1
|
Horwitz SM, Feldman TA, Ye JC, Khodadoust MS, Munoz J, Hamlin PA, Kim YH, Wilcox RA, Patel MR, Coffey G, Innes A, Betz A, Holland J, Guzman CB, Smith SM. Results from an open-label phase 2a study of cerdulatinib, a dual spleen tyrosine kinase/janus kinase inhibitor, in relapsed/refractory peripheral T-cell lymphoma. Leuk Lymphoma 2025; 66:1100-1110. [PMID: 39921522 DOI: 10.1080/10428194.2025.2455489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025]
Abstract
In this phase-2a study (NCT01994382), patients aged ≥18 years with relapsed/refractory peripheral T-cell lymphoma (PTCL; angioimmunoblastic T-cell lymphoma/T follicular helper [AITL/TFH], n = 29); PTCL-not otherwise specified [NOS], n = 11; and Other, n = 25) received 30 mg oral cerdulatinib, a reversible dual inhibitor of spleen tyrosine kinase and Janus kinase, twice daily in 28-day cycles until disease progression or unacceptable toxicity. Overall response rate (ORR) was 36.2% (12 complete responses [CR],9 partial responses [PR], and 14 stable disease); median time to response was 1.9 months. ORR was 51.9% for AITL/TFH (10 CR, 4 PR) and 31.8% for Other (2 CR, 5 PR); median duration of response was 12.9 and 5.3 months, respectively. The most common grade ≥3 treatment-emergent adverse events were asymptomatic amylase elevation (23.1%), anemia (20.0%), and asymptomatic lipase elevation (18.5%). These data suggest clinical activity and acceptable tolerability for cerdulatinib in patients with relapsed/refractory PTCL.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/mortality
- Male
- Middle Aged
- Female
- Aged
- Adult
- Pyrimidines/therapeutic use
- Pyrimidines/adverse effects
- Pyrimidines/administration & dosage
- Treatment Outcome
- Aged, 80 and over
- Syk Kinase/antagonists & inhibitors
- Drug Resistance, Neoplasm
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/adverse effects
- Janus Kinase Inhibitors/therapeutic use
- Janus Kinase Inhibitors/adverse effects
- Janus Kinase Inhibitors/administration & dosage
- Recurrence
- Young Adult
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/adverse effects
Collapse
Affiliation(s)
| | - Tatyana A Feldman
- John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | | | | | - Javier Munoz
- Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Paul A Hamlin
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Youn H Kim
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - Greg Coffey
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | - Alison Innes
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | - Andreas Betz
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | | | | | | |
Collapse
|
2
|
Zhang JP, Gao Q, Jungbluth AA, Daker SE, Sun X, Chan A, Xiao W, Roshal M, Dogan A, Sethi S. Benchmarking spleen tyrosine kinase (Syk) expression in T- and NK-cell neoplasms: Implications for therapeutic targeting. Br J Haematol 2025. [PMID: 40361307 DOI: 10.1111/bjh.20151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Jing-Ping Zhang
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Qi Gao
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Achim A Jungbluth
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sary El Daker
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xiaotian Sun
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexander Chan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Wenbin Xiao
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mikhail Roshal
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shenon Sethi
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Hamasy A, Hussain A, Mohammad DK, Wang Q, Sfetcovici MG, Nore BF, Mohamed AJ, Zain R, Smith CIE. Differential regulatory effects of the N-terminal region in SYK-fusion kinases reveal unique activation-inducible nuclear translocation of ITK-SYK. Sci Rep 2025; 15:814. [PMID: 39755731 PMCID: PMC11700165 DOI: 10.1038/s41598-024-83962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK. By generating and analyzing these fusion kinases, we aim to understand the contribution of N-terminal domains to their distinct cellular behavior and oncogenic properties. The fusion kinases were found to behave differently. TEL-SYK showed stronger oncogenic capacity when compared with ITK-SYK and BTK-SYK. Furthermore, ITK-SYK and BTK-SYK triggered IL-3-independent growth of BAF3 pro-B cells. In contrast to BTK-SYK and TEL-SYK, which predominantly localized in perinuclear region and cytoplasm respectively, ITK-SYK exhibits a more diverse cellular distribution, being present in the nucleus, cytoplasm and membrane-bound compartments. Notably, we observed that ITK-SYK undergoes activation-mediated nuclear translocation, a phenomenon that is uncommon among kinases. This unique feature of ITK-SYK is therefore of particular interest due to its potential connection to its transforming capability.
Collapse
Affiliation(s)
- Abdulrahman Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Alamdar Hussain
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, 141 83, Stockholm, Sweden
- College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Kurdistan Region, 44002, Iraq
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Manuela Gustafsson Sfetcovici
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
| | - Beston F Nore
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Biomedical Science, Komar University of Science and Technology (KUST), Qliasan St, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Abdalla J Mohamed
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, Floor 8, 14152, Huddinge, Sweden.
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Kemps PG, Baelde HJ, Vorderman RHP, Stelloo E, Swennenhuis JF, Szuhai K, Lamers MH, Kenkhuis B, Al-Hussaini M, Briaire-de Bruijn IH, Lam SW, Bovée JVMG, Cleven AHG, Verdijk RM, van Noesel CJM, van Dijk MR, Scheijde-Vermeulen MA, Bruggink AH, van Laar JAM, de Vries ACH, Tissing WJE, van den Bos C, von Deimling A, van Wezel T, van Halteren AGS, Hogendoorn PCW. Recurrent CLTC::SYK fusions and CSF1R mutations in juvenile xanthogranuloma of soft tissue. Blood 2024; 144:2439-2455. [PMID: 39316650 DOI: 10.1182/blood.2024025127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Juvenile xanthogranuloma (JXG) is a histiocytic neoplasm that usually presents in the skin. Rarely, extracutaneous localizations occur; the genetic drivers of this clinical variant of JXG remain incompletely characterized. We present detailed clinicopathologic and molecular data of 16 children with extracutaneous JXG and 5 adults with xanthogranulomas confined to the central nervous system (CNS) or soft tissue. Tissue samples were obtained through the Dutch Nationwide Pathology Databank and analyzed with an innovative sequencing technique capable of detecting both small genomic variants and gene rearrangements. Targetable kinase alterations were detected in 16 of 16 children and 1 of 5 adults. Alterations included CLTC::SYK fusions in 6 children and CSF1R mutations in 7 others; all below 2 years of age with soft tissue tumors. One child had a CSF1R mutation and MRC1::PDGFRB fusion. Most were treated surgically, although spontaneous regression occurred in 1 of 6 with CLTC::SYK and 2 of 7 with CSF1R mutations, underscoring that treatment is not always necessary. Tumors with CLTC::SYK fusions generally lacked Touton giant cells but exhibited many other histologic features of JXG and concordant methylation profiles. Using multispectral immunofluorescence, phosphorylated-spleen tyrosine kinase expression was localized to CD163+ histiocytes; tumors with CLTC::SYK fusions also demonstrated mTOR activation, cyclin D1 expression, and variable phosphorylated-extracellular signal-regulated kinase expression. BRAFV600E was detected in 1 child and 1 adult with CNS-xanthogranulomas; both responded to BRAF inhibition. Finally, a TPM3::NTRK1 fusion or MAP2K1 deletion was detected in 2 children with systemic JXG who experienced spontaneous disease regression. This study advances the molecular understanding of histiocytic neoplasms and may guide diagnostics and clinical management.
