1
|
Yang Y, Suo N, Cui SH, Wu X, Ren XY, Liu Y, Guo R, Xie X. Trametinib, an anti-tumor drug, promotes oligodendrocytes generation and myelin formation. Acta Pharmacol Sin 2024; 45:2527-2539. [PMID: 38871922 PMCID: PMC11579360 DOI: 10.1038/s41401-024-01313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
Oligodendrocytes (OLs) are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). Demyelination is a common feature of many neurological diseases such as multiple sclerosis (MS) and leukodystrophies. Although spontaneous remyelination can happen after myelin injury, nevertheless, it is often insufficient and may lead to aggravated neurodegeneration and neurological disabilities. Our previous study has discovered that MEK/ERK pathway negatively regulates OPC-to-OL differentiation and remyelination in mouse models. To facilitate possible clinical evaluation, here we investigate several MEK inhibitors which have been approved by FDA for cancer therapies in both mouse and human OPC-to-OL differentiation systems. Trametinib, the first FDA approved MEK inhibitor, displays the best effect in stimulating OL generation in vitro among the four MEK inhibitors examined. Trametinib also significantly enhances remyelination in both MOG-induced EAE model and LPC-induced focal demyelination model. More exciting, trametinib facilitates the generation of MBP+ OLs from human embryonic stem cells (ESCs)-derived OPCs. Mechanism study indicates that trametinib promotes OL generation by reducing E2F1 nuclear translocation and subsequent transcriptional activity. In summary, our studies indicate a similar inhibitory role of MEK/ERK in human and mouse OL generation. Targeting the MEK/ERK pathway might help to develop new therapies or repurpose existing drugs for demyelinating diseases.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Na Suo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shi-Hao Cui
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
2
|
Wei X, Wang W, Yin Q, Li H, Ahmed A, Ullah R, Li W, Jing L. In Vivo Chemical Screening in Zebrafish Embryos Identified FDA-Approved Drugs That Induce Differentiation of Acute Myeloid Leukemia Cells. Int J Mol Sci 2024; 25:7798. [PMID: 39063039 PMCID: PMC11277044 DOI: 10.3390/ijms25147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the abnormal proliferation and differentiation arrest of myeloid progenitor cells. The clinical treatment of AML remains challenging. Promoting AML cell differentiation is a valid strategy, but effective differentiation drugs are lacking for most types of AML. In this study, we generated Tg(drl:hoxa9) zebrafish, in which hoxa9 overexpression was driven in hematopoietic cells and myeloid differentiation arrest was exhibited. Using Tg(drl:hoxa9) embryos, we performed chemical screening and identified four FDA-approved drugs, ethacrynic acid, khellin, oxcarbazepine, and alendronate, that efficiently restored myeloid differentiation. The four drugs also induced AML cell differentiation, with ethacrynic acid being the most effective. By an RNA-seq analysis, we found that during differentiation, ethacrynic acid activated the IL-17 and MAPK signaling pathways, which are known to promote granulopoiesis. Furthermore, we found that ethacrynic acid enhanced all-trans retinoic acid (ATRA)-induced differentiation, and both types of signaling converged on the IL-17/MAPK pathways. Inhibiting the IL-17/MAPK pathways impaired ethacrynic acid and ATRA-induced differentiation. In addition, we showed that ethacrynic acid is less toxic to embryogenesis and less disruptive to normal hematopoiesis than ATRA. Thus, the combination of ethacrynic acid and ATRA may have broader clinical applications. In conclusion, through zebrafish-aided screening, our study identified four drugs that can be repurposed to induce AML differentiation, thus providing new agents for AML therapy.
Collapse
Affiliation(s)
- Xiaona Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| | - Wei Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Qianlan Yin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| | - Hongji Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| | - Abrar Ahmed
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| | - Rahat Ullah
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| | - Wei Li
- Core Facility and Technical Service Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.); (Q.Y.); (H.L.); (A.A.); (R.U.)
| |
Collapse
|
3
|
Liu H, Sun L, Zhao H, Zhao Z, Zhang S, Jiang S, Cheng T, Wang X, Wang T, Shao Y, Zhu H, Han H, Cao Y, Jiang E, Cao Y, Xu Y. Proteinase 3 depletion attenuates leukemia by promoting myeloid differentiation. Cell Death Differ 2024; 31:697-710. [PMID: 38589495 PMCID: PMC11165011 DOI: 10.1038/s41418-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) that have impaired differentiation can transform into leukemic blasts. However, the mechanism that controls differentiation remains elusive. Here, we show that the genetic elimination of Proteinase 3 (PRTN3) in mice led to spontaneous myeloid differentiation. Mechanistically, our findings indicate that PRTN3 interacts with the N-terminal of STAT3, serving as a negative regulator of STAT3-dependent myeloid differentiation. Specifically, PRTN3 promotes STAT3 ubiquitination and degradation, while simultaneously reducing STAT3 phosphorylation and nuclear translocation during G-CSF-stimulated myeloid differentiation. Strikingly, pharmacological inhibition of STAT3 (Stattic) partially counteracted the effects of PRTN3 deficiency on myeloid differentiation. Moreover, the deficiency of PRTN3 in primary AML blasts promotes the differentiation of those cells into functional neutrophils capable of chemotaxis and phagocytosis, ultimately resulting in improved overall survival rates for recipients. These findings indicate PRTN3 exerts an inhibitory effect on STAT3-dependent myeloid differentiation and could be a promising therapeutic target for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hongfei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Zihan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shiyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shan Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianran Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaohan Wang
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Tong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ya Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Haiyan Zhu
- Department of Clinical Lab, Weihai Municipal Hospital, Weihai, 264200, China
| | - Huijuan Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750001, China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 17165, Sweden.
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Suzuki S, Suzuki S, Sato-Nagaoka Y, Ito C, Takahashi S. Identification of triciribine as a novel myeloid cell differentiation inducer. PLoS One 2024; 19:e0303428. [PMID: 38743735 PMCID: PMC11093380 DOI: 10.1371/journal.pone.0303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1β, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.
Collapse
MESH Headings
- Humans
- Cell Differentiation/drug effects
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- CD11b Antigen/metabolism
- CD11b Antigen/genetics
- Cell Line, Tumor
- HL-60 Cells
- p38 Mitogen-Activated Protein Kinases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Imidazoles/pharmacology
- Tretinoin/pharmacology
- Pyridines/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Souma Suzuki
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Yuri Sato-Nagaoka
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Chisaki Ito
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Shinichiro Takahashi
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Cantelli BA, Segura GG, Bitencourt TA, de Abreu MH, Petrucelli MF, Peronni K, Sanches PR, Beleboni RO, da Silva Junior WA, Martinez-Rossi NM, Marins M, Fachin AL. Transcriptome Analysis of Co-Cultures of THP-1 Human Macrophages with Inactivated Germinated Trichophyton rubrum Conidia. J Fungi (Basel) 2023; 9:jof9050563. [PMID: 37233274 DOI: 10.3390/jof9050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Although most mycoses are superficial, the dermatophyte Trichophyton rubrum can cause systemic infections in patients with a weakened immune system, resulting in serious and deep lesions. The aim of this study was to analyze the transcriptome of a human monocyte/macrophage cell line (THP-1) co-cultured with inactivated germinated T. rubrum conidia (IGC) in order to characterize deep infection. Analysis of macrophage viability by lactate dehydrogenase quantification showed the activation of the immune system after 24 h of contact with live germinated T. rubrum conidia (LGC). After standardization of the co-culture conditions, the release of the interleukins TNF-α, IL-8, and IL-12 was quantified. The greater release of IL-12 was observed during co-culturing of THP-1 with IGC, while there was no change in the other cytokines. Next-generation sequencing of the response to T. rubrum IGC identified the modulation of 83 genes; of these, 65 were induced and 18 were repressed. The categorization of the modulated genes showed their involvement in signal transduction, cell communication, and immune response pathways. In total, 16 genes were selected for validation and Pearson's correlation coefficient was 0.98, indicating a high correlation between RNA-seq and qPCR. Modulation of the expression of all genes was similar for LGC and IGC co-culture; however, the fold-change values were higher for LGC. Due to the high expression of the IL-32 gene in RNA-seq, we quantified this interleukin and observed an increased release in co-culture with T. rubrum. In conclusion, the macrophages-T. rubrum co-culture model revealed the ability of these cells to modulate the immune response, as demonstrated by the release of proinflammatory cytokines and the RNA-seq gene expression profile. The results obtained permit to identify possible molecular targets that are modulated in macrophages and that could be explored in antifungal therapies involving the activation of the immune system.
