1
|
Hussein Kamareddine M, Ghosn Y, Tawk A, Elia C, Alam W, Makdessi J, Farhat S. Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia. Technol Cancer Res Treat 2020; 18:1533033819879902. [PMID: 31865865 PMCID: PMC6928535 DOI: 10.1177/1533033819879902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm that occurs more prominently in the older population, with a peak incidence at ages 45 to 85 years and a median age at diagnosis of 65 years. This disease comprises roughly 15% of all leukemias in adults. It is a clonal stem cell disorder of myeloid cells characterized by the presence of t(9;22) chromosomal translocation, also known as the Philadelphia chromosome, or its byproducts BCR-ABL fusion protein/messenger RNA, leading to the expression of a protein with enhanced tyrosine kinase activity. This fusion protein has become the main therapeutic target in chronic myeloid leukemia therapy, with imatinib displaying superior antileukemic effects, placing it at the forefront of current treatment protocols and displaying great efficacy. Alternatively, nanomedicine and employing nanoparticles as drug delivery systems may represent new approaches in future anticancer therapy. This review focuses primarily on the use of organic nanoparticles aimed at chronic myeloid leukemia therapy in both in vitro and in vivo settings, by going through a thorough survey of published literature. After a brief introduction on the pathogenesis of chronic myeloid leukemia, a description of conventional, first- and second-line, treatment modalities of chronic myeloid leukemia is presented. Finally, some of the general applications of nanostrategies in medicine are presented, with a detailed focus on organic nanocarriers and their constituents used in chronic myeloid leukemia treatment from the literature.
Collapse
Affiliation(s)
| | - Youssef Ghosn
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Antonios Tawk
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, El-Koura, Lebanon
| | - Walid Alam
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- Department of Hematology-Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
2
|
Ha SH, Kang SK, Choi H, Kwak CH, Abekura F, Park JY, Kwon KM, Chang HW, Lee YC, Ha KT, Hou BK, Chung TW, Kim CH. Induction of GD3/α1-adrenergic receptor/transglutaminase 2-mediated erythroid differentiation in chronic myelogenous leukemic K562 cells. Oncotarget 2017; 8:72205-72219. [PMID: 29069780 PMCID: PMC5641123 DOI: 10.18632/oncotarget.20080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The disialic acid-containing glycosphingolipid GD3 recruited membrane transglutaminase 2 (TG2) as a signaling molecule for erythroid differentiation in human chronic myelogenous leukemia (CML) K562 cells. The α1-adrenergic receptor (α1-AR)/TG2-mediated signaling pathway regulated GD3 functions, including gene expression and production, to differentiate CML K562 cells into erythroid lineage cells. Epinephrine, an AR agonist, increased membrane recruitment as well as GTP-photoaffinity of TG2, inducing GD3 synthase gene expression. Epinephrine activated PI3K/Akt signaling and GTPase downstream of TG2 activated Akt. The coupling of TG2 and GD3 production was specifically suppressed by prazosin (α1-AR antagonist), but not by propranolol (β-AR antagonist) or rauwolscine (α2-AR antagonist), indicating α1-AR specificity. Small interfering RNA (siRNA) experiment results indicated that the α1-AR/TG2-mediated signaling pathway activated PKCs α and δ to induce GD3 synthase gene expression. Transcription factors CREB, AP-1, and NF-κB regulated GD3 synthase gene expression during α1-AR-induced differentiation in CML K562 cells. In addition, GD3 synthase gene expression was upregulated in TG2-transfected cells via α1-AR with expression of erythroid lineage markers and benzidine-positive staining. α1-AR/TG2 signaling pathway-directed GD3 production is a crucial step in erythroid differentiation of K562 cells and GD3 interacts with α1-AR/TG2, inducing GD3/α1-AR/TG2-mediated erythroid differentiation. These results suggest that GD3, which acts as a membrane mediator of erythroid differentiation in CML cells, provides a therapeutic avenue for leukemia treatment.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Research Institute, Davinch-K Co., Ltd., Geumcheon-gu, Seoul, Korea
| | | | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Bo Kyeng Hou
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
3
|
Liang X, Zang J, Zhu M, Gao Q, Wang B, Xu W, Zhang Y. Design, Synthesis, and Antitumor Evaluation of 4-Amino-(1 H)-pyrazole Derivatives as JAKs Inhibitors. ACS Med Chem Lett 2016; 7:950-955. [PMID: 27774135 PMCID: PMC5066150 DOI: 10.1021/acsmedchemlett.6b00247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/23/2016] [Indexed: 01/29/2023] Open
Abstract
Abnormalities in the JAK/STAT signaling pathway lead to many diseases such as immunodeficiency, inflammation, and cancer. Herein, we designed and synthesized a series of 4-amino-(1H)-pyrazole derivatives as potent JAKs inhibitors for cancer treatment. Results from in vitro protein kinase inhibition experiments indicated that compounds 3a-f and 11b are potent JAKs inhibitors. For example, the IC50 values of compound 3f against JAK1, JAK2, and JAK3 were 3.4, 2.2, and 3.5 nM, respectively. In cell culture experiments, compound 3f showed potent antiproliferative activity against various cell lines (PC-3, HEL, K562, MCF-7, and MOLT4) at low micromolar levels, while compound 11b showed selective cytotoxicity at submicromolar levels against HEL (IC50: 0.35 μM) and K562 (IC50: 0.37 μM) cell lines. It is worth noting that both 3f and 11b showed more potent antiproliferative activities than the approved JAKs inhibitor Ruxolitinib.
Collapse
Affiliation(s)
- Xuewu Liang
- Department
of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Jie Zang
- Department
of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Mengyuan Zhu
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Qianwen Gao
- Department
of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Binghe Wang
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wenfang Xu
- Department
of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Yingjie Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| |
Collapse
|
4
|
Signal Transducers and Activators of Transcription (STAT) Regulatory Networks in Marine Organisms: From Physiological Observations towards Marine Drug Discovery. Mar Drugs 2015; 13:4967-84. [PMID: 26262624 PMCID: PMC4557010 DOI: 10.3390/md13084967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Part of our ocean's richness comes from its extensive history of supporting life, resulting in a highly diverse ecological system. To date, over 250,000 species of marine organisms have been identified, but it is speculated that the actual number of marine species exceeds one million, including several hundreds of millions of species of marine microorganisms. Past studies suggest that approximately 70% of all deep-sea microorganisms, gorgonians, and sea sponges produce secondary metabolites with anti-cancer activities. Recently, novel FDA-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. Despite the fact that many marine natural products have been shown to possess a good inhibition potential against most of the cancer-related cell signaling pathways, only a few marine natural products have been shown to target JAK/STAT signaling. In the present paper, we describe the JAK/STAT signaling pathways found in marine organisms, before elaborating on the recent advances in the field of STAT inhibition by marine natural products and the potential application in anti-cancer drug discovery.