Collapse
Affiliation(s)
- Paul G Kemps
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruben H P Vorderman
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Stelloo
- Cergentis BV, a Solvias Company, Utrecht, The Netherlands
| | | | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Boyd Kenkhuis
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | | | - Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen H G Cleven
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marijke R van Dijk
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jan A M van Laar
- Section Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrica C H de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wim J E Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid G S van Halteren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Section Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
5
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 PMCID: PMC11551850 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
6
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
7
|
Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch 2024; 484:195-214. [PMID: 37747559 PMCID: PMC10948535 DOI: 10.1007/s00428-023-03644-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
With the explosion in knowledge about the molecular landscape of lymphoid malignancies and the increasing availability of high throughput techniques, molecular diagnostics in hematopathology has moved from isolated marker studies to a more comprehensive approach, integrating results of multiple genes analyzed with a variety of techniques on the DNA and RNA level. Although diagnosis of lymphoma still relies on the careful integration of clinical, morphological, phenotypic, and, if necessary molecular features, and only few entities are defined strictly by genetic features, genetic profiling has contributed profoundly to our current understanding of lymphomas and shaped the two current lymphoma classifications, the International Consensus Classification and the fifth edition of the WHO classification of lymphoid malignancies. In this review, the current state of the art of molecular diagnostics in lymphoproliferations is summarized, including clonality analysis, mutational studies, and gene expression profiling, with a focus on practical applications for diagnosis and prognostication. With consideration for differences in accessibility of high throughput techniques and cost limitations, we tried to distinguish between diagnostically relevant and in part disease-defining molecular features and optional, more extensive genetic profiling, which is usually restricted to clinical studies, patients with relapsed or refractory disease or specific therapeutic decisions. Although molecular diagnostics in lymphomas currently is primarily done for diagnosis and subclassification, prognostic stratification and predictive markers will gain importance in the near future.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Chen Y, Liang R, Shi X, Shen R, Liu L, Liu Y, Xue Y, Guo X, Dang J, Zeng D, Huang F, Sun J, Zhang J, Wang J, Olsen N, August A, Huang W, Pan Y, Zheng SG. Targeting kinase ITK treats autoimmune arthritis via orchestrating T cell differentiation and function. Biomed Pharmacother 2023; 169:115886. [PMID: 37992572 DOI: 10.1016/j.biopha.2023.115886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
IL-2 inducible T cell kinase (ITK) is critical in T helper subset differentiation and its inhibition has been suggested for the treatment of T cell-mediated inflammatory diseases. T follicular helper (Tfh), Th17 and regulatory T cells (Treg) also play important roles in the development of rheumatoid arthritis (RA), while the role of ITK in the development of RA and the intricate balance between effector T and regulatory T cells remains unclear. Here, we found that CD4+ T cells from RA patients presented with an elevated ITK activation. ITK inhibitor alleviated existing collagen-induced arthritis (CIA) and reduced antigen specific antibody production. Blocking ITK kinase activity interferes Tfh cell generation. Moreover, ITK inhibitor effectively rebalances Th17 and Treg cells by regulating Foxo1 translocation. Furthermore, we identified dihydroartemisinin (DHA) as a potential ITK inhibitor, which could inhibit PLC-γ1 phosphorylation and the progression of CIA by rebalancing Th17 and Treg cells. Out data imply that ITK activation is upregulated in RA patients, and therefore blocking ITK signal may provide an effective strategy to treat RA patients and highlight the role of ITK on the Tfh induction and RA progression.
Collapse
Affiliation(s)
- Ye Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Liu Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, PR China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Youqiu Xue
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Xinghua Guo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Junlong Dang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Donglan Zeng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Feng Huang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Jianbo Sun
- The first Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Jingwen Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine at the Penn State University Hershey Medical Center, Hershey, PA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
9
|
Oishi N, Ahmed R, Feldman AL. Updates in the Classification of T-cell Lymphomas and Lymphoproliferative Disorders. Curr Hematol Malig Rep 2023; 18:252-263. [PMID: 37870698 PMCID: PMC10834031 DOI: 10.1007/s11899-023-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE OF REVIEW Mature T/NK-cell neoplasms comprise a heterogeneous group of diseases with diverse clinical, histopathologic, immunophenotypic, and molecular features. A clinically relevant, comprehensive, and reproducible classification system for T/NK-cell neoplasms is essential for optimal management, risk stratification, and advancing understanding of these diseases. Two classification systems for lymphoid neoplasms were recently introduced: the 5th edition of World Health Organization classification (WHO-HAEM5) and the 2022 International Consensus Classification (ICC). In this review, we summarize the basic framework and updates in the classification of mature T/NK-cell neoplasms. RECENT FINDINGS WHO-HAEM5 and ICC share basic concepts in classification of T/NK-cell neoplasms, emphasizing integration of clinical presentation, pathology, immunophenotype, and genetics. Major updates in both classifications include unifying nodal T-follicular helper-cell lymphomas into a single entity and establishing EBV-positive nodal T/NK-cell lymphoma as a distinct entity. However, some differences exist in taxonomy, terminology, and disease definitions. The recent classifications of mature T/NK-cell neoplasms are largely similar and provide new insights into taxonomy based on integrated clinicopathologic features.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reham Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O'Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol 2023; 23:787-806. [PMID: 37188939 PMCID: PMC10184645 DOI: 10.1038/s41577-023-00877-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.
Collapse
Affiliation(s)
- Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Gaillard JB, Chapiro E, Daudignon A, Nadal N, Penther D, Chauzeix J, Nguyen-Khac F, Veronese L, Lefebvre C. Cytogenetics in the management of mature T-cell and NK-cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103428. [PMID: 38016421 DOI: 10.1016/j.retram.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.
Collapse
Affiliation(s)
- Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France.
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
12
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
13
|
Ondrejka SL, Amador C, Climent F, Ng SB, Soma L, Zamo A, Dirnhofer S, Quintanilla-Martinez L, Wotherspoon A, Leoncini L, de Leval L. Follicular helper T-cell lymphomas: disease spectrum, relationship with clonal hematopoiesis, and mimics. A report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 2023; 483:349-365. [PMID: 37500795 PMCID: PMC10541838 DOI: 10.1007/s00428-023-03607-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Follicular helper T-cell lymphomas (TFH lymphomas) were discussed in session V of the lymphoma workshop of the European Association for Haematopathology (EA4HP)/Society for Hematopathology (SH) 2022 meeting in Florence, Italy. The session focused on the morphologic spectrum of TFH lymphoma, including its three subtypes: angioimmunoblastic-type (AITL), follicular-type, and not otherwise specified (NOS). The submitted cases encompassed classic examples of TFH lymphoma and unusual cases such as those with early or indolent presentations, associated B-cell proliferations, or Hodgkin/Reed-Sternberg-like cells. The relationship between TFH lymphoma and clonal hematopoiesis was highlighted by several cases documenting divergent evolution of myeloid neoplasm and AITL from shared clonal mutations. The distinction between TFH lymphoma and peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), was stressed, and many challenging examples were presented. Various cases highlighted the difficulties of differentiating TFH lymphoma from other established types of lymphoma and reactive conditions. Cutaneous T-cell lymphoma expressing TFH markers, particularly when resulting in lymph node involvement, should be distinguished from TFH lymphomas. Additional immunophenotyping and next-generation sequencing studies were performed on various cases in this session, highlighting the importance of these technologies to our current understanding and classification of TFH lymphomas.
