Sci Rep 2019; 9:6687. [PMID: 31040360 PMCID: PMC6491582 DOI: 10.1038/s41598-019-43218-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
We investigated the molecular mechanism(s) by which insulin prevents Bcl2-modifying factor (Bmf)-induced renal proximal tubular cell (RPTC) apoptosis and loss in diabetic mice. Transgenic mice (Tg) mice specifically overexpressing human BMF in RPTCs and non-Tg littermates were studied at 10 to 20 weeks of age. Non-diabetic littermates, diabetic Akita mice +/− insulin implant, Akita Tg mice specifically overexpressing heterogeneous nuclear ribonucleoprotein F (hnRNP F) in their RPTCs and immortalized rat renal proximal tubular cells (IRPTCs) were also studied. BMF-Tg mice exhibited higher systolic blood pressure, urinary albumin/creatinine ratio, RPTC apoptosis and urinary RPTCs than non-Tg mice. Insulin treatment in Akita mice and Akita mice overexpressing hnRNP F suppressed Bmf expression and RPTC apoptosis. In hyperinsulinemic-euglycemic wild type mice, renal Bmf expression was down-regulated with up-regulation of hnRNP F. In vitro, insulin inhibited high glucose-stimulation of Bmf expression, predominantly via p44/42 mitogen-activated protein kinase (MAPK) signaling. Transfection of p44/42 MAPK or hnRNP F small interfering RNA (siRNA) prevented insulin inhibition of Bmf expression. HnRNP F inhibited Bmf transcription via hnRNP F-responsive element in the Bmf promoter. Our results demonstrate that hnRNP F suppression of Bmf transcription is an important mechanism by which insulin protects RPTCs from apoptosis in diabetes.
Collapse
Affiliation(s)
- Anindya Ghosh
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Shuiling Zhao
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Chao-Sheng Lo
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Hasna Maachi
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Isabelle Chenier
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Muhammad Abdul Lateef
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Shaaban Abdo
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada
| | - Janos G Filep
- Département de pathologie et biologie cellulaire, Université de Montréal, Centre de recherche, Hôpital Maisonneuve-Rosemont, 5415 boul. de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, 15 Parkman Street, WAC 709, Boston, MA, 02114-3117, USA
| | - Shao-Ling Zhang
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada.
| | - John S D Chan
- Département de medecine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
16
|
Krajcoviechova A, Marois-Blanchet FC, Troyanov S, Harvey F, Dumas P, Tremblay J, Cifkova R, Awadalla P, Madore F, Hamet P. Uromodulin in a Pathway Between Decreased Renal Urate Excretion and Albuminuria. Am J Hypertens 2019; 32:384-392. [PMID: 30551216 DOI: 10.1093/ajh/hpy190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/25/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanism explaining the inverse association between renal urate and albumin excretion remains unclear. First, we evaluated the impact of candidate variants in the main urate transporter genes (i.e., SLC2A9, SLC22A12, ABCG2) on the association between fractional excretion of uric acid (FEUA) and urinary albumin/creatinine ratio (uACR). Second, we examined uromodulin and sodium excretion as mediators of the association between FEUA and uACR. METHODS We performed cross-sectional analysis of 737 French Canadians from the CARTaGENE cohort, a random sample of the Quebec population aged 40-69 years (a total of 20,004 individuals). Individuals with available genotyping and urinary data were obtained from a sub-study including gender-matched pairs with high and low Framingham Risk Score and vascular rigidity index. We further excluded individuals with an estimated glomerular filtration rate <60 ml/min/1.73 m2, glycosuria, and use of confounding medication. A spot urine sample was analyzed. Genotyping was performed using the Illumina Omni2.5-8 BeadChips. Genetic variants were analyzed using an additive model. RESULTS Final analyses included 593 individuals (45.5% of men; mean age 54.3 ± 8.6). We observed an antagonistic interaction between rs13129697 variant of the SLC2A9 gene and FEUA tertiles on uACR (P = 0.002). Using the mediation analysis, uromodulin explained 32%, fractional excretion of sodium (FENa) 44%, and uromodulin together with FENa explained 70% of the inverse relationship between FEUA and uACR. Bootstrapping process confirmed the role of both mediators. CONCLUSIONS Our data suggest that the association of albuminuria with decreased renal urate excretion may be modified by the transporter SLC2A9, and mediated by uromodulin and sodium handling.
Collapse
Affiliation(s)
- Alena Krajcoviechova
- Center for Cardiovascular Prevention, First Faculty of Medicine and Thomayer Hospital, Charles University in Prague, Prague, Czech Republic
- Centre de recherche du CHUM, Montréal, Quebec, Canada
| | | | - Stephan Troyanov
- Division of Nephrology, Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| | | | - Pierre Dumas
- Centre de recherche du CHUM, Montréal, Quebec, Canada
| | | | - Renata Cifkova
- Center for Cardiovascular Prevention, First Faculty of Medicine and Thomayer Hospital, Charles University in Prague, Prague, Czech Republic
| | - Philip Awadalla
- Centre hospitalier universitaire Sainte-Justine, CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Francois Madore
- Division of Nephrology, Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| | - Pavel Hamet
- Centre de recherche du CHUM, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Advanced Glycation End Products Stimulate Angiotensinogen Production in Renal Proximal Tubular Cells. Am J Med Sci 2018; 357:57-66. [PMID: 30466736 DOI: 10.1016/j.amjms.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elevated advanced glycation end products (AGE) in diabetes mellitus (DM) are implicated in the progression of DM-associated tissue injury, including diabetic nephropathy. The intrarenal renin-angiotensin system, in particular augmentation of angiotensinogen (AGT) in proximal tubular cells (PTC), plays a crucial role in the development of diabetic nephropathy. This study investigated hypothesis that AGE stimulates AGT production in PTC. MATERIALS AND METHODS Urinary AGT and AGE levels in streptozotocin-induced DM mice were measured by enzyme-linked immunosorbent assays. AGT expression and secretion were evaluated in cultured rat PTC receiving 0-200 µg/ml AGE-BSA treatments for 24 hours. Furthermore, intracellular signaling pathways activated by AGE were elucidated. RESULTS DM mice exhibited greater urinary AGT and AGE levels compared to control mice (AGT: 21.6 ± 5.5 ng/day vs. 190.1 ± 57.8 ng/day, AGE: 139.1 ± 21.6 μg/day vs. 332.8 ± 102.7 μg/day). In cultured PTC, treatment with AGE-BSA enhanced AGT mRNA expression (3.43 ± 0.11-fold compared to control), intracellular AGT protein levels (3.60 ± 0.38-fold), and secreted AGT levels (2.11 ± 0.18-fold). On the other hand, AGT levels were not altered in PTC receiving nonglycated BSA. Recombinant soluble AGE receptor, which competes with endogenous AGE receptor, diminished the AGE-induced AGT upregulation, suggesting that AGE-BSA stimulates AGT expression via activation of the AGE receptor. Enhanced phosphorylation of ERK1/2 and c-Jun, but not p38 MAP kinase, were observed in AGE-BSA-treated PTC. AGE-induced AGT augmentation was attenuated by an ERK inhibitor. CONCLUSIONS The findings indicate that AGE enhances proximal tubular AGT expression via ERK1/2, which can exacerbate the development of diabetic related kidney injury.