Collapse
|
5
|
Schnöder TM, Arreba-Tutusaus P, Griehl I, Bullinger L, Buschbeck M, Lane SW, Döhner K, Plass C, Lipka DB, Heidel FH, Fischer T. Epo-induced erythroid maturation is dependent on Plcγ1 signaling. Cell Death Differ 2014; 22:974-85. [PMID: 25394487 DOI: 10.1038/cdd.2014.186] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is a tightly regulated process. Development of red blood cells occurs through differentiation of hematopoietic stem cells (HSCs) into more committed progenitors and finally into erythrocytes. Binding of erythropoietin (Epo) to its receptor (EpoR) is required for erythropoiesis as it promotes survival and late maturation of erythroid progenitors. In vivo and in vitro studies have highlighted the requirement of EpoR signaling through Janus kinase 2 (Jak2) tyrosine kinase and Stat5a/b as a central pathway. Here, we demonstrate that phospholipase C gamma 1 (Plcγ1) is activated downstream of EpoR-Jak2 independently of Stat5. Plcγ1-deficient pro-erythroblasts and erythroid progenitors exhibited strong impairment in differentiation and colony-forming potential. In vivo, suppression of Plcγ1 in immunophenotypically defined HSCs (Lin(-)Sca1(+)KIT(+)CD48(-)CD150(+)) severely reduced erythroid development. To identify Plcγ1 effector molecules involved in regulation of erythroid differentiation, we assessed changes occurring at the global transcriptional and DNA methylation level after inactivation of Plcγ1. The top common downstream effector was H2afy2, which encodes for the histone variant macroH2A2 (mH2A2). Inactivation of mH2A2 expression recapitulated the effects of Plcγ1 depletion on erythroid maturation. Taken together, our findings identify Plcγ1 and its downstream target mH2A2, as a 'non-canonical' Epo signaling pathway essential for erythroid differentiation.
Collapse
Affiliation(s)
- T M Schnöder
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - P Arreba-Tutusaus
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - I Griehl
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - L Bullinger
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - M Buschbeck
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Spain
| | - S W Lane
- Division of Immunology, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - K Döhner
- Internal Medicine III, Department of Hematology/Oncology, University Hospital Ulm, Ulm, Germany
| | - C Plass
- Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - D B Lipka
- 1] Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany [2] Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center, Heidelberg, Germany
| | - F H Heidel
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| | - T Fischer
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University Medical Center, Magdeburg, Germany
| |
Collapse
|
6
|
Bar-Natan M, Nelson EA, Xiang M, Frank DA. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAKSTAT 2014; 1:55-64. [PMID: 24058751 PMCID: PMC3670294 DOI: 10.4161/jkst.20006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STAT transcription factors play a critical role in mediating the effects of cytokines on myeloid cells. As STAT target genes control key processes such as survival, proliferation and self-renewal, it is not surprising that constitutive activation of STATs, particularly STAT3 and STAT5, are common events in many myeloid tumors. STATs are activated both by mutant tyrosine kinases as well as other pathogenic events, and continued activation of STATs is common in the setting of resistance to kinase inhibitors. Thus, the targeting of STATs, alone or in combination with other drugs, will likely have increasing importance for cancer therapy.
Collapse
Affiliation(s)
- Michal Bar-Natan
- Department of Medical Oncology; Dana-Farber Cancer Institute; and Departments of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston, MA USA
| | | | | | | |
Collapse
|
7
|
Montecino-Rodriguez E, Li K, Fice M, Dorshkind K. Murine B-1 B cell progenitors initiate B-acute lymphoblastic leukemia with features of high-risk disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5171-8. [PMID: 24752443 PMCID: PMC4028370 DOI: 10.4049/jimmunol.1303170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
B-1 and B-2 B cells derive from distinct progenitors that emerge in overlapping waves of development. The number of murine B-1 progenitors peaks during fetal development whereas B-2 B cell production predominates in adult bone marrow. Many genetic mutations that underlie B-acute lymphoblastic leukemia (B-ALL) occur in the fetus, at which time B-1 progenitor numbers are high. However, whether B-ALL can initiate in B-1 progenitors is unknown. In the present study, we report that BCR-ABL-transformed murine B-1 progenitors can be B-ALL cells of origin and demonstrate that they initiate disease more rapidly than do oncogene-expressing B-2 progenitors. We further demonstrate that B-1 progenitors exhibit relative resistance to apoptosis and undergo significant growth following oncogene expression, and we propose that these properties underlie the accelerated kinetics with which they initiate leukemia. These results provide a developmental perspective on the origin of B-ALL and indicate B cell lineage as a factor influencing disease progression.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Katy Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael Fice
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
8
|
Simara P, Stejskal S, Koutna I, Potesil D, Tesarova L, Potesilova M, Zdrahal Z, Mayer J. Apoptosis in chronic myeloid leukemia cells transiently treated with imatinib or dasatinib is caused by residual BCR-ABL kinase inhibition. Am J Hematol 2013; 88:385-93. [PMID: 23420553 DOI: 10.1002/ajh.23419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/07/2022]
Abstract
Transient, potent BCR-ABL inhibition with tyrosine kinase inhibitors (TKIs) was recently demonstrated to be sufficient to commit chronic myeloid leukemia (CML) cells to apoptosis irreversibly. This mechanism explains the clinical efficacy of once-daily dasatinib treatment, despite the rapid clearance of the drug from the plasma. However, our in vitro data suggest that apoptosis induction after transient TKI treatment, observed in the BCR-ABL-positive cell lines K562, KYO-1, and LAMA-84 and progenitor cells from chronic phase CML patients, is instead caused by a residual kinase inhibition that persists in the cells as a consequence of intracellular drug retention. High intracellular concentrations of imatinib and dasatinib residues were measured in transiently treated cells. Furthermore, the apoptosis induced by residual imatinib or dasatinib from transient treatment could be rescued by washing out the intracellularly retained drugs. The residual kinase inhibition was also undetectable by the phospho-CRKL assay. These findings confirm that continuous target inhibition is required for the optimal efficacy of kinase inhibitors.