Collapse
Affiliation(s)
- Bruna Aline Cantelli
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
| | | | - Tamires Aparecida Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, Brazil
| | | | - Monise Fazolin Petrucelli
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14096-900, Brazil
| | - Kamila Peronni
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy, Ribeirao Preto 14049-900, Brazil
| | - Pablo Rodrigo Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14096-900, Brazil
| | - Rene Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
- Medicine School, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
| | | | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto 14096-900, Brazil
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
- Medicine School, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
- Medicine School, University of Ribeirão Preto-UNAERP, Ribeirao Preto 14096-900, Brazil
| |
Collapse
|
6
|
Borges GSM, Sicard P, de Mello Gomides Loures C, Evangelista FGC, Sales CC, de Paula Sabino A, Fernandes C, Ferreira LAM, Richard S. Tocotrienols-enriched Self-nanoemulsifying Drug Delivery System Enhances the Antileukemic Activity of All-trans Retinoic Acid but not Electrocardiogram Alterations Evoked by Its Combination with Arsenic Trioxide. AAPS PharmSciTech 2023; 24:79. [PMID: 36918482 DOI: 10.1208/s12249-023-02531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
All-trans retinoic acid and arsenic trioxide are the leading choices for the treatment of acute promyelocytic leukemia. Notwithstanding the impressive differentiative properties of all-trans retinoic acid and the apoptotic properties of arsenic trioxide, some problems still occur in acute promyelocytic leukemia treatment. These problems are due to patients' relapses, mainly related to changes in the ligand-binding domain of RARα (retinoic acid receptor α) and the cardiotoxic effects caused by arsenic trioxide. We previously developed a self-nanoemulsifying drug delivery system enriched with tocotrienols to deliver all-trans retinoic acid (SNEDDS-TRF-ATRA). Herein, we have evaluated if tocotrienols can help revert ATRA resistance in an APL cell line (NB4-R2 compared to sensitive NB4 cells) and mitigate the cardiotoxic effects of arsenic trioxide in a murine model. SNEDDS-TRF-ATRA enhanced all-trans retinoic acid cytotoxicity in NB4-R2 (resistant) cells but not in NB4 (sensitive) cells. Moreover, SNEDDS-TRF-ATRA did not significantly change the differentiative properties of all-trans retinoic acid in both NB4 and NB4-R2 cells. Combined administration of SNEDDS-TRF-ATRA and arsenic trioxide could revert QTc interval prolongation caused by ATO but evoked other electrocardiogram alterations in mice, such as T wave flattening. Therefore, SNEDDS-TRF-ATRA may enhance the antileukemic properties of all-trans retinoic acid but may influence ECG changes caused by arsenic trioxide administration. SNEDDS-TRF-ATRA presents cytotoxicity in resistant APL cells (NB4-R2). Combined administration of ATO and SNEDDS-TRF-ATRA in mice prevented the prolongation of the QTc interval caused by ATO but evoked ECG abnormalities such as T wave flattening.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.,PhyMedExp, Inserm, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France.,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Cristina de Mello Gomides Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.
| | - Sylvain Richard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France. .,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Singh A, Das K, Banerjee S, Sen P. Elucidation of the signalling pathways for enhanced exosome release from Mycobacterium-infected macrophages and subsequent induction of differentiation. Immunology 2023; 168:63-82. [PMID: 36240165 DOI: 10.1111/imm.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Exosomes are extracellular vesicles released by all cell types; perform several important functions such as cell-to-cell communication, growth, differentiation and so on. Exosomes elicit several signalling mechanisms as they carry information in the form of DNA, RNA or protein docked on them. We show that exosomes released from Mycobacterium tuberculosis (Mtb)-infected macrophages not only induce differentiation of naïve monocytes but also generate functionally active macrophages via MAPK-dependent signalling mechanism through MK-2 and NF-κβ activation which is completely different from the differentiation induced by exosomes from uninfected macrophages. Further, we elucidate unequivocally the signalling mechanism behind the enhanced release of exosome generation from infected macrophages driven by AKT phosphorylation involving Rab7a and Rab11a. Genes of both ESCRT-dependent and -independent pathways are found to be involved in enhanced exosomes release and are modulated by AKT. However, interestingly, the genes of the ESCRT-independent pathway are dependent on NF-κβ activation while the genes of the dependent pathway are not, suggesting two parallel signalling cascades operating in tandem.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Sampali Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
8
|
Sharma J, Prabha P, Sharma R, Gupta S, Dixit A. Anti-leukemic principle(s) from Momordica charantia seeds induce differentiation of HL-60 cells through ERK/MAPK signalling pathway. Cytotechnology 2022; 74:591-611. [PMID: 36238266 PMCID: PMC9525536 DOI: 10.1007/s10616-022-00547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloid leukemia is one of the major causes of deaths among elderly with very poor prognosis. Due to the adverse effects of existing chemotherapeutic agents, plant-derived components are being screened for their anti-leukemic potential. Momordica charantia (bitter gourd) possesses a variety of therapeutic activities. We have earlier demonstrated anti-leukemic activity of acetone extract of M. charantia seeds. The present study reports purification of differentiation inducing principle(s) from further fractionated seed extract (hexane fraction of the acetone extract, Mc2-Ac-hex) using HL-60 cells. Out of the 5 peak fractions (P1-P5) obtained from normal phase HPLC of the Mc2-Ac-hex, only peak fraction 3 (P3) induced differentiation of HL-60 cells as evident from an increase in NBT-positive cells and increased expression of cell surface marker CD11b. The P3 differentiated the HL-60 cells to granulocytic lineage, established by increased CD15 (granulocytic cell surface marker) expression in the treated cells. Further, possible molecular mechanism and the signalling pathway involved in the differentiation of HL-60 cells were also investigated. Use of specific signalling pathway inhibitors in the differentiation study, and proteome array analysis of the treated cells collectively revealed the involvement the of ERK/MAPK mediated pathway. Partial characterization of the P3 by GC-MS analysis revealed the presence of dibutyl phthalate, and derivatives of 2,5-dihydrofuran to be the highest among the 5 identified compounds. This study thus demonstrated that purified differentiation-inducing principle(s) from M. charantia seed extract induce HL-60 cells to granulocytic lineage through ERK/MAPK signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00547-x.
Collapse
Affiliation(s)
- Jeetesh Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Punit Prabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rohit Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shalini Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
9
|
Di Rocco A, Camero S, Benedetti A, Lozanoska-Ochser B, Megiorni F, Marchese C, Stramucci L, Ciccarelli C, Bouché M, Bossi G, Marampon F, Zani BM. Anti‑oncogenic and pro‑myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma. Oncol Rep 2022; 48:151. [PMID: 35801577 PMCID: PMC9350981 DOI: 10.3892/or.2022.8363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
Insights into the molecular and cellular biology of embryonal rhabdomyosarcoma (ERMS), an aggressive paediatric tumour, are required in order to identify new targets for novel treatments that may benefit patients with this disease. The present study examined the functional effects of MKK3 and MKK6, two upstream kinases of p38, and found that the ectopic expression of MKK6 led to rapid p38 activation and the myogenic differentiation of ERMS cells, whereas MKK3 failed to induce differentiation, while maintaining the proliferation state. Myogenin and myosin heavy chain were induced in MKK6‑overexpressing ERMS cells and were inhibited by the p38 inhibitor, SB203580. The expression of Myc and ERK‑PO4 increased under the effect of SB203580, whereas it decreased in MKK6‑overexpressing cells. AKT activation was part of the myogenic program triggered by MKK6 overexpression alone. To the best of our knowledge, the present study demonstrates, for the first time, that the endogenous MKK6 pathway may be recovered by MEK/ERK inhibition (U0126 and trametinib) and that it concomitantly induces the reversal of the oncogenic pattern and the induction of the myogenic differentiation of ERMS cell lines. The effects of MEK/ERK inhibitors markedly increase the potential clinical applications in ERMS, particularly on account of the MEK inhibitor‑induced early MKK6/p38 axis activation and of their anti‑oncogenic effects. The findings presented herein lend further support to the antitumour effects of MKK6; MKK6 may thus represent a novel target for advanced personalised treatments against ERMS.