Collapse
|
18
|
Zhou B, Wen M, Mi L, Hu CJ, Zhang Y, Wang JT, Tang L. Associations between angiotensinogen M235T polymorphisms and the risk of diabetic nephropathy: A meta-analysis. Diabetes Res Clin Pract 2018; 142:26-36. [PMID: 29775675 DOI: 10.1016/j.diabres.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/22/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
AIMS The aim of the present study was to clarify the potential relationship of angiotensinogen (AGT) M235T polymorphism and diabetic nephropathy (DN) risk. METHODS Comprehensive electronic search in Pubmed, Web of Science, EBSCO, Embase, the Cochrane Library and China National Knowledge Infrastructure (CNKI) to find original articles about the association between AGT M235T polymorphism and DN risk published before 27 September 2017. Literature quality assessment was performed with the Newcastle-Ottawa Scale. Heterogeneity across studies was assessed using I2 statistics. Random-effects model or Fixed-effects model was used to estimate the odds ratios (ORs) with 95% confidence intervals (CIs). Sensitivity analyses to assess the influence of individual studies on the pooled estimate. Publication bias was investigated using funnel plots and Egger's regression test. Analyses were performed by using Stata 15.0. RESULTS Overall, 20 eligible studies involving a total of 3822 cases and 3911 controls were included in our meta-analysis. The results showed that AGT M235T polymorphism significantly increased DN risk in recessive model (T/T versus M/T + M/M: OR = 1.35, 95%CI (1.07-1.69), I2 = 63.8%, Z = 2.56, P = 0.010), homozygote model (T/T versus M/M: OR = 1.46, 95%CI (1.11-1.92), I2 = 62.4%, Z = 2.69, P = 0.007) and allele model (T versus M: OR = 1.17, 95%CI (1.01-1.35), I2 = 72.5%, Z = 2.14, P = 0.032); Subgroup analysis by ethnicity showed that AGT M235T polymorphism significantly increased DN risk in recessive model (T/T versus M/T + M/M: OR = 1.39, 95%CI (1.06-1.81), I2 = 66.6%, Z = 2.42, P = 0.016), homozygote model (T/T versus M/M: OR = 1.47, 95%CI (1.08-2.01), I2 = 67.7%, Z = 2.47, P = 0.013) and allele model (T versus M: OR = 1.18, 95%CI (1.02-1.37), I2 = 69.4%, Z = 2.26, P = 0.024) in Caucasian DM population; Subgroup analysis by clinical subtype of DM also showed that AGT M235T polymorphism significantly increased DN risk in recessive model (T/T versus M/T + M/M: OR = 1.28, 95%CI (1.05-1.57), I2 = 21.3%, Z = 2.40, P = 0.016), homozygote model (T/T versus M/M: OR = 1.41, 95%CI (1.04-1.92), I2 = 30.2%, Z = 2.23, P = 0.026) and allele model (T versus M: OR = 1.14, 95%CI (1.03-1.28), I2 = 35.5%, Z = 2.44, P = 0.015) in type 1 diabetes patients. CONCLUSION Our study showed that AGT M235T homozygous mutation significantly increase DN risk in Caucasian DM population and type 1 diabetes patients.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Basic Medical, Guizhou Medical University, Guizhou 550004, China.
| | - Min Wen
- College of Basic Medical, Guizhou Medical University, Guizhou 550004, China
| | - Ling Mi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Cu-Jiao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Jian-Tar Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou 550004, China; Engineering Technology Research Center for Chemical Drug R&D, Guizhou 550004, China; College of Pharmacy, Guizhou Medical University, Guizhou 550004, China.
| |
Collapse
|
19
|
Feng Q, Hui J, Tang N, Liu YM, Zhong H, Li Z, Wang LM, Qu YY, Deng FM, He F. Unexpected role of the human cytomegalovirus contribute to essential hypertension in the Kazakh Chinese population of Xinjiang. Biosci Rep 2018; 38:BSR20171522. [PMID: 29752343 PMCID: PMC6019381 DOI: 10.1042/bsr20171522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/29/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection, chronic inflammation and oxidative stress, the renin-angiotensin system (RAS), endothelial function, and DNA methylation play roles in the pathogenesis of essential hypertension (EH); however, the mechanism by which HCMV predisposes patients to hypertension remain unclear. Our group previously demonstrated an association between EH and HCMV infection in Kazakh Chinese. Here, we investigated the relationship between HCMV infection and other clinicopathological features in 720 Kazakh individuals with or without hypertension (n=360 each; age: 18-80). Multiple linear and logistic regression analyses were used to determine the associations between HCMV infection, clinical characteristics, and EH. Notably, patients with EH, particularly those with HCMV infection, exhibited a marked increase in tumor necrosis factor-α (TNF-α) and 8-hydroxy-2-deoxyguanosine (8-OHDG) levels, but a decrease in endothelial nitric oxide synthase (eNOS) and renin levels. Similarly, elevated TNF-α and 8-OHDG levels were independent predictors of increased HCMV antibody titers, whereas eNOS and renin were negatively correlated with the latter. Moreover, serum angiotensin-converting enzyme (sACE, ACE) methylation was increased, whereas 11-β hydroxysteroid dehydrogenase 2 (HSD11β2; HSD3B2) methylation was decreased in patients with EH who were also infected with HCMV. A positive correlation between HSD3B2 methylation and HCMV IgG titer and blood pressure was additionally observed, whereas angiotensin-converting enzyme (ACE) methylation was inversely correlated with blood pressure. Collectively, these data indicate that HCMV may contribute to EH development in the Kazakh Chinese by increasing TNF-α and 8-OHDG levels, suppressing eNOS and renin, and manipulating HSD3B2 and ACE methylation.
Collapse
Affiliation(s)
- Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-Min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-Mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Yuan-Yuan Qu
- Department of Respiration Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xijiang, China
| | - Feng-Mei Deng
- Department of Pathophysiology, Chengdu Medical College, Sichuan, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Mathematical Model for Glucose Dependence of the Local Renin-Angiotensin System in Podocytes. Bull Math Biol 2018. [PMID: 29520569 DOI: 10.1007/s11538-018-0408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of kidney failure. Diabetic hyperglycemia primarily damages podocyte cells. Podocytes express a local renin-angiotensin system (RAS) that produces angiotensin II (ANG II). ANG II levels are elevated by hyperglycemia, triggering podocyte injury. Quantitative descriptions of glucose dose dependency of ANG II are scarce in the literature. For better understanding of the mechanism of glycemic injury in DKD, a mathematical model is developed to describe the glucose-stimulated local RAS in podocytes. The model of the RAS signaling pathway in podocytes tracks peptides and enzymes without explicit glucose dependence. Local and global sensitivity analyses are used to identify the key parameters to be estimated in the model. Three approaches are explored to incorporate glucose dependency through linear ramp functions for the sensitive parameters. The first approach uses inferences from literature data to estimate the parameter values, while the other approaches reduce the number of assumptions by using least-squares regression to estimate all or a subset of the parameters. Physiological parameter values and RAS peptide concentrations ranges are used to discriminate between plausible models for the glucose dose dependency. This is the first model of the theory of the local RAS mechanism specific to podocyte cells to track ANG II levels in a range of glycemic conditions that may contribute to podocyte damage in DKD. The ability to track ANG II behavior could enable prediction of its downstream effects on podocytes and provide opportunities to better characterize pathophysiological features of DKD progression.
Collapse
|
21
|
Zhao S, Ghosh A, Lo CS, Chenier I, Scholey JW, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Nrf2 Deficiency Upregulates Intrarenal Angiotensin-Converting Enzyme-2 and Angiotensin 1-7 Receptor Expression and Attenuates Hypertension and Nephropathy in Diabetic Mice. Endocrinology 2018; 159:836-852. [PMID: 29211853 PMCID: PMC5774246 DOI: 10.1210/en.2017-00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022]
Abstract
We investigated the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in renin-angiotensin system (RAS) gene expression in renal proximal tubule cells (RPTCs) and in the development of systemic hypertension and kidney injury in diabetic Akita mice. We used adult male Akita Nrf2 knockout mice and Akita mice treated with trigonelline (an Nrf2 inhibitor) or oltipraz (an Nrf2 activator). We also examined rat immortalized RPTCs (IRPTCs) stably transfected with control plasmids or plasmids containing rat angiotensinogen (Agt), angiotensin-converting enzyme (ACE), angiotensin-converting enzyme-2 (Ace2), or angiotensin 1-7 (Ang 1-7) receptor (MasR) gene promoters. Genetic deletion of Nrf2 or pharmacological inhibition of Nrf2 in Akita mice attenuated hypertension, renal injury, tubulointerstitial fibrosis, and the urinary albumin/creatinine ratio. Furthermore, loss of Nrf2 upregulated RPTC Ace2 and MasR expression, increased urinary Ang 1-7 levels, and downregulated expression of Agt, ACE, and profibrotic genes in Akita mice. In cultured IRPTCs, Nrf2 small interfering RNA transfection or trigonelline treatment prevented high glucose stimulation of Nrf2 nuclear translocation, Agt, and ACE transcription with augmentation of Ace2 and MasR transcription, which was reversed by oltipraz. These data identify a mechanism, Nrf2-mediated stimulation of intrarenal RAS gene expression, by which chronic hyperglycemia induces hypertension and renal injury in diabetes.