Collapse
Affiliation(s)
- Sarah L Ondrejka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Catalina Amador
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL, USA
| | - Fina Climent
- Pathology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet De Llobregat, Barcelona, Spain
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lorinda Soma
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Alberto Zamo
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | | | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
14
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
15
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
16
|
Lage LADPC, Culler HF, Reichert CO, da Siqueira SAC, Pereira J. Angioimmunoblastic T-cell lymphoma and correlated neoplasms with T-cell follicular helper phenotype: from molecular mechanisms to therapeutic advances. Front Oncol 2023; 13:1177590. [PMID: 37182145 PMCID: PMC10169672 DOI: 10.3389/fonc.2023.1177590] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is the second most frequent subtype of mature T-cell lymphoma (MTCL) in the Western world. It derives from the monoclonal proliferation of T-follicular helper (TFH) cells and is characterized by an exacerbated inflammatory response and immune dysregulation, with predisposition to autoimmunity phenomena and recurrent infections. Its genesis is based on a multistep integrative model, where age-related and initiator mutations involve epigenetic regulatory genes, such as TET-2 and DNMT3A. Subsequently, driver-mutations, such as RhoA G17V and IDH-2 R172K/S promote the expansion of clonal TFH-cells ("second-hit"), that finally begin to secrete cytokines and chemokines, such as IL-6, IL-21, CXCL-13 and VEGF, modulating a network of complex relationships between TFH-cells and a defective tumor microenvironment (TME), characterized by expansion of follicular dendritic cells (FDC), vessels and EBV-positive immunoblasts. This unique pathogenesis leads to peculiar clinical manifestations, generating the so-called "immunodysplastic syndrome", typical of AITL. Its differential diagnosis is broad, involving viral infections, collagenosis and adverse drug reactions, which led many authors to use the term "many-faced lymphoma" when referring to AITL. Although great advances in its biological knowledge have been obtained in the last two decades, its treatment is still an unmet medical need, with highly reserved clinical outcomes. Outside the setting of clinical trials, AITL patients are still treated with multidrug therapy based on anthracyclines (CHOP-like), followed by up-front consolidation with autologous stem cell transplantation (ASCT). In this setting, the estimated 5-year overall survival (OS) is around 30-40%. New drugs, such as hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDAi), have been used for relapsed/refractory (R/R) disease with promising results. Such agents have their use based on a biological rationale, have significant potential to improve the outcomes of patients with AITL and may represent a paradigm shift in the therapeutic approach to this lymphoma in the near future.
Collapse
Affiliation(s)
- Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Hebert Fabricio Culler
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cadiele Oliana Reichert
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Juliana Pereira
- Department of Hematology, Hemotherapy & Cell Therapy, University of São Paulo (USP), São Paulo, SP, Brazil
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Hematology and Oncology, Hospital Alemão Oswaldo Cruz (HAOC), São Paulo, SP, Brazil
| |
Collapse
|
17
|
Oishi N, Feldman AL. Current Concepts in Nodal Peripheral T-Cell Lymphomas. Surg Pathol Clin 2023; 16:267-285. [PMID: 37149360 DOI: 10.1016/j.path.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
This review summarizes the current understanding of mature T-cell neoplasms predominantly involving lymph nodes, including ALK-positive and ALK-negative anaplastic large cell lymphomas, nodal T-follicular helper cell lymphoma, Epstein-Barr virus-positive nodal T/NK-cell lymphoma, and peripheral T-cell lymphoma (PTCL), not otherwise specified. These PTCLs are clinically, pathologically, and genetically heterogeneous, and the diagnosis is made by a combination of clinical information, morphology, immunophenotype, viral positivity, and genetic abnormalities. This review summarizes the pathologic features of common nodal PTCLs, highlighting updates in the fifth edition of the World Health Organization classification and the 2022 International Consensus Classification.
Collapse
|
18
|
Lierman E, Smits S, Debackere K, André M, Michaux L, Vandenberghe P. t(9;12)(q22;p13) ETV6::SYK: A new recurrent cytogenetic aberration and tyrosine kinase gene fusion in myeloid or lymphoid neoplasms associated with eosinophilia. Br J Haematol 2023; 200:665-668. [PMID: 36385372 DOI: 10.1111/bjh.18569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Els Lierman
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Sanne Smits
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Koen Debackere
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Center for Cancer Biology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Marc André
- Department of Hematology, CHU UCL-Namur, Yvoir, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Marques-Piubelli ML, Amador C, Vega F. Pathologic and molecular insights in nodal T-follicular helper cell lymphomas. Front Oncol 2023; 13:1105651. [PMID: 36793612 PMCID: PMC9923156 DOI: 10.3389/fonc.2023.1105651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
T-follicular helper (TFH) cells are one of the T-cell subsets with a critical role in the regulation of germinal center (GC) reactions. TFH cells contribute to the positive selection of GC B-cells and promote plasma cell differentiation and antibody production. TFH cells express a unique phenotype characterized by PD-1hi, ICOShi, CD40Lhi, CD95hi, CTLAhi, CCR7lo, and CXCR5hi . Three main subtypes of nodal TFH lymphomas have been described: 1) angioimmunoblastic-type, 2) follicular-type, and 3) not otherwise specified (NOS). The diagnosis of these neoplasms can be challenging, and it is rendered based on a combination of clinical, laboratory, histopathologic, immunophenotypic, and molecular findings. The markers most frequently used to identify a TFH immunophenotype in paraffin-embedded tissue sections include PD-1, CXCL13, CXCR5, ICOS, BCL6, and CD10. These neoplasms feature a characteristic and similar, but not identical, mutational landscape with mutations in epigenetic modifiers (TET2, DNMT3A, IDH2), RHOA, and T-cell receptor signaling genes. Here, we briefly review the biology of TFH cells and present a summary of the current pathologic, molecular, and genetic features of nodal lymphomas. We want to highlight the importance of performing a consistent panel of TFH immunostains and mutational studies in TCLs to identify TFH lymphomas.
Collapse
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Catalina Amador
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL, United States
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Piccaluga PP, Cascianelli C, Inghirami G. Tyrosine kinases in nodal peripheral T-cell lymphomas. Front Oncol 2023; 13:1099943. [PMID: 36845713 PMCID: PMC9946040 DOI: 10.3389/fonc.2023.1099943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Nodal peripheral T-cell lymphomas (PTCL) are uncommon and heterogeneous tumors characterized by a dismal prognosis. Targeted therapy has been proposed. However, reliable targets are mostly represented by a few surface antigens (e.g., CD52 and CD30), chemokine receptors (e.g., CCR4), and epigenetic gene expression regulation. In the last two decades, however, several studies have supported the idea that tyrosine kinase (TK) deregulation might be relevant for both the pathogenesis and treatment of PTCL. Indeed, they can be expressed or activated as a consequence of their involvement in genetic lesions, such as translocations, or by ligand overexpression. The most striking example is ALK in anaplastic large-cell lymphomas (ALCL). ALK activity is necessary to support cell proliferation and survival, and its inhibition leads to cell death. Notably, STAT3 was found to be the main downstream ALK effector. Other TKs are consistently expressed and active in PTCLs, such as PDGFRA, and members of the T-cell receptor signaling family, such as SYK. Notably, as in the case of ALK, STAT proteins have emerged as key downstream factors for most of the involved TK.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine, School of Medicine, University of Bologna, Bologna, Italy
| | - Chiara Cascianelli
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, Bologna, Italy
| | - Giorgio Inghirami
- Immunopathology and Hematopathology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
21
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
22
|
Classification and diagnostic evaluation of nodal T- and NK-cell lymphomas. Virchows Arch 2023; 482:265-279. [PMID: 36210383 DOI: 10.1007/s00428-022-03412-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023]
Abstract
Nodal T- and NK-cell lymphomas are among the most frequent T-cell malignancies and most subtypes have aggressive clinical behavior. Evolving understanding of the biology and molecular characteristics of these lymphomas, as well as the development of new precision therapy approaches, underscores the importance of ongoing updates to the classification and diagnostic evaluation of this group of malignancies. Here, we discuss the classification of nodal T- and NK-cell lymphomas based on the 2022 International Consensus Classification of Mature Lymphoid Neoplasms (2022 ICC). Lymphomas of T-follicular helper cell origin are now grouped into a single entity, follicular helper T-cell lymphoma (TFH lymphoma), with three subtypes (angioimmunoblastic-type, follicular-type, and not otherwise specified), reflecting their common cellular origin and shared molecular and clinical characteristics. Classification of anaplastic large cell lymphoma (ALCL) remains essentially unchanged; DUSP22-rearranged cases are now considered a genetic subtype of ALK-negative ALCL. Primary nodal EBV-positive T-/NK-cell lymphoma is introduced as a new provisional entity; these cases were previously considered a variant of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS). PTCL, NOS remains a diagnosis of exclusion, with evolving molecular data indicating the presence of distinct subgroups, including PTCL-TBX21, PTCL-GATA3, and EBV-negative cytotoxic PTCLs. We also discuss diagnostic strategies to facilitate the 2022 ICC classification among nodal T- and NK-cell lymphomas and the distinction from nodal involvement by extranodal neoplasms.