Collapse
Affiliation(s)
- Pavel Simara
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Stanislav Stejskal
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Irena Koutna
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - David Potesil
- Core Facility-Proteomics; CEITEC-Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Lenka Tesarova
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Michaela Potesilova
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Zbynek Zdrahal
- Core Facility-Proteomics; CEITEC-Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC); Masaryk University; Brno; Czech Republic
| |
Collapse
|
9
|
Retnakumari AP, Hanumanthu PL, Malarvizhi GL, Prabhu R, Sidharthan N, Thampi MV, Menon D, Mony U, Menon K, Keechilat P, Nair S, Koyakutty M. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia. Mol Pharm 2012; 9:3062-78. [PMID: 22971013 DOI: 10.1021/mp300172e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deregulated protein kinases play a very critical role in tumorigenesis, metastasis, and drug resistance of cancer. Although molecularly targeted small molecule kinase inhibitors (SMI) are effective against many types of cancer, point mutations in the kinase domain impart drug resistance, a major challenge in the clinic. A classic example is chronic myeloid leukemia (CML) caused by BCR-ABL fusion protein, wherein a BCR-ABL kinase inhibitor, imatinib (IM), was highly successful in the early chronic phase of the disease, but failed in the advanced stages due to amplification of oncogene or point mutations in the drug-binding site of kinase domain. Here, by identifying critical molecular pathways responsible for the drug-resistance in refractory CML patient samples and a model cell line, we have rationally designed an endogenous protein nanomedicine targeted to both cell surface receptors and aberrantly activated secondary kinase in the oncogenic network. Molecular diagnosis revealed that, in addition to point mutations and amplification of oncogenic BCR-ABL kinase, relapsed/refractory patients exhibited significant activation of STAT5 signaling with correlative overexpression of transferrin receptors (TfR) on the cell membrane. Accordingly, we have developed a human serum albumin (HSA) based nanomedicine, loaded with STAT5 inhibitor (sorafenib), and surface conjugated the same with holo-transferrin (Tf) ligands for TfR specific delivery. This dual-targeted "transferrin conjugated albumin bound sorafenib" nanomedicine (Tf-nAlb-Soraf), prepared using aqueous nanoprecipitation method, displayed uniform spherical morphology with average size of ∼150 nm and drug encapsulation efficiency of ∼74%. TfR specific uptake and enhanced antileukemic activity of the nanomedicine was found maximum in the most drug resistant patient sample having the highest level of STAT5 and TfR expression, thereby confirming the accuracy of our rational design and potential of dual-targeting approach. The nanomedicine induced downregulation of key survival pathways such as pSTAT5 and antiapoptotic protein MCL-1 was demonstrated using immunoblotting. This study reveals that, by implementing molecular diagnosis, personalized nanomedicines can be rationally designed and nanoengineered by imparting therapeutic functionality to endogenous proteins to overcome clinically important challenges like molecular drug resistance.
Collapse
Affiliation(s)
- Archana P Retnakumari
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham University, Cochin, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alrwas A, Quesada JR, Marcos LA, Mehta SS, Shattuck BL, Nguyen ND, Juneja HS. Case of polycythemia vera concurrent with FIP1L1-PDGFRA–positive myeloproliferative neoplasm with eosinophilia. Cancer Genet 2012; 205:519-22. [DOI: 10.1016/j.cancergen.2012.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/25/2022]
|
11
|
Lipka DB, Wagner MC, Dziadosz M, Schnöder T, Heidel F, Schemionek M, Melo JV, Kindler T, Müller-Tidow C, Koschmieder S, Fischer T. Intracellular retention of ABL kinase inhibitors determines commitment to apoptosis in CML cells. PLoS One 2012; 7:e40853. [PMID: 22815843 PMCID: PMC3397954 DOI: 10.1371/journal.pone.0040853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs.
Collapse
Affiliation(s)
- Daniel B. Lipka
- Department of Hematology and Oncology, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Marie-Christine Wagner
- Department of Hematology and Oncology, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marek Dziadosz
- Institute of Forensic Medicine, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tina Schnöder
- Department of Hematology and Oncology, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
| | - Florian Heidel
- Department of Hematology and Oncology, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
| | - Mirle Schemionek
- Department of Medicine A (Hematology, Oncology and Pneumology), University of Münster, Münster, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany
| | - Junia V. Melo
- Department of Haematology, Centre for Cancer Biology, University of Adelaide, Adelaide, Australia
- Department of Haematology, Imperial College London, London, United Kingdom
| | - Thomas Kindler
- Third Department of Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Carsten Müller-Tidow
- Department of Medicine A (Hematology, Oncology and Pneumology), University of Münster, Münster, Germany
| | - Steffen Koschmieder
- Department of Medicine A (Hematology, Oncology and Pneumology), University of Münster, Münster, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, University Medical Center, Otto-von-Guericke-University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer J 2012; 2:e60. [PMID: 22829255 PMCID: PMC3317524 DOI: 10.1038/bcj.2012.5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 11/08/2022] Open
Abstract
Patients suffering from acute myeloid leukemias (AML) bearing FMS-like tyrosine kinase-3-internal tandem duplications (FLT3-ITD) have poor outcomes following cytarabine- and anthracyclin-based induction therapy. To a major part this is attributed to drug resistance of FLT3-ITD-positive leukemic cells. Against this background, we have devised an antibody array approach to identify proteins, which are differentially expressed by hematopoietic cells in relation to activated FLT3 signaling. Selective upregulation of antiapoptotic myeloid cell leukemia-1 (MCL-1) was found in FLT3-ITD-positive cell lines and primary mononuclear cells from AML patients as compared with FLT3-wild-type controls. Upregulation of MCL-1 was dependent on FLT3 signaling as confirmed by its reversion upon pharmacological inhibition of FLT3 activity by the kinase inhibitor PKC412 as well as siRNA-mediated suppression of FLT3. Heterologously expressed MCL-1 substituted for FLT3 signaling by conferring resistance of hematopoietic cells to antileukemia drugs such as cytarabine and daunorubicin, and to the proapoptotic BH3 mimetic ABT-737. Conversely, suppression of endogenous MCL-1 by siRNA or by flavopiridol treatment sensitized FLT3-ITD-expressing hematopoietic cells to cytotoxic and targeted therapeutics. In conclusion, MCL-1 is an essential effector of FLT3-ITD-mediated drug resistance. Therapeutic targeting of MCL-1 is a promising strategy to overcome drug resistance in FLT3-ITD-positive AML.