Collapse
MESH Headings
- Angiotensin I/metabolism
- Angiotensin-Converting Enzyme 2
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Gene Expression Regulation, Enzymologic
- Hypertension/complications
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-E2-Related Factor 2/genetics
- Peptide Fragments/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Rats
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/genetics
- Renin-Angiotensin System/physiology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Shuiling Zhao
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Anindya Ghosh
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Chao-Sheng Lo
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Isabelle Chenier
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - James W. Scholey
- University Health Network-Toronto General Hospital and Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Janos G. Filep
- Centre de Recherche, Hôpital Maisonneuve-Rosemont and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Quebec H1T 2M4, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114-3117
| | - Shao-Ling Zhang
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - John S. D. Chan
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal and Département de Médecine, Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| |
Collapse
|
22
|
Ba Aqeel SH, Sanchez A, Batlle D. Angiotensinogen as a biomarker of acute kidney injury. Clin Kidney J 2017; 10:759-768. [PMID: 29225804 PMCID: PMC5716162 DOI: 10.1093/ckj/sfx087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
Early recognition of acute kidney injury (AKI) is critical to prevent its associated complications as well as its progression to long term adverse outcomes like chronic kidney disease. A growing body of evidence from both laboratory and clinical studies suggests that inflammation is a key factor contributing to the progression of AKI regardless of the initiating event. Biomarkers of inflammation are therefore of interest in the evaluation of AKI pathogenesis and prognosis. There is evidence that the renin angiotensin aldosterone system is activated in AKI, which leads to an increase in angiotensin II (Ang II) formation within the kidney. Ang II activates pro-inflammatory and pro-fibrotic pathways that likely contribute to the progression of AKI. Angiotensinogen is the parent polypeptide from which angiotensin peptides are formed and its stability in urine makes it a more convenient marker of renin angiotensin system activity than direct measurement of Ang II in urine specimens, which would provide more direct information. The potential utility of urinary angiotensinogen as a biomarker of AKI is discussed in light of emerging data showing a strong predictive value of AKI progression, particularly in the setting of decompensated heart failure. The prognostic significance of urinary angiotensinogen as an AKI biomarker strongly suggests a role for renin-angiotensin system activation in modulating the severity of AKI and its outcomes.
Collapse
Affiliation(s)
- Sheeba Habeeb Ba Aqeel
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alejandro Sanchez
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The intrarenal renin-angiotensin-aldosterone system (RAS) is an independent paracrine hormonal system with an increasingly prominent role in hypertension and renal disease. Two enzyme components of this system are angiotensin-converting enzyme (ACE) and more recently discovered ACE2. The purpose of this review is to describe recent discoveries regarding the roles of intrarenal ACE and ACE2 and their interaction. RECENT FINDINGS Renal tubular ACE contributes to salt-sensitive hypertension. Additionally, the relative expression and activity of intrarenal ACE and ACE2 are central to promoting or inhibiting different renal pathologies including renovascular hypertension, diabetic nephropathy, and renal fibrosis. Renal ACE and ACE2 represent two opposing axes within the intrarenal RAS system whose interaction determines the progression of several common disease processes. While this relationship remains complex and incompletely understood, further investigations hold the potential for creating novel approaches to treating hypertension and kidney disease.
Collapse
|
24
|
Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome. Kidney Int 2017; 91:1347-1361. [DOI: 10.1016/j.kint.2016.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
|
25
|
Bourgeois CT, Satou R, Prieto MC. HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference. Biol Sex Differ 2017; 8:18. [PMID: 28572913 PMCID: PMC5450130 DOI: 10.1186/s13293-017-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023] Open
Abstract
Background Sexual difference has been shown in the pathogenesis of chronic kidney disease induced by hypertension. Females are protected from hypertension and related end-organ damage. Augmentation of renal proximal tubular angiotensinogen (AGT) expression can promote intrarenal angiotensin formation and the development of associated hypertension and kidney injury. Female rodents exhibit lower intrarenal AGT levels than males under normal conditions, suggesting that the suppressed intrarenal AGT production by programmed mechanisms in females may provide protection from these diseases. This study was performed to examine whether epigenetic mechanisms serve as repressors of AGT. Methods Male and female Sprague Dawley rats were used to investigate sex differences of systemic, hepatic, and intrarenal AGT levels. All histone deacetylase (HDAC) mRNA levels in the kidneys were determined using a PCR array. HDAC9 protein expression in the kidneys and cultured renal proximal tubular cells (PTC) was analyzed by Western blot analysis and immunohistochemistry. The effects of HDAC9 on AGT expression were evaluated by using an inhibitor and siRNA. ChIP assay was performed to investigate the interaction between the AGT promoter and HDAC9. Results Plasma and liver AGT levels did not show differences between male and female Sprague-Dawley rats. In contrast, females exhibited lower AGT levels than males in the renal cortex and urine. In the absence of supplemented sex hormones, primary cultured renal cortical cells isolated from female rats sustained lower AGT levels than those from males, suggesting that the kidneys have a unique mechanism of AGT regulation controlled by epigenetic factors rather than sex hormones. HDAC9 mRNA and protein levels were higher in the renal cortex of female rats versus male rats (7.09 ± 0.88, ratio to male) while other HDACs did not exhibit a sex difference. HDAC9 expression was localized in PTC which are the primary source of intrarenal AGT. Importantly, HDAC9 knockdown augmented AGT mRNA (1.92 ± 0.35-fold) and protein (2.25 ± 0.50-fold) levels, similar to an HDAC9 inhibitor. Furthermore, an interaction between HDAC9 and a distal 5’ flanking region of AGT via a histone complex containing H3 and H4 was demonstrated. Conclusions These results indicate that HDAC9 is a novel suppressing factor involved in AGT regulation in PTC, leading to low levels of intrarenal AGT in females. These findings will help to delineate mechanisms underlying sex differences in the development of hypertension and renin-angiotensin system (RAS) associated kidney injury.
Collapse
Affiliation(s)
- Camille T Bourgeois
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112-2699 USA
| | - Ryousuke Satou
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112-2699 USA
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112-2699 USA
| |
Collapse
|
26
|
Juretzko A, Steinbach A, Hannemann A, Endlich K, Endlich N, Friedrich N, Lendeckel U, Stracke S, Rettig R. Urinary Angiotensinogen and Renin Excretion are Associated with Chronic Kidney Disease. Kidney Blood Press Res 2017; 42:145-155. [PMID: 28395289 DOI: 10.1159/000474932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Several studies sought to identify new biomarkers for chronic kidney disease (CKD). As the renal renin-angiotensin system is activated in CKD, urinary angiotensinogen or renin excretion may be suitable candidates. We tested whether urinary angiotensinogen or renin excretion is elevated in CKD and whether these parameters are associated with estimated glomerular filtration rate (eGFR). We further tested whether urinary angiotensinogen or renin excretion may convey additional information beyond that provided by albuminuria. METHODS We measured urinary and plasma angiotensinogen, renin, albumin and creatinine in 177 CKD patients from the Greifswald Approach to Individualized Medicine project and in 283 healthy controls from the Study of Health in Pomerania. The urinary excretion of specific proteins is given as protein-to-creatinine ratio. Receiver operating characteristic (ROC) curves, spearman correlation coefficients and linear regression models were calculated. RESULTS Urinary angiotensinogen [2,511 (196-31,909) vs. 18.6 (8.3-44.0) pmol/g, *P<0.01] and renin excretion [0.311 (0.135-1.155) vs. 0.069 (0.045-0.148) pmol/g, *P<0.01] were significantly higher in CKD patients than in healthy controls. The area under the ROC curve was significantly larger when urinary angiotensinogen, renin and albumin excretion were combined than with urinary albumin excretion alone. Urinary angiotensinogen (ß-coefficient -2.405, standard error 0.117, P<0.01) and renin excretion (ß-coefficient -0.793, standard error 0.061, P<0.01) were inversely associated with eGFR. Adjustment for albuminuria, age, sex, systolic blood pressure and body mass index did not significantly affect the results. CONCLUSION Urinary angiotensinogen and renin excretion are elevated in CKD patients. Both parameters are negatively associated with eGFR and these associations are independent of urinary albumin excretion. In CKD patients urinary angiotensinogen and renin excretion may convey additional information beyond that provided by albuminuria.