Collapse
|
23
|
Wang C, Zhu L, Liu S, Yi S, Xiao M, Zhang Y, Mao X. PD-1 combined with TRBC1 and pan-T cell antibodies for robustly monitoring angioimmunoblastic T-cell lymphoma. Front Med (Lausanne) 2022; 9:962428. [PMID: 36160159 PMCID: PMC9492947 DOI: 10.3389/fmed.2022.962428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe diagnosis of AITL is challenging. It may be delayed or even missed due to critical clinical conditions and its histologic and immunophenotypic overlap with other neoplastic and reactive lymphoid proliferations.ObjectiveThe key objective is to obtain an efficient diagnosis, sensitive disease monitoring and treatment efficacy assessment of AITL using multiparameter flow cytometry (MFC).MethodsIn total, 167 de novo AITL patients were immunophenotypically profiled using sensitive MFC. We precisely identified the aberrant T-cell populations of AITL and performed an in-depth description of their phenotypic characteristics in comparison with their residual normal CD4+ T cells. A comparison of Programmed death receptor-1 (PD-1) expression was performed among AITL and other T-cell lymphomas.ResultsMFC detected a neoplastic T-cell population in 94.1% (80/85) of tissue, 71.5% (108/151) of bone marrow (BM), 100% (8/8) of peripheral blood (PB) and 78.6% (11/14) of body fluid samples. The most frequent immunophenotypic aberrations included the absence and diminished expression of CD3 (71.25% in tissues, 71.3% in BM, 75% in PB, 81.8% in hydrothorax and ascites specimens), followed by the loss or partial loss of CD7 (71.25% in LN, 67.6% in BM, 50% in PB, 81.8% in hydrothorax and ascites specimens). The immunophenotyping of neoplastic T-cell populations showed a high degree of similarity among different sites of the same patient and they might change over time but were relatively stable. Bright PD-1 expression showed high sensitivity and specificity in differentiating AITL from other T-cell lymphomas. In 14 AITL patients, neoplastic T-cell populations were initially missed by T-cell screening tube but were successfully discovered by bright PD-1 expression.ConclusionT-cell screening tube can reliably screen neoplastic T-cell populations in AITL patients with typical immunophenotyping, such as loss of surface CD3 and loss of CD7 with a relatively high ratio. Bright PD-1 expression is essential for identifying aberrant T cells in almost all AITLs. The clonality assessment antibody TRBC1 is efficient for robustly and cheaply assessing T-cell clonality. Using PD-1 and TRBC1 combined with pan-T cell antibodies can make a precise diagnosis of AITL and also sensitively monitor minimal residual disease regardless of the antigenic drift of the neoplastic T cells.
Collapse
|
24
|
Pathological and Molecular Features of Nodal Peripheral T-Cell Lymphomas. Diagnostics (Basel) 2022; 12:diagnostics12082001. [PMID: 36010351 PMCID: PMC9407466 DOI: 10.3390/diagnostics12082001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are uncommon neoplasms derived from mature T cells or NK cells. PTCLs comprise numerous disease entities, with over 30 distinct entities listed in the latest WHO classification. They predominantly affect adults and elderly people and usually exhibit an aggressive clinical course with poor prognosis. According to their presentation, PTCLs can be divided into nodal, extranodal or cutaneous, and leukemic types. The most frequent primary sites of PTCLs are lymph nodes, with over half of cases showing nodal presentation. Nodal PTCLs include ALK-positive and ALK-negative anaplastic large cell lymphoma; nodal T-cell lymphoma with T follicular helper cell origin; and PTCL, not otherwise specified. Adult T-cell leukemia/lymphoma also frequently affects lymph nodes. Recent pathological and molecular findings in nodal PTCLs have profoundly advanced the identification of tumor signatures and the refinement of the classification. Therefore, the therapies and pathological diagnosis of nodal PTCLs are continually evolving. This paper aims to provide a summary and update of the pathological and molecular features of nodal PTCLs, which will be helpful for diagnostic practice.
Collapse
|
25
|
Mutations Affecting Genes in the Proximal T-Cell Receptor Signaling Pathway in Peripheral T-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14153716. [PMID: 35954378 PMCID: PMC9367541 DOI: 10.3390/cancers14153716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The advent of next-generation sequencing (NGS) has allowed rapid advances in genomic studies on the pathogenesis and biology of peripheral T-cell lymphoma (PTCL). Recurrent mutations and fusions in genes related to the proximal TCR signaling pathway have been identified and show an important pathogenic role in PTCL. In this review, we summarize the genomic alterations in TCR signaling identified in different subgroups of PTCL patients and the functional impact of these alterations on TCR signaling and downstream pathways. We also discuss novel agents that could target TCR-related mutations and may hold promise for improving the treatment of PTCL. Abstract Peripheral T-cell lymphoma (PTCL) comprises a heterogeneous group of mature T-cell malignancies. Recurrent activating mutations and fusions in genes related to the proximal TCR signaling pathway have been identified in preclinical and clinical studies. This review summarizes the genetic alterations affecting proximal TCR signaling identified from different subgroups of PTCL and the functional impact on TCR signaling and downstream pathways. These genetic abnormalities include mostly missense mutations, occasional indels, and gene fusions involving CD28, CARD11, the GTPase RHOA, the guanine nucleotide exchange factor VAV1, and kinases including FYN, ITK, PLCG1, PKCB, and PI3K subunits. Most of these aberrations are activating mutations that can potentially be targeted by inhibitors, some of which are being tested in clinical trials that are briefly outlined in this review. Finally, we focus on the molecular pathology of recently identified subgroups of PTCL-NOS and highlight the unique genetic profiles associated with PTCL-GATA3.
Collapse
|
26
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
27
|
Krug A, Tari G, Saidane A, Gaulard P, Ricci JE, Lemonnier F, Verhoeyen E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers (Basel) 2022; 14:cancers14102392. [PMID: 35625998 PMCID: PMC9139536 DOI: 10.3390/cancers14102392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This work reviews the multiple efforts that have been and are being invested by researchers as well as clinicians to improve the treatment of a specific T-cell lymphoma called follicular helper peripheral T-cell lymphoma. Still, though treatments for B-cell lymphomas have improved, this particular T-cell lymphoma has little to no new therapeutic options that show marked improvements in the survival of the patients compared to treatment with chemotherapy. We report here the evaluation of targeted new therapies for this T-cell lymphoma in new preclinical models for this cancer or in clinical trials with the objective to offer better (combination) treatment options. Abstract The classification of peripheral T-cell lymphomas (PTCL) is constantly changing and contains multiple subtypes. Here, we focus on Tfh-like PTCL, to which angioimmunoblastic T-cell lymphoma (AITL) belongs, according to the last WHO classification. The first-line treatment of these malignancies still relies on chemotherapy but gives very unsatisfying results for these patients. Enormous progress in the last decade in terms of understanding the implicated genetic mutations leading to signaling and epigenetic pathway deregulation in Tfh PTCL allowed the research community to propose new therapeutic approaches. These findings point towards new biomarkers and new therapies, including hypomethylating agents, such as azacytidine, and inhibitors of the TCR-hyperactivating molecules in Tfh PTCL. Additionally, metabolic interference, inhibitors of the NF-κB and PI3K-mTOR pathways and possibly novel immunotherapies, such as antibodies and chimeric antigen receptors (CAR) directed against Tfh malignant T-cell surface markers, are discussed in this review among other new treatment options.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Gamze Tari
- Univ Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France;
| | - Aymen Saidane
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - Philippe Gaulard
- Département de Pathologie, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Jean-Ehrland Ricci
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
| | - François Lemonnier
- Service Unité Hémopathies Lymphoides, AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France;
| | - Els Verhoeyen
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (A.K.); (A.S.); (J.-E.R.)