Collapse
|
13
|
|
14
|
Markova B, Albers C, Breitenbuecher F, Melo JV, Brümmendorf TH, Heidel F, Lipka D, Duyster J, Huber C, Fischer T. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway. Oncogene 2009; 29:739-51. [PMID: 19881535 DOI: 10.1038/onc.2009.374] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-gamma1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-gamma1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-gamma1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-gamma1 and Bcr-Abl inhibition. The pivotal role of PLC-gamma1 was further confirmed in a mouse leukemogenesis model.
Collapse
Affiliation(s)
- B Markova
- Department of Medicine (Cancer Research), West German Cancer Center, University Hospital, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu JH, Liu CC, Yen CC, Gau JP, Wang WS, Tzeng CH. Pml and TAp73 interacting at nuclear body mediate imatinib-induced p53-independent apoptosis of chronic myeloid leukemia cells. Int J Cancer 2009; 125:71-7. [DOI: 10.1002/ijc.24329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Heidel F, Lipka DB, Mirea FK, Mahboobi S, Grundler R, Kancha RK, Duyster J, Naumann M, Huber C, Böhmer FD, Fischer T. Bis(1H-indol-2-yl)methanones are effective inhibitors of FLT3-ITD tyrosine kinase and partially overcome resistance to PKC412A in vitro. Br J Haematol 2009; 144:865-74. [PMID: 19183186 DOI: 10.1111/j.1365-2141.2008.07567.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of the mutated fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase is a promising therapeutic strategy in acute myeloid leukaemia (AML). However, development of resistance to FLT3 tyrosine kinase inhibitors (TKI), such as PKC412A, has been described recently. This observation may have an increasing impact on the duration of response and relapse rates in upcoming clinical trials employing FLT3-TKI. Herein we investigated two representatives of a novel class of FLT3-TKI: Bis(1H-indol-2-yl)methanones. Both compounds effectively induced apoptosis in FLT3-internal tandem duplicate (ITD)-transfected murine myeloid cells and in primary FLT3-ITD positive blasts. Combination of both compounds with chemotherapy revealed synergistic effects in apoptosis assays. The compounds did not show significant toxicity in human bone marrow cells derived from healthy donors. Compound102 overcame resistance to PKC412 within a non-myelotoxic dose-range. Western Blotting experiments of 32D-FLT3-ITD cells showed dose-dependent dephosphorylation of FLT3-ITD and of its downstream targets STAT5, AKT and ERK upon incubation with either compound. In conclusion, bis(1H-indol-2-yl)methanones overcome resistance mediated by FLT3-ITD mutations at position N676 and show strong efficacy in FLT3-ITD-positive cells alone as well as in combination with chemotherapy. We propose that further development of methanone compounds overcoming resistance to currently established FLT3-TKIs is an important step forward to an anticipated need within our future therapeutic algorithm in FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Florian Heidel
- Department of Haematology/Oncology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang SK, Kim YS, Kong YJ, Song KH, Chang YC, Park YG, Ko JH, Lee YC, Kim CH. Disialoganglioside GD3 synthase expression recruits membrane transglutaminase 2 during erythroid differentiation of the human chronic myelogenous leukemia K562 cells. Proteomics 2008; 8:3317-28. [PMID: 18690648 DOI: 10.1002/pmic.200800153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
By employing proteomics analysis tool, we examined the effects of GD3 synthase expression on the differentiation properties of chronic myelogenous leukemia (CML)-derived leukemia cells K562. Forced expression of GD3 synthase induced erythroid differentiation as determined by an increase in glycophorin A expression and synthesis of hemoglobins. The proteomic analysis revealed that 15 proteins were increased by GD3 synthase. In contrast, we observed three protein gel spots decreased in contents in the cell membranes of GD3 synthase-transfected K562 cells. Among the increased proteins, membrane transglutaminase 2 (TG2) was specifically increased in the cell membrane of GD3 synthase-transfected K562 cells. Then, we generated the GD3 synthase-transfected cells in the K562 cells. Interestingly, the TG2 level was increased in GD3 synthase-transfected cells compared with vector- and plasma membrane-associated ganglioside sialidase (Neu3)-transfected cells. In addition, its ability to be photoaffinity-labeled with [alpha-(32)P]GTP was also increased in the GD3 synthase- and TG2-transfected cells. Moreover, small interfering RNA (siRNA) analysis for the GD3 synthase showed the decrease or abolishment of the membrane TG2. Finally, GD3 synthase-transfected cells accelerated the erythroid differentiation. Therefore, we propose that the recruitment of TG2 into membranes by GD3 might play an important role in the erythroid differentiation in K562 cells.