Collapse
Affiliation(s)
- Agnese Di Rocco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Simona Camero
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Anna Benedetti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Lorenzo Stramucci
- Department of Diagnostic Research and Technological Innovation, IRCSS‑Regina Elena National Cancer Institute, I‑00144 Rome, Italy
| | - Carmela Ciccarelli
- Department of Life, Health and Environmental Sciences (MESVA), University of L'Aquila, I‑67100 L'Aquila, Italy
| | - Marina Bouché
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Gianluca Bossi
- Department of Diagnostic Research and Technological Innovation, IRCSS‑Regina Elena National Cancer Institute, I‑00144 Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, I‑00161 Rome, Italy
| | - Bianca Maria Zani
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (AHFMO), Unit of Histology, Sapienza University of Rome, I‑00161 Rome, Italy
| |
Collapse
|
10
|
Chang CC, Sia KC, Chang JF, Lin CM, Yang CM, Lee IT, Vo TTT, Huang KY, Lin WN. Participation of lipopolysaccharide in hyperplasic adipose expansion: Involvement of NADPH oxidase/ROS/p42/p44 MAPK-dependent Cyclooxygenase-2. J Cell Mol Med 2022; 26:3850-3861. [PMID: 35650335 PMCID: PMC9279599 DOI: 10.1111/jcmm.17419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a world‐wide problem, especially the child obesity, with the complication of various metabolic diseases. Child obesity can be developed as early as the age between 2 and 6. The expansion of fat mass in child age includes both hyperplasia and hypertrophy of adipose tissue, suggesting the importance of proliferation and adipogenesis of preadipocytes. The changed composition of gut microbiota is associated with obesity, revealing the roles of lipopolysaccharide (LPS) on manipulating adipose tissue development. Studies suggest that LPS enters the circulation and acts as a pro‐inflammatory regulator to facilitate pathologies. Nevertheless, the underlying mechanisms behind LPS‐modulated obesity are yet clearly elucidated. This study showed that LPS enhanced the expression of cyclooxygenase‐2 (COX‐2), an inflammatory regulator of obesity, in preadipocytes. Pretreating preadipocytes with the scavenger of reactive oxygen species (ROS) or the inhibitors of NADPH oxidase or p42/p44 MAPK markedly decreased LPS‐stimulated gene expression of COX‐2 together with the phosphorylation of p47phox and p42/p44 MAPK, separately. LPS activated p42/p44 MAPK via NADPH oxidase‐dependent ROS accumulation in preadipocytes. Reduction of intracellular ROS or attenuation of p42/p44 MAPK activation both reduced LPS‐mediated COX‐2 expression and preadipocyte proliferation. Moreover, LPS‐induced preadipocyte proliferation and adipogenesis were abolished by the inhibition of COX‐2 or PEG2 receptors. Taken together, our results suggested that LPS enhanced the proliferation and adipogenesis of preadipocytes via NADPH oxidase/ROS/p42/p44 MAPK‐dependent COX‐2 expression.
Collapse
Affiliation(s)
- Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jia-Feng Chang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Internal Medicine, En-Chu-Kong Hospital, New Taipei City, Taiwan.,Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chia-Mo Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Division of Chest Medicine, Shin Kong Hospital, Taipei, Taiwan.,Department of Chemistry, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Yang Huang
- National Defense Medical Center, Graduate Institute of Pathology and Parasitology, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
11
|
MAP kinase-dependent autophagy controls phorbol myristate acetate-induced macrophage differentiation of HL-60 leukemia cells. Life Sci 2022; 297:120481. [PMID: 35304128 DOI: 10.1016/j.lfs.2022.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
We investigated the mechanisms and the role of autophagy in the differentiation of HL-60 human acute myeloid leukemia cells induced by protein kinase C (PKC) activator phorbol myristate acetate (PMA). PMA-triggered differentiation of HL-60 cells into macrophage-like cells was confirmed by cell-cycle arrest accompanied by elevated expression of macrophage markers CD11b, CD13, CD14, CD45, EGR1, CSF1R, and IL-8. The induction of autophagy was demonstrated by the increase in intracellular acidification, accumulation/punctuation of autophagosome marker LC3-II, and the increase in autophagic flux. PMA also increased nuclear translocation of autophagy transcription factors TFEB, FOXO1, and FOXO3, as well as the expression of several autophagy-related (ATG) genes in HL-60 cells. PMA failed to activate autophagy inducer AMP-activated protein kinase (AMPK) and inhibit autophagy suppressor mechanistic target of rapamycin complex 1 (mTORC1). On the other hand, it readily stimulated the phosphorylation of mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) via a protein kinase C-dependent mechanism. Pharmacological or genetic inhibition of ERK or JNK suppressed PMA-triggered nuclear translocation of TFEB and FOXO1/3, ATG expression, dissociation of pro-autophagic beclin-1 from its inhibitor BCL2, autophagy induction, and differentiation of HL-60 cells into macrophage-like cells. Pharmacological or genetic inhibition of autophagy also blocked PMA-induced macrophage differentiation of HL-60 cells. Therefore, MAP kinases ERK and JNK control PMA-induced macrophage differentiation of HL-60 leukemia cells through AMPK/mTORC1-independent, TFEB/FOXO-mediated transcriptional and beclin-1-dependent post-translational activation of autophagy.
Collapse
|
12
|
Lu H, Li ZY, Ding M, Liang C, Weng XQ, Sheng Y, Wu J, Cai X. Trametinib enhances ATRA-induced differentiation in AML cells. Leuk Lymphoma 2021; 62:3361-3372. [PMID: 34355652 DOI: 10.1080/10428194.2021.1961231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All-trans retinoic acid (ATRA) is only clinically useful in acute promyelocytic leukemia (APL), but not other subtypes of acute myeloid leukemia (AML). In the present study, a clinically achievable concentration of trametinib, a highly selective inhibitor of MEK, enhanced ATRA-induced differentiation in AML cell lines, HL-60 and U937 as well as AML primary cells. Moreover, trametinib-ATRA (tra-ATRA) co-treatment restored ATRA sensitivity in ATRA-resistant AML cell line, HL-60Res. The protein level of STAT3 and the phosphorylation of Akt or JNK were enhanced with tra-ATRA treatment in HL-60, U937, and HL-60Res cells, respectively. Furthermore, tra-ATRA-induced differentiation in HL-60, U937, and HL-60Res cells was inhibited by STAT3, PI3K, and JNK inhibitors, respectively. Therefore, STAT3, Akt, and JNK signaling pathways were involved in tra-ATRA-induced differentiation in HL-60, U937, and HL-60Res cells, respectively. Taken together, our findings may provide novel therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Hao Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Ding
- Department of Hematology Oncology, Central Hospital of Minhang District, Shanghai, China
| | - Cui Liang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Identification of a germline CSPG4 variation in a family with neurofibromatosis type 1-like phenotype. Cell Death Dis 2021; 12:765. [PMID: 34344877 PMCID: PMC8333038 DOI: 10.1038/s41419-021-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromatosis type 1 (NF1), an autosomal dominant and multisystem disorder, is generally considered to be caused by NF1 inactivation. However, there are also numerous studies showing that Neurofibromatosis type 1-like phenotype can be caused by the abnormalities in the other genes. Through targeted parallel sequencing, whole-exome sequencing, de novo genomic sequencing, and RNA isoform sequencing, we identified a germline V2097M variation in CSPG4 gene probably increased susceptibility to a NF1-like phenotype family. Besides, a series of in vitro functional studies revealed that this variant promoted cell proliferation by activating the MAPK/ERK signaling pathway via hindering ectodomain cleavage of CSPG4. Our data demonstrate that a germline variation in the CSPG4 gene might be a high risk to cause NF1-like phenotype. To our knowledge, this is the first report of mutations in the CSPG4 gene in human diseases.