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France
- Correspondence: or ; Tel.: +33-4-72728731
| |
Collapse
|
28
|
Hathuc V, Kreisel F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life (Basel) 2022; 12:life12030410. [PMID: 35330161 PMCID: PMC8954173 DOI: 10.3390/life12030410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral T-Cell lymphoma (PTCL) comprises a heterogenous group of uncommon lymphomas derived from mature, post-thymic or “peripheral” T- and natural killer cells. The World Health Organization (WHO) emphasizes a multiparameter approach in the diagnosis and subclassification of these neoplasms, integrating clinical, morphologic, immunophenotypic, and genetic features into the final diagnosis. Clinical presentation is particularly important due to histologic, immunophenotypic and genetic variations within established subtypes, and no convenient immunophenotypic marker of monoclonality exists. In recent years, widespread use of gene expression profiling and next-generation sequencing (NGS) techniques have contributed to an improved understanding of the pathobiology in PTCLs, and these have been incorporated into the 2016 revised WHO classification of mature T- and NK-cell neoplasms which now encompasses nearly 30 distinct entities. This review discusses the genetic landscape of PTCL and its role in subclassification, prognosis, and potential targeted therapy. In addition to discussing T-Cell lymphoma subtypes with relatively well-defined or relevant genetic aberrancies, special attention is given to genetic advances in T-Cell lymphomas of T follicular helper cell (TFH) origin, highlighting genetic overlaps between angioimmunoblastic T-Cell lymphoma (AITL), follicular T-Cell lymphoma, and nodal peripheral T-Cell lymphoma with a TFH phenotype. Furthermore, genetic drivers will be discussed for ALK-negative anaplastic large cell lymphomas and their role in differentiating these from CD30+ peripheral T-Cell lymphoma, not otherwise specified (NOS) and primary cutaneous anaplastic large cell lymphoma. Lastly, a closer look is given to genetic pathways in peripheral T-Cell lymphoma, NOS, which may guide in teasing out more specific entities in a group of T-Cell lymphomas that represents the most common subcategory and is sometimes referred to as a “wastebasket” category.
Collapse
|
29
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
30
|
T and NK cell lymphoma cell lines do not rely on ZAP-70 for survival. PLoS One 2022; 17:e0261469. [PMID: 35077445 PMCID: PMC8789098 DOI: 10.1371/journal.pone.0261469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
B-cell receptor (BCR) signalling is critical for the survival of B-cell lymphomas and is a therapeutic target of drugs such as Ibrutinib. However, the role of T-cell receptor (TCR) signalling in the survival of T/Natural Killer (NK) lymphomas is not clear. ZAP-70 (zeta associated protein-70) is a cytoplasmic tyrosine kinase with a critical role in T-cell receptor (TCR) signalling. It has also been shown to play a role in normal NK cell signalling and activation. High ZAP-70 expression has been detected by immunohistochemistry in peripheral T cell lymphoma (PTCL) and NK cell lymphomas (NKTCL). We therefore, studied the role of TCR pathways in mediating the proliferation and survival of these malignancies through ZAP-70 signalling. ZAP-70 protein was highly expressed in T cell lymphoma cell lines (JURKAT and KARPAS-299) and NKTCL cell lines (KHYG-1, HANK-1, NK-YS, SNK-1 and SNK-6), but not in multiple B-cell lymphoma cell lines. siRNA depletion of ZAP-70 suppressed the phosphorylation of ZAP-70 substrates, SLP76, LAT and p38MAPK, but did not affect cell viability or induce apoptosis in these cell lines. Similarly, while stable overexpression of ZAP-70 mediates increased phosphorylation of target substrates in the TCR pathway, it does not promote increased survival or growth of NKTCL cell lines. The epidermal growth factor receptor (EGFR) inhibitor Gefitinib, which has off-target activity against ZAP-70, also did not show any differential cell kill between ZAP-70 overexpressing (OE) or knockdown (KD) cell lines. Whole transcriptome RNA sequencing highlighted that there was very minimal differential gene expression in three different T/NK cell lines induced by ZAP-70 KD. Importantly, ZAP-70 KD did not significantly enrich for any downstream TCR related genes and pathways. Altogether, this suggests that high expression and constitutive signalling of ZAP-70 in T/NK lymphoma is not critical for cell survival or downstream TCR-mediated signalling and gene expression. ZAP-70 therefore may not be a suitable therapeutic target in T/NK cell malignancies.
Collapse
|
31
|
Emerging Therapeutic Landscape of Peripheral T-Cell Lymphomas Based on Advances in Biology: Current Status and Future Directions. Cancers (Basel) 2021; 13:cancers13225627. [PMID: 34830782 PMCID: PMC8616039 DOI: 10.3390/cancers13225627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Peripheral T-cell lymphoma is a rare but aggressive tumor. Due to its rarity, the disease has not been completely understood. In our review, we look at this lymphoma at the molecular level based on available literature. We highlight the mechanism behind the progression and resistance of this tumor. In doing so, we bring forth possible mechanism that could be exploited through novel chemotherapy drugs. In addition, we also look at the current available drugs used in treating this disease, as well as highlight other new drugs, describing their potential in treating this lymphoma. We comprehensively have collected and present the available biology behind peripheral T-cell lymphoma and discuss the available treatment options. Abstract T-cell lymphomas are a relatively rare group of malignancies with a diverse range of pathologic features and clinical behaviors. Recent molecular studies have revealed a wide array of different mechanisms that drive the development of these malignancies and may be associated with resistance to therapies. Although widely accepted chemotherapeutic agents and combinations, including stem cell transplantation, obtain responses as initial therapy for these diseases, most patients will develop a relapse, and the median survival is only 5 years. Most patients with relapsed disease succumb within 2 to 3 years. Since 2006, the USFDA has approved five medications for treatment of these diseases, and only anti-CD30-therapy has made a change in these statistics. Clearly, newer agents are needed for treatment of these disorders, and investigators have proposed studies that evaluate agents that target these malignancies and the microenvironment depending upon the molecular mechanisms thought to underlie their pathogenesis. In this review, we discuss the currently known molecular mechanisms driving the development and persistence of these cancers and discuss novel targets for therapy of these diseases and agents that may improve outcomes for these patients.
Collapse
|
32
|
Qiu L, Cho JH, Jelloul FZ, Vega F. SOHO State of the Art Updates and Next Questions: Pathology and Pathogenesis of Nodal Peripheral T-Cell Lymphomas. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:287-296. [PMID: 34776400 DOI: 10.1016/j.clml.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and often clinically aggressive group of neoplasms derived from mature post-thymic T-lymphocytes. These neoplasms are rare and usually diagnostically challenging. Our understanding of the pathogenesis of PTCL is increasing and this improved knowledge is leading us to better molecular characterization, more objective and accurate diagnostic criteria, more effective risk assessment, and potentially better treatments. The focus of this paper is to present a brief overview of the current pathology criteria and molecular and genetic features of nodal peripheral T-cell lymphomas focusing on distinct genetically and molecularly defined subgroups that are being recognized within each major nodal PTCL category. It is expected that the molecular stratification will improve the diagnosis and will provide novel therapeutic opportunities (biomarker-driven and targeted therapies) that might benefit and change the outcomes of patients with these neoplasms.