Collapse
Affiliation(s)
- Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Science, SungKyunKwan University, Suwon, Kyunggi-Do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E, Nicaise C, Sawyers CL. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 2008; 14:485-93. [PMID: 19061839 DOI: 10.1016/j.ccr.2008.11.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/10/2008] [Accepted: 11/03/2008] [Indexed: 11/29/2022]
Abstract
The BCR-ABL inhibitor dasatinib achieves clinical remissions in chronic myeloid leukemia (CML) patients using a dosing schedule that achieves potent but transient BCR-ABL inhibition. In vitro, transient potent BCR-ABL inhibition with either dasatinib or imatinib is cytotoxic to CML cell lines, as is transient potent EGFR inhibition with erlotinib in a lung cancer cell line. Cytotoxicity correlates with the magnitude as well as the duration of kinase inhibition. Moreover, cytotoxicity with transient potent target inhibition is equivalent to prolonged target inhibition and in both cases is associated with BIM activation and rescued by BCL-2 overexpression. In CML patients receiving dasatinib once daily, response correlates with the magnitude of BCR-ABL kinase inhibition, thereby demonstrating the potential clinical utility of intermittent potent kinase inhibitor therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzamides
- Cell Line, Tumor
- Cell Survival
- Dasatinib
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/physiology
- Humans
- Imatinib Mesylate
- K562 Cells
- Kinetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Neil P Shah
- Division of Hematology/Oncology, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kasper S, Breitenbuecher F, Hoehn Y, Heidel F, Lipka DB, Markova B, Huber C, Kindler T, Fischer T. The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia. Leuk Res 2008; 32:1698-708. [DOI: 10.1016/j.leukres.2008.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/29/2008] [Accepted: 05/03/2008] [Indexed: 02/01/2023]
|
20
|
Lipka DB, Hoffmann LS, Heidel F, Markova B, Blum MC, Breitenbuecher F, Kasper S, Kindler T, Levine RL, Huber C, Fischer T. LS104, a non-ATP-competitive small-molecule inhibitor of JAK2, is potently inducing apoptosis in JAK2V617F-positive cells. Mol Cancer Ther 2008; 7:1176-84. [PMID: 18483305 DOI: 10.1158/1535-7163.mct-07-2215] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activating JAK2V617F mutation has been described in the majority of patients with BCR-ABL-negative myeloproliferative disorders (MPD). In this report, we characterize the small-molecule LS104 as a novel non-ATP-competitive JAK2 inhibitor: Treatment of JAK2V617F-positive cells with LS104 resulted in dose-dependent induction of apoptosis and inhibition of JAK2 autophosphorylation and of downstream targets. Activation of these targets by JAK2 was confirmed in experiments using small interfering RNA. LS104 inhibited JAK2 kinase activity in vitro. This effect was not reversible using elevated ATP concentrations, whereas variation of the kinase substrate peptide led to modulation of the IC50 value for LS104. In line with these data, combination treatment using LS104 plus an ATP-competitive JAK2 inhibitor (JAK inhibitor I) led to synergistically increased apoptosis in JAK2V617F-positive cells. Furthermore, LS104 strongly inhibited cytokine-independent growth of endogenous erythroid colonies isolated from patients with JAK2V617F-positive MPD in vitro, whereas there was no significant effect on growth of myeloid colonies obtained from normal controls. Based on these data, we have recently started a phase I clinical trial of LS104 for patients with JAK2V617F-positive MPDs. To the best of our knowledge, this is the first report on a non-ATP-competitive kinase inhibitor being tested in a clinical trial.
Collapse
Affiliation(s)
- Daniel B Lipka
- 3rd Medical Department, Johannes Gutenberg University, Langenbeckstrabe 1, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kasper S, Kindler T, Sonnenschein S, Breitenbuecher F, Böhmer FD, Huber C, Fischer T. Cross-inhibition of interferon-induced signals by GM-CSF through a block in Stat1 activation. J Interferon Cytokine Res 2008; 27:947-59. [PMID: 18052729 DOI: 10.1089/jir.2006.0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on biologic signals induced by interferon-alpha (IFN-alpha) and IFN-gamma. In hematopoietic cell lines, IFN-induced signaling was investigated by Western blotting, electrophoretic mobility shift assays (EMSA), flow cytometry, protein-tyrosine phosphatase (PTP) assays, and RT-PCR. GM-CSF inhibited IFN-alpha-induced and IFN-gamma-induced Stat1 tyrosine phosphorylation in a time-dependent manner. EMSA showed that GM-CSF inhibited IFN-alpha-induced and IFN-gamma-induced IFN-gamma activator sequence (GAS) binding activity. As a consequence, IFN-induced transcription of the early response gene, IFN-stimulated gene 54 (ISG54), was inhibited. The expression of IFN regulatory factor-1 (IRF-1) and MHC class I antigens was downregulated at protein levels in hematopoietic cell lines (U937, THP1). In contrast to GM-CSF, granulocyte colony-stimulating factor (G-CSF) and interleukin-3 (IL-3) did not influence the IFN-induced Stat1 activation. To explore the molecular mechanism of suppression of Stat1 tyrosine phosphorylation, we investigated the induction and activation of cytokine-inducible SH2-containing protein/suppressor of cytokine signaling (CIS/SOCS) molecules and phosphatases on GM-CSF treatment. In contrast to G-CSF and IL-3, GM-CSF strongly induced the expression of CIS1 and SOCS2 at mRNA levels, but overexpression of CIS1 or SOCS2 in HEK293 cells did not show inhibition of Stat1 tyrosine phosphorylation upon IFN treatment. In PTP assays, on GM-CSF incubation, no enhanced src homology 2 domain tyrosine phosphatase 1 and 2 (SHP1 and SHP2) activity was detectable. However, GM-CSF-induced downregulation of Tyk2 and Jak1 tyrosine phosphorylation as well as Tyk2 protein levels likely contributed to the reduced Stat1 tyrosine phosphorylation. In hematopoietic cells, GM-CSF antagonizes IFN-induced signals by a block in Stat1 activation.