Collapse
|
14
|
Transcriptional drug repositioning and cheminformatics approach for differentiation therapy of leukaemia cells. Sci Rep 2021; 11:12537. [PMID: 34131166 PMCID: PMC8206077 DOI: 10.1038/s41598-021-91629-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
Differentiation therapy is attracting increasing interest in cancer as it can be more specific than conventional chemotherapy approaches, and it has offered new treatment options for some cancer types, such as treating acute promyelocytic leukaemia (APL) by retinoic acid. However, there is a pressing need to identify additional molecules which act in this way, both in leukaemia and other cancer types. In this work, we hence developed a novel transcriptional drug repositioning approach, based on both bioinformatics and cheminformatics components, that enables selecting such compounds in a more informed manner. We have validated the approach for leukaemia cells, and retrospectively retinoic acid was successfully identified using our method. Prospectively, the anti-parasitic compound fenbendazole was tested in leukaemia cells, and we were able to show that it can induce the differentiation of leukaemia cells to granulocytes in low concentrations of 0.1 μM and within as short a time period as 3 days. This work hence provides a systematic and validated approach for identifying small molecules for differentiation therapy in cancer.
Collapse
|
15
|
Fathi E, Azarbad S, Farahzadi R, Javanmardi S, Vietor I. Effect of Rat Bone Marrow Derived-Mesenchymal Stem Cells on Granulocyte Differentiation of Mononuclear Cells as Preclinical Agent in Cellbased Therapy. Curr Gene Ther 2021; 22:152-161. [PMID: 34011256 DOI: 10.2174/1566523221666210519111933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bone marrow mononuclear cells (BM-MNCs), as a collection of hematopoietic and mesenchymal stem cells (MSCs), are capable of producing all blood cell lineages. The use of cytokines, growth factors, or cells capable of secreting these factors will help in stimulating the proliferation and differentiation of these cells into mature cell lines. On the other hand, MSCs are multipotent stromal cells that can be differentiated into various cell lineages. Moreover, these cells can control the process of hematopoiesis by secreting cytokines and growth factors. The present study aimed to investigate the effect of BM-derived MSCs on the differentiation of MNCs based on the assessment of cell surface markers by flow cytometry analysis. METHODS For this purpose, the MNCs were purified from rat BM using density gradient centrifugation. After that, they were cultured, expanded, and characterized. Next, BM-derivedMSCs were co-cultured with MNCs and then were either cultured with MNCs alone (control group) or co-cultured MNCs with BM derived-MSCs (experimental group). Finally, they were collected on day 7 and subjected to flow cytometry analysis for granulocyte markers and ERK protein's investigation. RESULTS It was found that the expression levels of CD34, CD16, CD11b, and CD18 granulocyte markers, as well as protein expression of ERK, have significantly increased in the experimental group compared to the control group. CONCLUSION Therefore, it can be concluded that MSCs could affect the granulocyte differentiation of MNCs via ERK protein expression, which is a key component of the ERK signaling pathway.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sheyda Azarbad
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Javanmardi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ilja Vietor
- Institute of Cell Biology, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| |
Collapse
|
16
|
Sharma J, Pandey A, Sharma S, Dixit A. Securinine Induces Differentiation of Human Promyelocytic Leukemic HL-60 Cells through JNK-Mediated Signaling Pathway. Nutr Cancer 2021; 74:1122-1137. [PMID: 33998358 DOI: 10.1080/01635581.2021.1925710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia is characterized by abnormal differentiation of hematopoietic stem cells, leading to the accumulation of immature myeloid cells. Differentiation therapy has been a successful treatment option for acute promyelocytic leukemia but suffers from adverse effects. Therefore, search for novel differentiation-inducing agents with minimal side effects is desirable. Securinine, a naturally-occurring alkaloid, induces differentiation in various leukemic cells and apoptosis in other types of cancers. However, the underlying molecular mechanism(s) remain elusive. Our study aimed to elucidate the possible molecular mechanism(s) and signaling events involved in securinine-induced differentiation of HL-60 cells. Securinine inhibited proliferation in a time- and dose-dependent manner and triggered differentiation. A higher CD14+ population indicated maturation toward monocytic lineage. Securinine caused cell cycle arrest at the G0/G1 phase and enhanced ROS generation. Quantitative gene expression analysis showed significant down-regulation of C/EBP-α, C/EBP-ε, GAΤΑ, and c-myc and up-regulation of the PU.1 gene. The expression of distinct protein kinases Lyn, Chk-2, Yes, FAK, c-Jun, and JNK were enhanced. Use of specific inhibitors of crucial intracellular signaling proteins indicated that JNK and ERK blockade resulted in a significant decline in differentiation. These data thus confirm that securinine induces differentiation through the activation of the JNK-ERK signaling pathway in HL-60 cells.
Collapse
Affiliation(s)
- Jeetesh Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Pandey
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Song H, Liu J, Tian X, Liu D, Li J, Zhao X, Mei Z, Yan C, Han Y. Thrombopoietic effects of CCAAT/enhancer-binding protein β on the early-stage differentiation of megakaryocytes. Arch Biochem Biophys 2021; 703:108846. [PMID: 33744198 DOI: 10.1016/j.abb.2021.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that is involved in adipocytic and monocytic differentiation. However, the physiological role of C/EBPβ in megakaryocytes (MKs) is not clear. In this study, we investigated the effects of C/EBPβ on the early-stage differentiation of MKs, and explored the potential mechanisms of action. We established a cytosine arabinoside-induced thrombocytopenia mouse model using C57BL/6 mice. In the thrombocytopenia mice, the platelet count was found to be decreased, and the mRNA and protein expression levels of C/EBPβ in MKs were also reduced. Furthermore, the maturation of Dami (MKs cell line) cells was induced by phorbol 12-myristate 13-acetate. When C/EBPβ was silenced in Dami cells by transfection using C/EBPβ-small interfering RNA, the expression of MKs-specific markers CD41 and CD62P, was dramatically decreased, resulting in morphological changes and differentiation retardation in low ploidy, which were evaluated using flow cytometry, real-time polymerase chain reaction, western blot, and confocal microscopy. The mitogen activated protein kinase-extracellular signal-regulated kinase signaling pathway was found to be required for the differentiation of MKs; knockdown of C/EBPβ in MEK/ERK1/2 pathway attenuated MKs differentiation. Overexpression of C/EBPβ in MEK/ERK1/2 pathway inhibited by U0126 did not promote MKs differentiation. To the best of our knowledge, C/EBPβ plays an important role in MKs differentiation and polyploidy cell cycle control. Taken together, C/EBPβ may have thrombopoietic effects in the differentiation of MKs, and may assist in the development of treatments for various disorders.