Collapse
Affiliation(s)
| | | | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, Greifswald, Germany
| | | | - Nicole Endlich
- Institute of Anatomy and Cell Biology, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Sylvia Stracke
- Clinic for Internal Medicine A, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
27
|
Li Z, Tang Y, Tang N, Feng Q, Zhong H, Liu YM, Wang LM, He F. High anti-human cytomegalovirus antibody levels are associated with the progression of essential hypertension and target organ damage in Han Chinese population. PLoS One 2017; 12:e0181440. [PMID: 28837559 PMCID: PMC5570371 DOI: 10.1371/journal.pone.0181440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (CMV) infection is associated with hypertension and has been linked with the pathogenesis of increased arterial blood pressure (BP). Currently, whether CMV infection is associated with the progression of hypertension and hypertensive target organ damage (TOD) remains to be identified. We aimed to examine the relationship between CMV infection and the progression of hypertension and hypertensive TOD, which could provide clues on the possible mediating mechanisms, in the Han Chinese population. A total of 372 patients with hypertension and 191 healthy controls (Han participants from Xinjiang, China) were included in the study. Enzyme-linked immunosorbent assay (ELISA) and qPCR were used to detect CMV infection. C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) titers were also analyzed using an ELISA kit. Moreover, cardiovascular disease markers were evaluated by echocardiography, carotid ultrasonography, and tomographic scans. Essential hypertension (EH) patients exhibited a marked increase in CMV IgG antibody, CRP, TNF-α, and IL-6 levels. Higher grade of hypertension and hypertensive TOD had higher CMV IgG antibody and CRP levels. The CMV IgG antibody titers were positively correlated with arterial BP, greater grade of hypertension and hypertensive TOD, and CRP and IL-6 levels. The higher quartile of CMV IgG titer and CRP level were associated with the incidence of hypertension and the progression of hypertension and hypertensive TOD. In the Han Chinese population, high CMV IgG titers are associated with the progression of hypertension and hypertensive TOD. CMV IgG titer >4.25 U could be an independent predictor of hypertension and progression of hypertension, while that >4.85 U could be an independent risk factor for hypertensive TOD. The underlying mechanism may be largely mediated by chronic inflammation.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- Department of Emergency and critical care medicine, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Yan Tang
- Department of Geriatrics, the First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
28
|
Li S, Brault A, Sanchez Villavicencio M, Haddad PS. Rhododendron groenlandicum (Labrador tea), an antidiabetic plant from the traditional pharmacopoeia of the Canadian Eastern James Bay Cree, improves renal integrity in the diet-induced obese mouse model. PHARMACEUTICAL BIOLOGY 2016; 54:1998-2006. [PMID: 26916332 DOI: 10.3109/13880209.2015.1137953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Content Our team has identified Labrador tea [Rhododendron groenlandicum L. (Ericaceae)] as a potential antidiabetic plant from the traditional pharmacopoeia of the Eastern James Bay Cree. In a previous in vivo study, the plant extract was tested in a high-fat diet (HFD)-induced obese model using C57BL/6 mice and it improved glycaemia, insulinaemia and glucose tolerance. Objective In the present study, we assessed the plant's potential renoprotective effects. Materials and methods Rhododendron groenlandicum was administered at 250 mg/kg/d to mice fed HFD for 8 weeks to induce obesity and mild diabetes. Histological (periodic acid-Schiff (PAS), Masson and Oil Red O staining), immunohistochemical (IHC) and biochemical parameters were assessed to evaluate the renoprotective potential of R. groenlandicum treatment for an additional 8 weeks. Results Microalbuminuria and renal fibrosis were developed in HFD-fed mice. Meanwhile, there was a tendency for R. groenlandicum to improve microalbuminuria, with the values of albumin-creatinine ratio (ACR) reducing from 0.69 to 0.53. Renal fibrosis value was originally 4.85 arbitrary units (AU) in HFD-fed mice, dropped to 3.27 AU after receiving R. groenlandicum treatment. Rhododendron groenlandicum reduced renal steatosis by nearly one-half, whereas the expression of Bcl-2-modifying factor (BMF) diminished from 13.96 AU to 9.43 AU. Discussion and conclusions Taken altogether, the results suggest that R. groenlandicum treatment can improve renal function impaired by HFD.
Collapse
Affiliation(s)
- Shilin Li
- a Natural Health Products and Metabolic Diseases Laboratory, CIHR Team in Aboriginal Antidiabetic Medicines, Department of Pharmacology , Université De Montréal , Montreal , Canada
- b CRCHUM , Montreal Diabetes Research Center , Montreal , Canada
| | - Antoine Brault
- a Natural Health Products and Metabolic Diseases Laboratory, CIHR Team in Aboriginal Antidiabetic Medicines, Department of Pharmacology , Université De Montréal , Montreal , Canada
- b CRCHUM , Montreal Diabetes Research Center , Montreal , Canada
| | - Mayra Sanchez Villavicencio
- a Natural Health Products and Metabolic Diseases Laboratory, CIHR Team in Aboriginal Antidiabetic Medicines, Department of Pharmacology , Université De Montréal , Montreal , Canada
- b CRCHUM , Montreal Diabetes Research Center , Montreal , Canada
| | - Pierre S Haddad
- a Natural Health Products and Metabolic Diseases Laboratory, CIHR Team in Aboriginal Antidiabetic Medicines, Department of Pharmacology , Université De Montréal , Montreal , Canada
- b CRCHUM , Montreal Diabetes Research Center , Montreal , Canada
| |
Collapse
|
29
|
Chang SY, Lo CS, Zhao XP, Liao MC, Chenier I, Bouley R, Ingelfinger JR, Chan JS, Zhang SL. Overexpression of angiotensinogen downregulates aquaporin 1 expression via modulation of Nrf2-HO-1 pathway in renal proximal tubular cells of transgenic mice. J Renin Angiotensin Aldosterone Syst 2016; 17:17/3/1470320316668737. [PMID: 27638854 PMCID: PMC5843896 DOI: 10.1177/1470320316668737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction: We aimed to examine the regulation of aquaporin 1 expression in an angiotensinogen transgenic mouse model, focusing on underlying mechanisms. Methods: Male transgenic mice overexpressing rat angiotensinogen in their renal proximal tubular cells (RPTCs) and rat immortalised RPTCs stably transfected with rat angiotensinogen cDNA were used. Results: Angiotensinogen-transgenic mice developed hypertension and nephropathy, changes that were either partially or completely attenuated by treatment with losartan or dual renin–angiotensin system blockade (losartan and perindopril), respectively, while hydralazine prevented hypertension but not nephropathy. Decreased expression of aquaporin 1 and heme oxygenase-1 and increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and sodium–hydrogen exchanger 3 were observed in RPTCs of angiotensinogen-transgenic mice and in angiotensinogen-transfected immortalised RPTCs. These parameters were normalised by dual renin–angiotensin system blockade. Both in vivo and in vitro studies identified a novel mechanism in which angiotensinogen overexpression in RPTCs enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3β Y216. Consequently, lower intranuclear Nrf2 levels are less efficient to trigger heme oxygenase-1 expression as a defence mechanism, which subsequently diminishes aquaporin 1 expression in RPTCs. Conclusions: Angiotensinogen-mediated downregulation of aquaporin 1 and Nrf2 signalling may play an important role in intrarenal renin–angiotensin system-induced hypertension and kidney injury.