Collapse
Affiliation(s)
- Lianqun Qiu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeong Hee Cho
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
33
|
Muto R, Kawakita T, Miyoshi H, Arakawa F, Nakashima K, Ohshima K, Murayama T. The first case of methotrexate-associated lymphoproliferative disorder presenting as follicular T-cell lymphoma. Pathol Int 2021; 71:765-770. [PMID: 34473863 DOI: 10.1111/pin.13155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
This is the first case of follicular T-cell lymphoma (FTCL) presenting as methotrexate-associated lymphoproliferative disorders (MTX-LPDs). A 69-year-old man treated rheumatoid arthritis with methotrexate presented with cervical swelling, hoarseness and fever. Imaging studies revealed multiple lymphadenopathy and lymphoma was suspected. Lymph node biopsy was performed to confirm the diagnosis. Pathologically, the lymph node was composed of atypical lymphocytes with a follicular growth pattern and area of necrosis. Immunohistochemical examination showed the atypical lymphocytes were positive for CD3, CD4, programmed cell death protein 1, and inducible T-cell co-stimulator. These findings are consistent with FTCL. During hospitalization, the patient's fever subsided and cervical lymphadenopathy improved, probably due to discontinuation of MTX. Here we presented the first case of FTCL presenting as MTX-LPDs. The T-cell phenotype MTX-LPDs are relatively rare and accounts for only 3.4%-6.3% of all MTX-LPD cases. Therefore, detailed clinicopathological features have not been clarified sufficiently. It is hoped that similar cases should be accumulated and studied to better understand the clinical and pathological features of this condition.
Collapse
Affiliation(s)
- Reiji Muto
- Department of Pathology, Fukuoka University School of Medicine, Fukuoka, Japan.,Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan.,Department of Pathology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Fumiko Arakawa
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Kazutaka Nakashima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
| | - Toshihiko Murayama
- Department of Pathology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| |
Collapse
|
34
|
Abstract
The focus of this review is to examine the role of ITK signaling in multiple diseases and investigate the clinical potential of ITK inhibition. The diseases and potential interventions reviewed include T cell-derived malignancies as well as other neoplastic diseases, allergic diseases such as asthma and atopic dermatitis, certain infectious diseases, several autoimmune disorders such as rheumatoid arthritis and psoriasis, and finally the use of ITK inhibition in both solid organ and bone marrow transplantation recipients.
Collapse
Affiliation(s)
- Samuel Weeks
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Avenue Weiskotten Hall Suite 2281, Syracuse, NY 13210, USA
| |
Collapse
|
35
|
Follicular T-cell lymphoma: a short review with brief discussion of other nodal lymphomas/lymphoproliferative disorders of T-follicular helper cell origin. J Hematop 2021. [DOI: 10.1007/s12308-021-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Drieux F, Ruminy P, Sater V, Marchand V, Fataccioli V, Lanic MD, Viennot M, Viailly PJ, Sako N, Robe C, Dupuy A, Vallois D, Veresezan L, Poullot E, Picquenot JM, Bossard C, Parrens M, Lemonnier F, Jardin F, de Leval L, Gaulard P. Detection of Gene Fusion Transcripts in Peripheral T-Cell Lymphoma Using a Multiplexed Targeted Sequencing Assay. J Mol Diagn 2021; 23:929-940. [PMID: 34147695 DOI: 10.1016/j.jmoldx.2021.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.
Collapse
Affiliation(s)
- Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, Rouen, France; Pathology Department, Centre Henri Becquerel, Rouen, France; INSERM U955, Université Paris-Est, Créteil, France
| | | | | | | | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | | | - Nouhoum Sako
- INSERM U955, Université Paris-Est, Créteil, France
| | | | | | - David Vallois
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Elsa Poullot
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
| | | | | | - Marie Parrens
- Pathology Department, Hôpital Haut-Lévêque, Bordeaux, France
| | - François Lemonnier
- INSERM U955, Université Paris-Est, Créteil, France; Hematology Department, Lymphoma Unit, Henri Mondor Hospital, Public Assistance Hospital of Paris, Créteil, France
| | | | - Laurence de Leval
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Philippe Gaulard
- INSERM U955, Université Paris-Est, Créteil, France; Pathology Department, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
37
|
Xie Y, Jaffe ES. How I Diagnose Angioimmunoblastic T-Cell Lymphoma. Am J Clin Pathol 2021; 156:1-14. [PMID: 34117736 DOI: 10.1093/ajcp/aqab090] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma derived from T-follicular helper cells. For pathologists, diagnosing AITL may be challenging due to its wide clinical and histopathologic spectrum, which can mimic a variety of reactive and neoplastic processes. METHODS We summarize and discuss the clinicopathologic features of AITL, emphasizing diagnostic tools available to the practicing pathologist. Common diagnostic dilemmas are discussed. RESULTS AITL exhibits various histologic patterns and is often associated with a prominent microenvironment that can obscure the neoplastic cells. Atypical B-cell proliferations, which can take a number of forms, are common in AITL, and clonal B-cell expansion can be seen. The atypical B cells can closely resemble Hodgkin/Reed-Sternberg cells, leading to misdiagnosis as classic Hodgkin lymphoma. Molecular studies have revealed recurrent genetic alterations, which can aid in differential diagnosis, particularly in problematic cases. CONCLUSIONS Given the complex diagnostic challenges in AITL, an integrated approach, incorporating clinical, morphologic, immunophenotypic, and molecular findings, is helpful to reach an accurate diagnosis.
Collapse
Affiliation(s)
- Yi Xie
- Department of Laboratory Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
38
|
Smith CIE, Burger JA. Resistance Mutations to BTK Inhibitors Originate From the NF-κB but Not From the PI3K-RAS-MAPK Arm of the B Cell Receptor Signaling Pathway. Front Immunol 2021; 12:689472. [PMID: 34177947 PMCID: PMC8222783 DOI: 10.3389/fimmu.2021.689472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since the first clinical report in 2013, inhibitors of the intracellular kinase BTK (BTKi) have profoundly altered the treatment paradigm of B cell malignancies, replacing chemotherapy with targeted agents in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström's macroglobulinemia. There are over 20 BTKi, both irreversible and reversible, in clinical development. While loss-of-function (LoF) mutations in the BTK gene cause the immunodeficiency X-linked agammaglobulinemia, neither inherited, nor somatic BTK driver mutations are known. Instead, BTKi-sensitive malignancies are addicted to BTK. BTK is activated by upstream surface receptors, especially the B cell receptor (BCR) but also by chemokine receptors, and adhesion molecules regulating B cell homing. Consequently, BTKi therapy abrogates BCR-driven proliferation and the tissue homing capacity of the malignant cells, which are being redistributed into peripheral blood. BTKi resistance can develop over time, especially in MCL and high-risk CLL patients. Frequently, resistance mutations affect the BTKi binding-site, cysteine 481, thereby reducing drug binding. Less common are gain-of-function (GoF) mutations in downstream signaling components, including phospholipase Cγ2 (PLCγ2). In a subset of patients, mechanisms outside of the BCR pathway, related e.g. to resistance to apoptosis were described. BCR signaling depends on many proteins including SYK, BTK, PI3K; still based on the resistance pattern, BTKi therapy only selects GoF alterations in the NF-κB arm, whereas an inhibitor of the p110δ subunit of PI3K instead selects resistance mutations in the RAS-MAP kinase pathway. BTK and PLCγ2 resistance mutations highlight BTK's non-redundant role in BCR-mediated NF-κB activation. Of note, mutations affecting BTK tend to generate clone sizes larger than alterations in PLCγ2. This infers that BTK signaling may go beyond the PLCγ2-regulated NF-κB and NFAT arms. Collectively, when comparing the primary and acquired mutation spectrum in BTKi-sensitive malignancies with the phenotype of the corresponding germline alterations, we find that certain observations do not readily fit with the existing models of BCR signaling.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