Collapse
Affiliation(s)
- HaiXu Song
- Air Force Medical University, Xi'an, China
| | - Jiahao Liu
- Xiamen Special Service Health Center of the Army, Xiamen, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiayin Li
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaojie Zhao
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhu Mei
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Air Force Medical University, Xi'an, China; Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
18
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
19
|
Zarrabi M, Afzal E, Asghari MH, Ebrahimi M. Combination of SB431542, Chir9901, and Bpv as a novel supplement in the culture of umbilical cord blood hematopoietic stem cells. Stem Cell Res Ther 2020; 11:474. [PMID: 33168035 PMCID: PMC7650159 DOI: 10.1186/s13287-020-01945-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/20/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Small molecule compounds have been well recognized for their promising power in the generation, expansion, and maintenance of embryonic or adult stem cells. The aim of this study was to identify a novel combination of small molecules in order to optimize the ex vivo expansion of umbilical cord blood-derived CD34+ cells. METHODS Considering the most important signaling pathways involved in the self-renewal of hematopoietic stem cells, CB-CD34+ cells were expanded with cytokines in the presence of seven small molecules including SB, PD, Chir, Bpv, Pur, Pμ, and NAM. The eliminativism approach was used to find the best combination of selected small molecules for effective ex vivo expansion of CD34+ cell. In each step, proliferation, self-renewal, and clonogenic potential of the expanded cells as well as expression of some hematopoietic stem cell-related genes were studied. Finally, the engraftment potential of expanded cells was also examined by the mouse intra-uterine transplantation model. RESULTS Our data shows that the simultaneous use of SB431542 (TGF-β inhibitor), Chir9901 (GSK3 inhibitor), and Bpv (PTEN inhibitor) resulted in a 50-fold increase in the number of CD34+CD38- cells. This was further reflected in approximately 3 times the increase in the clonogenic potential of the small molecule cocktail-expanded cells. These cells, also, showed a 1.5-fold higher engraftment potential in the peripheral blood of the NMRI model of in utero transplantation. These results are in total conformity with the upregulation of HOXB4, GATA2, and CD34 marker gene as well as the CXCR4 homing gene. CONCLUSION Taken together, our findings introduce a novel combination of small molecules to improve the yield of existing protocols used in the expansion of hematopoietic stem cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Hassan Asghari
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box, Tehran, 19395-4644, Iran.
| |
Collapse
|
20
|
Suleiman S, Di Fiore R, Cassar A, Formosa MM, Schembri-Wismayer P, Calleja-Agius J. Axolotl Ambystoma mexicanum extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. Tumour Biol 2020; 42:1010428320954735. [PMID: 32873193 DOI: 10.1177/1010428320954735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia is the most common form of acute leukemia in adults, constituting about 80% of cases. Although remarkable progress has been made in the therapeutic scenario for patients with acute myeloid leukemia, research and development of new and effective anticancer agents to improve patient outcome and minimize toxicity is needed. In this study, the antitumor activity of axolotl (AXO) Ambystoma mexicanum crude extract was assessed in vitro on the human acute myeloid leukemia HL-60 cell line. The anticancer activity was evaluated in terms of ability to influence proliferative activity, cell viability, cell cycle arrest, and differentiation. Moreover, gene expression analysis was performed to evaluate the genes involved in the regulation of these processes. The AXO crude extract exhibited antiproliferative but not cytotoxic activities on HL-60 cells, with cell cycle arrest in the G0/G1 phase. Furthermore, the AXO-treated HL-60 cells showed an increase in both the percentage of nitroblue tetrazolium positive cells and the expression of CD11b, whereas the proportion of CD14-positive cells did not change, suggesting that extract is able to induce differentiation toward the granulocytic lineage. Finally, the treatment with AXO extract caused upregulation of CEBPA, CEBPB, CEBPE, SPI1, CDKN1A, and CDKN2C, and downregulation of c-MYC. Our data clearly show the potential anticancer activity of Ambystoma mexicanum on HL-60 cells and suggest that it could help develop promising therapeutic agents for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Analisse Cassar
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Melissa Marie Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | | | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
21
|
Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nat Commun 2020; 11:3216. [PMID: 32587248 PMCID: PMC7316778 DOI: 10.1038/s41467-020-17027-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Chemical tools to monitor drug-target engagement of endogenously expressed protein kinases are highly desirable for preclinical target validation in drug discovery. Here, we describe a chemical genetics strategy to selectively study target engagement of endogenous kinases. By substituting a serine residue into cysteine at the DFG-1 position in the ATP-binding pocket, we sensitize the non-receptor tyrosine kinase FES towards covalent labeling by a complementary fluorescent chemical probe. This mutation is introduced in the endogenous FES gene of HL-60 cells using CRISPR/Cas9 gene editing. Leveraging the temporal and acute control offered by our strategy, we show that FES activity is dispensable for differentiation of HL-60 cells towards macrophages. Instead, FES plays a key role in neutrophil phagocytosis via SYK kinase activation. This chemical genetics strategy holds promise as a target validation method for kinases.
Collapse
|
22
|
Bhattacharya A, Ghosh P, Prasad R, Ghosh A, Das K, Roy A, Mallik S, Sinha DK, Sen P. MAP Kinase driven actomyosin rearrangement is a crucial regulator of monocyte to macrophage differentiation. Cell Signal 2020; 73:109691. [PMID: 32531262 DOI: 10.1016/j.cellsig.2020.109691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
Rearrangement of actin cytoskeleton correlates significantly with the immune responses as the perturbation of cytoskeletal dynamics leads to many immune deficiencies. Mechanistic insights into this correlation remain unknown. Cellular spreading, the most characteristic phenotype associated with monocyte to macrophage differentiation, led us to investigate the contribution of actomyosin dynamics in monocyte differentiation. Our observation revealed that actomyosin reorganization intrinsically governs the process of monocyte to macrophage differentiation. Further, we established that the MAPK-driven signaling pathways regulate the cellular actomyosin dynamics that direct monocyte to macrophage differentiation. We also identified P42/44 Mitogen-Activated Protein Kinase (P42/44 MAPK), P38 Mitogen-Activated Protein Kinase (P38 MAPK), MAP Kinase Activated Protein Kinase 2 (MK-2), Heat Shock Protein 27 (Hsp-27), Lim Kinase (Lim K), non-muscle cofilin (n-cofilin), Myosin Light Chain Kinase (MLCK) and Myosin Light Chain (MLC) as critical components of the signaling network. Moreover, we have shown the involvement of the same signaling cascade in 3D gel-like microenvironment induced spontaneous monocyte to macrophage differentiation and in human blood-derived PBMC differentiation. Our study reveals new mechanistic insights into the process of monocyte to macrophage differentiation.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Purnam Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Ramesh Prasad
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arnab Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kaushik Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Roy
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suman Mallik
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Deepak Kumar Sinha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
23
|
Yen JH, Lin CY, Chuang CH, Chin HK, Wu MJ, Chen PY. Nobiletin Promotes Megakaryocytic Differentiation through the MAPK/ERK-Dependent EGR1 Expression and Exerts Anti-Leukemic Effects in Human Chronic Myeloid Leukemia (CML) K562 Cells. Cells 2020; 9:cells9040877. [PMID: 32260160 PMCID: PMC7226785 DOI: 10.3390/cells9040877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Differentiation therapy is an alternative strategy used to induce the differentiation of blast cells toward mature cells and to inhibit tumor cell proliferation for cancer treatment. Nobiletin (NOB), a polymethoxyflavone phytochemical, is present abundantly in citrus peels and has been reported to possess anti-cancer activity. In this study, we investigated the anti-leukemic effects of NOB on cell differentiation and its underlying mechanisms in human chronic myeloid leukemia (CML) K562 cells. NOB (100 μM) treatment for 24 and 48 h significantly decreased viability of K562 cells to 54.4 ± 5.3% and 46.2 ± 9.9%, respectively. NOB (10–100 μM) significantly inhibited cell growth in K562 cells. Flow cytometry analysis and immunoblotting data showed that NOB (40 and 80 μM) could modulate the cell cycle regulators including p21, p27, and cyclin D2, and induce G1 phase arrest. NOB also increased the messenger RNA (mRNA) and protein expression of megakaryocytic differentiation markers, such as CD61, CD41, and CD42 as well as the formation of large cells with multi-lobulated nuclei in K562 cells. These results suggested that NOB facilitated K562 cells toward megakaryocytic differentiation. Furthermore, microarray analysis showed that expression of EGR1, a gene associated with promotion of megakaryocytic differentiation, was markedly elevated in NOB-treated K562 cells. The knockdown of EGR1 expression by small interference RNA (siRNA) could significantly attenuate NOB-mediated cell differentiation. We further elucidated that NOB induced EGR1 expression and CD61 expression through increases in MAPK/ERK phosphorylation in K562 cells. These results indicate that NOB promotes megakaryocytic differentiation through the MAPK/ERK pathway-dependent EGR1 expression in human CML cells. In addition, NOB when combined with imatinib could synergistically reduce the viability of K562 cells. Our findings suggest that NOB may serve as a beneficial anti-leukemic agent for differentiation therapy.