Collapse
Affiliation(s)
- Shiao-Ying Chang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Chao-Sheng Lo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Xin-Ping Zhao
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Min-Chun Liao
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Isabelle Chenier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Richard Bouley
- Division of Nephology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - John Sd Chan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| | - Shao-Ling Zhang
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| |
Collapse
|
30
|
Ramkumar N, Stuart D, Calquin M, Wang S, Niimura F, Matsusaka T, Kohan DE. Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension. Physiol Rep 2016; 4:4/1/e12675. [PMID: 26755736 PMCID: PMC4760401 DOI: 10.14814/phy2.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of intranephron angiotensinogen (AGT) in blood pressure (BP) regulation is not fully understood. Previous studies showed that proximal tubule‐specific overexpression of AGT increases BP, whereas proximal tubule‐specific deletion of AGT did not alter BP. The latter study may not have completely eliminated nephron AGT production; in addition, BP was only assessed on a normal salt diet. To evaluate this issue in greater detail, we developed mice with inducible nephron‐wide AGT deletion. Mice were generated which were hemizygous for the Pax8‐rtTA and LC‐1 transgenes and homozygous for loxP‐flanked AGT alleles to achieve nephron‐wide AGT disruption after doxycycline induction. Compared to controls, AGT knockout (KO) mice demonstrated markedly reduced renal AGT immunostaining, mRNA, and protein levels; unexpectedly AGT KO mice had reduced AGT mRNA levels in the liver along with 50% reduction in plasma AGT levels. BP was significantly lower in the AGT KO mice compared to controls fed a normal, low, or high Na+ intake, with the highest BP reduction on a low Na+ diet. Regardless of Na+ intake, AGT KO mice had higher plasma renin concentration (PRC) and markedly reduced urinary AGT levels compared to controls. Following angiotensin‐II (Ang‐II) infusion, AGT KO mice demonstrated an attenuated hypertensive response despite similar suppression of PRC in the two groups. Taken together, these data suggest that nephron‐derived AGT may be involved in Ang‐II‐dependent hypertension, however, a clear role for nephron‐derived AGT in physiological BP regulation remains to be determined.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Fumio Niimura
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Institute of Medical Science, Tokai University, Isehara, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
31
|
Satou R, Kobori H, Katsurada A, Miyata K, Navar LG. Quantification of intact plasma AGT consisting of oxidized and reduced conformations using a modified ELISA. Am J Physiol Renal Physiol 2016; 311:F1211-F1216. [PMID: 27511456 DOI: 10.1152/ajprenal.00320.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 12/24/2022] Open
Abstract
The pleiotropic actions of the renin-angiotensin system (RAS) depend on the availability of angiotensinogen (AGT) which generates angiotensin I (ANG I) when cleaved by renin. Thus, quantification of the intact AGT (iAGT) concentrations is important to evaluate the actual renin substrate available. The iAGT conformation exists as oxidized AGT (oxi-AGT) and reduced AGT (red-AGT) in a disulfide bond, and oxi-AGT has a higher affinity for renin, which may exacerbate RAS-associated diseases. Accordingly, we determined iAGT, oxi-AGT, and red-AGT levels in plasma from rats and mice. Blood samples were obtained by cardiac puncture and then immediately mixed with an inhibitor solution containing a renin inhibitor. Total AGT (tAGT) levels were measured by tAGT ELISA which detects both cleaved and iAGT. iAGT levels were determined by iAGT ELISA which was found to only detect red-AGT. Thus, it was necessary to treat samples with dithiothreitol, a reducing agent, to quantify total iAGT concentration. tAGT levels in rat and mouse plasma were 1,839 ± 139 and 1,082 ± 77 ng/ml, respectively. iAGT levels were 53% of tAGT in rat plasma but only 22% in mouse plasma, probably reflecting the greater plasma renin activity in mice. The ratios of oxi-AGT and red-AGT were ∼4:1 (rat) and 16:1 (mouse). Plasma iAGT consists of oxi-AGT and red-AGT, suggesting that oxidative stress can influence ANG I generation by the AGT conformation switch. Furthermore, the lower availability of plasma iAGT in mice suggests that it may serve as a limiting factor in ANG I formation in this species.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Hiroyuki Kobori
- Graduate School of Health Sciences, International University of Health and Welfare, Tokyo, Japan
| | - Akemi Katsurada
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - Kayoko Miyata
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana; and
| |
Collapse
|
32
|
O'Leary R, Penrose H, Miyata K, Satou R. Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am J Physiol Renal Physiol 2016; 310:F1000-7. [PMID: 27009340 PMCID: PMC4983453 DOI: 10.1152/ajprenal.00482.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The development of ANG II-dependent hypertension involves increased infiltration of macrophages (MΦ) and T cells into the kidney and the consequent elevation of intrarenal cytokines including IL-6, which facilitates the progression of hypertension and associated kidney injury. Intrarenal renin-angiotensin system (RAS) activation, including proximal tubular angiotensinogen (AGT) stimulation, has also been regarded as a cardinal mechanism contributing to these diseases. However, the interaction between immune cells and intrarenal RAS activation has not been fully delineated. Therefore, the present study investigated whether ANG II-treated MΦ induce AGT upregulation in renal proximal tubular cells (PTCs). MΦ were treated with 0-10(-6) M ANG II for up to 48 h. PTCs were incubated with the collected medium from MΦ. In ANG II-treated MΦ, IL-6 mRNA and protein levels were increased (1.86 ± 0.14, protein level, ratio to control); moreover, IL-6 levels were higher than TNF-α and IL-1β in culture medium isolated from ANG II-treated MΦ. Elevated AGT expression (1.69 ± 0.04, ratio to control) accompanied by phosphorylated STAT3 were observed in PTCs that received culture medium from ANG II-treated MΦ. The addition of a neutralizing IL-6 antibody to the collected medium attenuated phosphorylation of STAT3 and AGT augmentation in PTCs. Furthermore, a JAK2 inhibitor also suppressed STAT3 phosphorylation and AGT augmentation in PTCs. These results demonstrate that ANG II-induced IL-6 elevation in MΦ enhances activation of the JAK-STAT pathway and consequent AGT upregulation in PTCs, suggesting involvement of an immune response in driving intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryan O'Leary
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Harrison Penrose
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
33
|
Zhuo JL, Kobori H, Li XC, Satou R, Katsurada A, Navar LG. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways. Am J Physiol Renal Physiol 2016; 310:F1103-12. [PMID: 26864937 PMCID: PMC4889322 DOI: 10.1152/ajprenal.00350.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Long-term angiotensin II (ANG II) infusion significantly increases ANG II levels in the kidney through two major mechanisms: AT1 receptor-mediated augmentation of angiotensinogen (AGT) expression and uptake of circulating ANG II by the proximal tubules. However, it is not known whether intracellular ANG II stimulates AGT expression in the proximal tubule. In the present study, we overexpressed an intracellular cyan fluorescent ANG II fusion protein (Ad-sglt2-ECFP/ANG II) selectively in the proximal tubule of rats and mice using the sodium and glucose cotransporter 2 (sglt2) promoter. AGT mRNA and protein expression in the renal cortex and 24-h urinary AGT excretion were determined 4 wk following overexpression of ECFP/ANG II in the proximal tubule. Systolic blood pressure was significantly increased with a small antinatriuretic effect in rats and mice with proximal tubule-selective expression of ECFP/ANG II (P < 0.01). AGT mRNA and protein expression in the cortex were increased by >1.5-fold and 61 ± 16% (P < 0.05), whereas urinary AGT excretion was increased from 48.7 ± 5.7 (n = 13) to 102 ± 13.5 (n = 13) ng/24 h (P < 0.05). However, plasma AGT, renin activity, and ANG II levels remained unaltered by ECFP/ANG II. The increased AGT mRNA and protein expressions in the cortex by ECFP/ANG II were blocked in AT1a-knockout (KO) mice. Studies in cultured mouse proximal tubule cells demonstrated involvement of AT1a receptor/MAP kinases/NF-кB signaling pathways. These results indicate that intracellular ANG II stimulates AGT expression in the proximal tubules, leading to increased AGT formation and secretion into the tubular fluid, which contributes to ANG II-dependent hypertension.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - H Kobori
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - R Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - A Katsurada
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
34
|
Hui J, Qu YY, Tang N, Liu YM, Zhong H, Wang LM, Feng Q, Li Z, He F. Association of cytomegalovirus infection with hypertension risk: a meta-analysis. Wien Klin Wochenschr 2016; 128:586-91. [PMID: 26980213 PMCID: PMC5010589 DOI: 10.1007/s00508-016-0977-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 01/01/2023]
Abstract
Background Information regarding association between cytomegalovirus (CMV) infection and essential hypertension (EH) risk is not consistent across studies. Therefore, we conducted a meta-analysis to investigate the association in detail. Methods We comprehensively searched the published literature from the PubMed and Embase databases for any study analyzing the association between CMV and EH risk. A random-effects model was used to calculate the pooled odds ratio (OR) with 95 % confidence interval (CI). Results Three studies involving 9657 patients were included in the meta-analysis, and the results showed a significantly increased risk of EH in patients with CMV infection. Overall, 79.3 % of the hypertension patients were CMV-positive, which was significantly higher than the percentage for controls (OR = 1.39, 95 % CI = 0.95–2.05, P = 0.017). There was significant heterogeneity among the studies included (I2 = 70.5 %). The funnel plot and Egger’s test also indicated no publication bias. Conclusions The results showed a significant association between CMV and EH, which indicates that CMV infection is a possible cause of EH.