Collapse
Affiliation(s)
- Stefan Kasper
- Johannes Gutenberg-University, Department of Hematology/Oncology, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Chaturvedi A, Battmer K, Schaefer D, Ganser A, Eder M, Scherr M. Comparison between molecularly defined and conventional therapeutics in a conditional BCR-ABL cell culture model. Oligonucleotides 2007; 17:22-34. [PMID: 17461760 DOI: 10.1089/oli.2006.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Accumulating knowledge about the molecular mechanisms causing human diseases can support the development of targeted therapies such as imatinib, a BCR-ABL-specific tyrosine kinase inhibitor to treat chronic myeloid leukemia (CML). Here, we use lentivirus-mediated RNA interference (RNAi) targeting BCR-ABL and the downstream signaling molecules SHP2, STAT5, and Gab2 to compare the efficacy and specificity of molecularly defined therapeutics with that of conventional cytotoxic drugs (cytarabine, doxorubicin, etoposide) in a conditional BCR-ABL cell culture model. IC(50) values were determined for each drug in TonB cells cultured either with interleukin-3 (IL-3) or BCR-ABL, and molecularly defined therapies were studied using lentivirally expressed shRNAs. We demonstrate that conventional anti-leukemic drugs have small or no differential effects under different cell culture conditions, whereas both imatinib and specific RNAi significantly inhibit proliferation of TonB cells in the presence of BCR-ABL but not IL-3. To study molecularly defined combination therapy, we evaluated either imatinib in TonB cells with target-specific RNAi or we used lentiviral vectors to induce combinatorial RNAi through simultaneous expression of two shRNAs. These combination therapies result in increased efficacy without loss in specificity. Interestingly, combinatorial RNAi can specifically deplete TonB cell cultures in the presence of BCR-ABL, even without targeting the oncogene itself. This model provides a tool to evaluate potential therapeutic targets and to quantify efficacy and specificity preclinically of new combination therapies in BCR-ABL-positive cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/therapeutic use
- Benzamides
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Genetic Therapy
- Imatinib Mesylate
- Inhibitory Concentration 50
- Interleukin-3/pharmacology
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/genetics
- Lentivirus/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Models, Biological
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Piperazines/therapeutic use
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/genetics
- Pyrimidines/therapeutic use
- RNA Interference
- RNA, Small Interfering/genetics
- STAT5 Transcription Factor/antagonists & inhibitors
- STAT5 Transcription Factor/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Anuhar Chaturvedi
- Hannover Medical School, Department of Hematology, Hemostasis, and Oncology, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The induction of Bcl-x(L) is critical for the survival of late proerythroblasts. The erythroid-specific transcriptional network that regulates Bcl-x(L) expression in erythropoiesis remains unclear. The activation of the central erythropoietic transcriptional factor, GATA-1, leads to the early, transient induction of a transcription repressor, Gfi-1B, followed by the late induction of Bcl-x(L) during erythroid maturation in G1ER cells. Chromatin immunoprecipitation assays demonstrated that a constant level of GATA-1 binds to the Bcl-x promoter throughout the entire induction period, while Gfi-1B is transiently associated with the promoter in the early phase. The sustained expression of Gfi-1B abolished GATA-1-induced Bcl-x(L) expression. Here, we present evidence that GATA-1 binds to the noncanonical GATT motif of the Bcl-x promoter for trans-activation. Gfi-1B expressed at increased levels is recruited to the Bcl-x promoter through its association with GATA-1, suppressing Bcl-x(L) transcription. Therefore, the down-regulation of Gfi-1B in the late phase of erythroid maturation is necessary for Bcl-x(L) induction. Furthermore, we show that the inhibition of Bcr-Abl kinase by treatment with imatinib caused the up-regulation of Gfi-1B in K562 cells, where Gfi-1B also cooperated with GATA-1 to repress Bcl-x(L) transcription. Gfi-1B knockdown by RNA interference diminished imatinib-induced apoptosis, while the overexpression of Gfi-1B sensitized K562 cells to arsenic-induced death. These findings illuminate the role of Gfi-1B in GATA-1-mediated transcription in the survival aspect of erythroid cells.
Collapse
Affiliation(s)
- Yuan-Yeh Kuo
- Institute of Biochemistry and Molecular Biology, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
24
|
Aboudola S, Murugesan G, Szpurka H, Ramsingh G, Zhao X, Prescott N, Tubbs RR, Maciejewski JP, Hsi ED. Bone Marrow Phospho-STAT5 Expression in Non-CML Chronic Myeloproliferative Disorders Correlates With JAK2 V617F Mutation and Provides Evidence of In Vivo JAK2 Activation. Am J Surg Pathol 2007; 31:233-9. [PMID: 17255768 DOI: 10.1097/01.pas.0000213338.25111.d3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The recently described JAK2 V617F mutation, present in a substantial proportion of nonchronic myelogenous leukemia chronic myeloproliferative disorders (non-CML CMPDs), is changing the way we conceptualize and diagnose these diseases. We hypothesized that the activation of this tyrosine kinase might result in activation of downstream mediators such as STAT5, which would be detectable in bone marrow biopsies. We examined the expression of activated STAT5 (nuclear phospho-STAT5) in 73 bone marrow biopsies from patients with CMPDs [20 essential thrombocythemia (ET), 26 chronic idiopathic myelofibrosis (CIMF), and 27 polycythemia vera] and 39 controls. We compared the results with the JAK2 mutational status and clinical parameters. The frequency of the JAK2 V617F was 73% (85% in PV, 65% in ET, and 65% in CIMF). All patients with the JAK2 V617F showed abnormal nuclear megakaryocytic phospho-STAT5 (nMEG pSTAT5) expression. In the JAK2 wild-type group, nMEG pSTAT5 was observed in 2/7 ET, and 3/9 CIMF patients. nMEG pSTAT5 staining was 100% sensitive and 88% specific for JAK2 V617F. Clinically, nMEG pSTAT5+ patients seemed to require cytoreductive therapy more often than those without nMEG p-STAT expression. pSTAT5 immunohistochemistry is a useful diagnostic test in bone marrow biopsies from suspected non-CML CMPD patients. It identifies most of the patients with the JAK2 V617F but also other JAK2 wild-type CMPD patients. The presence of nMEG pSTAT5 in a subset of CMPD patients lacking the mutation suggests that alternate tyrosine kinase/phosphatase pathways may be involved and warrant further investigation. Phosphoprotein detection represents a new area for diagnostic pathology that exploits specific functional characteristics of cells within the context of a tissue section.