Collapse
MESH Headings
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Early Growth Response Protein 1/metabolism
- Flavones/chemistry
- Flavones/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Gene Ontology
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/drug effects
- Megakaryocytes/drug effects
- Megakaryocytes/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Chin-Hsien Chuang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Hsien-Kuo Chin
- Division of Cardiovascular, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-3092
| |
Collapse
|
24
|
Kamiya T, Tanaka M, Hara H, Yamaguchi E, Itoh A, Adachi T. Inhibitory effects of 4-hydroperoxy-2-decenoic acid ethyl ester on phorbol ester- and TGF-β1-induced MMPs expression. Free Radic Res 2019; 53:1051-1059. [PMID: 31575304 DOI: 10.1080/10715762.2019.1675874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs), zinc-containing proteinases, play a critical role in tumour progression by degrading extracellular matrix components. MMP2 and MMP9 are secreted from tumour-associated macrophages as well as tumour cells and have been implicated in the formation of the tumour microenvironment. Therefore, the inhibition of these MMPs may suppress tumour progression and metastasis. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE) is known to cause apoptosis in the human lung cancer cell line A549 by inducing endoplasmic reticulum (ER) stress. However, the effects of HPO-DAEE on tumour progression remain unclear. HPO-DAEE pre-treatment significantly suppressed phorbol 12-myristate 13-acetate (TPA)-triggered MMP activation in human monocytic THP-1 cells. It also enhanced the expression of haem oxygenase-1, an antioxidant enzyme, and suppressed the TPA-triggered intracellular accumulation of reactive oxygen species (ROS). Furthermore, HPO-DAEE suppressed transforming growth factor-β1-triggered human prostate cancer PC3 cell migration and this was accompanied by the inhibition of MMP expression and activities. The present results indicate that HPO-DAEE may exert inhibitory effects on tumour progression by suppressing MMP expression and activities.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Miho Tanaka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
25
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
26
|
Liang C, Ding M, Weng XQ, Sheng Y, Wu J, Cai X. The combination of UCN-01 and ATRA triggers differentiation in ATRA resistant acute promyelocytic leukemia cell lines via RAF-1 independent activation of MEK/ERK. Food Chem Toxicol 2019; 126:303-312. [PMID: 30840849 DOI: 10.1016/j.fct.2019.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
With the introduction of arsenic trioxide and all-trans retinoic acid, the prognosis of acute promyelocytic leukemia has greatly improved. However, all-trans retinoic acid resistance is still unresolved in acute promyelocytic leukemia relapsed patients. In this study, the clinical achievable concentration of 7-hydroxystaurosporine synergized with all-trans retinoic acid to induce terminal differentiation in all-trans retinoic acid resistant acute promyelocytic leukemia cell lines. Though 7-hydroxystaurosporine is a PKC inhibitor, PKC might not be involved in the combination-induced differentiation since other PKC selective inhibitors, Gö 6976 and rottlerin failed to cooperate with all-trans retinoic acid to trigger differentiation. The combination significantly enhanced the protein level of CCAAT/enhancer binding protein β and/or PU.1 as well as activated MEK/ERK. U0126 (MEK specific inhibitor) not only suppressed the combination-induced differentiation but also restored the protein level of CCAAT/enhancer binding protein β and/or PU.1. However, RAF-1 inhibitor had no inhibitory effect on MEK activation and the combination-induced differentiation. Therefore, the combination overcame differentiation block via RAF-1 independent MEK/ERK modulation of the protein level of CCAAT/enhancer binding protein β and/or PU.1. These findings may provide a preclinical rationale for the potential role of this combination in the treatment of all-trans retinoic acid resistant acute promyelocytic leukemia patients.
Collapse
Affiliation(s)
- Cui Liang
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai, 200025, China
| | - Ming Ding
- Department of Hematology Oncology, Central Hospital of Minhang District, No. 170 Xin Song Road, Shanghai, 201199, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai, 200025, China
| | - Yan Sheng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai, 200025, China
| | - Jing Wu
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai, 200025, China
| | - Xun Cai
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Rui-jin Road II, Shanghai, 200025, China.
| |
Collapse
|
27
|
Isoniazid induces a monocytic-like phenotype in HL-60 cells. Arch Biochem Biophys 2019; 664:15-23. [DOI: 10.1016/j.abb.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
|
28
|
Zhang W, Ly C, Ishizawa J, Mu H, Ruvolo V, Shacham S, Daver N, Andreeff M. Combinatorial targeting of XPO1 and FLT3 exerts synergistic anti-leukemia effects through induction of differentiation and apoptosis in FLT3-mutated acute myeloid leukemias: from concept to clinical trial. Haematologica 2018; 103:1642-1653. [PMID: 29773601 PMCID: PMC6165819 DOI: 10.3324/haematol.2017.185082] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Targeted therapies against FLT3-mutated acute myeloid leukemias have shown limited clinical efficacy primarily because of the acquisition of secondary mutations in FLT3 and persistent activation of downstream pro-survival pathways such as MEK/ERK, PI3K/AKT, and STAT5. Activation of these additional kinases may also result in phosphorylation of tumor suppressor proteins promoting their nuclear export. Thus, co-targeting nuclear export proteins (e.g., XPO1) and FLT3 concomitantly may be therapeutically effective. Here we report on the combinatorial inhibition of XPO1 using selinexor and FLT3 using sorafenib. Selinexor exerted marked cell killing of human and murine FLT3-mutant acute myeloid leukemia cells, including those harboring internal tandem duplication and/or tyrosine kinase domain point mutations. Interestingly, selinexor treatment of murine FLT3-mutant acute myeloid leukemia cells activated FLT3 and its downstream MAPK or AKT signaling pathways. When combined with sorafenib, selinexor triggered marked synergistic pro-apoptotic effects. This was preceded by elevated nuclear levels of ERK, AKT, NFκB, and FOXO3a. Five days of in vitro combination treatment using low doses (i.e., 5 to 10 nM) of each agent promoted early myeloid differentiation of MOLM13 and MOLM14 cells without noticeable cell killing. The combinatorial therapy demonstrated profound in vivo anti-leukemia efficacy in a human FLT3-mutated xenograft model. In an ongoing phase IB clinical trial the selinexor/sorafenib combination induced complete/partial remissions in six of 14 patients with refractory acute myeloid leukemia, who had received a median of three prior therapies (ClinicalTrials.gov: NCT02530476). These results provide pre-clinical and clinical evidence for an effective combinatorial treatment strategy targeting XPO1 and FLT3 in FLT3- mutated acute myeloid leukemias.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Female
- Humans
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mutation
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sorafenib/pharmacology
- Triazoles/pharmacology
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Co-enzyme Q10 upregulates Hsp70 and protects chicken primary myocardial cells under in vitro heat stress via PKC/MAPK. Mol Cell Biochem 2018; 449:195-206. [DOI: 10.1007/s11010-018-3356-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
|
30
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
31
|
Zarrabi M, Afzal E, Asghari MH, Mohammad M, Es HA, Ebrahimi M. Inhibition of MEK/ERK signalling pathway promotes erythroid differentiation and reduces HSCs engraftment in ex vivo expanded haematopoietic stem cells. J Cell Mol Med 2018; 22:1464-1474. [PMID: 28994199 PMCID: PMC5824365 DOI: 10.1111/jcmm.13379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+ CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.