Collapse
Affiliation(s)
- Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yuan-Yuan Qu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, China
| | - Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Yong-Min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - La-Mei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University, Shihezi, China
| | - Qian Feng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Zhen Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, China.
| |
Collapse
|
35
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
36
|
Eriguchi M, Yotsueda R, Torisu K, Kawai Y, Hasegawa S, Tanaka S, Noguchi H, Masutani K, Kitazono T, Tsuruya K. Assessment of urinary angiotensinogen as a marker of podocyte injury in proteinuric nephropathies. Am J Physiol Renal Physiol 2015; 310:F322-33. [PMID: 26632605 DOI: 10.1152/ajprenal.00260.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/01/2015] [Indexed: 01/13/2023] Open
Abstract
Urinary protein (UP) is widely used as a clinical marker for podocyte injury; however, not all proteinuric nephropathies fit this model. We previously described the elevation of urinary angiotensinogen (AGT) accompanied by AGT expression by injured podocytes in a nitric oxide inhibition rat model (Eriguchi M, Tsuruya K, Haruyama N, Yamada S, Tanaka S, Suehiro T, Noguchi H, Masutani K, Torisu K, Kitazono T. Kidney Int 87: 116-127, 2015). In this report, we performed the human and animal studies to examine the significance and origin of urinary AGT. In the human study, focal segmental glomerulosclerosis (FSGS) patients presented with higher levels of urinary AGT, corrected by UP, than minimal-change disease (MCD) patients. Furthermore, AGT was evident in podocin-negative glomerular segmental lesions. We also tested two different nephrotic models induced by puromycin aminonucleoside in Wistar rats. The urinary AGT/UP ratio and AGT protein and mRNA expression in sieved glomeruli from FSGS rats were significantly higher than in MCD rats. The presence of AGT at injured podocytes in FSGS rats was detected by immunohistochemistry and immunoelectron microscopy. Finally, we observed the renal tissue and urinary metabolism of exogenous injected human recombinant AGT (which is not cleaved by rodent renin) in FSGS and control rats. Significant amounts of human AGT were detected in the urine of FSGS rats, but not of control rats. Immunostaining for rat and human AGT identified that only rat AGT was detected in injured podocytes, and filtered human AGT was seen in superficial proximal tubules, but not in injured podocytes, suggesting AGT generation by injured podocytes. In conclusion, the urinary AGT/UP ratio represents a novel specific marker of podocyte injury.
Collapse
Affiliation(s)
- Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Ryusuke Yotsueda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Yasuhiro Kawai
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Shoko Hasegawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Shigeru Tanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Hideko Noguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; and Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Quigley HA, Pitha IF, Welsbie DS, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Berlinicke CA, Mitchell KL, Kim J, Jefferys JJ, Kimball EC. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma. PLoS One 2015; 10:e0141137. [PMID: 26505191 PMCID: PMC4624713 DOI: 10.1371/journal.pone.0141137] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head.
Collapse
Affiliation(s)
- Harry A. Quigley
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Ian F. Pitha
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Derek S. Welsbie
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cathy Nguyen
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matthew R. Steinhart
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mary Ellen Pease
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ericka N. Oglesby
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cynthia A. Berlinicke
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Katherine L. Mitchell
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jessica Kim
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joan J. Jefferys
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth C. Kimball
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Lo CS, Shi Y, Chang SY, Abdo S, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes. Diabetologia 2015; 58:2443-54. [PMID: 26232095 PMCID: PMC4572079 DOI: 10.1007/s00125-015-3700-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. METHODS Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. RESULTS Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. CONCLUSIONS/INTERPRETATION These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shiao-Ying Chang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Shaaban Abdo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Janos G Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Tour Viger Pavillon R, Université de Montréal, 900 Saint-Denis Street, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
39
|
Abstract
Experimental models of hypertension and patients with inappropriately increased renin formation due to a stenotic kidney, arteriosclerotic narrowing of the renal arterioles or a rare juxtaglomerular cell tumor have shown a progressive augmentation of the intrarenal/intratubular renin-angiotensin system (RAS). The increased intrarenal angiotensin II (Ang II) elicits renal vasoconstriction and enhanced tubular sodium reabsorption in proximal and distal nephron segments. The enhanced intrarenal Ang II levels are due to both increased Ang II type 1 (AT1) receptor mediated Ang II uptake and AT1 receptor dependent stimulation of renal angiotensinogen (AGT) mRNA and augmented AGT production. The increased AGT formation and secretion into the proximal tubular lumen leads to local formation of Ang II, which stimulates proximal transporters such as the sodium/hydrogen exchanger. Enhanced AGT production also leads to spillover of AGT into the distal nephron segments as reflected by AGT in the urine, which provides an index of intrarenal RAS activity. There is also increased Ang II concentration in distal nephron with stimulation of distal sodium transport. Increased urinary excretion of AGT has been demonstrated in patients with hypertension, type 1 and type 2 diabetes mellitus, and several types of chronic kidney diseases indicating an upregulation of intrarenal RAS activity.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Weijian Shao
- Department of Physiology and the Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane University Health Sciences Center, SL39, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond) 2015; 128:649-63. [PMID: 25495544 DOI: 10.1042/cs20140329] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the relationship between Ang-(1-7) [angiotensin-(1-7)] action, sHTN (systolic hypertension), oxidative stress, kidney injury, ACE2 (angiotensin-converting enzyme-2) and MasR [Ang-(1-7) receptor] expression in Type 1 diabetic Akita mice. Ang-(1-7) was administered daily [500 μg/kg of BW (body weight) per day, subcutaneously] to male Akita mice from 14 weeks of age with or without co-administration of an antagonist of the MasR, A779 (10 mg/kg of BW per day). The animals were killed at 20 weeks of age. Age-matched WT (wild-type) mice served as controls. Ang-(1-7) administration prevented sHTN and attenuated kidney injury (reduced urinary albumin/creatinine ratio, glomerular hyperfiltration, renal hypertrophy and fibrosis, and tubular apoptosis) without affecting blood glucose levels in Akita mice. Ang-(1-7) also attenuated renal oxidative stress and the expression of oxidative stress-inducible proteins (NADPH oxidase 4, nuclear factor erythroid 2-related factor 2, haem oxygenase 1), pro-hypertensive proteins (angiotensinogen, angiotensin-converting enzyme, sodium/hydrogen exchanger 3) and profibrotic proteins (transforming growth factor-β1 and collagen IV), and increased the expression of anti-hypertensive proteins (ACE2 and MasR) in Akita mouse kidneys. These effects were reversed by A779. Our data suggest that Ang-(1-7) plays a protective role in sHTN and RPTC (renal proximal tubular cell) injury in diabetes, at least in part, through decreasing renal oxidative stress-mediated signalling and normalizing ACE2 and MasR expression.