39
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
40
|
Sakata-Yanagimoto M, Fukumoto K, Karube K, Chiba S. Molecular understanding of peripheral T-cell lymphomas, not otherwise specified (PTCL, NOS): A complex disease category. J Clin Exp Hematop 2021; 61:61-70. [PMID: 33716242 PMCID: PMC8265491 DOI: 10.3960/jslrt.20059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) includes various
diseases. Attempts have been made to identify distinct properties of disease within the
PTCL, NOS classification and evaluate their significance to prognosis. Comprehensive gene
expression analysis and evaluation of genomic abnormalities have successfully identified
specific diseases from heterogeneous PTCL, NOS cases. For example, cases with properties
of T follicular helper cells have been identified and classified as an entity resembling
angioimmunoblastic T-cell lymphoma (AITL), based on both immunohistochemistry and genomic
features. Here, we focus on the molecular pathology of PTCL, NOS and discuss recent
changes relevant to its classification.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| | - Kota Fukumoto
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| | - Kennosuke Karube
- Department of Pathology and Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan.,Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
41
|
New developments in non-Hodgkin lymphoid malignancies. Pathology 2021; 53:349-366. [PMID: 33685720 DOI: 10.1016/j.pathol.2021.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
The revised fourth edition of the World Health Organization (WHO) Classification of Tumours of Haematopoietic and Lymphoid Tissues (2017) reflects significant advances in understanding the biology, genetic basis and behaviour of haematopoietic neoplasms. This review focuses on some of the major changes in B-cell and T-cell non-Hodgkin lymphomas in the 2017 WHO and includes more recent updates. The 2017 WHO saw a shift towards conservatism in the classification of precursor lesions of small B-cell lymphomas such as monoclonal B-cell lymphocytosis, in situ follicular and in situ mantle cell neoplasms. With more widespread use of next generation sequencing (NGS), special entities within follicular lymphoma and mantle cell lymphoma were recognised with recurrent genetic aberrations and unique clinicopathological features. The diagnostic workup of lymphoplasmacytic lymphoma and hairy cell leukaemia has been refined with the discovery of MYD88 L265P and BRAF V600E mutations, respectively, in these entities. Recommendations in the immunohistochemical evaluation of diffuse large B-cell lymphoma include determining cell of origin and expression of MYC and BCL2, so called 'double-expressor' phenotype. EBV-positive large B-cell lymphoma of the elderly has been renamed to recognise its occurrence amongst a wider age group. EBV-positive mucocutaneous ulcer is a newly recognised entity with indolent clinical behaviour that occurs in the setting of immunosuppression. Two lymphomas with recurrent genetic aberrations are newly included provisional entities: Burkitt-like lymphoma with 11q aberration and large B-cell lymphoma with IRF4 rearrangement. Aggressive B-cell lymphomas with MYC, BCL2 and/or BCL6 rearrangements, so called 'double-hit/triple-hit' lymphomas are now a distinct entity. Much progress has been made in understanding intestinal T-cell lymphomas. Enteropathy-associated T-cell lymphoma, type II, is now known to not be associated with coeliac disease and is hence renamed monomorphic epitheliotropic T-cell lymphoma. An indolent clonal T-cell lymphoproliferative disorder of the GI tract is a newly included provisional entity. Angioimmunoblastic T-cell lymphoma and nodal T-cell lymphomas with T-follicular helper phenotype are included in a single broad category, emphasising their shared genetic and phenotypic features. Anaplastic large cell lymphoma, ALK- is upgraded to a definitive entity with subsets carrying recurrent rearrangements in DUSP22 or TP63. Breast implant-associated anaplastic large cell lymphoma is a new provisional entity with indolent behaviour. Finally, cutaneous T-cell proliferations include a new provisional entity, primary cutaneous acral CD8-positive T-cell lymphoma, and reclassification of primary small/medium CD4-positive T-cell lymphoma as lymphoproliferative disorder.
Collapse
|
42
|
Wolska-Washer A, Smolewski P, Robak T. Advances in the pharmacotherapeutic options for primary nodal peripheral T-cell lymphoma. Expert Opin Pharmacother 2021; 22:1203-1215. [PMID: 33524268 DOI: 10.1080/14656566.2021.1882997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Peripheral T cell lymphomas (PTCL) are a group of heterogenous hematologic malignancies derived from post-thymic T lymphocytes and mature NK cells. Conventional chemotherapy does not guarantee a good outcome. AREAS COVERED The article summarizes recent investigational therapies and their mechanism of action, as well as the pharmacological properties, clinical activity, and toxicity of new agents in the treatment of primary nodal PTCLs. The review scrutinized papers included in the MEDLINE (PubMed) database between 2010 and October 2020. These were supplemented with a manual search of conference proceedings from the previous five years of the American Society of Hematology, European Hematology Association, and American Society of Clinical Oncology. Further relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION PTCLs have proved difficult to treat and investigate because of their rarity. Studies of aggressive lymphoma, including a small proportion of T-cell lymphomas, found that any benefit from intensified traditional chemotherapy in patients with PTCL is accompanied by increased toxicity. However, the management of PTCL is beginning to change dramatically, thanks to the use of more sophisticated agents targeting the mechanisms of disease development.
Collapse
Affiliation(s)
- Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, Lodz. Poland.,Copernicus Memorial Hospital, Lodz. Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, Lodz. Poland.,Copernicus Memorial Hospital, Lodz. Poland
| | - Tadeusz Robak
- Copernicus Memorial Hospital, Lodz. Poland.,Department of Hematology, Medical University of Lodz, Lodz. Poland
| |
Collapse
|
43
|
Munguía-Fuentes R, Maqueda-Alfaro RA, Chacón-Salinas R, Flores-Romo L, Yam-Puc JC. Germinal Center Cells Turning to the Dark Side: Neoplasms of B Cells, Follicular Helper T Cells, and Follicular Dendritic Cells. Front Oncol 2021; 10:587809. [PMID: 33520702 PMCID: PMC7843373 DOI: 10.3389/fonc.2020.587809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Gaining knowledge of the neoplastic side of the three main cells—B cells, Follicular Helper T (Tfh) cells, and follicular dendritic cells (FDCs) —involved in the germinal center (GC) reaction can shed light toward further understanding the microuniverse that is the GC, opening the possibility of better treatments. This paper gives a review of the more complex underlying mechanisms involved in the malignant transformations that take place in the GC. Whilst our understanding of the biology of the GC-related B cell lymphomas has increased—this is not reviewed in detail here—the dark side involving neoplasms of Tfh cells and FDCs are poorly studied, in great part, due to their low incidence. The aggressive behavior of Tfh lymphomas and the metastatic potential of FDCs sarcomas make them clinically relevant, merit further attention and are the main focus of this review. Tfh cells and FDCs malignancies can often be misdiagnosed. The better understanding of these entities linked to their molecular and genetic characterization will lead to prediction of high-risk patients, better diagnosis, prognosis, and treatments based on molecular profiles.
Collapse
Affiliation(s)
- Rosario Munguía-Fuentes
- Departmento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, UPIITA-IPN, Mexico City, Mexico
| | - Raúl Antonio Maqueda-Alfaro
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Moon CS, Reglero C, Cortes JR, Quinn SA, Alvarez S, Zhao J, Lin WHW, Cooke AJ, Abate F, Soderquist CR, Fiñana C, Inghirami G, Campo E, Bhagat G, Rabadan R, Palomero T, Ferrando AA. FYN-TRAF3IP2 induces NF-κB signaling-driven peripheral T cell lymphoma. NATURE CANCER 2021; 2:98-113. [PMID: 33928261 PMCID: PMC8081346 DOI: 10.1038/s43018-020-00161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.