Collapse
Affiliation(s)
- Morteza Zarrabi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Elaheh Afzal
- Royan Stem Cell Technology Company, Cord Blood BankTehranIran
| | - Mohammad Hossein Asghari
- Animal Core FacilityReproductive Biomedicine Research CenterRoyan Institute for Animal Biotechnology, ACECRTehranIran
| | - Monireh Mohammad
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hamidreza Aboulkheyr Es
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| |
Collapse
|
32
|
Yang M, Xing S, Ou HL, Zhang L, Shen X, Xiong GL, Wang FM, Xiao H, Tu YH, Cong YW, Wang XR, Yu ZY. Vibsanol A induces differentiation of acute myeloid leukemia cells via activation of the PKC signaling pathway and induction of ROS. Leuk Lymphoma 2018; 59:2414-2422. [PMID: 29334822 DOI: 10.1080/10428194.2017.1421754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meng Yang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Ling Ou
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Lu Zhang
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Xing Shen
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fang-Min Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan-Hong Tu
- Department of Otorhinolaryngology, First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, China
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Zu-Yin Yu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Graduates, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Dasatinib synergizes with ATRA to trigger granulocytic differentiation in ATRA resistant acute promyelocytic leukemia cell lines via Lyn inhibition-mediated activation of RAF-1/MEK/ERK. Food Chem Toxicol 2017; 119:464-478. [PMID: 29097117 DOI: 10.1016/j.fct.2017.10.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In this study, dasatinib synergized with ATRA to trigger differentiation in ATRA-resistant APL cell lines. The combined treatment activated RAF-1, MEK and ERK as well as enhanced ATRA-promoted up-regulation of the protein level of PU.1, C/EBPβ and C/EBPε. U0126 (MEK specific inhibitor) and sorafenib tosylate (RAF-1 specific inhibitor) suppressed the combined treatment-induced differentiation, ERK phosphorylation and the up-regulation of C/EBPs and PU.1. Sorafenib tosylate also attenuated the MEK activity. However, the combined treatment did not enhance Ras activity and Ras inhibitor neither blocked MEK activation nor inhibited differentiation. Therefore, the combined treatment induced differentiation via Ras independent RAF-1/MEK/ERK. Earlier than RAF-1 activation, dasatinib suppressed Lyn activity, the predominant activated Src family kinase (SFK) and dephosphorylated RAF-1 at S259. Furthermore, SFK inhibitor, PP2 did suppress Lyn activity and mimicked the effect of dasatinib on ATRA-induced differentiation as well as decreased phosphorylation of RAF-1 at S259. Thus, it was suggested that Lyn inhibition might activate RAF-1 by the dephosphorylation of RAF at S259 and lead to differentiation. In conclusion, the combination of dasatinib and ATRA could overcome ATRA resistance through Lyn inhibition-mediated activation of RAF-1/MEK/ERK.
Collapse
|
34
|
S100A9 induces differentiation of acute myeloid leukemia cells through TLR4. Blood 2017; 129:1980-1990. [PMID: 28137827 DOI: 10.1182/blood-2016-09-738005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
S100A8 and S100A9 are calcium-binding proteins predominantly expressed by neutrophils and monocytes and play key roles in both normal and pathological inflammation. Recently, both proteins were found to promote tumor progression through the establishment of premetastatic niches and inhibit antitumor immune responses. Although S100A8 and S100A9 have been studied in solid cancers, their functions in hematological malignancies remain poorly understood. However, S100A8 and S100A9 are highly expressed in acute myeloid leukemia (AML), and S100A8 expression has been linked to poor prognosis in AML. We identified a small subpopulation of cells expressing S100A8 and S100A9 in AML mouse models and primary human AML samples. In vitro and in vivo analyses revealed that S100A9 induces AML cell differentiation, whereas S100A8 prevents differentiation induced by S100A9 activity and maintains AML immature phenotype. Treatment with recombinant S100A9 proteins increased AML cell maturation, induced growth arrest, and prolonged survival in an AML mouse model. Interestingly, anti-S100A8 antibody treatment had effects similar to those of S100A9 therapy in vivo, suggesting that high ratios of S100A9 over S100A8 are required to induce differentiation. Our in vitro studies on the mechanisms/pathways involved in leukemic cell differentiation revealed that binding of S100A9 to Toll-like receptor 4 (TLR4) promotes activation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2, and Jun N-terminal kinase signaling pathways, leading to myelomonocytic and monocytic AML cell differentiation. These findings indicate that S100A8 and S100A9 are regulators of myeloid differentiation in leukemia and have therapeutic potential in myelomonocytic and monocytic AMLs.
Collapse
|
35
|
Zheng R, Studzinski GP. Nuclear ERK5 inhibits progression of leukemic monocytes to macrophages by regulating the transcription factor PU.1 and heat shock protein HSP70. Leuk Lymphoma 2016; 58:1468-1480. [PMID: 27748139 DOI: 10.1080/10428194.2016.1243675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Differentiation therapy can supplement the therapy of APL, but other subtypes of AML are treated principally with cytotoxic agents, with few lasting remissions. While the induction of monocyte followed by macrophage differentiation by vitamin D derivatives (VDDs) is dramatic in cultured AML cells of all subtypes, attempts to translate this to the clinic have not been effective. Thus, better understanding of the mechanisms underlying VDD-induced differentiation may improve this approach. The key events in this form of differentiation include increased expression of CD11b, and the transcription factor PU.1 is known to be a part of this process. We show here that in the transition of monocytes to macrophages induced by a VDD, ERK5, a member of the MAPK family of signaling molecules, prevents PU.1 expression. However, upon ERK5 inhibition PU.1 protein is stabilized by HSP70.Thus, ERK5 may be a target for manipulation of the immunoregulatory actions of macrophages in cancer.
Collapse
Affiliation(s)
- Ruifang Zheng
- a Department of Pathology and Laboratory Medicine , New Jersey Medical School, Rutgers University , Newark , NJ , USA
| | - George P Studzinski
- a Department of Pathology and Laboratory Medicine , New Jersey Medical School, Rutgers University , Newark , NJ , USA
| |
Collapse
|
36
|
Bener G, J. Félix A, Sánchez de Diego C, Pascual Fabregat I, Ciudad CJ, Noé V. Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunol 2016; 17:32. [PMID: 27671753 PMCID: PMC5037635 DOI: 10.1186/s12865-016-0170-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/19/2016] [Indexed: 03/13/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
37
|
Shi L, Weng XQ, Sheng Y, Wu J, Ding M, Cai X. Staurosporine enhances ATRA-induced granulocytic differentiation in human leukemia U937 cells via the MEK/ERK signaling pathway. Oncol Rep 2016; 36:3072-3080. [PMID: 27665842 DOI: 10.3892/or.2016.5123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/15/2016] [Indexed: 11/06/2022] Open
Abstract
Although all-trans retinoic acid (ATRA) is regarded as a prominent example of differentiation therapy, it is not effective for the treatment of other subtypes of acute myeloid leukemia (AML) beyond acute promyelocytic leukemia (APL). Therefore, new strategies need to be explored to extend the efficacy of ATRA-based therapy to non-APL AML patients. In the present study, staurosporine, a protein kinase C (PKC) pan-inhibitor, exhibited synergism with ATRA to promote granulocytic differentiation in poorly ATRA-sensitive U937 cells but not in ATRA unresponsive K562 and Kasumi cells. Staurosporine or the combined treatment did not affect PKC activity in U937 cells. Moreover, other selective PKC inhibitors, UCN-01, Go6976 or rottlerin failed to enhance ATRA‑induced granulocytic differentiation in U937 cells. Therefore, staurosporine-enhanced ATRA-induced granulocytic differentiation in U937 cells may be independent of PKC. Staurosporine activated mitogen‑activated protein kinase kinase (MEK) and extracellular signal‑regulated kinase (ERK). Meanwhile, staurosporine also enhanced ATRA-promoted upregulation of the protein level of CCAAT/enhancer‑binding protein β (C/EBPβ) and C/EBPε in U937 cells. Furthermore, blockade of MEK activation suppressed staurosporine‑enhanced differentiation as well as the elevated protein level of C/EBPs. Taken together, we concluded that staurosporine enhanced ATRA‑induced granulocytic differentiation in U937 cells via MEK/ERK-mediated modulation of the protein level of C/EBPs.