Collapse
Affiliation(s)
- Samer Aboudola
- Department of Clinical pathology and Laboratory Medicine, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heidel F, Cortes J, Rücker FG, Aulitzky W, Letvak L, Kindler T, Huber C, Döhner H, Kantarjian H, Fischer T. Results of a multicenter phase II trial for older patients with c-Kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and Imatinib. Cancer 2007; 109:907-14. [PMID: 17285599 DOI: 10.1002/cncr.22471] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Imatinib (IM) is a potent tyrosine kinase inhibitor of c-Kit. c-Kit is expressed in the majority of patients with acute myeloid leukemia (AML). Whereas clinical trials evaluating monotherapy with IM in AML revealed low response rates, Ara-C and IM showed synergistic effects in vitro. This suggested evaluation of a combination treatment. METHODS Low-dose Ara-C (LDAC) combined with IM was tested to determine the efficacy and safety of this regimen. Forty patients from 4 centers with c-Kit-positive AML (n = 34) and high-risk myelodysplastic syndrome (HR-MDS) (n = 6) with a median age of 73 years were enrolled. They were either not eligible for myelosuppressive therapy and/or had recurring/refractory disease. RESULTS Thirty-eight patients were evaluable for analysis. In 6 of 38 patients a blast response was observed. Eight of 38 patients showed stable disease for more than 2 months. The objective hematologic response rate was low (11%), with 2 patients showing hematologic improvement and 1 each with a partial response (PR) or complete response (CR). Median overall survival was 138 days, with 20% of patients alive after an observation period of 600 days. Study medication was applied in an ambulatory setting with minimal hospitalization time, an early mortality rate of only 18.9%, and a low toxicity rate. CONCLUSIONS LDAC plus IM does not appear to be inferior in older AML patients incomparison with historic controls receiving myelosuppressive therapy. However, this trial also shows that LDAC/IM does not appear to be more effective than LDAC monotherapy in a patient population not selected for appropriate molecular markers.
Collapse
Affiliation(s)
- Florian Heidel
- Department Internal Medicine III, University-Hospital, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Corbacioglu S, Kilic M, Westhoff MA, Reinhardt D, Fulda S, Debatin KM. Newly identified c-KIT receptor tyrosine kinase ITD in childhood AML induces ligand-independent growth and is responsive to a synergistic effect of imatinib and rapamycin. Blood 2006; 108:3504-13. [PMID: 16840725 DOI: 10.1182/blood-2006-05-021691] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractActivating mutations of c-KIT lead to ligand-independent growth. Internal tandem duplications (ITDs) of exon 11, which encodes the juxtamembrane domain (JMD), are constitutively activating mutations found in 7% of gastrointestinal stromal tumors (GISTs) but have not been described in childhood acute myeloid leukemia (AML). DNA and cDNA from 60 children with AML were screened by polymerase chain reaction (PCR) for mutations of the JMD. A complex ITD (kit cITD) involving exon 11 and exon 12 was identified with a relative frequency of 7% (4/60). The human kit cITDs were inserted into the murine c-Kit backbone and expressed in Ba/F3 cells. KIT cITD induced factorindependent growth and apoptosis resistance, and exhibited constitutive autophosphorylation. KIT cITD constitutively activated the PI3K/AKT pathway and phosphorylated STAT1, STAT3, STAT5, and SHP-2. Imatinib (IM) or rapamycin (Rap) led to complete inhibition of growth, with IC50 values at nanomolar levels. IM and Rap synergistically inhibited growth and surmounted KIT cITD-induced apoptosis resistance. IM but not LY294002 inhibited phosphorylation of STAT3 and STAT5, suggesting aberrant cross talk between PI3K- and STAT-activating pathways. The findings presented may have immediate therapeutic impact for a subgroup of childhood AML-expressing c-KIT mutations.
Collapse
Affiliation(s)
- Selim Corbacioglu
- Department of Pediatrics, University of Ulm, Eythstr 24, D-89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Mahboobi S, Uecker A, Sellmer A, Cénac C, Höcher H, Pongratz H, Eichhorn E, Hufsky H, Trümpler A, Sicker M, Heidel F, Fischer T, Stocking C, Elz S, Böhmer FD, Dove S. Novel Bis(1H-indol-2-yl)methanones as Potent Inhibitors of FLT3 and Platelet-Derived Growth Factor Receptor Tyrosine Kinase. J Med Chem 2006; 49:3101-15. [PMID: 16722630 DOI: 10.1021/jm058033i] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
FLT3 receptor tyrosine kinase is aberrantly active in many cases of acute myeloid leukemia (AML). Recently, bis(1H-indol-2-yl)methanones were found to inhibit FLT3 and PDGFR kinases. To optimize FLT3 activity and selectivity, 35 novel derivatives were synthesized and tested for inhibition of FLT3 and PDGFR autophosphorylation. The most potent FLT3 inhibitors 98 and 102 show IC50 values of 0.06 and 0.04 microM, respectively, and 1 order of magnitude lower PDGFR inhibiting activity. The derivatives 76 and 82 are 20- to 40-fold PDGFR selective. Docking at the recent FLT3 structure suggests a bidentate binding mode with the backbone of Cys-694. Activity and selectivity can be related to interactions of one indole moiety with a hydrophobic pocket including Phe-691, the only different binding site residue (PDGFR Thr-681). Compound 102 inhibited the proliferation of 32D cells expressing wildtype FLT3 or FLT3-ITD similarly as FLT3 autophosphorylation, and induced apoptosis in primary AML patient blasts.