Collapse
Affiliation(s)
- Christine S Moon
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Silvia Alvarez
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Wen-Hsuan W Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Francesco Abate
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Claudia Fiñana
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Elias Campo
- Department of Pathology, Hospital Clinic of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Muto R, Uemura N, Mitsui N, Arakawa F, Negishi T, Miyoshi H, Ohshima K, Murayama T. The first reported case of primary extranodal counterpart of follicular T-cell lymphoma of submandibular gland. Pathol Int 2020; 70:1027-1031. [PMID: 33048405 DOI: 10.1111/pin.13031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
This is the first reported case of follicular T-cell lymphoma (FTCL) that primarily developed in the extranodal site of the right submandibular gland. An 86-year-old man was detected with a right cervical mass suspected to be malignant lymphoma during his physical examination. Imaging studies revealed that the mass was a submandibular gland tumor. The tumor was excised for diagnosis and treatment. Pathologically, the tumor was composed of densely aggregated lymphocytes with a follicular growth pattern. The immunohistochemical investigation showed that the lymphoma cells expressed CD3, CD4, programmed cell death protein 1, BCL6, chemokine (C-X-C motif) ligand 13, and BCL2. Staining of the follicular dendritic cell revealed its meshwork structure limited in the germinal center. Monoclonal rearrangement of the T-cell receptor was detected using polymerase chain reaction. These findings are consistent with the characteristics of FTCL. Here, we describe the first reported case of extranodal counterpart of FTCL of the submandibular gland. Accumulation and investigation of such extranodal cases is essential.
Collapse
Affiliation(s)
- Reiji Muto
- Department of Pathology, National Hospital Organization, Kumamoto Medical Center, Japan.,Department of Pathology, Kurume University School of Medicine, Japan
| | - Naoki Uemura
- Department of Otolaryngology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Norikazu Mitsui
- Department of Hematology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Fumiko Arakawa
- Department of Pathology, Kurume University School of Medicine, Japan
| | - Takanori Negishi
- Department of Radiology, National Hospital Organization, Kumamoto medical center, Kumamoto, Japan
| | | | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Japan
| | - Toshihiko Murayama
- Department of Pathology, National Hospital Organization, Kumamoto Medical Center, Japan
| |
Collapse
|
46
|
American Registry of Pathology Expert Opinions: Recommendations for the diagnostic workup of mature T cell neoplasms. Ann Diagn Pathol 2020; 49:151623. [PMID: 32947231 DOI: 10.1016/j.anndiagpath.2020.151623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
The diagnosis of T-cell lymphomas is highly challenging and requires an integrated approach in which clinical, morphologic, immunophenotypic and molecular data are incorporated into the diagnosis. Under the auspices of the American Registry of Pathology, the authors met to discuss this topic with the goal to provide practical and useful recommendations for pathologists when evaluating T-cell lymphomas. In this review, we discuss the diagnostic findings and workup for the various types of nodal T-cell lymphoma including anaplastic large cell lymphoma, nodal peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), and PTCL with a T follicular helper (TFH) phenotype. We review clinicopathologic and immunophenotypic features (including flow cytometry panels) helpful in the differential diagnosis of mature T-cell lymphomas presenting in the peripheral blood and bone marrow, and we discuss some of the more common extranodal-based T-cell lymphomas including extranodal natural killer/T-cell lymphoma of nasal and non-nasal type, gamma delta T cell lymphomas, and aggressive and indolent T- and NK-lymphoproliferative disorders involving the gastrointestinal tract. Mycosis fungoides and most other cutaneous T-cell lymphomas are not the focus of this review, although the differential diagnosis of Sezary syndrome from mycosis fungoides is covered. We do not intend for these recommendations to be anything other than suggestions that will hopefully spur on additional discussion, and perhaps eventually evolve into a consensus approach for the workup of T-cell lymphomas.
Collapse
|
47
|
Neuwelt A, Al-Juhaishi T, Davila E, Haverkos B. Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv 2020; 4:4256-4266. [PMID: 32898250 PMCID: PMC7479955 DOI: 10.1182/bloodadvances.2020001966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
The majority of historical therapies for managing T-cell lymphomas (TCLs) have consisted of T-cell-depleting strategies. Unfortunately, these forms of therapies can hamper the ability to mount effective antitumor immune responses. Recently, the use of checkpoint inhibitors has revolutionized the therapy of solid and hematologic malignancies. The development of immunotherapies for the management of TCL has lagged behind other malignancies given 2 central reasons: (1) the competing balance of depleting malignant T cells while simultaneously enhancing an antitumor T-cell response and (2) concern for tumor hyperprogression by blocking inhibitory signals on the surface of the malignant T cell, thereby leading to further proliferation of the malignant cells. These challenges were highlighted with the discovery that programmed cell death protein 1 (PD-1) functions paradoxically as a haploinsufficient tumor suppressor in preclinical TCL models. In contrast, some preclinical and clinical evidence suggests that PD-1/programmed death ligand 1 may become an important therapeutic tool in the management of patients with TCL. Improved understanding of the immune landscape of TCL is necessary in order to identify subsets of patients most likely to benefit from checkpoint-inhibitor therapy. With increased preclinical research focus on the tumor microenvironment, substantial strides are being made in understanding how to harness the power of the immune system to treat TCLs. In this review, designed to be a "call to action," we discuss the challenges and opportunities of using immune-modulating therapies, with a focus on checkpoint inhibitors, for the treatment of patients with TCL.
Collapse
Affiliation(s)
- Alexander Neuwelt
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | - Taha Al-Juhaishi
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | | | | |
Collapse
|
48
|
Vega F. Pathology and Pathogenesis of T-Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20 Suppl 1:S89-S93. [PMID: 32862884 DOI: 10.1016/s2152-2650(20)30474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous and often clinically aggressive group of neoplasms derived from mature post-thymic T lymphocytes. These neoplasms are rare and usually diagnostically challenging. Our understanding of the pathogenesis of PTCL is increasing and this improved knowledge is leading us to better molecular characterization, more objective diagnostic criteria, more effective risk assessment, and potentially to better treatments for these neoplasms.
Collapse
Affiliation(s)
- Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, 77030, US.
| |
Collapse
|
49
|
Attarbaschi A, Abla O, Arias Padilla L, Beishuizen A, Burke GAA, Brugières L, Bruneau J, Burkhardt B, d'Amore ESG, Klapper W, Kontny U, Pillon M, Taj M, Turner SD, Uyttebroeck A, Woessmann W, Mellgren K. Rare non-Hodgkin lymphoma of childhood and adolescence: A consensus diagnostic and therapeutic approach to pediatric-type follicular lymphoma, marginal zone lymphoma, and nonanaplastic peripheral T-cell lymphoma. Pediatr Blood Cancer 2020; 67:e28416. [PMID: 32452165 DOI: 10.1002/pbc.28416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Pediatric-type follicular (PTFL), marginal zone (MZL), and peripheral T-cell lymphoma (PTCL) account each for <2% of childhood non-Hodgkin lymphoma. We present clinical and histopathological features of PTFL, MZL, and few subtypes of PTCL and provide treatment recommendations. For localized PTFL and MZL, watchful waiting after complete resection is the therapy of choice. For PTCL, therapy is subtype-dependent and ranges from a block-like anaplastic large cell lymphoma (ALCL)-derived and, alternatively, leukemia-derived therapy in PTCL not otherwise specified and subcutaneous panniculitis-like T-cell lymphoma to a block-like mature B-NHL-derived or, preferentially, ALCL-derived treatment followed by hematopoietic stem cell transplantation in first remission in hepatosplenic and angioimmunoblastic T-cell lymphoma.
Collapse
Affiliation(s)
- Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Oussama Abla
- Division of Hematology and Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Laura Arias Padilla
- Department of Pediatric Hematology and Oncology, University of Münster, Münster, Germany
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - G A Amos Burke
- Department of Pediatric Hematology and Oncology, Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave-Roussy Cancer Center, Paris-Saclay University, Villejuif, France
| | - Julie Bruneau
- Department of Pathology, Necker Enfants Maladies Hospital, Paris, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics and Adolescent Medicine, University Medical Center, Aachen, Germany
| | - Marta Pillon
- Department of Pediatric Hematology and Oncology, University of Padova, Padova, Italy
| | - Mary Taj
- Department of Pediatric Hematology and Oncology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, Cambridge, United Kingdom.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospital Leuven, Leuven, Belgium
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg, Eppendorf, Hamburg, Germany
| | - Karin Mellgren
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and Adolescents, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
|