Collapse
Affiliation(s)
- Lei Shi
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yan Sheng
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jing Wu
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ming Ding
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xun Cai
- Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
38
|
LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells. Int J Biochem Cell Biol 2016; 76:107-14. [DOI: 10.1016/j.biocel.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/24/2022]
|
39
|
Weng XQ, Sheng Y, Ge DZ, Wu J, Shi L, Cai X. RAF-1/MEK/ERK pathway regulates ATRA-induced differentiation in acute promyelocytic leukemia cells through C/EBPβ, C/EBPε and PU.1. Leuk Res 2016; 45:68-74. [DOI: 10.1016/j.leukres.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
|
40
|
Nakahara R, Makino J, Kamiya T, Hara H, Adachi T. Caffeic acid phenethyl ester suppresses monocyte adhesion to the endothelium by inhibiting NF-κB/NOX2-derived ROS signaling. J Clin Biochem Nutr 2016; 58:174-9. [PMID: 27257341 PMCID: PMC4865596 DOI: 10.3164/jcbn.15-94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE), one of the major polyphenols, exhibits anti-oxidative, anti-bacterial, and anti-cancer properties. Atherosclerosis is a chronic inflammatory disease, the progression of which is closely related to the accumulated adhesion of inflammatory monocytes/macrophages to the endothelium. We herein determined whether CAPE and its derivatives suppressed THP-1 cell adhesion to human umbilical vein endothelial cells (HUVEC). Of the four polyphenols tested, CAPE significantly suppressed the 12-O-tetradecanoylphorbol 13-acetate (TPA)-elicited expression of cluster for differentiation (CD) 11b, 14, and 36, and this was accompanied by the inhibition of THP-1 cell adhesion to HUVEC. CAPE also suppressed the activation of TPA-elicited nuclear factor-κB (NF-κB) and accumulation of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS), but did not affect extracellular signal-regulated kinase (ERK) phosphorylation. Taken together, these results demonstrated that CAPE suppressed THP-1 cell adhesion to HUVEC through, at least in part, the NF-κB, NOX2, and ROS-derived signaling axis.
Collapse
Affiliation(s)
- Risa Nakahara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Junya Makino
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
41
|
Sprouty2 regulates proliferation and survival of multiple myeloma by inhibiting activation of the ERK1/2 pathway in vitro and in vivo. Exp Hematol 2016; 44:474-482.e2. [PMID: 27016275 DOI: 10.1016/j.exphem.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
Multiple myeloma (MM) is an incurable disease, and its pathogenesis remains unclear. MicroRNA (miR)-21 was detected at a high level in MM and plays a key role in the pathogenesis of MM. However, Sprouty2 (spry2), a downstream target of miR-21, has low expression, and its mechanism in MM is unknown. We investigated whether spry2 could exert an antimyeloma effect and further studied the potential pathogenesis and progression of MM. To address the functional consequences of spry2, we assessed the expression levels of spry2 in several myeloma cell lines and detected low expression levels in MM cells. Overexpression of spry2 suppressed growth and colony formation ability and decreased the phosphorylation of extracellular signal-regulated kinases 1 and 2. Spry2 also decreased secretion of vascular endothelial growth factor and partially enhanced the sensitivity of MM cells to an inhibitor of mitogen-activated protein kinases 1 and 2. Additionally, spry2 inhibited the tumorigenesis and angiogenesis of MM cells in vivo. In summary, we report for the first time that spry2 can inhibit MM cell growth and survival with a concomitant reduction in phosphorylation of extracellular signal-regulated kinases 1 and 2 in vitro and in vivo.
Collapse
|
42
|
Yu ZY, Xiao H, Wang LM, Shen X, Jing Y, Wang L, Sun WF, Zhang YF, Cui Y, Shan YJ, Zhou WB, Xing S, Xiong GL, Liu XL, Dong B, Feng JN, Wang LS, Luo QL, Zhao QS, Cong YW. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation. Cancer Res 2016; 76:2698-709. [PMID: 26984756 DOI: 10.1158/0008-5472.can-15-1616] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/13/2016] [Indexed: 11/16/2022]
Abstract
All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.
Collapse
Affiliation(s)
- Zu-Yin Yu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Feng Sun
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan-Feng Zhang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Cui
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Bing Zhou
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Lan Liu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Dong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian-Nan Feng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Liang Luo
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
43
|
Abstract
OBJECTIVES Retinoic acid (RA) has important functions during embryonic development being involved in cell growth and differentiation. Although approved for the treatment of acute promyelocytic leukemia, it is still under investigation for different solid tumors including pancreatic cancer. The objective of this study was to analyze how RA affects pancreatic cancer stem cells and how its combination with chemotherapy could impact cell growth. METHODS Using different pancreatic cancer cell lines, we evaluated the effect of RA alone or in combination with chemotherapy regulating cancer stem cells properties and pathways. RESULTS Retinoic acid treatment reduces the expression of pancreatic stem cell markers CD24, CD44, CD133, and aldehyde dehydrogenase 1 but not c-Met. Although gemcitabine treatment increases the expression of some of these markers especially CD44 when it is combined with RA, a notable reduction in all of them is observed. Retinoic acid induces a G0/G1 arrest and combined with gemcitabine increases the apoptotic effect produced by chemotherapy probably as a consequence of a regulation of specific stem cell transcription factors. CONCLUSIONS Retinoic acid regulates self-renewal capacity of cells in pancreatic tumors and should be further investigated in combination with chemotherapy as therapeutic strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Marta Herreros-Villanueva
- From the *Division of Oncology Research, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN; †Department of Gastroenterology, Hospital Donostia/Biodonostia Institute, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastian, Spain; ‡Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University; and §Division of Molecular Diagnostics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | |
Collapse
|
44
|
BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4. Leukemia 2015; 29:2248-56. [DOI: 10.1038/leu.2015.137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 01/16/2023]
|
45
|
Kweon SH, Song JH, Kim HJ, Kim TS, Choi BG. Induction of human leukemia cell differentiation via PKC/MAPK pathways by arsantin, a sesquiterpene lactone from Artemisia santolina. Arch Pharm Res 2015; 38:2020-8. [DOI: 10.1007/s12272-015-0609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
|
46
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
47
|
The protein kinase C agonist prostratin induces differentiation of human myeloid leukemia cells and enhances cellular differentiation by chemotherapeutic agents. Cancer Lett 2015; 356:686-96. [DOI: 10.1016/j.canlet.2014.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023]
|
48
|
Teng CLJ, Han SM, Wu WC, Hsueh CM, Tsai JR, Hwang WL, Hsu SL. Mechanistic aspects of lauryl gallate-induced differentiation and apoptosis in human acute myeloid leukemia cells. Food Chem Toxicol 2014; 71:197-206. [DOI: 10.1016/j.fct.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
|
49
|
Lalic H, Dembitz V, Lukinovic-Skudar V, Banfic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2014; 55:2375-83. [PMID: 24359245 DOI: 10.3109/10428194.2013.876633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, enhances ATRA-mediated differentiation of NB4 cells. In U937 cells, AICAR alone induces the expression of cell surface markers associated with mature monocytes and macrophages. In both cell lines, AICAR increases the activity of mitogen-activated protein kinase (MAPK), and the presence of a MAPK inhibitor reduces the expression of differentiation markers. These results reveal beneficial effects of AICAR in AML, including differentiation of non-APL AML cells.
Collapse
Affiliation(s)
- Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb , Croatia
| | | | | | | | | |
Collapse
|
50
|
Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 2014; 71:63-92. [PMID: 23525665 PMCID: PMC11113479 DOI: 10.1007/s00018-013-1322-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 02/12/2013] [Accepted: 03/07/2013] [Indexed: 12/26/2022]
Abstract
Monocyte/macrophages are important players in orchestrating the immune response as well as connecting innate and adaptive immunity. Myelopoiesis and monopoiesis are characterized by the interplay between expansion of stem/progenitor cells and progression towards further developed (myelo)monocytic phenotypes. In response to a variety of differentiation-inducing stimuli, various prominent signaling pathways are activated. Subsequently, specific transcription factors are induced, regulating cell proliferation and maturation. This review article focuses on the integration of signaling modules and transcriptional networks involved in the determination of monocytic differentiation.
Collapse
Affiliation(s)
- René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany,
| | | | | | | | | | | |
Collapse
|