Collapse
Affiliation(s)
- Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Swords R, Quinn J, Fay M, O'Donnell R, Goldman J, Murphy PT. CML clonal evolution with resistance to single agent imatinib therapy. ACTA ACUST UNITED AC 2005; 27:347-9. [PMID: 16178920 DOI: 10.1111/j.1365-2257.2005.00721.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a 58-year-old male diagnosed with chronic myeloid leukaemia (CML) who failed to have a cytogenetic response to interferon-alpha and hydroxyurea. On subsequent therapy with imatinib mesylate he failed to have any cytogenetic response but also developed a complex clonal evolution with an additional Philadelphia (Ph) chromosome and trisomy 8 respectively in two Ph-positive subclones. The addition of cytosine arabinoside to imatinib resulted in reversion to single Ph-chromosome positivity with the disappearance of the previous additional clonal abnormalities. The case demonstrates the efficacy of combined treatment with imatinib and cytarabine in the management of CML resistant to single agent imatinib.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Clone Cells/pathology
- Cytarabine/therapeutic use
- Drug Resistance, Neoplasm
- Humans
- Hydroxyurea/therapeutic use
- Imatinib Mesylate
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Philadelphia Chromosome
- Piperazines/adverse effects
- Piperazines/therapeutic use
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
- Remission Induction/methods
- Treatment Failure
- Trisomy
Collapse
Affiliation(s)
- R Swords
- Department of Haematology, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
29
|
Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, Brandts C, Serve H, Roesel J, Giles F, Feldman E, Ehninger G, Schiller GJ, Nimer S, Stone RM, Wang Y, Kindler T, Cohen PS, Huber C, Fischer T. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 2005; 107:293-300. [PMID: 16150941 DOI: 10.1182/blood-2005-06-2469] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activating mutations in the FLT3 tyrosine kinase (TK) occur in approximately 35% of patients with acute myeloid leukemia (AML). Therefore, targeting mutated FLT3 is an attractive therapeutic strategy, and early clinical trials testing FLT3 TK inhibitors (TKI) showed measurable clinical responses. Most of these responses were transient; however, in a subset of patients blast recurrence was preceded by an interval of prolonged remission. The etiology of clinical resistance to FLT3-TKI in AML is unclear but is of major significance for the development of future therapeutic strategies. We searched for mechanisms of resistance in 6 patients with AML who had relapses upon PKC412 treatment. In an index AML patient, an algorithm of analyses was applied using clinical material. In vivo and in vitro investigation of primary blasts at relapse revealed persistent TK phosphorylation of FLT3 despite sufficient PKC412 serum levels. Through additional molecular analyses, we identified a single amino acid substitution at position 676 (N676K) within the FLT3 kinase domain as the sole cause of resistance to PKC412 in this patient. Reconstitution experiments expressing the N676K mutant in 32D cells demonstrated that FLT3-ITD-N676K was sufficient to confer an intermediate level of resistance to PKC412 in vitro. These studies point out that a genetically complex malignancy such as AML may retain dependence on a single oncogenic signal.
Collapse
Affiliation(s)
- Florian Heidel
- 3rd Medical Department, Johannes Gutenberg University Mainz Langenbeckstrasse 1, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305:1163-7. [PMID: 15284455 DOI: 10.1126/science.1101637] [Citation(s) in RCA: 1300] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gefitinib (Iressa, Astra Zeneca Pharmaceuticals) is a tyrosine kinase inhibitor that targets the epidermal growth factor receptor (EGFR) and induces dramatic clinical responses in nonsmall cell lung cancers (NSCLCs) with activating mutations within the EGFR kinase domain. We report that these mutant EGFRs selectively activate Akt and signal transduction and activator of transcription (STAT) signaling pathways, which promote cell survival, but have no effect on extracellular signal-regulated kinase signaling, which induces proliferation. NSCLC cells expressing mutant EGFRs underwent extensive apoptosis after small interfering RNA-mediated knockdown of the mutant EGFR or treatment with pharmacological inhibitors of Akt and STAT signaling and were relatively resistant to apoptosis induced by conventional chemotherapeutic drugs. Thus, mutant EGFRs selectively transduce survival signals on which NSCLCs become dependent; inhibition of those signals by gefitinib may contribute to the drug's efficacy.
Collapse
Affiliation(s)
- Raffaella Sordella
- Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
31
|
Kindler T, Breitenbuecher F, Marx A, Beck J, Hess G, Weinkauf B, Duyster J, Peschel C, Kirkpatrick CJ, Theobald M, Gschaidmeier H, Huber C, Fischer T. Efficacy and safety of imatinib in adult patients with c-kit–positive acute myeloid leukemia. Blood 2004; 103:3644-54. [PMID: 14726395 DOI: 10.1182/blood-2003-06-2071] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
This phase 2 pilot study was conducted to determine the efficacy and safety of imatinib mesylate in patients with c-kit–positive acute myeloid leukemia (AML) refractory to or not eligible for chemotherapy. Twenty-one patients were enrolled and received imatinib 600 mg orally once daily. Five responses were seen primarily in patients, starting with relatively low blast counts in bone marrow (BM) and peripheral blood (PB): 2 patients who were considered refractory on chemotherapy on the basis of persistence of blasts in PB and BM met the criteria for complete hematologic remission, 1 patient had no evidence of leukemia, and 2 patients achieved a minor response. Treatment with imatinib demonstrated a good safety profile and was well tolerated. Western blot analysis and immunohistochemistry demonstrated c-Kit activation in primary AML cells. Further, imatinib treatment of primary AML cells inhibited c-Kit tyrosine-phosphorylation. Genomic DNA-sequencing of c-KIT showed no mutations in exons 2, 8, 10, 11, 12, and 17. Although some of the responses derived from relatively small reductions in leukemic blasts and may be attributable, in part, to prior chemotherapy, these cases suggest that imatinib has interesting clinical activity in a subset of patients with c-kit–positive AML. Further clinical trials are warranted to explore the clinical potential of imatinib in AML and to identify the underlying molecular mechanism.
Collapse
Affiliation(s)
- Thomas Kindler
- Department of Hematology/Oncology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218. [PMID: 14737178 DOI: 10.1038/sj.leu.2403241] [Citation(s) in RCA: 522] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Collapse
Affiliation(s)
- L S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kharas MG, Deane JA, Wong S, O'Bosky KR, Rosenberg N, Witte ON, Fruman DA. Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 2004; 103:4268-75. [PMID: 14976048 DOI: 10.1182/blood-2003-07-2193] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BCR-ABL and v-ABL are oncogenic forms of the Abl tyrosine kinase that can cause leukemias in mice and humans. ABL oncogenes trigger multiple signaling pathways whose contribution to transformation varies among cell types. Activation of phosphoinositide 3-kinase (PI3K) is essential for ABL-dependent proliferation and survival in some cell types, and global PI3K inhibitors can enhance the antileukemia effects of the Abl kinase inhibitor imatinib. Although a significant fraction of BCR-ABL-induced human leukemias are of B-cell origin, little is known about PI3K signaling mechanisms in B-lineage cells transformed by ABL oncogenes. Here we show that activation of class I(A) PI3K and downstream inactivation of FOXO transcription factors are essential for survival of murine pro/pre-B cells transformed by v-ABL or BCR-ABL. In addition, analysis of mice lacking individual PI3K genes indicates that products of the Pik3r1 gene contribute to transformation efficiency by BCR-ABL. These findings establish a role for PI3K signaling in B-lineage transformation by ABL oncogenes.
Collapse
Affiliation(s)
- Michael G Kharas
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3242 McGaugh Hall, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|