Collapse
|
41
|
Bae EH, Konvalinka A, Fang F, Zhou X, Williams V, Maksimowski N, Song X, Zhang SL, John R, Oudit GY, Pei Y, Scholey JW. Characterization of the intrarenal renin-angiotensin system in experimental alport syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1423-35. [PMID: 25777062 DOI: 10.1016/j.ajpath.2015.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/29/2014] [Accepted: 01/22/2015] [Indexed: 01/03/2023]
Abstract
Blockade of the renin-angiotensin system attenuates the progression of experimental and clinical Alport syndrome (AS); however, the underlying mechanism(s) remains largely unknown. We evaluated the renin-angiotensin system in 4- and 7-week-old homozygous for collagen, type IV, α3 gene (Col4A3(-/-)) and wild-type mice, a model of AS characterized by proteinuria and progressive renal injury. Renal angiotensin (Ang) II levels increased, whereas renal Ang-(1-7) levels decreased in 7-week-old Col4a3(-/-) mice compared with age-matched controls; these changes were partially reversed by recombinant angiotensin-converting enzyme 2 (ACE2) treatment. The expression of both the angiotensinogen and renin protein increased in Col4a3(-/-) compared with wild-type mice. Consistent with the Ang-(1-7) levels, the expression and activity of kidney ACE2 decreased in 7-week-old Col4a3(-/-) mice. The urinary excretion rate of ACE2 paralleled the decline in tissue expression. Expression of an Ang II-induced gene, heme oxygenase-1, was up-regulated in the kidneys of 7-week-old Col4a3(-/-) mice compared with wild-type mice by microarray analysis. Heme oxygenase-1 (HO-1) protein expression was increased in kidneys of Col4a3(-/-) mice and normalized by treatment with ACE inhibitor. Urinary HO-1 excretion paralleled renal HO-1 expression. In conclusion, progressive kidney injury in AS is associated with changes in expression of intrarenal renin Ang system components and Ang peptides. HO-1 and ACE2 may represent novel markers of AS-associated kidney injury, whereas administration of recombinant ACE2 and/or Ang-(1-7) may represent novel therapeutic approaches in AS.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ana Konvalinka
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Fei Fang
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohua Zhou
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Williams
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Maksimowski
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Genomic Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shao-Ling Zhang
- Faculty of Medicine, Hộtel-DieuHộpital, University of Montreal, Montreal, Quebec, Canada
| | - Rohan John
- Department of Pathology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - York Pei
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Genomic Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - James W Scholey
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Giani JF, Shah KH, Khan Z, Bernstein EA, Shen XZ, McDonough AA, Gonzalez-Villalobos RA, Bernstein KE. The intrarenal generation of angiotensin II is required for experimental hypertension. Curr Opin Pharmacol 2015; 21:73-81. [PMID: 25616034 DOI: 10.1016/j.coph.2015.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
Hypertension is a major risk factor for cardiovascular disease. While the cause of hypertension is multifactorial, renal dysregulation of salt and water excretion is a major factor. All components of the renin-angiotensin system are produced locally in the kidney, suggesting that intrarenal generation of angiotensin II plays a key role in blood pressure regulation. Here, we show that two mouse models lacking renal angiotensin converting enzyme (ACE) are protected against angiotensin II and l-NAME induced hypertension. In response to hypertensive stimuli, mice lacking renal ACE do not produce renal angiotensin II. These studies indicate that the intrarenal renin-angiotensin system works as an entity separate from systemic angiotensin II generation. Renal ACE appears necessary for experimental hypertension.
Collapse
Affiliation(s)
- Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kandarp H Shah
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Morris BJ. Renin, genes, microRNAs, and renal mechanisms involved in hypertension. Hypertension 2015; 65:956-62. [PMID: 25601934 DOI: 10.1161/hypertensionaha.114.04366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Brian J Morris
- From the Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
44
|
Padda RS, Shi Y, Lo CS, Zhang SL, Chan JSD. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes? ACTA ACUST UNITED AC 2015; 6. [PMID: 26793405 DOI: 10.4172/2155-6156.1000615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.
Collapse
Affiliation(s)
- Ranjit Singh Padda
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Yixuan Shi
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Chao-Sheng Lo
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - Shao-Ling Zhang
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| | - John S D Chan
- Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, 900 Saint Denis Street, Montreal, Quebec, Canada H2X 0A9
| |
Collapse
|
45
|
Abdo S, Zhang SL, Chan JSD. Reactive Oxygen Species and Nuclear Factor Erythroid 2-Related Factor 2 Activation in Diabetic Nephropathy: A Hidden Target. ACTA ACUST UNITED AC 2015. [PMID: 26213634 PMCID: PMC4511631 DOI: 10.4172/2155-6156.1000547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hyperglycemia, oxidative stress and renin-angiotensin system (RAS) dysfunction have been implicated in diabetic nephropathy (DN) progression, but the underlying molecular mechanisms are far from being fully understood. In addition to the systemic RAS, the existence of a local intrarenal RAS in renal proximal tubular cells has been recognized. Angiotensinogen is the sole precursor of all angiotensins (Ang). Intrarenal reactive oxygen species (ROS) generation, Ang II level and RAS gene expression are up-regulated in diabetes, indicating that intrarenal ROS and RAS activation play an important role in DN. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is one of the major protective processes that occurs in response to intracellular oxidative stress. Nrf2 stimulates an array of antioxidant enzymes that convert excessive ROS to less reactive or less damaging forms. Recent studies have, however, revealed that Nrf2 activation might have other undesirable effects in diabetic animals and in diabetic patients with chronic kidney disease. This mini-review summarizes current knowledge of the relationship between ROS, Nrf2 and intra renal RAS activation in DN progression as well as possible novel target(s) for DN treatment.
Collapse
Affiliation(s)
- Shaaban Abdo
- Department of Medicine, University of Montreal and Research Center Hospital of QC, Canada
| | - Shao-Ling Zhang
- Department of Medicine, University of Montreal and Research Center Hospital of QC, Canada
| | - John S D Chan
- Department of Medicine, University of Montreal and Research Center Hospital of QC, Canada
| |
Collapse
|
46
|
Tang N, Li JW, Liu YM, Zhong H, Wang LM, Deng FM, Qu YY, Hui J, Cheng J, Tang B, Huang G, Guo SX, Li XZ, Wei LL, He F. Human cytomegalovirus infection is associated with essential hypertension in Kazakh and Han Chinese populations. Med Sci Monit 2014; 20:2508-19. [PMID: 25448630 PMCID: PMC4262054 DOI: 10.12659/msm.892861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background We aimed to study the association between cytomegalovirus (CMV) infection and hypertension in Kazakh and Han populations from Xinjiang Province, China. Material/Methods We analyzed data on 800 Kazakhs (467 hypertension patients and 333 healthy control participants) and 800 Hans (482 hypertension patients and 318 healthy control participants) aged 18–84 years old. ELISA and real-time quantitative PCR coupled with restriction fragment length polymorphism analysis were applied for determining CMV infection and glycoprotein B (gB) genotypes, respectively. Results Serologic evidence of CMV infection was obtained for 95.4% and 90.1% of the Kazakhs and Hans, respectively. The CMV seroprevalence rates among the Kazakh and Han participants with hypertension were 96.8% and 89.8%, respectively. Multiple logistic regression analyses revealed statistically significant independent associations between CMV seropositivity and hypertension in Kazakh males and between CMV antibody titers and hypertension in Hans; significant relationships also existed between CMV antibody titers and blood pressure in Hans. In Kazakhs, 3 CMV gB genotypes were identified: gB2 and genotype mixtures gB1+gB2 and gB2+gB3. In Hans, 4 CMV gB genotypes were identified: gB1, gB2, gB1+gB2, and gB2+gB3. Of the 4 studied genotypes, gB2+gB3 showed a significant independent association with hypertension in Kazakh females. Conclusions CMV infection is associated with essential hypertension in Kazakh males and Hans in Xinjiang. CMV seropositivity is associated with hypertension in Kazakh males, and CMV antibody titers are associated with blood pressure and hypertension in Han males and females. Moreover, the CMV gB2+gB3 genotype mixture is associated independently with essential hypertension in Kazakh females.
Collapse
Affiliation(s)
- Na Tang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Jia-wei Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Yong-min Liu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Hua Zhong
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - La-mei Wang
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Feng-mei Deng
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Yuan-yuan Qu
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Jing Hui
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Jiang Cheng
- Department of Clinical Laboratory Medicine, First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Bin Tang
- Department of Ultrasonic Medicine, First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Gang Huang
- Department of Cardiovascular Internal Medicine, First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Shu-xia Guo
- Department of Preventive Medicine/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Xin-zhi Li
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Li-li Wei
- Department of Physiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Fang He
- Department of Pathophysiology/Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
47
|
Abdo S, Shi Y, Otoukesh A, Ghosh A, Lo CS, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice. Diabetes 2014; 63:3483-96. [PMID: 24812425 PMCID: PMC4171660 DOI: 10.2337/db13-1830] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study investigated the impact of catalase (Cat) overexpression in renal proximal tubule cells (RPTCs) on nuclear factor erythroid 2-related factor 2 (Nrf2) stimulation of angiotensinogen (Agt) gene expression and the development of hypertension and renal injury in diabetic Akita transgenic mice. Additionally, adult male mice were treated with the Nrf2 activator oltipraz with or without the inhibitor trigonelline. Rat RPTCs, stably transfected with plasmid containing either rat Agt or Nrf2 gene promoter, were also studied. Cat overexpression normalized systolic BP, attenuated renal injury, and inhibited RPTC Nrf2, Agt, and heme oxygenase-1 (HO-1) gene expression in Akita Cat transgenic mice compared with Akita mice. In vitro, high glucose level, hydrogen peroxide, and oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by trigonelline, small interfering RNAs of Nrf2, antioxidants, or pharmacological inhibitors of nuclear factor-κB and p38 mitogen-activated protein kinase. The deletion of Nrf2-responsive elements in the rat Agt gene promoter abolished the stimulatory effect of oltipraz. Oltipraz administration also augmented Agt, HO-1, and Nrf2 gene expression in mouse RPTCs and was reversed by trigonelline. These data identify a novel mechanism, Nrf2-mediated stimulation of intrarenal Agt gene expression and activation of the renin-angiotensin system, by which hyperglycemia induces hypertension and renal injury in diabetic mice.
Collapse
Affiliation(s)
- Shaaban Abdo
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Yixuan Shi
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Abouzar Otoukesh
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Anindya Ghosh
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Chao-Sheng Lo
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Chenier
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Janos G Filep
- Research Centre, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao Ling Zhang
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - John S D Chan
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
48
|
Giani JF, Janjulia T, Taylor B, Bernstein EA, Shah K, Shen XZ, McDonough AA, Bernstein KE, Gonzalez-Villalobos RA. Renal generation of angiotensin II and the pathogenesis of hypertension. Curr Hypertens Rep 2014; 16:477. [PMID: 25097114 PMCID: PMC4277187 DOI: 10.1007/s11906-014-0477-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The existence of a complete and functional renin-angiotensin system along the nephron is widely recognized. However, its precise role in blood pressure control and, by extension, hypertension is still uncertain. While most investigators agree that overexpressing RAS components along the nephron results in hypertension, two important issues remain: whether the local RAS works as a separate entity or represents an extension of the systemic RAS and whether locally generated angiotensin II has specific renal effects on blood pressure that are distinct from systemic angiotensin II. This review addresses these issues while emphasizing the unique role of local angiotensin II in the response of the kidney to hypertensive stimuli and the induction of hypertension.
Collapse
Affiliation(s)
- Jorge F. Giani
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tea Janjulia
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian Taylor
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A. Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kandarp Shah
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiao Z. Shen
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alicia A. McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth E. Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Romer A. Gonzalez-Villalobos
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Pfizer, DSRD CoE, 274 Eastern Point Road, MS 8274-1245, Groton, CT 06340, USA,
| |
Collapse
|
49
|
Droguett A, Krall P, Burgos ME, Valderrama G, Carpio D, Ardiles L, Rodriguez-Diez R, Kerr B, Walz K, Ruiz-Ortega M, Egido J, Mezzano S. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS One 2014; 9:e101879. [PMID: 25036148 PMCID: PMC4103765 DOI: 10.1371/journal.pone.0101879] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used as a new tool for enhancing the knowledge of renal disease progression.
Collapse
Affiliation(s)
- Alejandra Droguett
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - M. Eugenia Burgos
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Hystopathology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Raquel Rodriguez-Diez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Jesus Egido
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
50
|
Giani JF, Janjulia T, Kamat N, Seth DM, Blackwell WLB, Shah KH, Shen XZ, Fuchs S, Delpire E, Toblli JE, Bernstein KE, McDonough AA, Gonzalez-Villalobos RA. Renal angiotensin-converting enzyme is essential for the hypertension induced by nitric oxide synthesis inhibition. J Am Soc Nephrol 2014; 25:2752-63. [PMID: 25012170 DOI: 10.1681/asn.2013091030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The kidney is an important source of angiotensin-converting enzyme (ACE) in many species, including humans. However, the specific effects of local ACE on renal function and, by extension, BP control are not completely understood. We previously showed that mice lacking renal ACE, are resistant to the hypertension induced by angiotensin II infusion. Here, we examined the responses of these mice to the low-systemic angiotensin II hypertensive model of nitric oxide synthesis inhibition with L-NAME. In contrast to wild-type mice, mice without renal ACE did not develop hypertension, had lower renal angiotensin II levels, and enhanced natriuresis in response to L-NAME. During L-NAME treatment, the absence of renal ACE was associated with blunted GFR responses; greater reductions in abundance of proximal tubule Na(+)/H(+) exchanger 3, Na(+)/Pi co-transporter 2, phosphorylated Na(+)/K(+)/Cl(-) cotransporter, and phosphorylated Na(+)/Cl(-) cotransporter; and greater reductions in abundance and processing of the γ isoform of the epithelial Na(+) channel. In summary, the presence of ACE in renal tissue facilitates angiotensin II accumulation, GFR reductions, and changes in the expression levels and post-translational modification of sodium transporters that are obligatory for sodium retention and hypertension in response to nitric oxide synthesis inhibition.
Collapse
Affiliation(s)
- Jorge F Giani
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tea Janjulia
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nikhil Kamat
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dale M Seth
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Wendell-Lamar B Blackwell
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kandarp H Shah
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiao Z Shen
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sebastien Fuchs
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, California
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Alemán Hospital, Buenos Aires, Argentina
| | - Kenneth E Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Romer A Gonzalez-Villalobos
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California;
| |
Collapse
|